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Abstract— In this paper, we consider the problem of sensor
selection for discrete-time linear dynamical networks. We de-
velop a framework to design a sparse sensor schedule for a
given large-scale linear system with guaranteed performance
bounds using a learning-based algorithm. To sparsify the
sensors in both time and space, we build our combinatorial
optimization problems based on the notion of systemic con-
trollability/observability metrics for linear dynamical networks
with three properties: monotonicity, convexity, and homogeneity
with respect to the controllability/observability Gramian matrix
of the network. These combinatorial optimizations are inher-
ently intractable and NP-hard. However, solving a continuous
relaxation for each optimization is considered best practice.
This is achievable since we constructed the objective based on
the systemic metrics, which are convex. Furthermore, by lever-
aging recent advances in sparsification literature and regret
minimization, we then round the fractional solution obtained by
the continuous optimization to achieve a (1 + ε) approximation
sparse schedule that chooses on average a constant number
of sensors at each time, to approximate all types of systemic
metrics (cf. Table I).

I. INTRODUCTION

Scientists and researchers have always been intrigued by
the challenge of controlling and estimating large-scale com-
plex networks such as power networks [1], social networks,
and biological and genetic regulatory networks [2]–[4]. More
recently, development of algorithms and the availability
of portable computer storage as well as high-performance
processors have sparked a new surge of interest within
the control community to study and analyze these complex
dynamical networks. Although classical concepts of observ-
ability and controllability are almost axiomatic now, there
are still numerous ambiguities in the network controllability
and observability. For example, the dependence of different
measures of controllability or observability on the location of
actuators and sensors in the large networks is not completely
known. Given the increasingly large-scale nature of the
problems presented by attempts to control and estimate these
networks, the need to estimate the overall state of the system
and to control it using a small subset of available sensors
and actuators is inevitable. Moreover, a fully actuated or
sensed network control system might not be practical, require
unreasonable cost, or use too much energy. The need to have
a small set of actuators/sensors might be crucial in some
applications, such as multi-agent robotic networks, because
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of limited battery resources, communication bandwidth, and
computation capacity [5] or power grid state estimation due
to increasing cost of monitoring of the network for systemic
failures, etc.

All in all, it is beneficial to maintain a few actuators
and sensors; however, in this sparsification, we need to
preserve most of the control or estimation performance.
The problem of sparsifying actuators/sensors such that the
resulting system is controllable/observable is NP-hard [6],
[7]. Therefore, different algorithms have been developed to
solve this problem [8]–[10]. The authors of [11] developed
a framework to find a time-varying sparse actuator/sensor
schedule while ensuring the sparse system has a controlla-
bility/observability performance that closely resembles that
of the original system (i.e., fully actuated/sensed system).
Later, [12] designed a time-varying joint sensors/actuators
selection strategy to choose an average constant number of
sensors and actuators to approximate the Henkel singular
values of the system . It is shown in [13] that the sep-
aration principle holds for the Linear-Quadratic-Gaussian
(LQG) control problem. More recently in [14], the authors
leverage balanced model reduction and greedy matrix QR
pivoting to efficiently perform sensor and actuator selections
that optimize observability and controllability. A sufficiency
condition of static output feedback stabilizability is exploited
to achieve the minimal set of sensors and control nodes
needed to stabilize an unstable network in [15].

A key observation is the close connection between the
problem of actuator/sensor sparsification and some classical
mathematics and statistics such as matrix low rank ap-
proximation, outlier detection, active learning, and optimal
experimental design. In recent years, experimental design,
which first emerged sixty-five years ago [16], has been the
subject of considerable study again.

We propose a framework to solve the time-varying sensor
selection problem based on new advances in theoretical
computer science and machine learning. We show that the
problem can be solved using a polynomial-time learning-
based algorithm known as regret minimization. Similar to
[11], we first introduce a notion of systemic controllabil-
ity/observability metrics for discrete-time linear dynamical
networks. These metrics are defined such that they are
monotone, convex, and homogeneous with respect to the
controllability/observability Gramian matrix of the network.
It is shown that several popular and widely used opti-
mality criteria in experimental design, including A(verage),
D(eterminant), T(race), E(igen), V(ariance) and G-optimality
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(cf. Table I), belong to this class of systemic measures.
Determining the exact solution to optimize these criteria,
except the T-optimality, is challenging. More specifically,
for certain instances of D/E-optimality, the optimization is
proven to be NP-hard [17].

