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Abstract— When measuring nodes’ importance in a network,
the interconnections and dynamics are often supposed to be
perfectly known. In this paper, we consider networks of agents
with both uncertain couplings and dynamics. The network
uncertainty is modeled by structured additive stochastic distur-
bances on each agent’s update dynamics and coupling weights.
We then study how these uncertainties change the network’s
centralities. Disturbances on the couplings between agents result
in bilinear dynamics, and classical centrality indices from linear
network theory need to be redefined. To do that, we first
show that, similarly to its linear counterpart, the squared H2

norm of bilinear systems measures the trace of the steady-state
error covariance matrix subject to stochastic disturbances. This
makes the H2 norm a natural candidate for a performance
metric of the system. We propose a centrality index for the
agents based on the H2 norm, and show how it depends on the
network topology and the noise structure. Finally, we simulate a
few graphs to illustrate how uncertainties on different couplings
affect the agents’ centrality rankings compared to a linearized
model of the same system.

I. INTRODUCTION

In the study of complex networks, the use of centrality

indices is a standard method to rank the importance of

their nodes and edges, and depending on the application,

different indices become relevant [1]–[6]. In social networks,

it is often important to be connected to as many different

nodes as possible; hence the degree centrality is often used

[7]. However, in an information network, one is often more

interested in the nodes through which more information has

to pass, requiring a different centrality definition.

When studying networks of dynamic systems, one is

often interested in evaluating the system’s performance under

random disturbances. In [1] and [2], the authors define a

performance metric from the covariance of the states, and

rank a node based on how much a disturbance on its states

affect the rest of the network. An important assumption often

made when studying dynamical networks with uncertainties

is the perfect knowledge of the interconnections [8]–[10].

In this case, the uncertainties on the agents’ states propagate

linearly to its neighbors, which allows the use of consolidated

tools from linear system analysis.

However, the interconnection between agents is as much

subject to the modeling process as the agents themselves. In

population dynamics, for example, the movement of people

between cities depends on time (e.g., day of the week,
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holidays, etc.) and highly volatile factors (e.g., gas and ticket

prices, cultural events), which are usually best represented by

stochastic models [11]. When modeling a network based on

real measured data, estimations of those interconnections are

uncertain, and they can change the importance of the nodes

when compared to a network with no uncertainty.

Uncertainties on the interconnections between agents ap-

pear in the dynamic model as bilinear terms, meaning that

the tools from the linear system analysis theory need to be

carefully shown to still hold for bilinear systems. Particularly,

the extension of the H2 norm for bilinear systems, commonly

used in the context of model order reduction [12], can be

used to build a lower bound for the controllability energy

function of the system [13], [14]. Concepts such as transfer

functions and impulse response can also be generalized

for bilinear systems [15], allowing us to properly describe

the input-output relationship of such systems. Similarly,

bilinear dynamics are well studied in the stochastic system’s

literature. In [16], the authors compute the mean and second

momentum for continuous bilinear stochastic systems and

present conditions for their stability, some of which we use

on this paper. In [17], the author looks at discrete bilinear

stochastic systems, making similar analysis regarding its

mean and covariance, and input-output representation.

This paper focus on networks of dynamic systems with un-

certain interconnections. This particular type of uncertainty

appears as a bilinear term in the system’s dynamics, and we

relate results on the covariance of a stochastic bilinear system

to its H2 norm. We then propose a H2-based centrality index

for the nodes and show how you can compute it by solving

a Linear Matrix Equality (LME) that is a function of the

system’s matrices and of the interconnections’ uncertainties.

II. PRELIMINARY DEFINITIONS

A. Bilinear Dynamic Networks

Let In×n and 1n×n be the n × n identity matrix and

matrix of all ones, respectively. Let ei be the elementary

vector with all elements zero, except the i-th one, which is

one, then Eij = eie
⊤
j is called an elementary matrix and has

all elements zero except for a one in position ij.

Define V ⊂ N as a set of n vertices (i.e. |V| = n), each

one representing a dynamic system, all with ñ states and õ
outputs. Set E ⊆ V × V to be the set of m edges (i.e. |E| =
m), representing the interconnections between the systems. A

linear graph G is the triple G = (V, E , w) where the function

w : E → R
ñ×õ is the edge weight function. We define the

adjacency matrix A ∈ R
mñ×mõ of the graph as the block

matrix with w(i, j) in block ij if there is an edge from node

i to node j and a ñ× õ matrix of all zeros otherwise.
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Fig. 1: Block diagram of (6), illustrating the relationship between
SISO (Single Input, Single Output) node dynamics and the
network topology for additive and multiplicative disturbances.

