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a b s t r a c t

It is quite common for functional data arising from imaging data to assume values
in infinite-dimensional manifolds. Uncovering associations between two or more such
nonlinear functional data extracted from the same object across medical imaging
modalities can assist development of personalized treatment strategies. We propose
a method for canonical correlation analysis between paired probability densities or
shapes of closed planar curves, routinely used in biomedical studies, which combines
a convenient linearization and dimension reduction of the data using tangent space
coordinates. Leveraging the fact that the corresponding manifolds are submanifolds
of unit Hilbert spheres, we describe how finite-dimensional representations of the
functional data objects can be easily computed, which then facilitates use of standard
multivariate canonical correlation analysis methods. We further construct and visualize
canonical variate directions directly on the space of densities or shapes. Utility of the
method is demonstrated through numerical simulations and performance on a magnetic
resonance imaging dataset of glioblastoma multiforme brain tumors.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Canonical correlation analysis (CCA) is a statistical technique used to investigate relationships between two sets of
ariables; it was first introduced by Hotelling [14]. Classical CCA in the multivariate setting seeks linear combinations of
wo sets of variables, also called canonical variates, which maximize correlation [19]. Extensions of classical CCA to the
unctional data setting have also been previously considered in the literature. The main challenge arises from the infinite-
imensionality of the resulting representation space. Leurgans et al. [17] were the first to propose an extension of CCA
or functional data analysis (FDA). They showed that regularization is essential when estimating the canonical variates
nd imposed it via smoothing. Subsequently, multiple alternate versions of functional CCA (FCCA) have been proposed
hat utilize various forms of regularization [21], e.g., the kernel approach in [11]. Finally, Shin and Lee [24] developed
CCA for irregularly and sparsely observed functional data. He et al. [11] review four different computational methods
or estimating canonical correlations and canonical variates in the context of FDA. More generally, for a comprehensive
ntroduction to recent advances in FDA, we refer the interested reader to recent surveys by Aneiros et al. [1] and Goia
nd Vieu [8].
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Fig. 1. Two non-Euclidean functional data objects extracted from an MRI image of a patient diagnosed with GBM.

All of the aforementioned methods assume that the representation space of functions is Euclidean, and in particular
Hilbert space. In many applications, however, one is interested in modeling non-Euclidean functional data such as
robability density functions (PDFs) and shapes of curves. These data objects naturally arise in various domains including
edical imaging, biology and computer vision. PDFs are non-negative functions that integrate to one; as a result, their

epresentation space is an infinite-dimensional simplex. Similarly, shapes of parameterized curves lie on a quotient
pace of an infinite-dimensional nonlinear space due to invariance requirements, i.e., the notion of shape is invariant
o translation, scale, rotation and re-parameterization. In such examples, standard FCCA methods are inappropriate to
tudy associations between such objects.

.1. Motivating application: multimodal magnetic resonance imaging

Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults [12] with very poor prognosis;
he median survival time for patients diagnosed with GBM is approximately 12 months [28]. The most common
oninvasive technique for assessing GBM progression and tumor heterogeneity is via magnetic resonance imaging
MRI) [15]. In terms of heterogeneity, both the textural appearance of the tumor in the image as well as its geometry are
nformative descriptors. The textural characteristics of the tumor can be summarized via the probability density function
PDF) of intensity values inside the tumor [23]. On the other hand, tumor geometry can be quantified via the shape of
ts outer contour [2]. Fig. 1 offers an illustration. Associations between the two functional descriptors, which reside in
on-Euclidean function spaces, can be nonlinear and complicated, e.g., a PDF of voxel values indicates clustered tumor
exture which may be associated with a tumor contour whose shape deviates substantially from an ellipse; they can
lso be difficult to interpret. Additionally, MRI provides a wide range of imaging contrasts through multimodal images,
.g., pre-surgical T1-weighted post contrast and T2-weighted fluid-attenuated inversion recovery. Each of these sequences
dentifies different types of tissue and displays them using varying contrasts based on the tissue characteristics. From
ach modality, a PDF and a tumor contour can be extracted, and associations between PDFs (tumor contours) between
odalities are also informative descriptors of tumor heterogeneity, but, as mentioned above, can be difficult to interpret.
What is thus of practical importance is a version of FCCA on a locally linear representation of two non-Euclidean

unctional data objects, which track infinitesimal linear associations between the two. In particular, we consider: (i)
airs of voxel value PDFs corresponding to two different MRI modalities, (ii) pairs of tumor shapes corresponding to
wo different MRI modalities, and (iii) pairs of voxel value PDFs and shapes extracted from the same MRI modality.

.2. Contributions

We consider a Riemannian geometric setting for the non-Euclidean spaces of PDFs and shape curves, and utilize the
angent space parameterization of the resulting manifolds at a fixed point. The locally linear representations of PDFs and
hape curves are obtained by mapping them onto the tangent space of a fixed point, which will be taken to be the Karcher
ean with respect to the Riemannian metric. This approach is sensible when the variability in the functional data objects

s not large and the data is fairly concentrated.
For the space of PDFs, we adopt the Fisher–Rao Riemannian metric; the metric has the attractive property that under

simple square root transformation [3] it simplifies to the standard L2 metric [22,25,29], and the representation space
of PDFs is mapped to the positive orthant of the unit Hilbert sphere. This facilitates efficient analytic computation of
all relevant geometric quantities. Correspondingly, we adopt the elastic shape analysis framework to study shapes of
curves [26]. In this approach, shape changes are measured via an elastic Riemannian metric [20,30] that captures the
amount of stretching and bending needed to deform one shape into another. As with PDFs, a simplifying transformation,
2
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alled the square root velocity function [27], is used to facilitate computation of geometric quantities on the elastic shape
pace which, again, is a quotient space of a submanifold of an appropriate Hilbert sphere. A major benefit of this framework
s that it allows parameterization-invariant statistical analysis of shapes.

A well-known feature of FCCA is the need for smoothing or dimension reduction in order to circumvent arbitrarily high
orrelations between canonical variates [17]. Accordingly, our definition of FCCA for PDFs and shape curves combines the
ocal linearization in tangent spaces with dimension reduction using a data-driven basis for the chosen tangent space; this
asis is obtained by an eigen decomposition of the (empirical) covariance operator defined using the locally linearized
unctional data objects. Dimension reduction is achieved by projecting them onto a finite-dimensional subspace spanned
y a finite number of eigenbasis functions. The resulting coefficient vectors represent finite-dimensional Euclidean
epresentations of PDFs and shape curves, and can then be used to carry out standard multivariate CCA.

Since each element of the coefficient vector is associated with a basis element, the proposed tangent FCCA (TFCCA)
pproach enables us to easily visualize a particular direction specified by a canonical variate by first computing the
ssociated vector in the tangent space and then projecting it back on the manifold of PDFs or shape curves. These canonical
ariate directions maximize the correlation between the given pairs of PDFs and/or shapes. Moreover, the canonical
ariates can be used as predictors in a regression model when a response is available [18]. Along the lines of how existence
f FCCA for random functions in Hilbert spaces is established, we examine conditions required for existence of FCCA on
chosen tangent space and explicate influence of the choice. As such, our work represents a novel contribution to the
CCA literature by considering non-Euclidean functional data in the form of PDFs and shape curves, and utilizing the
iemannian geometry of their representation spaces to define suitable FCCA procedures.