We use the notion of systemic metric to maintain the
controllability/observability performance of the system in
the desired level while sparsifying the actuators/sensors
in online learning and regret minimization. Although the
combinatorial optimizations built upon the systemic metrics
are NP-hard, the continuous relaxation is solvable since the
metrics are defined to be convex. Then, to find the sparse
actuator/sensor schedule, one should round the continuous
solution (sometimes called fractional solution1) obtained
from continuous relaxation to integer ones. We propose to
use the promising learning-based algorithm from theoretical
computer science, regret minimization, to develop a scalable
framework to round the fractional solution and find a sparse
sensor schedule. We show that the proposed polynomial-time
algorithm is able to achieve (1+ε) approximation for all the
optimality criteria discussed.

II. PRELIMINARIES AND DEFINITIONS

A. Mathematical Notations

Throughout the paper, discrete time index is denoted by
k. The sets of real (integer), non-negative real (integer),
and positive real (integer) numbers are represented by R
(Z), R+ (Z+) and R++ (Z++), respectively. The set of
natural numbers {i ∈ Z++ : i ≤ n} is denoted by [n].
Uppercase letters, such as A or B, stand for real-valued
matrices, and lowercase letters denote vectors (e.g. b or c),
except that T shows the total number of iterations in a regret
minimization problem. For a square matrix X , det(X) and
Trace(X) refer to the determinant and the summation of
on-diagonal elements of X , respectively. Sn+ is the positive
definite cone of n-by-n matrices. The n-by-n identity matrix
is denoted by I . Notation A � B is equivalent to matrix
B−A being positive semi-definite. The transpose of matrix
A is denoted by A>. The rank of matrix A is referred
to by rank(A). Non-bold face letters are used for scalars
and indices (e.g. j) and function names (e.g. f(·)). Operator
〈A,B〉 := Trace(A>B) represents the inner product of two
matrices A and B. {0, 1}m×n and [0, 1]m×n are the set of
m-by-n matrices that their entries are only 0 and 1 and the
set of m-by-n matrices that their entries are real numbers
between 0 and 1 (inclusive), respectively. The symbol ‖ · ‖
denotes the Euclidean norm for vectors and the spectral
norm for matrices. Finally, an actuator/sensor schedule is
sparse if and only if on average a constant number of
actuators/sensors, independent of the system dimension, are
active each time.

1Fractional solution is the solution for the relaxation of an integer
optimization in which the integrality constraints of each variable were
removed/relaxed.

B. Linear Systems, Controllability and Observability

We start with a canonical linear discrete-time, time-
invariant dynamics as follows

x(k + 1) = Ax(k) +Bu(k), and y(k) = Cx(k),

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and k ∈ Z+.
The state matrix A describes the underlying structure of
the system and the interaction strength between the agents,
matrix B identifies the nodes controlled by an outside
controller, and output matrix C shows how output vector
y relates to the state vector. One can rewrite the dynamics
in the following form

x(k + 1) = Ax(k) +
∑
i∈[m]

biui(k), (1)

y(k) =
∑
j∈[p]

ejc
>
j x(k), (2)

where bi’s are columns of matrix B ∈ Rn×m, c>j ’s are rows
of matrix C ∈ Rp×n, and ej’s are the standard basis for Rp.
Then, the controllability and observability matrices at time t
are respectively given by

R(t) =
[
B AB A2B · · · At−1B

]
, (3)

and

O(t) =


C
CA
CA2

...
CAt−1

 . (4)

Assumption 1. In this paper, we assume that integer number
t > 0 is the time horizon to control or estimate (also known
as the time-to-control or time-to-estimate).

It is well-known that from a numerical standpoint it is
better to characterize controllability and observability in
terms of the Gramian matrices at time t defined as follows

W(t) =
t−1∑
i=0

AiBB>(Ai)> = R(t)R>(t), and (5)

X (t) =
t−1∑
i=0

(Ai)>C>CAi = O>(t)O(t). (6)

When looking at time-varying schedules, we will consider
linear system with time-varying input and output matrices
B(·) and C(·) respectively.

x(k+1) = Ax(k)+B(k)u(k), and y(k) = C(k)x(k). (7)

For the above system, the controllability and Gramian ma-
trices at time step t are defined as

R?(t) =
[
B(t− 1) AB(t− 2) A2B(t− 3) · · · At−1B(0)

]
,

and W?(t) = R?(t)R>? (t), respectively. Furthermore, the
respective Gramian and observability matrix at time step t
are

X?(t) = O>? (t)O?(t), and (8)
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O?(t) =


C(t− 1)
C(t− 2)A
C(t− 3)A2

...
C(0)At−1

 . (9)

Assumption 2. Through out the paper, we assume that the
system (1)-(2) is an n-state minimal realization (i.e., it is
reachable and observable).

