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Abstract— When measuring nodes’ importance in a network,
the interconnections and dynamics are often supposed to be
perfectly known. In this paper, we consider networks of agents
with both uncertain couplings and dynamics. The network
uncertainty is modeled by structured additive stochastic distur-
bances on each agent’s update dynamics and coupling weights.
We then study how these uncertainties change the network’s
centralities. Disturbances on the couplings between agents result
in bilinear dynamics, and classical centrality indices from linear
network theory need to be redefined. To do that, we first
show that, similarly to its linear counterpart, the squared 7
norm of bilinear systems measures the trace of the steady-state
error covariance matrix subject to stochastic disturbances. This
makes the 7> norm a natural candidate for a performance
metric of the system. We propose a centrality index for the
agents based on the 72 norm, and show how it depends on the
network topology and the noise structure. Finally, we simulate a
few graphs to illustrate how uncertainties on different couplings
affect the agents’ centrality rankings compared to a linearized
model of the same system.

I. INTRODUCTION

In the study of complex networks, the use of centrality
indices is a standard method to rank the importance of
their nodes and edges, and depending on the application,
different indices become relevant [1]-[6]. In social networks,
it is often important to be connected to as many different
nodes as possible; hence the degree centrality is often used
[7]. However, in an information network, one is often more
interested in the nodes through which more information has
to pass, requiring a different centrality definition.

When studying networks of dynamic systems, one is
often interested in evaluating the system’s performance under
random disturbances. In [1] and [2], the authors define a
performance metric from the covariance of the states, and
rank a node based on how much a disturbance on its states
affect the rest of the network. An important assumption often
made when studying dynamical networks with uncertainties
is the perfect knowledge of the interconnections [8]-[10].
In this case, the uncertainties on the agents’ states propagate
linearly to its neighbors, which allows the use of consolidated
tools from linear system analysis.

However, the interconnection between agents is as much
subject to the modeling process as the agents themselves. In
population dynamics, for example, the movement of people
between cities depends on time (e.g., day of the week,
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holidays, etc.) and highly volatile factors (e.g., gas and ticket
prices, cultural events), which are usually best represented by
stochastic models [11]. When modeling a network based on
real measured data, estimations of those interconnections are
uncertain, and they can change the importance of the nodes
when compared to a network with no uncertainty.

Uncertainties on the interconnections between agents ap-
pear in the dynamic model as bilinear terms, meaning that
the tools from the linear system analysis theory need to be
carefully shown to still hold for bilinear systems. Particularly,
the extension of the H9 norm for bilinear systems, commonly
used in the context of model order reduction [12], can be
used to build a lower bound for the controllability energy
function of the system [13], [14]. Concepts such as transfer
functions and impulse response can also be generalized
for bilinear systems [15], allowing us to properly describe
the input-output relationship of such systems. Similarly,
bilinear dynamics are well studied in the stochastic system’s
literature. In [16], the authors compute the mean and second
momentum for continuous bilinear stochastic systems and
present conditions for their stability, some of which we use
on this paper. In [17], the author looks at discrete bilinear
stochastic systems, making similar analysis regarding its
mean and covariance, and input-output representation.

This paper focus on networks of dynamic systems with un-
certain interconnections. This particular type of uncertainty
appears as a bilinear term in the system’s dynamics, and we
relate results on the covariance of a stochastic bilinear system
to its Ho norm. We then propose a Ha-based centrality index
for the nodes and show how you can compute it by solving
a Linear Matrix Equality (LME) that is a function of the
system’s matrices and of the interconnections’ uncertainties.

II. PRELIMINARY DEFINITIONS
A. Bilinear Dynamic Networks

Let I,,x, and 1,«, be the n x n identity matrix and
matrix of all ones, respectively. Let e; be the elementary
vector with all elements zero, except the i-th one, which is
one, then E;; = eiejT is called an elementary matrix and has
all elements zero except for a one in position 7.

Define V C N as a set of n vertices (i.e. |V| = n), each
one representing a dynamic system, all with 7 states and o
outputs. Set £ CV x V to be the set of m edges (i.e. |€| =
m), representing the interconnections between the systems. A
linear graph G is the triple G = (V, £, w) where the function
w: & — R % is the edge weight function. We define the
adjacency matrix A € R™7X™M% of the graph as the block
matrix with w(i, j) in block ij if there is an edge from node
1 to node j and a n X 6 matrix of all zeros otherwise.
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Fig. 1: Block diagram of (6), illustrating the relationship between
SISO (Single Input, Single Output) node dynamics and the
network topology for additive and multiplicative disturbances.