.3. Notation and paper organization

Vectors/matrices and sequences are denoted in bold while all functional data objects are given as normal text. We use
· ∥ and ⟨⟨·, ·⟩⟩ to denote the functional L2 norm and inner product, respectively; non-standard Riemannian metrics are
enoted by ⟨⟨⟨·, ·⟩⟩⟩. The standard Euclidean norm and inner product in Rn are denoted by | · | and ⟨·, ·⟩, respectively.
The rest of this paper is organized as follows. In Section 2, we review the relevant Riemannian geometric frameworks

or PDFs and shapes that are used to compute local linearizations in tangent spaces and to carry out dimension reduction.
ection 3 examines existence of FCCA on tangent spaces, and describes the proposed FCCA approach for paired sets of
DFs and/or shapes. We also overview the framework of canonical variate regression. In Section 4, we assess the proposed
ethods using a simulation study for PDFs. In Section 5, we apply our framework to study associations between textural
nd shape features of GBM brain tumors in two MRI modalities. We close with a brief discussion and some directions for
uture work in Section 6. The supplement contains (i) a simulation study for shape curves, (ii) TFCCA results for PDFs and
hapes estimated from the same MRI modality, and (iii) visualizations of canonical variate regression-based directions.

. Geometric framework

We begin by reviewing details of the Fisher–Rao (F–R) Riemannian framework for analyzing PDFs, and elastic shape
nalysis. For brevity, we do not provide all details of these two frameworks, and refer the reader to Srivastava and
lassen [26]. Saha et al. [23] also provide a comprehensive summary of the F–R framework for PDFs. The elastic shape
nalysis framework is implemented in the fdasrvf package in R.

.1. Finite-dimensional tangent coordinates for PDFs

We consider univariate PDFs on an interval of R which, without loss of generality, is assumed to be [0, 1]. The set
=

{
p : [0, 1] → R>0

⏐⏐ ∫ 1
0 p(t)dt = 1

}
of PDFs is a Banach manifold with a tangent space at a point p ∈ P given

y Tp(P) = {δp : [0, 1] → R
⏐⏐ ∫ 1

0 δp(t)dt = 0}. Given δp1, δp2 ∈ Tp(P) the (nonparametric) F–R metric is defined as
⟨⟨δp1, δp2⟩⟩⟩p =

∫ 1
0 δp1(t)δp2(t)

1
p(t)dt [22,29]. A key property of this metric is that it is invariant to re-parameterizations

of PDFs, i.e., one-to-one smooth mappings of the domain to itself [6]. However, the computation of various geometric
quantities of interest, e.g., geodesics, exponential and inverse-exponential maps, under the F–R metric is difficult in
practice since the metric changes from point to point on the space of PDFs.

To simplify the F–R metric and the representation space of PDFs, we utilize the square root transformation (SRT),
defined as ψ = +

√
p, that was proposed by Bhattacharyya [3]. Under this transformation, the representation space of

PDFs P transforms to the positive orthant of the unit Hilbert sphere S∞([0, 1]) in L2
(
[0, 1],R

)
, Ψ = {ψ : [0, 1] →

R>0 | ∥ψ∥2 =
∫ 1
0 ψ(t)2dt = 1}, and the F–R metric reduces to the standard L2 metric, i.e., given two tangent vectors

δψ1, δψ2 ∈ Tψ (Ψ ) = {δψ : [0, 1] → R | ⟨⟨δψ,ψ⟩⟩ =
∫ 1
0 δψ(t)ψ(t)dt = 0}, the L2 Riemannian metric can be computed

sing ⟨⟨δψ1, δψ2⟩⟩ =
∫ 1
0 δψ1(t)δψ2(t)dt .

On the Hilbert sphere S∞([0, 1]), the exponential map is well-defined on the entire tangent space [4], and so is
he inverse-exponential when restricted to the positive orthant since it is a geodesically convex submanifold. Thus, the
nverse-exponential map at a point ψ∗ represents a convenient mechanism to obtain local linear versions of points on
, which represent infinitesimal perturbations of the points along geodesics that pass through ψ∗. Moreover, the simple
2 geometry under the SRT representation ensures that important geometric quantities of interest can be computed in
losed-form:
3
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• Geodesic distance (for ψ1, ψ2 ∈ Ψ ): d(ψ1, ψ2) = cos−1(⟨⟨ψ1, ψ2⟩⟩), i.e., the length of the great circle connecting ψ1
and ψ2 on Ψ ;

• Exponential map expψ : Tψ (Ψ ) → Ψ (for ψ ∈ Ψ , δψ ∈ Tψ (Ψ )): expψ (δψ) = cos(∥δψ∥)ψ + sin(∥δψ∥) δψ

∥δψ∥
;

• Inverse-exponential map exp−1
ψ1

: Ψ → Tψ (Ψ ) (for ψ1, ψ2 ∈ Ψ ): exp−1
ψ1

(ψ2) =
d(ψ1,ψ2)

sin(d(ψ1,ψ2))

(
ψ2 − cos(d(ψ1, ψ2))ψ1

)
.

he choice of ψ∗ is important, and a natural data-driven choice is a sample mean SRT ψ̄: given points ψ1, . . . , ψn, the
archer mean ψ̄ is defined as a minimizer of the variance functional Ψ ∋ ψ ↦→

1
n

∑n
i=1 d(ψ,ψi)2. An algorithm for

alculating ψ̄ is presented in Appendix A1 in [23].
Next, dimension reduction of the linearized PDFs is achieved through intrinsic functional principal component analysis

FPCA) on Ψ with respect to the Karcher mean ψ̄ . For i = 1, . . . , n, we first compute δψi = exp−1
ψ̄

(ψi) using the
nverse-exponential map. The sample covariance function kn(s, t) =

1
n−1

∑n
i=1 δψi(s)δψi(t) can be used as the kernel

f the covariance operator Knδψi(t) =
∫ 1
0 kn(s, t)δψi(s)ds. The sample eigenfunctions en,j and eigenvalues λn,j of Kn are

hen estimated as solutions to Knen,j(t) = λn,jen,j(t), j = 1, . . . , n. In practice, consider the N × 1 vector δψi obtained
y sampling δψi using N points in [0, 1]. The singular value decomposition (SVD) of the sample covariance matrix, of
ize N × N , is given by 1

n−1

∑n
i=1 δψiδψ

T
i = UΣU T , where U contains the matrix of discretized eigenfunctions en,j as its

olumns and Σ is a diagonal matrix containing the principal component variances ordered from largest to smallest. In
ost cases, n ≪ N , and thus, this matrix is not full rank. Finally, the tangent Euclidean finite-dimensional coordinates of
n SRT form an r-dimensional vector of PC coefficients c i = U T

r δψi, where U r is the matrix containing the first r columns
f U .
To summarize, starting with a sample of PDFs p1, . . . , pn, the sequence of operations used to obtain the requisite

oordinates is

{pi}
SRT
−→ {ψi}

mean
−→ ψ̄

exp−1
ψ̄

(ψi)
−→ {δψi}

FPCA on Tψ̄ (Ψ )
−→ {c i ∈ Rr

} . (1)