C. Systemic Controllability/Observability Metrics

Similar to the systemic notations introduced in [11], [18]–
[20], we define various controllability/observability metrics.
These measures are real-valued operators defined on the set
of all linear dynamical systems derived from (7) and quantify
various measures of the required energy in the system.
All of the metrics depends on controllability/observability
Gramian matrix of the system, which is a positive definite
matrix. Therefore, one can define a systemic performance
measure as an operator on the set of Gramian matrices of
all controllable/observable systems over n agents, which we
represent by Sn+.

Definition 1 (Systemic Criteria). A Gramian-based metric
ρ : Sn+ → R is systemic if and only if it meets Homogeneity
(∀ t > 1, ρ(tA) = t−1ρ(A))2, Monotonicity criteria (if B �
A, then ρ(B) � ρ(A)) , and convexity as the following

ρ
(
αA+ (1− α)B

)
≤ αρ(A) + (1− α)ρ(B), ∀α ∈ [0, 1].

For many popular choices of ρ, including A(verage),
D(eterminant), T(race), E(igen), V(ariance) and G-
optimality, one can see that they satisfy the properties
presented in Definition 1. They are listed in Table I. We
note that similar criteria have been developed in [17], [21]
for the purpose of experimental design.

Proposition 1. For the given dynamics (1)-(2) with Gramian
matricesW(t) and X (t), the metrics presented in Table I are
systemic controllability as well as observability measures.

Additionally, similar to [22], we define the respec-
tive transient controllability and observability functions
of the system described by (1)-(2) at time step t as
Lc(x0, t) = minu,x0

∑0
i=−t+1 ‖u(i)‖2, where x(−t) = 0

and x(0) = x0, and Lo(x0, t) =
∑t−1
i=0 ‖y(i)‖2, where

u = 0.
Next, we assume that x0 is randomly selected from a

normal distribution with zero-mean and covariance matrix
M , i.e., x0 ∼ N (0,M). Then, using [22, Theorem 2], one
can obtain the expected values of these functions as

Ex0(Lc(x0, t)) = Ex0 min
u,x0

0∑
i=−t+1

‖u(i)‖2 = 〈W(t)−1,M〉,

2Normally, a function ρ is homogeneous if ρ(tA) = t−n ·ρ(A), where
n is the degree of homogeneity. However, throughout this paper, when we
say a metric is homogeneous, we mean it is homogeneous of degree 1.

and Ex0(Lo(x0, t)) = Ex0

t−1∑
i=0
‖y(i)‖2 = 〈X (t),M〉, (10)

where W(t) and X (t) are controllability and observability
Gramian matrices, respectively, and M = E(x0x

>
0 ). These

two functions play an important role in defining the regret
for the system in the regret minimization algorithm that is
introduced in Section IV-A.

In this paper, we will only focus on the observability
problem and sensor scheduling due to space limitations. One
can obtain actuator scheduling using the similar arguments.

III. UNWEIGHTED SPARSE SENSOR SCHEDULE

Similar to [11], to synthesize a sparse approximation of
the observability Gramian, we assume that the sensor/output
strength only can take binary values (0 or 1). Given a time
horizon t ≥ n, our problem is to compute a sensor schedule
si(k)’s where si(k) ∈ {0, 1} for the system (1)-(2), i.e.,

x(k + 1) = Ax(k) +
∑
i∈[m]

bi ui(k), (11)

y(k) =
∑
i∈[p]

si(k)eic>i x(k), k ∈ Z+. (12)

The observability Gramian at time t for this schedule is
given by

Xs(t) =
t−1∑
k=0

∑
i∈[p]

si(k)(c>i At−k−1)>(c>i At−k−1). (13)

To obtain (13) we use the fact that s2
i (k) = si(k), ∀si(k) ∈

{0, 1}. Our goal is to reduce the number of active sensors

on average d, where d :=
∑t−1

k=0

∑
i∈[p]

si(k)
t , such that

the system maintains in the desirable level of observabil-
ity performance. This approximation will require horizon
lengths that are potentially longer than the dimension of
the state. Optimal sensor selection can now be formulated
as a combinatorial optimization problem. We consider both
static and dynamic sensor schedules, corresponding to time-
invariant and time-varying output matrices.