The edges connect the outputs of a node to the inputs of

another. Generically we can describe the dynamics of a node

i as

Σi :

{

ẋi = f(xi) +
∑

j→i w(j, i)yj

yi = g(xi),
(1)

where xi ∈ R
ñ, yi ∈ R

õ, and j → i denotes an edge

that points from node j to node i. From this we can define

additive and multiplicative disturbances as below.

Definition 1. An additive disturbance at a node i of a

graph consist of a vector of independently sampled Gaussian

disturbances ξi ∈ R
m̃, and a matrix Bi ∈ R

ñ×m̃. The

dynamics of the system with additive disturbances is

Σi :

{

ẋi = f(xi) +
∑

j→i w(j, i)yj +Biξi

yi = g(xi).
(2)

Definition 2. A multiplicative disturbance at an edge (i, j)
of a graph is a matrix µij ∈ R

ñ×õ where each of its

elements are independently sampled Gaussian disturbances

with zero mean. The dynamics of a system with multiplicative

disturbances is

Σi :

{

ẋi = f(xi) +
∑

j→i(w(j, i) + µji)yj

yi = g(xi).
(3)

We then formally define a bilinear digraph, or a graph

under stochastic node and link disturbances as follows.

Definition 3. A bilinear digraph is a quintet G :=
(V, E , w, Ea,Va) where V = N≤n (that is, the set of natural

numbers smaller or equal to n), for some n ∈ N, and is

called a node set, E ⊆ V ×V is called an edge set, Va ⊆ V
is called disturbed node set, Ea ⊆ E is called disturbed edge

set, and w : E → R is a edge weight function.

For the rest of the paper we consider a SISO scalar

system as the dynamics of the nodes (ñ = 1, õ = 1 and

m̃ = 1). More complex linear dynamics can be considered

by properly stacking the matrices of the systems, specifically,

if the nodes all have the same order, number of inputs and

output we can easily compose them by using the Kronecker

product and obtain the network dynamics. We also assume

that every node and edge are under independent disturbances,

that is, Va = V and Ea = E . For the purposes of this paper,

the particular case where some node or edge is not disturbed

can be dealt with by making ξi = 0 or µij = 0. The dynamics

of the nodes, then, simplifies to

Σi :

{

ẋi = dixi +
∑

j→i(w(j, i) + µji)xj + biξi

yi = xi,
(4)

for di, bi, µji and ξi ∈ R and w : E → R. Without loss

of generality we assume bi = 1. With this, the network

dynamics is given by

ẋ =









N0

︷ ︸︸ ︷

D +

n∑

i=1

∑

i→j

w(i, j)Eji

︸ ︷︷ ︸

A









x

+

n∑

i=1




∑

i→j

Ejiµijx+ eiξi



 , (5)

where x = [x1, x2, . . . , xn]
⊤, D = diag(d1, d2, . . . , dn)

and A is the adjacency matrix of the network. Consider a one

to one mapping from E to N≤m, then we can rewrite (5) as

ẋ = N0x+

m∑

k=1

Nkµkx+Bξ, (6)

where N0 = D + A, Nk = Ejkik , B = [e1, e2, . . . , en] =
In×n, and ξ = [ξ1, ξ2, . . . , ξn]

⊤.

We bring attention to the fact that the presented dynamics

is a specific case of the general bilinear system

ẋ = N0x+

m∑

k=1

Nkukx+Bu, (7)

where u = [µ⊤, ξ⊤]⊤, m = m+n, Nk = 0 for k > m and

B = [0n×m, In×n]. In Fig. 1 we show the block diagram of

the relationship between the node dynamics and the network

topology. Finally, we assume throughout this paper that for

any considered system, the following assumption holds:

Assumption 1. Matrices N0 and
(

N0 ⊗ I + I ⊗N⊤
0 +

∑

k

Nk ⊗N⊤
k

)

are Hurwitz, that is, both have eigenvalues with strictly

negative real parts.

In [18] and [19], the authors make a similar assumption,

presented below.

Assumption 2. The matrix N0 is stable and for two numbers

α and β, which satisfy the inequality ‖eN0t‖ ≤ βe−αt for

all t > 0, we have

√
∑

k∈Ea
‖NkN⊤

k ‖ <
√
2α/β.

It can be verified that Assumption 2 implies Assumption
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1, but the converse is not true. It was known for some time

that for Gaussian inputs, Assumption 1, tighter than 2, is

sufficient for evaluating the covariance of the states (see

proof of Theorem 1). Recently in [12] the author showed

that even in the deterministic case Assumption 1 is sufficient

for the proper definition of the H2-norm, improving previous

results, like from [19].