The edges connect the outputs of a node to the inputs of
another. Generically we can describe the dynamics of a node

1 as
Yi =

9(@s),
where z; € R®, y; € R® and j — i denotes an edge
that points from node j to node i. From this we can define
additive and multiplicative disturbances as below.

6]

Definition 1. An additive disturbance at a node i of a
graph consist of a vector of independently sampled Gaussian
disturbances & € R™, and a matrix B; € R™™. The
dynamics of the system with additive disturbances is

5 . {m = fw) + X, w0 i)y + Bit

2
yi = g(xs). @

Definition 2. A multiplicative disturbance at an edge (i, j)
of a graph is a matrix j;; € R" ° where each of its
elements are independently sampled Gaussian disturbances
with zero mean. The dynamics of a system with multiplicative
disturbances is

l yi = g(wi).

We then formally define a bilinear digraph, or a graph
under stochastic node and link disturbances as follows.

3)

Definition 3. A bilinear digraph is a quintet G =
WV, &, w,&,,V,) where V = N<,, (that is, the set of natural
numbers smaller or equal to n), for some n € N, and is
called a node set, £ CV x V is called an edge set, V, CV
is called disturbed node set, £, C & is called disturbed edge
set, and w : &€ — R is a edge weight function.

For the rest of the paper we consider a SISO scalar
system as the dynamics of the nodes (n = 1, 0 = 1 and
m = 1). More complex linear dynamics can be considered
by properly stacking the matrices of the systems, specifically,
if the nodes all have the same order, number of inputs and

output we can easily compose them by using the Kronecker
product and obtain the network dynamics. We also assume
that every node and edge are under independent disturbances,
that is, V, = V and &, = €. For the purposes of this paper,
the particular case where some node or edge is not disturbed
can be dealt with by making &; = 0 or u;; = 0. The dynamics
of the nodes, then, simplifies to

o {xz =dizi + 30, (w(d, 1) + pyi)zy + bi& @

Yi = Ty,

for d;, b;, pj; and § € R and w : £ — R. Without loss
of generality we assume b; = 1. With this, the network
dynamics is given by

No

D+ wli,j)Ey | =

i=1i—j

A

Z Ejipijr + e |, )

1—7

n
>
i=1

where © = [x1, T2, ..., 2], D = diag(dy, da, ..., dy)
and A is the adjacency matrix of the network. Consider a one
to one mapping from £ to N<,,, then we can rewrite (5) as

&= Nox+ ) Nipux + BE, (©)
k=1
where N() = D + A, Nk = Ejk,ik’ B = [61, €9,
Inxns andfz [617 527 ) En]—r
We bring attention to the fact that the presented dynamics
is a specific case of the general bilinear system

covea] =

&= Nox + Y _ Nyllyz + B, (7

k=1
where u = [p", £T]T, M =m+n, N =0 for k > m and
B = [0pnxm, Inxn]- In Fig. 1 we show the block diagram of
the relationship between the node dynamics and the network

topology. Finally, we assume throughout this paper that for
any considered system, the following assumption holds:

Assumption 1. Matrices Ny and

<N0®I+I®NJ+ZNk®N,I>

k

are Hurwitz, that is, both have eigenvalues with strictly
negative real parts.

In [18] and [19], the authors make a similar assumption,
presented below.

Assumption 2. The matrix Ny is stable and for two numbers
« and (3, which satisfy the inequality ||e™°t|| < Be= for

all t >0, we have />, e [INLN/ || < v20/B.

It can be verified that Assumption 2 implies Assumption
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1, but the converse is not true. It was known for some time
that for Gaussian inputs, Assumption 1, tighter than 2, is
sufficient for evaluating the covariance of the states (see
proof of Theorem 1). Recently in [12] the author showed
that even in the deterministic case Assumption 1 is sufficient
for the proper definition of the Ho-norm, improving previous
results, like from [19].