2.2. Finite-dimensional tangent coordinates for shape curves

Let β : S1
→ R2 denote an absolutely continuous, parameterized, closed planar curve. Its shape, or the shape curve, is

defined to be the equivalence class of curves [β] = {σO(β ◦ γ )+ a|σ > 0, O ∈ SO(2), γ ∈ Γ , a ∈ R2
} that are related

o β through a (uniform) scaling, rotation, re-parameterization and translation of β; here, SO(2) =
{
O ∈ R2×2

⏐⏐ OTO =

OOT
= I, det(O) = +1

}
is the rotation group and Γ =

{
γ : S1

→ S1
⏐⏐ 0 < γ̇ < ∞

}
, where γ̇ is the derivative of γ , is

the re-parameterization group with action given by composition (β, γ ) = β ◦ γ .
We need an appropriate distance between two shape curves [β1] and [β2]. It is well-known that the standard L2

distance is not invariant to re-parameterizations [26]. Mio et al. [20] and Younes [30] defined a family of first order
Riemannian metrics, also referred to as elastic metrics, that are invariant to all of the aforementioned shape preserving
transformations; the elastic metrics are closely related to the F–R metric for analyzing PDFs [26]. These metrics also
provide a natural interpretation of shape deformations in terms of their bending and stretching/compression. Despite
these nice mathematical properties, this family of metrics is difficult to use in practice for similar reasons as explained
in the previous section. To overcome these difficulties, Srivastava et al. [27] introduced the square root velocity function
(SRVF) q : S1

→ R2, defined as q = β̇/
√
|β̇| (if β̇(t) = 0, q(t) = 0), where β̇ is the derivative of β . The SRVF simplifies

the elastic metric to the flat L2 metric [27], thereby facilitating easy computation. Since we suppose β is absolutely
ontinuous, its SRVF q is square-integrable, i.e., an element of L2

(
S1,R2

)
. We can identify S1 ∼= R/2πZ ∼= [0, 1] with the

unit interval, and any integral over S1 is then an integral over [0, 1] (assuming the starting point on S1 is known). One
can then uniquely recover the curve β from its SRVF q, up to a translation, via the relation β(t) =

∫ t
0 q(s)|q(s)|ds.

The SRVF representation q is invariant to translations of the curve β since it is based on the derivative. If we impose
an additional unit length constraint on the curves, then the representation space of SRVFs becomes S∞(S1) =

{
q : S1

→

R2
⏐⏐ ∥q∥2 =

∫
S1
|q(t)|2 = 1

}
, i.e., the unit Hilbert sphere in L2

(
S1,R2

)
. The closed curve β satisfies

∫ 1
0 β̇(t)dt = 0

and this leads to a corresponding closure condition under the SRVF representation
∫ 1
0 q(t)|q(t)|dt = 0. The space

C =

{
q ∈ S∞(S1)|

∫ 1
0 q(t)|q(t)|dt = 0

}
is referred to as the pre-shape space, since shape preserving actions of SO(2) and

Γ are yet to be accounted for. The pre-shape space C is a submanifold of L2
(
S1,R2

)
[26] and the distance (induced from

S∞(S1)) between any two SRVFs q1, q2 ∈ C is given by dC(q1, q2) = cos−1
(
⟨⟨q1, q2⟩⟩

)
, where ⟨⟨q1, q2⟩⟩ =

∫
S1⟨q1(t), q2(t)⟩dt .

The SRVF representation of a rotated curve Oβ is Oq, while the SRVF of a re-parameterized curve β ◦ γ is
(
q, γ

)
=(

q◦γ
)√
γ̇ . For every (O, γ ) ∈ SO(2)×Γ , dC(O(q1, γ ),O(q2, γ )) = dC(q1, q2), and hence it is invariant to the product action

f the rotation and re-parameterization groups. Using this result, a distance on the shape space, S = C
/(

SO(2) × Γ
)
={

[q]
⏐⏐ q ∈ C

}
, can be defined as dS([q1], [q2]) = cos−1

(⟨⟨
q1, q∗2

⟩⟩)
, where q∗2 = (O∗q2, γ ∗) and (O∗, γ ∗) = infO∈SO(2),γ∈Γ ∥q1−

(q2, γ )∥2. The quantities O∗ and γ ∗ represent the optimal global rotation and re-parameterization of q2 for alignment or
egistration with respect to q1. We use Procrustes analysis to compute O∗, and a combination of Dynamic Programming
and an exhaustive seed search to compute γ ∗ [26].
4
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Viewing (S, dS ) as a metric space, a sample Karcher mean can be defined and computed. Let β1, . . . , βn be a sample
f curves and q1, . . . , qn ∈ C their corresponding SRVFs. The sample mean shape [q̄] is defined as the minimizer of
∋ [q] ↦→ 1

n

∑n
i=1 dS([q], [qi])

2, and as a representative shape a single element q̄ ∈ [q̄] from the mean shape is chosen
for subsequent analysis. A detailed algorithm for computing a mean shape is provided in [16].

In contrast to the framework for analyzing PDFs, two inter-related issues arise when attempting to obtain tangent
coordinates for shape curves: (i) the shape space S is not a manifold [26] and it is hence not possible to impose a
Riemannian structure on S , and (ii) the tangent space at a shape [q] cannot be identified with a normal subspace to
C at q in L2

(
S1,R2

)
, and additionally an inverse-exponential map is unavailable. Note, however, that C ⊂ S∞(S1) and

since C is a manifold, for each q ∈ C, Tq(C) ⊂ Tq(S∞(S1)). The geometry of S∞(S1) is essentially the same as S∞([0, 1]),
encountered in the case of PDFs, and the inverse-exponential map at any q, exp−1

q : S∞(S1) → Tq(S∞(S1)), takes the
same form as seen earlier as long as it is not applied to the antipode −q. Our approach hence is to construct a projection
C → Tq̄(C) that approximates a vector in the (linear) tangent space at the mean shape [q̄]. For a q ∈ C, this is achieved in
three steps:

(i) register q to q̄ using the shape distance dS by computing q∗ = O∗(q, γ ∗) where O∗, γ ∗
∈ SO(2) × Γ optimize

dS([q], [q̄]);
(ii) project q∗ into Tq̄(S∞(S1)) by computing the inverse-exponential δq◦ = exp−1

q̄ (q∗);
(iii) construct a projection of δq◦ onto Tq̄(C) as δqc = δq◦ − [⟨⟨δq◦, φ1⟩⟩φ1 + ⟨⟨δq◦, φ2⟩⟩φ2], where φi : S1

→ R2, i ∈
{1, 2} is the orthonormal basis of the two-dimensional normal subspace Nq̄(C) at q̄ to S∞(S1) in L2

(
S1,R2

)
, since

Tq̄(S∞(S1)) = Tq̄(C)⊕ Nq̄(C).

We encode steps (i)–(iii) as a projection map Π : C → Tq̄(C), q ↦→ Π(q) = δqc , which represents the required
approximation. In most cases in practice, when the variability amongst the qi is not large, step (iii) can be avoided.

In order to obtain the finite-dimensional tangent coordinates, we first compute δqci = Π(qi), i ∈ {1, . . . , n}. As with
PDFs, a data-driven basis for Tq̄(C) is obtained by carrying out traditional FPCA with δqci ; in practice, each δqci is sampled
using N points and re-shaped into a 2N × 1 column vector by stacking the x and y coordinates. Following an SVD of the
corresponding sample covariance matrix constructed using the 2N-dimensional vectors, we compute an r-dimensional
vector of PC coefficients, c i, i ∈ {1, . . . , n}, following truncation of the eigenbasis to r components.