B. The H2-norm of Bilinear Systems

This section presents general bilinear system results that

will be useful when analysing bilinear networks. In [18] we

discussed how one can compute the H2 norm of a bilinear

system and how it compares with the very well known H2

norm of linear systems.

For linear systems, the H2 norm is the L2 to L∞ gain and

it can be characterized as the energy of the impulse response

of deterministic systems, and proportional to the covariance

of the states when subject to white noise inputs [20].

For bilinear system, the H2 norm is defined as

‖Σ‖H2
=

(

∞
∑

i=1

∫

∞

−∞

· · ·

∫

∞

−∞

trace(H⊤

i (jw1, . . . , jwi)

×Hi(jw1, . . . , jwi))dw1 . . . dwi

)

1/2

,

(8)

where the His are the multivariable Laplace transforms of

the Volterra kernels of the bilinear system [15], [18], [21].

When defined this way, the H2 norm is shown to be a

lower bound for the controlability energy functional of the

bilinear system [13], [14]. Furthermore, based on results

from the literature [16], [17] we collect the following result

for bilinear system subject to white noise inputs:

Theorem 1. For a bilinear stochastic differential equation

(SDE) as in (7) that satisfies Assumption 1, we can say that

lim
t→∞

E(x(t)) = 0, (9)

and

lim
t→∞

Cov(x(t)) = P, (10)

where P is the solution of the generalized Lyapunov Equa-

tion

N0P + PN⊤
0 +

m∑

k=1

NkPN⊤
k +BB⊤ = 0. (11)

We ommit the proof for brevity since this is a well known

result in the stochastic systems literature (see [16], [17],

but one can easily verify (9) by taking the expected value

of the integral form of the bilinear stochastic differential

equation. From there we can conclude that the covariance

matrix converges to the second momentum as times goes

to infinity, which results in (10) and (11). Through some

manipulation of the equations for the second momentum,

one can also verify that Assumption 2 implies 1.

Based on this theorem, and in results from [19], that show

that for a bilinear system (7) with output y = x

‖Σ‖2H2
= trace(P ), (12)

next we develop a H2 norm based centrality measure to

evaluate the importance of the nodes of a bilinear network

subject to additive and multiplicative Gaussian disturbances.

III. H2-BASED CENTRALITY INDEX FOR BILINEAR

DYNAMIC NETWORKS

For a network, a centrality index evaluates the importance

of its component with regard to some performance measure.

Degree centrality, for example, classifies a node with respect

to how many direct connections it has, which might be a

relevant in some applications, but insufficient in others.

In [1], the authors explore a centrality based on the H2

norm as a performance measure. This centrality evaluates

how much each node disturbance contributes for the covari-

ance of the system around a consensus and can be used to

minimize the effect of noise in the final system’s state. In

this section we explore a similar idea, since the H2 norm of

a bilinear system measures its steady state covariance. We

propose an index to evaluate the effect of node disturbances

in the network by derivating the performance metric with

respect to the covariance of said disturbance. While the

resulting metric is too complex to compute for arbitrary

disturbances, it simplifies to a new generalized Lyapunov

equation for additive ones.

A. Node Centrality in Noisy Bilinear Networks

To evaluate the effect of additive noise in a bilinear

network with dynamics (6) subject to Gaussian white noise

inputs, define the following performance measure:

ρss := lim
t→∞

trace (Cov(x(t))) = trace(P ) = ‖Σ‖2H2
. (13)

This measure evaluates how much the system oscillates

around the equilibrium in steady state. As such, networks

with larger ρss would perform badly when subject to noisy

inputs. With this consider the following definition

Definition 4. For bilinear network (7), assume ūk ∼
N(0, σ2

k). Then, the centrality index associated with such

input is given by

ηk :=
∂ρss

∂σ2
k

. (14)

Notice that, here, σ represents the standart deviation of

the inputs, and not singular values. Quantity ηk measures

the direct influence of the covariance of a given input on

the covariance of the state. For linear networks this index

depends only on the edge weights and on the topology of

the network. For additive inputs in bilinear networks we can

state the following theorem:

Theorem 2. For a bilinear network with dynamics (6), where

µk ∼ N(0, σ2
k) and ξk ∼ N(0, σ2

m+k) the centrality index

(14) for k > m can be computed as

ηk = trace(P k), (15)

where P k is the solution of the generalized Lyapunov equa-
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tion

N0P k + P kN
⊤
0 +

m∑

q=1

σ2
q (NqP kN

⊤
q ) + bkb

⊤
k = 0, (16)

where bk is the k-th column of B, or the (k−m)-th column

of B.