B. The Ho-norm of Bilinear Systems

This section presents general bilinear system results that
will be useful when analysing bilinear networks. In [18] we
discussed how one can compute the Ho norm of a bilinear
system and how it compares with the very well known H
norm of linear systems.

For linear systems, the o norm is the L5 to L, gain and
it can be characterized as the energy of the impulse response
of deterministic systems, and proportional to the covariance
of the states when subject to white noise inputs [20].

For bilinear system, the 72 norm is defined as

o0 0o (%)
1S, :<Z/ / trace(H; (jui, ..., juws)
i=17 =0 —oo

1/2 ®
X Hi(jwl,...,jwi))dwl...dwi> ,
where the H;s are the multivariable Laplace transforms of
the Volterra kernels of the bilinear system [15], [18], [21].
When defined this way, the Ho norm is shown to be a
lower bound for the controlability energy functional of the
bilinear system [13], [14]. Furthermore, based on results
from the literature [16], [17] we collect the following result
for bilinear system subject to white noise inputs:

Theorem 1. For a bilinear stochastic differential equation
(SDE) as in (7) that satisfies Assumption 1, we can say that

[Jim E(z(1)) =0, ©)

and

lim Cov(z(t)) = P,

t—o0

(10)
where P is the solution of the generalized Lyapunov Equa-
tion
NoP + PN, +Y N.PN] +BB" =0. (11)
k=1
We ommit the proof for brevity since this is a well known
result in the stochastic systems literature (see [16], [17],
but one can easily verify (9) by taking the expected value
of the integral form of the bilinear stochastic differential
equation. From there we can conclude that the covariance
matrix converges to the second momentum as times goes
to infinity, which results in (10) and (11). Through some
manipulation of the equations for the second momentum,
one can also verify that Assumption 2 implies 1.
Based on this theorem, and in results from [19], that show
that for a bilinear system (7) with output y = x

1213, = trace(P), (12)

next we develop a Hy norm based centrality measure to
evaluate the importance of the nodes of a bilinear network
subject to additive and multiplicative Gaussian disturbances.

III. H5-BASED CENTRALITY INDEX FOR BILINEAR
DYNAMIC NETWORKS

For a network, a centrality index evaluates the importance
of its component with regard to some performance measure.
Degree centrality, for example, classifies a node with respect
to how many direct connections it has, which might be a
relevant in some applications, but insufficient in others.

In [1], the authors explore a centrality based on the Ho
norm as a performance measure. This centrality evaluates
how much each node disturbance contributes for the covari-
ance of the system around a consensus and can be used to
minimize the effect of noise in the final system’s state. In
this section we explore a similar idea, since the s norm of
a bilinear system measures its steady state covariance. We
propose an index to evaluate the effect of node disturbances
in the network by derivating the performance metric with
respect to the covariance of said disturbance. While the
resulting metric is too complex to compute for arbitrary
disturbances, it simplifies to a new generalized Lyapunov
equation for additive ones.

A. Node Centrality in Noisy Bilinear Networks

To evaluate the effect of additive noise in a bilinear
network with dynamics (6) subject to Gaussian white noise
inputs, define the following performance measure:

Pss 1= 75lim trace (Cov(z(t))) = trace(P) = [|S|3,. (13)
—00

This measure evaluates how much the system oscillates
around the equilibrium in steady state. As such, networks
with larger pgs would perform badly when subject to noisy
inputs. With this consider the following definition

Definition 4. For bilinear network (7), assume ujp ~

N(0,032). Then, the centrality index associated with such
input is given by

_ Opss

Nk = 80,%'

(14)

Notice that, here, o represents the standart deviation of
the inputs, and not singular values. Quantity 7, measures
the direct influence of the covariance of a given input on
the covariance of the state. For linear networks this index
depends only on the edge weights and on the topology of
the network. For additive inputs in bilinear networks we can
state the following theorem:

Theorem 2. For a bilinear network with dynamics (6), where

pe ~ N(0,07) and & ~ N(0,02 ) the centrality index

(14) for k > m can be computed as
. = trace(Py), (15)

where Py, is the solution of the generalized Lyapunov equa-
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tion
NoPy + PiNy + > 02(NgPuN,) + biby =0, (16)
qg=1
where by, is the k-th column of B, or the (k—m)-th column
of B.