Starting with a sample, β1, . . . , βn, of closed planar curves, the sequence of operations used to obtain the requisite
coordinates is

{βi}
SRVF
−→ {qi}

mean
−→ q̄

Π (qi)
−→ {δqci }

FPCA on Tq̄(C)
−→ {c i ∈ Rr

} . (2)

3. Tangent functional canonical correlation analysis

In this section, we describe the proposed TFCCA methods. In addition, we also consider canonical variate regression
(CVR) [18] for simultaneous estimation of canonical variates and prediction, when a response variable is available. We
first briefly discuss the existence of TFCCA. In particular, we elucidate how the situation is distinguished from that of
standard FCCA, mainly through the explicit dependence on the point to whose tangent space attention is restricted to.

3.1. Challenges to establishing existence of FCCA on a tangent space

The manifolds Ψ and C are submanifolds of Hilbert manifolds S∞([0, 1]) and S∞(S1), respectively, where the tangent
space at a point is a subspace of a Hilbert space; let f represent a generic point on one of these two spaces. By projecting
samples onto the tangent space of a fixed point f on the manifold, we essentially ignore the manifold structure while
performing FCCA. Conditions that ensure existence of standard FCCA on Hilbert spaces (see, e.g., [13]) can be examined
in the present setting by explicitly accounting for the presence of f .

The point f can be described using two coordinate systems: (i) as the origin in intrinsic local tangent space coordinates
of Tf , or (ii) as a point in the extrinsic ambient space coordinates which embeds Ψ or C into the larger Hilbert space. Local
transformations between the two coordinate systems are nonlinear and incompatible with the linear nature of FCCA.

To understand how f influences FCCA, we consider the extrinsic ambient coordinates and identify a subset Af in the
larger Hilbert space whose elements are tangent-like to f , and discuss the role of f in adapting existence results of standard
FCCA to the present setting. For simplicity, we restrict discussion to PDFs with a non-random f , denoted by ψ in our setting
(as opposed to an estimated Karcher mean); key arguments carry over to shape curves as well.

We first briefly review the situation with standard FCCA on the Hilbert space L2([0, 1]). The chief obstacle in extending
CCA from the multivariate to the functional setting lies in the fact that L2([0, 1]) is too large and one needs to restrict to
a smaller subspace. Specifically, consider two centered random functions X and Y , assuming values in two Hilbert spaces
H1 = L2([0, 1]) and H2 = L2([0, 1]), respectively, with covariance and cross covariance operators Klm, l,m ∈ {1, 2}; K11
and K22 are assumed to be symmetric, positive definite and Hilbert–Schmidt, whereas K12 and K21 are Hilbert–Schmidt.

Let {(λi, φi)} and {(ζj, θj)} be eigenvalue–function pairs of K11 and K22, respectively, leading to the Karhunen–Loéve
representations X(t) =

∑
a φ (t) and Y (t) =

∑
c θ (t), t ∈ [0, 1], where the a are uncorrelated with E(a ) = 0 and
i i i j j j i i

5
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(a2i ) = λi, cj are uncorrelated with E(cj) = 0 and E(c2j ) = ζj, and {φi} and {θj} are orthonormal bases of H1 and H2,
espectively. When they exist, the kth correlation ρk and weight functions vk and wk are defined as

ρk = ⟨⟨vk,K12(wk)⟩⟩ = sup
{
⟨⟨v,K12(w)⟩⟩ : v,w ∈ L2

[0, 1]
}
,

ubject to ⟨⟨v,K11(v)⟩⟩ = ⟨⟨w,K22(w)⟩⟩ = 1, and the set of pairs (⟨⟨vi, X⟩⟩, ⟨⟨wi, Y ⟩⟩) and (⟨⟨vj, X⟩⟩, ⟨⟨wj, Y ⟩⟩) being
uncorrelated for all i ̸= j.

A sufficient condition for the existence of ρk and weight functions vk, wk can be found, for instance, in [13]. Summarily,
assume that λi > 0 and ζj > 0 for every i, j ∈ {1, 2, . . . }, which ensures invertibility of Kll and its square root K1/2

ll for l ∈
{1, 2}. The existence of FCCA is characterized by the existence of two correlation operatorsK−1/2

11 K12K
−1/2
22 : range(K1/2

22 ) →
range(K1/2

11 ) and K−1/2
22 K21K

−1/2
11 : range(K1/2

11 ) → range(K1/2
22 ), where range(K1/2

11 ) =
{
x ∈ L2([0, 1])

⏐⏐∑
i λ

−1
i ⟨x, φi⟩

2 <∞

}
and similarly for range(K1/2

22 ). Existence of the correlation operators is guaranteed if the following condition is satisfied:∑
i,j

E2(aicj)
λ2i ζj

<∞,
∑
i,j

E2(aicj)
λiζ

2
j

<∞. (3)

It is possible to ensure that a condition similar to (3) holds for random functions that are tangent-like to two fixed
oints ψ1, ψ2 ∈ Ψ by further controlling the behavior of λi and ζj in a manner that depends on the functions ψ1 and ψ2.
rom Section 2.1, the tangent space at ψ ∈ Ψ , in local coordinates, is given by Tψ (Ψ ) = {δψ ∈ L2([0, 1])|⟨⟨δψ,ψ⟩⟩ = 0}.
e instead consider ψ in the embedding coordinates and note that the set Aψ =

{
y − ⟨⟨y, ψ⟩⟩ψ, y ∈ L2([0, 1])

}
is a

proper subset of the Hilbert space within which Ψ is embedded with ⟨⟨y, ψ⟩⟩ = 0 for every y ∈ Aψ . The set Aψ is a subset
within the embedding space whose elements behave like tangent vectors to ψ . Accordingly, given random functions X
and Y considered above, and two fixed ψ1, ψ2 ∈ Ψ , consider the random functions U(t) = X(t)− ⟨⟨X, ψ1⟩⟩ψ1(t), V (t) =
Y (t) − ⟨⟨Y , ψ2⟩⟩ψ2(t) that assume values in Aψ1 and Aψ2 , respectively. Consequently, (realizations of) X,U and ψ1 are
viewed as elements of H1 = L2([0, 1]), whereas (realizations of) Y , V and ψ2 are points in H2 = L2([0, 1]). The random
functions U and V are centered with covariance operators that depend on Klm, l,m ∈ {1, 2} in a nonlinear manner.

Let ψ1(t) =
∑

i biφi(t) and ψ2(t) =
∑

j djθj(t) with non-random real coefficients, which satisfy
∑

i b
2
i =

∑
j d

2
j = 1.

We identify a function in L2([0, 1]) with a square summable sequence in l2 in the usual manner. Accordingly, define
the l2 sequence a = (a1, a2, . . .), and in similar fashion define b, d and c; note that a and c are random while b and
d are non-random. Then, U(t) =

∑
i ξiφi(t), V (t) =

∑
j ηjθj(t), where ξi = ai − ⟨a, b⟩bi and ηj = cj − ⟨c, d⟩dj with

E(ξi) = E(ηj) = 0 for all i and j. Also,

E(ξ 2i ) = E
(
a2i + ⟨a, b⟩2b2i − 2⟨a, b⟩aibi

)
= λi(1− b2i )

2
+ b2i

∑
j̸=i

λjb2j .