The proof is omitted for the brevity of the paper. For a

sketch of the proof, first notice that for a matrix B and a

vector of linear inputs ξ as defined above, we can write

Bξ =
n∑

k=1

bkξk =

n∑

k=1

bkσm+kξ0 = B∆ξ̄, (17)

where ξ0 ∼ N(0, 1), ξ̄ ∈ R
n×m has all its elements equal to

ξ0, and ∆ is the diagonal matrix with σk+m for k between

1 and n as its diagonal entries. From this we point that the

Gramian P can be computed as a function of the variance

of the inputs, σk and the results of the theorem follow from

doing such computation. Since the change on the systems

matrices occur only on B for the additive disturbances, they

do not affect Assumptions 1 or 2.

Remark 1. If Nk = 0 for all k > 0, then the steady state

covariance matrix of the states of the system is given by

Cov(x) =

∫ ∞

0

eN0tBB⊤eN
⊤

0
tdt,

that is the Gramian of the linear system. The performance

metric, then, is given by the trace of the Gramian, which is

the H2 norm of the linear system. This means that for the

case of no disturbances on the edges, our centrality index

coincides with the one specified in [1] for linear systems. For

the rest of this paper, whenever we write “linear centrality”

or “centrality of the linear network” we are referring for the

centrality index defined as in [1].

IV. SIMULATIONS AND COMPARISONS

In this section we simulate two different graphs and

investigate how uncertainties in the edges change the node

centralities. Our hope is to make it clearer when the knowl-

edge of the uncertainties of the edges can help on centrality-

based decision making, and when it is unecessary.

A. Tree Graph with 20 Nodes

For the first few simulations we randomly generated the 20

node tree graph presented in Fig. 2. All edges are undirected

with unitary weight. We simulate system (7) with

N0 = −L− 1

n
1n×n, (18)

where L is the Laplacian matrix of the graph, and Nk =
Eikjk + Ejkik for all (ik, jk) ∈ E .

For a first analysis of the network, we compute the central-

ity without edge disturbances (linear case) and with identical

disturbances in all edges (homogeneous edge disturbances).

To compute the worst disturbance that can be applied to all

edges and still satisfy Assumption 2, we calculate

Fig. 2: Tree graph used in the first set of simulations. The
numbers are the node and edge labels. All edges have unitary
weight.

σmax =

√

2α

β2
∑m

k=1
‖NkN

⊤

k ‖
, (19)

for α = −λmax(N0) = 1/n and β = 1. The centralities,

obtained by simulating the network with homogeneous edge

disturbances and σ = σmax, are presented in Fig. 3a. While

there are some noticeable changes in the relative centrality

of the nodes (nodes 6, 16, etc) those changes are so small

that there is no noticeable change in their order.

Next we increase the magnitude of the disturbances

enough to break Assumption 2 but still barely respect

Assumption 1. The resulting centralities are presented in

Fig. 3b. Notice that the effect of the edge disturbances is

much more evident in this simulation, bringing a question

about the conservativeness of Assumption 2.

Furthermore, we can see from Fig. 3b that the nodes with

the largest increase in relative centrality are 19, 17, 16 and

10, all in the far end of the longest branch of the tree.

To investigate how different edge disturbances change the

centrality of the nodes of the network we conducted two

simulations where only one edge was disturbed. First we

disturbed edge 3, which connects nodes 4 and 1, which

are the ones with the smallest linear centrality and farthest

away from the long branches of the network. The resulting

centralities are presented in Fig. 3c, where σ is selected to

respect Assumption 2.

Similarly, we conduct the exact same experiment, but

disturbing edge 14 instead. We chose this edge because it is

the last one of the second largest branch of the network. By

simulating a single disturbance on this edge we can evaluate

if it is not an important edge for computing the centralities,

or if it was simply overshadowed by other edges in the

homogeneous case in Fig. 3b. The results of the simulation

are presented in Fig. 3d.

We can see on both Figs. 3c and 3d that the nodes directly

connected by the disturbed edge are the ones with the largest

increase in the centrality, but it is clear that disturbing edge

14 had a much larger impact on the network than disturbing

edge 3, even if both were disturbed by the same σ.

We now look back to Assumption 2 and how conservative

it is. While for homogeneous perturbations in Fig. 3a there
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(a) Bilinear centralities for homogeneous
perturbations on the edges with σ > 0
satisfying Assumption 2.

(b) Bilinear centralities for homogeneous
perturbations on the edges with σ > 0
satisfying Assumption 1 but not 2.