The proof is omitted for the brevity of the paper. For a
sketch of the proof, first notice that for a matrix B and a
vector of linear inputs £ as defined above, we can write

BE =Y belk = > bkomyro = BAE,

k=1 k=1

a7

where & ~ N(0,1), £ € R"*™ has all its elements equal to
&o, and A is the diagonal matrix with oy, for k& between
1 and n as its diagonal entries. From this we point that the
Gramian P can be computed as a function of the variance
of the inputs, oy, and the results of the theorem follow from
doing such computation. Since the change on the systems
matrices occur only on B for the additive disturbances, they
do not affect Assumptions 1 or 2.

Remark 1. If Ny = 0 for all £ > 0, then the steady state
covariance matrix of the states of the system is given by

Cov(x) :/ eNotBBTeNOTtdt,
0

that is the Gramian of the linear system. The performance
metric, then, is given by the trace of the Gramian, which is
the H2 norm of the linear system. This means that for the
case of no disturbances on the edges, our centrality index
coincides with the one specified in [1] for linear systems. For
the rest of this paper, whenever we write “linear centrality”
or “centrality of the linear network™ we are referring for the
centrality index defined as in [1].

IV. SIMULATIONS AND COMPARISONS

In this section we simulate two different graphs and
investigate how uncertainties in the edges change the node
centralities. Our hope is to make it clearer when the knowl-
edge of the uncertainties of the edges can help on centrality-
based decision making, and when it is unecessary.

A. Tree Graph with 20 Nodes

For the first few simulations we randomly generated the 20
node tree graph presented in Fig. 2. All edges are undirected
with unitary weight. We simulate system (7) with

1

No = —L — —1nxn, (18)
n

where L is the Laplacian matrix of the graph, and N, =
Eikjk + Ejkilc for all (Zk»]k) eé.

For a first analysis of the network, we compute the central-
ity without edge disturbances (linear case) and with identical
disturbances in all edges (homogeneous edge disturbances).
To compute the worst disturbance that can be applied to all
edges and still satisfy Assumption 2, we calculate

o
© o1

®19

Fig. 2: Tree graph used in the first set of simulations. The
numbers are the node and edge labels. All edges have unitary
weight.

2«
Omax — ™ 3 (19)
\/ S AL

for & = —Amax(Nog) = 1/n and 8 = 1. The centralities,
obtained by simulating the network with homogeneous edge
disturbances and ¢ = oy,.x, are presented in Fig. 3a. While
there are some noticeable changes in the relative centrality
of the nodes (nodes 6, 16, etc) those changes are so small
that there is no noticeable change in their order.

Next we increase the magnitude of the disturbances
enough to break Assumption 2 but still barely respect
Assumption 1. The resulting centralities are presented in
Fig. 3b. Notice that the effect of the edge disturbances is
much more evident in this simulation, bringing a question
about the conservativeness of Assumption 2.

Furthermore, we can see from Fig. 3b that the nodes with
the largest increase in relative centrality are 19, 17, 16 and
10, all in the far end of the longest branch of the tree.

To investigate how different edge disturbances change the
centrality of the nodes of the network we conducted two
simulations where only one edge was disturbed. First we
disturbed edge 3, which connects nodes 4 and 1, which
are the ones with the smallest linear centrality and farthest
away from the long branches of the network. The resulting
centralities are presented in Fig. 3c, where o is selected to
respect Assumption 2.

Similarly, we conduct the exact same experiment, but
disturbing edge 14 instead. We chose this edge because it is
the last one of the second largest branch of the network. By
simulating a single disturbance on this edge we can evaluate
if it is not an important edge for computing the centralities,
or if it was simply overshadowed by other edges in the
homogeneous case in Fig. 3b. The results of the simulation
are presented in Fig. 3d.

We can see on both Figs. 3c and 3d that the nodes directly
connected by the disturbed edge are the ones with the largest
increase in the centrality, but it is clear that disturbing edge
14 had a much larger impact on the network than disturbing
edge 3, even if both were disturbed by the same o.