In similar fashion, we obtain E(η2j ) = ζj(1− d2j )
2
+ d2j

∑
i̸=j ζid

2
i . Then,

E(ξiηj) = E
(
aicj − aidj⟨c, d⟩ − bicj⟨a, b⟩ + bidj⟨a, b⟩⟨c, d⟩

)
= αij − dj⟨αi, d⟩ − bi⟨αj, b⟩ + bidi⟨d,K12(b)⟩ ,

where αij = E(aicj), αi = (αi1, αi2, . . .), αj = (α1j, α2j, . . .), and through an abuse of notation ⟨d,K12(b)⟩ := E(⟨⟨ψ1, X⟩⟩
⟨⟨ψ2, Y ⟩⟩) = E(⟨a, b⟩⟨c, d⟩). Existence of FCCA on a tangent space then depends on (i) relative signs of αij and E(ξiηj) and
(ii) behavior of dj⟨αi, d⟩ − bi⟨αj, b⟩ + bidi⟨d,K12(b)⟩, which depends on the non-random points ψ1 and ψ2.

We consider one of the possible scenarios to further explicate on the role of the non-random functions. Suppose αij
and E(ξiηj) are both positive. If one then assumes that [dj⟨αi, d⟩ + bi⟨αj, b⟩ − bidi⟨d,K12(b)⟩] > 0, the numerator of (3)
can be bounded since E(ξiηj) ≤ E(aicj) = αij. Since by assumption in standard FCCA, λi > 0 and ζj > 0, we obtain
E(ξ 2i ) ≥ λi(1− b2i )

2 and E(η2j ) ≥ ζj(1− d2j )
2, and thus

E2(ξiηj)
[E2(ξ 2i )E(η

2
j )]

≤
E2(aicj)
λ2i ζj

(1− b2i )
−4(1− d2j )

−2
≤ M1

E2(aicj)
λ2i ζj

,

and
E2(ξiηj)

[E(ξ 2i )E2(η2j )]
≤

E2(aicj)
λiζ

2
j

(1− b2i )
−2(1− d2j )

−4
≤ M2

E2(aicj)
λiζ

2
j
,

or some finite constants M1 and M2, since b2i < 1, d2j < 1 and
∑

i b
2
i =

∑
j d

2
j = 1. Consequently, a tangent FCCA

epending on the non-random ψ1 and ψ2 exists when combined with (3). Similar conditions can be formulated when
igns of αij and E(ξiηj) are negative or are different; but the main point is that the essentially linear nature of FCCA
mplies that the points ψ1 and ψ2 on the nonlinear manifold at which its local linearizations are considered influence the
onsequent linear correlations between tangent functions in a non-trivial manner.
A similar conclusion continues to hold, under an appropriate modification, if only the set Aψ corresponding to a fixed

oint ψ is used to define both random functions U and V with b = d. However, the more realistic situation with ψ1
nd ψ2 chosen in a data-driven manner (e.g., Karcher means), or random in the population-level formulation, is more
omplicated and is deserving of further consideration.
6
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.2. Tangent FCCA for PDFs and shape curves

Once the functional data objects have been projected onto a subspace spanned by an r-dimensional PC basis of
he tangent space at the sample Karcher mean following the sequence of operations given by (1) or (2) described in
ections 2.1 and 2.2, respectively, traditional multivariate CCA can be carried out on the c i ∈ Rr . We briefly describe how
his is carried out in general terms for two paired groups of PDFs or shape curves, or PDFs and shape curves. Given two
aired groups of functional data objects f11, . . . , f1n and f21, . . . , f2n, three different options present themselves:

(i) Compute Karcher means f̄1 and f̄2 for the two groups, project sample from group 1 into tangent space at f̄1 and
similarly for group 2, and obtain c1i and c2j from groupwise eigenbases on separate tangent spaces.

(ii) Compute a pooled sample Karcher mean f̄ by combining the two samples, project both samples onto the tangent
space at f̄ , and compute a common eigenbasis to obtain coefficient vectors c1i and c2j.

(iii) Compute Karcher means f̄1 and f̄2 for the two groups, project sample from group 1 into tangent space at f̄1 and
similarly for group 2. Then, parallel transport the tangent vectors from tangent space of, say, f̄1 onto tangent space
of f̄2, compute a joint eigenbasis, and obtain c1i and c2j. More details on parallel transport for the relevant spaces
can be found in [26]. In short, parallel transport preserves the length of tangent vectors and angles between them.

ote that options (ii) and (iii) cannot be used for a paired sample of PDFs and shape curves due to their different
epresentation spaces. We examine the three options on simulated examples in Section 4 for PDFs and Section 1 in the
upplement for shapes. In Section 5, we use option (i) for analysis of real data from multimodal MRIs. Once the vectors
i ∈ Rr have been obtained for both groups this distinction is vacuous since multivariate CCA is carried out in practice.
owever, when visualizing canonical variate directions on the space of PDFs or shape curves the choice between options
i)–(iii) assumes relevance.

The use of a common dimension r for the two groups is not necessary, but we adopt it for simplicity. The dimension r
s chosen based on the percentage of variance explained by the corresponding FPCA eigenbasis. Regardless of the option
sed to obtain the cki, k ∈ {1, 2}, consider matrices C1, C2 ∈ Rn×r , where each row in these matrices is a vector c i.
e assume a common sample size n for both groups, although this can be quite easily relaxed. We find the first pair of

anonical weight vectors, (w11,w21) ∈ Rr for the two groups by solving the following optimization problem:

(w∗

11,w
∗

21) = argmax
w11,w21

corr
(
C1w11, C2w21

)
= argmax

w11,w21

wT
11C

T
1C2w21√

wT
11C

T
1C1w11

√
wT

21C
T
2C2w21

. (4)

This is the classical formulation of CCA, which finds two vectors that maximize the sample correlation ρ1 between two
linear combinations C1w11 and C2w21, i.e., the canonical variates. Once we obtain the first pair (w∗

11,w
∗

21), we successively
find subsidiary canonical weight vectors. Thus, the jth pair (w1j,w2j) is found to maximize the jth sample correlation,

ρj = max
w1j,w2j

corr
(
C1w1j, C2w2j

)
subject to the constraints

corr
(
C1w1j, C1w1l

)
= 0, corr

(
C2w2j, C2w2l

)
= 0, corr

(
C1w1j, C2w2l

)
= 0,

for j ̸= l and j, l ∈ {1, . . . , r}. If the dimensions of C1 and C2 are different, we can compute sample correlations, and
associated canonical variates, up to the minimum rank of C1 and C2.