(c) Bilinear centralities for single
multiplicative perturbation on edge 3 with
σ > 0 satisfying Assumption 2

(d) Bilinear centralities for single
multiplicative perturbation on edge 14 with
σ > 0 satisfying Assumption 2

(e) Bilinear centralities for unbalanced
edge perturbations with σ > 0 satisfying
Assumption 2

(f) Bilinear centralities for unbalanced
edge perturbations with σ > 0 satisfying
Assumption 1 but not 2

Fig. 3: H2-based centrality for the nodes in the tree graph given by Fig. 2. Linear centralities are computed for unperturbed edges, and
Bilinear centralities are computed for the specific disturbance of each figure. Nodes are ordered according to the linear centralities.

is very little difference between the linear and bilinear

centralities, we investigate further by simulating unbalanced

perturbations on all edges. To do that we generate a random

vector r ∈ R
m and calculate a constant p ∈ R such that

Assumption 2 is respected for Nk = σkEikjk , with σ = pr.

In Fig. 3e, we present the result of this simulation and in

Fig. 3f we simulate the same scenario but for a larger value

of p that respects Assumption 1 instead of Assumption 2.

We can observe from Figs. 3e and 3f that barely any

change was observed in the nodes centralities for distur-

bances that respect Assumption 2, even if the disturbances

are unbalanced. This means that while the topology of the

edge disturbances is important, as evident from Figs. 3c and

3d, the magnitude of those disturbances are just as important.

B. Barabási-Albert Graph with 20 nodes

In the next set of simulations we take a look at a randomly

generated undirected Barabási-Albert graph with 20 nodes,

four initial connected nodes (m0 = 4) and each new node

connected to two existing nodes (m = 2). The resulting

graph is presented in Fig. 4. Similarly to the tree graph,

we simulate the system for N0 and Nk as in (18).

We evaluate again the effect of homogeneous disturbances

to verify the robustness of our previous results in different

underlying graphs. The results are presented in Figs. 5a and

5b, where one can see that, similarly to Figs. 3a and 3b, the

Fig. 4: 20-node Barabási-Albert graph, generated with m0 = 4,
m = 2. All edges have unitary weights.

nodes centrality change noticeably only for a value of σ that

respects Assumption 1, but breaks Assumption 2. Differently

from the simulation for tree graphs, however, we can notice

that the bilinear dynamics homogenized the node centralities,

a behaviour possibly explained by the difference in topology

between a tree graph and a connected Barabási-Albert graph

with many loops, as the one we generated.

In the final simulation we use unbalanced disturbances

for a σ that respects Assumption 1 but is large enough to

break Assumption 2, our goal is to see if the balancing

effect that we observed for homogeneous disturbances is also
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(a) (b) (c)

Fig. 5: H2-based centrality values of the nodes in the Barabási-Albert graph given by Fig. 4. In the Figs. Linear centralities are
computed for unperturbed edges, and Bilinear centralities are computed for the specific disturbance of each figure. Nodes are ordered
according to the linear centralities. (a) Bilinear centralities computed for homogeneous perturbations on the edges with σ > 0 satisfying
Assumption 2. (b) Bilinear centralities computed for homogeneous perturbations on the edges with σ > 0 satisfying Assumption 1 but
not 2. (c) Bilinear centralities computed for unbalanced edge perturbations with σ > 0 satisfying Assumption 1 but not 2.

perceptible for unbalanced disturbances. In Fig. 5c, we can

see that for unbalanced disturbances, the order of the nodes

has nothing to do with the order of the nodes for the linear

case. Even if the results in Fig. 5c are much less balanced

than the ones in Fig. 5b, the changes in centrality are still

well distributed among the nodes, instead of concentrating

on a few as in Fig. 3f.

V. CONCLUSIONS

In this paper, we introduced the notion of node cen-

trality for bilinear dynamical networks with uncertain

edges/couplings and nodes/dynamics. We showed how the

coupling uncertainties appear as bilinear terms in the entire

network dynamics. We proposed an H2-based metric to

evaluate the centrality of the nodes. We showed that this

centrality measure can be explicitly expressed as a function

of the solution of the generalized Lyapunov equation.

We conducted simulations aiming to study the different

effects multiplicative disturbances have on the network:

homogeneous disturbances; unbalanced disturbances; single

edge disturbances. We presented the simulations for two dif-

ferent network topologies and compared, for each simulation

scenario, the effects of respecting or not Assumption 2 (that

is, the difference of having a dominant linear dynamics or

not). For relatively small homogeneous edge disturbances

(respecting Assumption 2), the centrality of the nodes did

not change significantly, but for values that approached the

conditions in Assumption 1 the difference was consistently

clearer. These simulations give us insights of when the linear

hypothesis might hold and when we should be more careful

when considering the uncertainties on the edges.
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