We now look back to Assumption 2 and how conservative
it is. While for homogeneous perturbations in Fig. 3a there
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Fig. 3: Ha-based centrality for the nodes in the tree graph given by Fig. 2. Linear centralities are computed for unperturbed edges, and
Bilinear centralities are computed for the specific disturbance of each figure. Nodes are ordered according to the linear centralities.

is very little difference between the linear and bilinear
centralities, we investigate further by simulating unbalanced
perturbations on all edges. To do that we generate a random
vector r € R™ and calculate a constant p € R such that
Assumption 2 is respected for Ny = o F;, j,, with 0 = pr.
In Fig. 3e, we present the result of this simulation and in
Fig. 3f we simulate the same scenario but for a larger value
of p that respects Assumption 1 instead of Assumption 2.
We can observe from Figs. 3e and 3f that barely any
change was observed in the nodes centralities for distur-
bances that respect Assumption 2, even if the disturbances
are unbalanced. This means that while the topology of the
edge disturbances is important, as evident from Figs. 3c and
3d, the magnitude of those disturbances are just as important.

B. Barabdsi-Albert Graph with 20 nodes

In the next set of simulations we take a look at a randomly
generated undirected Barabdsi-Albert graph with 20 nodes,
four initial connected nodes (mqg = 4) and each new node
connected to two existing nodes (m = 2). The resulting
graph is presented in Fig. 4. Similarly to the tree graph,
we simulate the system for Ny and Nj as in (18).

We evaluate again the effect of homogeneous disturbances
to verify the robustness of our previous results in different
underlying graphs. The results are presented in Figs. 5a and
5b, where one can see that, similarly to Figs. 3a and 3b, the

®2

®9
11

Fig. 4: 20-node Barabdsi-Albert graph, generated with mqo = 4,
m = 2. All edges have unitary weights.

nodes centrality change noticeably only for a value of o that
respects Assumption 1, but breaks Assumption 2. Differently
from the simulation for tree graphs, however, we can notice
that the bilinear dynamics homogenized the node centralities,
a behaviour possibly explained by the difference in topology
between a tree graph and a connected Barabdsi-Albert graph
with many loops, as the one we generated.

In the final simulation we use unbalanced disturbances
for a o that respects Assumption 1 but is large enough to
break Assumption 2, our goal is to see if the balancing
effect that we observed for homogeneous disturbances is also
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Fig. 5: H.-based centrality values of the nodes in the Barabdsi-Albert graph given by Fig. 4. In the Figs. Linear centralities are
computed for unperturbed edges, and Bilinear centralities are computed for the specific disturbance of each figure. Nodes are ordered
according to the linear centralities. (a) Bilinear centralities computed for homogeneous perturbations on the edges with ¢ > 0 satisfying
Assumption 2. (b) Bilinear centralities computed for homogeneous perturbations on the edges with o > 0 satisfying Assumption 1 but
not 2. (¢) Bilinear centralities computed for unbalanced edge perturbations with ¢ > 0 satisfying Assumption 1 but not 2.

perceptible for unbalanced disturbances. In Fig. S5c, we can
see that for unbalanced disturbances, the order of the nodes
has nothing to do with the order of the nodes for the linear
case. Even if the results in Fig. 5c are much less balanced
than the ones in Fig. 5b, the changes in centrality are still
well distributed among the nodes, instead of concentrating
on a few as in Fig. 3f.

V. CONCLUSIONS

In this paper, we introduced the notion of node cen-
trality for bilinear dynamical networks with uncertain
edges/couplings and nodes/dynamics. We showed how the
coupling uncertainties appear as bilinear terms in the entire
network dynamics. We proposed an Hs-based metric to
evaluate the centrality of the nodes. We showed that this
centrality measure can be explicitly expressed as a function
of the solution of the generalized Lyapunov equation.

We conducted simulations aiming to study the different
effects multiplicative disturbances have on the network:
homogeneous disturbances; unbalanced disturbances; single
edge disturbances. We presented the simulations for two dif-
ferent network topologies and compared, for each simulation
scenario, the effects of respecting or not Assumption 2 (that
is, the difference of having a dominant linear dynamics or
not). For relatively small homogeneous edge disturbances
(respecting Assumption 2), the centrality of the nodes did
not change significantly, but for values that approached the
conditions in Assumption 1 the difference was consistently
clearer. These simulations give us insights of when the linear
hypothesis might hold and when we should be more careful
when considering the uncertainties on the edges.
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