A key element of our approach, especially in the context of the medical imaging application described in Section 1.1,
is the ability to visualize the estimated canonical variates directly on the space of PDFs or shape curves. We describe
how this is done when option (ii) with a pooled sample Karcher mean f̄ is used, but the description is valid across the
three options with obvious modifications. To visualize the jth canonical variate direction for group k, we first construct
the corresponding tangent vector vkj ∈ Tf̄ (M) (M here corresponds to either Ψ or C) using vkj(t) =

∑r
i=1 en,i(t)w

∗

kji, where
{en,i}, i ∈ {1, . . . , r}, are the first r estimated eigenfunctions of the sample covariance operators described in Section 2.
When considering PDFs, the estimated canonical variate direction is given by

pkj(t; ϵ) =
[
expψ̄

(
ϵvkj

)]2 (t), (5)

where ϵ is a parameter that scales the length of the geodesic from the mean ψ̄ to expψ̄ (vkj); the squaring operation
transforms back to the space of densities P from Ψ . The exponential map is easy to compute since it is available in
closed-form as shown in Section 2. For shape curves with mean q̄ ∈ C, the projection of vkj from Tq̄(C) to C is done
numerically; we refer to [26] for details. The parameter ϵ is typically selected as a set of integers, e.g., −2,−1, 0, 1, 2. For
each direction, in order to visualize it, we move a certain amount in the ‘‘positive’’ and ‘‘negative’’ directions from the
mean as specified by vkj.

3.3. Regression using canonical variates

We describe a regression framework that extends the proposed TFCCA, commonly referred to as canonical variate
regression (CVR). The CVR approach was proposed by Luo et al. [18], and was motivated by the work of Gross and
7
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ibshirani [9]. It combines two cost functions to jointly estimate canonical weight vectors as well as regression parameters.
he first cost function favors canonical weight vectors that maximize the correlation between resulting canonical variates.
he second cost function, resulting from an appropriate log-likelihood, favors canonical weight vectors that minimize the
egression residuals.

Specifically, let C1, C2 ∈ Rn×r correspond to FPC coefficient matrices for two groups. Also, let Y ∈ Rn denote the
response vector. In CVR, we aim to solve the following optimization problem:

argmin
W1,W2,α,β

{
η
⏐⏐C1W 1 − C2W 2

⏐⏐2
F + (1− η)

2∑
k=1

l(α,β;Y , C kW k)
}

(6)

subject to W T
1C

T
1C1W 1 = W T

2C
T
2C2W 2 = Id, where W 1,W 2 ∈ Rr×d (d ≤ r is a pre-specified number of desired canonical

variates) are the canonical weight matrices, | · |F is the Frobenius norm, l(α,β;Y , C kW k) =
⏐⏐Y − (α1n + C kW kβ)

⏐⏐2
F is the

linear regression cost function, and α ∈ R and β ∈ Rd are the regression model parameters. The first term in (6) is related
to the correlation between the canonical variates C1W 1 and C2W 2, while the second term captures prediction error. If
η = 1, the CVR model reduces to classical CCA. When η = 0, the CVR model becomes a linear regression model with
canonical variates as predictors. The parameter η is generally tuned via cross-validation based on some criterion such as
the mean squared error (MSE). The joint optimization problem in (6) is solved via the alternating direction method of
multipliers (ADMM) algorithm [5].

4. Simulation study for PDFs

In this section, we evaluate the proposed TFCCA procedure for PDFs. A similar study for shapes is included in Section
1 in the supplement. We design three datasets of PDFs to assess performance of the proposed TFCCA approach. When
computing the low-dimensional, Euclidean representation of PDFs via their FPC coefficients, we compare the performance
of options (i) (separate tangent spaces) and (ii) (common tangent space at the pooled Karcher mean). The main goal of the
presented simulation is to assess the accuracy of the estimated canonical correlations and variates. Simulating ‘‘ground
truth" canonical correlations (variates) between PDFs that correspond to our method is tricky since we are not given a
tangent space and projected vectors a priori. We hence simulate in the following manner, depending on the option of
common or separate tangent spaces from Section 3.2:

1. Simulate two groups of 100 random vectors xik = (x1ik, . . . , xrik)T , i ∈ {1, . . . , 100}, k ∈ {1, 2} from an r-
dimensional Gaussian distribution with a pre-specified mean and covariance. Implement multivariate CCA on these
to obtain ‘‘ground truth" canonical correlations, ρ, and canonical variates, CW .

2. Simulate two groups of PDFs as specified in the next paragraph.
3. Obtain eigenbasis on tangent space at mean PDF.

(a) For option (i) of using separate tangent spaces, compute different Karcher mean PDFs and project the PDFs
onto the different tangent spaces; carry out separate FPCA to get r eigenfunctions on each tangent space;

(b) For option (ii) of using a common tangent space, pool the samples, compute a single Karcher mean PDF,
project both samples of PDFs onto tangent space at this mean, and compute an r-dimensional joint eigenbasis
for the two groups.

4. Simulate two new groups of PDFs using the same xik as in Step 1 and eigenbases from Step 3. For group k, simulate
the ith PDF as pik = expψ̄k

(
∑r

j=1 xjikej)
2. Here, ψ̄k is the mean for the kth group and ej are the eigenfunctions for

group k.
5. Treating the two new groups of PDFs {pik} as data, estimate mean(s), project to tangent space(s), carry out FPCA, and

obtain coefficient matrices C1 and C2, in a manner that is compatible with choosing separate or common tangent
spaces.

6. Carry out multivariate CCA on C i, i ∈ {1, 2} and obtain vector of estimated canonical correlations, ρ̂c and ρ̂s, and
canonical variates, Ĉ cŴ c and Ĉ sŴ s, depending on whether a common tangent space is, or separate tangent spaces
are, used, respectively.

We generate three different groups of 100 random PDFs using a mixture of two Gaussian distributions truncated to
[0, 1] as shown in Fig. 2. Each PDF is represented using N = 1000 equally spaced points. The Gaussian mixture with
various choices of mean and variance for each group is computed as follows, where φ(µ, σ ) denotes a Gaussian PDF with
mean µ and standard deviation σ , 0.5 φ(µ1, σ1) + 0.5 φ(µ2, σ2), with parameters for each group given by: Group 1:
µ1 = 0.3, µ2 ∼ Unif(0.6, 0.8), σ1 = σ2 = 0.1; Group 2: µ1 = 0.3, µ2 ∼ Unif(0.6, 0.8), σ1 = 0.1, σ2 ∼ Unif(0.1, 0.2);
Group 3: µ1 ∼ Unif(0.1, 0.4), µ2 ∼ Unif(0.6, 0.8), σ1 ∼ Unif(0.1, 0.3), σ2 ∼ Unif(0.1, 0.2).

Table 1 compares the estimates ρ̂c and ρ̂s to the ‘‘ground truth’’ ρ based on different selections of the two groups; for
Groups 1 and 2 we use r = 2, for Groups 1 and 3 we use r = 3, and for Groups 2 and 3 we use r = 4. For Groups 1 and
2, two FPCs explain over 98% of the total variation while for Group 3, three FPCs explain over 93% of the total variation. It
is evident that differences between ρ and ρ̂ or ρ̂ are very small for all scenarios. Table 2 further compares the estimates
c s

8
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t
t

Fig. 2. 100 simulated PDFs from each of three different groups defined in Section 4.

Fig. 3. Visualization of the first two canonical variate directions (left to right) for Groups 1 and 2 estimated on separate tangent spaces.
Karcher mean PDFs are in red. For each direction, the six blue curves correspond to PDFs moving along a geodesic from the mean at values
ϵ ∈ {−3,−2,−1, 0, 1, 2, 3} as given in (5). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Comparison of ‘‘ground truth’’ canonical correlations and re-estimated canonical correlations in separate
tangent spaces (ρ̂s) and a common tangent space (ρ̂c ). We use r = 2, r = 3 and r = 4 for Groups 1 &
2, 1 & 3 and 2 & 3, respectively. The groups are defined in Section 4.
Setting Groups 1 & 2 Groups 1 & 3 Groups 2 & 3

ρ (0.71, 0.27) (0.63, 0.26, 0.12) (0.82, 0.13, 0.11, 0.03)
|ρ − ρ̂s| (0.11, 0.31)× 10−5 (0.10, 0.03, 0.05)× 10−3 (0.04, 0.01, 0.10, 0.08)× 10−3

|ρ − ρ̂c | (0.42, 0.44)× 10−4 (0.01, 0.02, 0.07)× 10−2 (0.01, 0.05, 0.01, 0.01)× 10−2

Table 2
Comparison of ‘‘ground truth’’ canonical variates and re-estimated canonical variates in separate tangent
spaces (Ĉ sŴ s) and a common tangent space (Ĉ cŴ c ); the additional subscripts correspond to the two
different groups. We use r = 2, r = 3 and r = 4 for Groups 1 & 2, 1 & 3 and 2 & 3, respectively. The
groups are defined in Section 4.
Setting Groups 1 & 2 Groups 1 & 3 Groups 2 & 3

∥C1W 1 − Ĉ1sŴ 1s∥ (0.17, 0.16)× 10−4 (0.43, 0.53, 0.34)× 10−4 (0.23, 0.69, 0.31, 0.81)× 10−4

∥C2W 2 − Ĉ2sŴ 2s∥ (0.09, 0.14)× 10−4 (0.38, 0.62, 0.43)× 10−4 (0.51, 0.70, 0.68, 0.80)× 10−4

∥C1W 1 − Ĉ1cŴ 1c∥ (0.94, 0.57)× 10−3 (0.31, 0.42, 0.26)× 10−2 (0.15, 0.34, 0.21, 0.14)× 10−2

∥C2W 2 − Ĉ2cŴ 2c∥ (0.42, 0.46)× 10−3 (0.37, 0.23, 0.10)× 10−2 (0.29, 0.36, 0.14, 0.17)× 10−2

Ĉ cŴ c and Ĉ sŴ s of the canonical variates in each group to the ‘‘ground truth’’ CW based on different selections of the
wo groups as in Table 1. The comparison is made using the standard Euclidean norm after centering. Again, it is evident
hat differences between CW and Ĉ cŴ c or Ĉ sŴ s are very small in all cases. These results indicate that the recovery of
the canonical correlations and canonical variates is very accurate, and both options (i) and (ii) for estimating the FPC
coefficient matrices work well. We remark that it is not surprising that the differences between ρ and ρ̂c (CW and Ĉ cŴ c)
are larger than the differences between ρ and ρ̂s (CW and Ĉ sŴ s), since we constructed PDFs for each group using their
individual truncated eigenbases (in separate tangent spaces).

Fig. 3 presents the first two canonical variate directions for Groups 1 and 2 when estimation is carried out in separate
tangent spaces; the two groups are most correlated along these two directions. For each group, the first direction is
displayed in the left panel and the second direction is displayed in the right panel. These directions are explored and
9
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isualized using a discretized path of PDFs, as defined in (5), by setting ϵ ∈ {−3,−2,−1, 0, 1, 2, 3}. Although the canonical
ariate directions appear different for the two groups due to different mean PDFs (red) and FPC eigenbases, the observed
atterns are very similar. For both groups, the first direction captures variability in the second peak while the second
irection captures variation in the valley and the second peak. In addition, the PDFs along the first direction move from
high second peak to a low second peak, while the PDFs along the second direction move from a high valley with a low
econd peak to a low valley with a high second peak.

. Textural and shape associations of GBM tumors in multimodal MRI

Next, we apply the proposed TFCCA approach to study associations between voxel value PDFs, representing the texture
f GBM tumors in MRI images, and GBM tumor shapes. Throughout this section, we utilize FPC coefficient-based Euclidean
epresentations of these objects, estimated in separate tangent spaces. We begin with a brief description of the data.

The data used in this work consists of MRIs of GBM brain tumors from 58 patients who consented under The Cancer
enome Atlas protocols (http://cancergenome.nih.gov/). The GBM data consists of two imaging modalities: pre-surgical
1-weighted post contrast (T1) and T2-weighted fluid-attenuated inversion recovery (FLAIR) (T2) magnetic resonance
equences from The Cancer Imaging Archive (http://www.cancerimagingarchive.net/). The survival times for each subject
ere obtained from cBioPortal (http://www.cbioportal.org/); none of the subjects in our study had censored observations.
The voxel value PDF of a brain tumor is estimated from a histogram of pixel intensities inside a tumor mask. The image

re-processing steps are provided in Fig. 2 of Saha et al. [23]. For shape analysis, we extracted a closed outer contour of
he GBM tumor in the axial MRI slice with the largest tumor area. The tumor rarely possesses landmark features, and thus,
he entire contour is needed for analysis. The variances of voxel value PDFs in T1 and T2 are 0.107 and 0.124, respectively.
he variances of shape curves of GBM tumors in T1 and T2 are 0.060 and 0.104, respectively. The small variances justify
ur use of local linearizations of the data in tangent spaces.

.1. TFCCA for PDFs estimated from T1 and T2 modalities

Given two paired groups of voxel value PDFs corresponding to the T1 and T2 modalities, we estimate the canonical
orrelations and canonical variates. This assesses the extent to which texture features of GBM tumors are shared by the
wo MRI modalities.

For each modality, the first five FPCs explain over 95% of the total variance. Thus, we construct FPC coefficient
atrices C1, C2 ∈ R58×5 using option (i) in Section 3.2. We then estimate the leading canonical correlations to be

0.5900, 0.4747, 0.2405, 0.2260, 0.1155). The first two canonical correlations indicate a moderate association between
he corresponding canonical variates. Thus, the textural appearance of GBM tumors in the two modalities shares some
ommon characteristics, as captured by the voxel value PDFs. We display the first three canonical variate directions in
ig. 4, from left to right, with ϵ ∈ {−2,−1, 0, 1, 2}; the mean PDF for each modality is shown in red. Recall that these

directions represent the linear combinations of FPC directions that maximize their correlations. The first canonical variate
direction for the T1 modality appears to capture global shifts in the density of low voxel values to high voxel values; the
corresponding canonical variate direction for the T2 modality also captures similar shifts, but they are more local. The
second canonical variate direction for the T1 modality mostly captures variation in the density of low voxel values, while
for the T2 modality it captures similar variation as the first canonical variate direction. This indicates that the textural
variation of tumors tends to have similar characteristics in the two modalities.

5.2. TFCCA for tumor shapes estimated from T1 and T2 modalities

Next, we investigate associations between shapes of GBM tumor contours extracted from the T1 and T2 MRI modalities.
We first construct FPC coefficient matrices C1 ∈ R58×13, C2 ∈ R58×15 for the T1 and T2 GBM tumor shapes, respectively,
sing option (i) in Section 3.2. The first 13 FPCs and 15 FPCs for T1 and T2, respectively, capture at least 80% of the
otal shape variation for each modality. We apply the proposed TFCCA approach to estimate the canonical correlations
nd corresponding canonical variate directions. The leading canonical correlations are (0.8284, 0.7916, 0.7522, 0.7249);
he subsequent canonical correlations are all smaller than 0.7. It appears that the associations between tumor shapes are
tronger than the associations between the corresponding voxel value PDFs across the T1 and T2 modalities. Fig. 5 displays
he first four canonical variate directions for each modality. The large canonical correlations indicate that the shapes of
umors captured by the two modalities share many common features. To assess GBM tumor severity, radiologists are often
nterested in protrusions of the tumor into neighboring tissues. It appears that the canonical variate directions estimated
sing the proposed TFCCA approach capture different types of such protrusions.
Results of TFCCA applied to paired PDFs and shapes from the same MRI modality are presented in Section 2 in the
upplement.
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Fig. 4. First three canonical variate directions (left to right) for voxel value PDFs of GBM tumors’ appearance in the T1 and T2 modalities. For each
direction, the four blue curves correspond to PDFs moving along a geodesic from the mean at values ϵ ∈ {−2,−1, 0, 1, 2} as given in (5). (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. First four canonical variate directions (top to bottom) for GBM tumor shapes in the T1 and T2 modalities. For each direction, the four blue
curves correspond to shapes moving along a geodesic from the mean at values ϵ ∈ {−2,−1, 0, 1, 2}. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

.3. Canonical variate regression for survival prediction in GBM

In this section, we use canonical variate regression for simultaneous estimation of canonical variates and survival
rediction in the context of GBM. The estimation procedure is carried out separately for voxel value PDFs and shapes.
We begin by representing the T1 and T2 voxel value PDFs using ten FPC coefficients in separate tangent spaces. The

orresponding FPCs explain 99.70% and 99.65% of the total variation, respectively. The resulting FPC coefficient matrices,
1, C2 ∈ R58×10 can then be used to estimate canonical variate weights W 1, W 2 as well as the model parameters
α, β in the CVR model specified in (6). As a response, we use the natural logarithm of each subject’s survival time in
months (log-survival). We first randomly split the data into two sets. The first set, which contains 80% of the data, is used
for estimation. We repeat estimation for η ∈ {0, 0.1, 0.2, . . . , 1}. Then, based on the estimates for each value of η, we
compute the mean squared error (MSE) between true log-survival and predicted log-survival using the left-out 20% of
the data. We finally retain the estimates corresponding to the value of η that generated the minimum MSE. Furthermore,
we use the canonical weights estimated using the CVR model to compute canonical variates for the left-out data, and use
11
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Table 3
Comparison of predictive performance of CVR (average MSE) and Cox proportional hazards (average C-
index) models to a PC regression model based on PDFs (top) and shapes (bottom). Standard deviations
are in parentheses.
Model 10 PCs 1 CV 3 CVs 5 CVs 7 CVs
MSE 0.854 (0.22) 0.596 (0.18) 0.628 (0.20) 0.666 (0.19) 0.733 (0.20)
C-index 0.548 (0.08) 0.550 (0.10) 0.554 (0.10) 0.565 (0.10) 0.562 (0.10)
Model 20 PCs 1 CV 3 CVs 5 CVs 7 CVs
MSE 7.633 (2.81) 1.415 (0.53) 1.474 (0.53) 1.564 (0.55) 1.747 (0.64)
C-index 0.475 (0.10) 0.509 (0.10) 0.509 (0.10) 0.502 (0.09) 0.501 (0.10)

them as predictors in a Cox proportional hazards model to directly model survival. We assess predictive performance of
this model via the commonly used concordance index (C-index) [10]. We repeat this procedure 100 times using different
80%–20% splits of the data. The corresponding average MSEs and C-indices (with standard deviations in parentheses) for
the different numbers of canonical variates we considered are reported in Table 3 (top). We compare this approach to a
PC regression method, where ten FPC coefficients from each modality are included as predictors in the regression model.
First, our approach always outperforms the PC regression method, both in terms of the average MSE and the average
C-index. It appears that the lowest average MSE is attained when only one canonical variate is used for prediction via the
CVR model. On the other hand, the average C-index is largest when five canonical variates are used as predictors in the
Cox proportional hazards model.

We repeat the same exact procedure for tumor shapes from the T1 and T2 modalities. In this case, we use 20
FPC coefficients to compute the Euclidean coordinates for shapes in each modality; for the T1 modality, the 20 FPCs
explain over 92% of the total shape variation, while for the T2 modality, 20 FPCs explain 89% of the total variance.
The resulting average MSEs and average C-indices (with standard deviations in parentheses), for different numbers of
estimated canonical variates, are reported in Table 3 (bottom). In this case, based on the average MSEs, prediction using
CVR significantly outperforms prediction using a PC regression model with 20 FPC coefficients per modality. Similarly to
the case of voxel value PDFs, the minimum average MSE is achieved when one canonical variate is used. The average
C-indices are also larger when canonical variates are used as predictors. However, unlike in the case of voxel value PDFs,
the best predictive performance is achieved when one or three canonical variates are used as predictors.

In many cases, the optimal value of the parameter η corresponding to the minimum MSE is 0 or 0.1. This places a large
weight on the second term in (6), which tries to minimize prediction error. Thus, the corresponding estimated canonical
correlations are generally smaller than those reported in Sections 5.1 and 5.2; for a single simulation example with the
optimal η = 0.1, they are (0.5879, 0.4694, 0.2238, 0.2106, 0.0908) for PDFs and (0.8218, 0.7860, 0.7469, 0.7152) for
shapes. The corresponding canonical variate directions for PDFs and shapes, for each modality, are shown in Figs. 4 and
5 in Section 3 in the supplement. The CVR-based canonical variate directions are slightly different from those displayed
in Figs. 4 and 5 as they place more weight on predicting log-survival than maximizing correlation.

6. Discussion and future work

We have introduced a novel TFCCA approach for non-Euclidean functional data, and in particular, probability densities
and shapes. Our approach is based on local linearizations of the data in tangent spaces and dimension reduction. The
framework, in principle, can be used on several other nonlinear functional data objects, especially in scenarios when
objects have been normalized to unit length to facilitate scale invariant analysis. In these cases, the relatively simple
geometry of the Hilbert unit sphere can be used to substantial benefit.

The main limitation of the proposed framework is exposed when datasets contain high variability and restricting
attention to a single (or groupwise) tangent space(s) might result in distorted estimates of correlations. On the other
hand, as seen in the analysis of the GBM tumor dataset, when variances are relatively small, the tangent space framework
is quite useful. Thus, a natural extension of the framework is to develop intrinsic FCCA on manifolds that avoids any
linearization and is able to uncover any potential nonlinear correlations. Although not directly related to FCCA, Dubey
and Müller [7] discuss intrinsic approaches for time varying functional data on general metric spaces based on the notion
of metric covariance. We plan to explore whether this idea can be applied in our setting.

To summarize a GBM tumor’s texture information, we use a univariate voxel value PDF. Incorporating spatial
information of the voxels into the PDF would result in a richer representation of a tumor’s appearance. However, the tumor
regions for different GBM patients are not in direct correspondence with each other, making any subsequent comparisons
difficult without first registering the tumor regions. As such, we leave this interesting research direction as future work.
Finally, we assume that the voxel value PDFs are strictly positive. However, in some applications, one may encounter PDFs
of interest with disconnected support.
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