1) The static scheduling Problem: In this case, all binary
coefficients si ∈ {0, 1}p for k + 1 ∈ [t] are identical,
which means we keep the same schedule at every point
in time for the whole time horizon t:

min
s∈Sd

ρ

( n−1∑
k=0

∑
i∈[p]

si(c>i Ak)>(c>i Ak)
)
, (14)

where Sd :=
{
s ∈ {0, 1}p,

∑
i∈[p] si ≤ d

}
and si =

s(i).
2) The Time-varying Scheduling Problem: In this case, the

optimal dynamic strategy is given as

min
s∈Sd,t

ρ

( t−1∑
k=0

∑
i∈[p]

si(k)(c>i At−k−1)>(c>i At−k−1)
)
,

(15)
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TABLE I: Some important examples of systemic controllability/observability metrics.

Optimality-criteria Systemic Controllability/Observability Measure Matrix Operator Form
A-optimality Trace of the inverse Trace(P−1(t))/n 1

D-optimality The volume of the ellipsoid (det(P(t)))−1/n

T-optimality Inverse of the trace n/Trace(P(t))
E-optimality Inverse of the minimum eigenvalue 1/λmin(P(t))
V-optimality Average variance 1

n
Trace(Q>(t)P(t)−1Q(t))2

G-optimality Maximum entry in the diagonal max diagQ>(t)P(t)−1Q(t)
1 P(t) can be any of the Gramian matrices W(t) or X (t).
2 Based on what we chose for P(t), Q(t) can be either R(t) or O(t).

where Sd,t :=
{
s ∈ {0, 1}t×p :

∑t−1
k=0

∑
i∈[p] si(k) ≤

td

}
, parameter d is the desired average number of

active sensors at each time, t is the time horizon, p
is the total number of sensors, and si(k) := s(k+ 1, i).

The exact combinatorial optimization Problem (14) and
(15) are intractable for most of ρ’s and NP-hard optimization
problems; however, it is straightforward to solve a continuous
relaxation of these optimization problems because of the
convexity property in Definition 1.

Remark 1. The D-optimality ρD : X (t) → (detX (t))− 1
n

does not satisfy convexity property in Definition 1. However,
it is well-established practice to consider the negative log-
determinant function log ρD : X (t) → − 1

n log detX (t),
which is convex (see Section 3 of [17]).

Remark 2. Exact solution for the optimization Problems
(14) and (15) in T-optimality is trivial because, to maximize
TraceX (t), by linearity, it suffices to pick the td distinct
indices (k, i) ∈ T × [p] (where T ⊆ [t − 1] ∪ {0}) to
maximize Trace(yi(k)y>i (k)) = ‖yi(k)‖2, where yi(k) =
(c>i At−k−1)>.

Assumption 3 (Continuous Relaxation). We define the con-
tinuous relaxation of Problem (15) as

min
π∈Cd,t

ρ(π) = min
π∈Cd,t

ρ
( t−1∑
k=0

∑
i∈[p]

πi(k)yi(k)y>i (k)
)
, (16)

where Cd,t :=
{
π ∈ [0, 1]t×p :

∑t−1
k=0

∑
i∈[p] πi(k) ≤ td

}
,

yi(k) = (c>i At−k−1)>, and πi(k) := π(k + 1, i). For any
fixed µ ∈ (0, 1), this problem can be solved with (1 + µ)-
relative error (i.e., ρ(π̂) ≤ (1 + µ) minπ∈Cd,t

ρ(π)) by a
polynomial-time algorithm. The same arguments hold for
Problem (14), but due to limited space, it is not discussed
here.

To solve continuous relaxation, one can use a variety of
standard methods for continuous optimizations such as pro-
jected gradient descent or conic programming [23]; however,
we recommend to use entropic mirror descent [17], because
it suits the geometry of our problem.

Assumption 4. Without loss of generality, in the rest of this
paper we assume that the weighted observability Gramian

matrix

Xπ(t) :=
t−1∑
k=0

∑
i∈[p]

πi(k)(c>i At−k−1)>(c>i At−k−1), (17)

is invertible. If Xπ(t) is singular instead, one can remove
all (c>i At−k−1)> that does not belong to the span of
Xπ(t) (Simply put πi(k) equal to zero) and project the
rest of (c>i At−k−1)> onto the linear space constructed by
rank(Xπ(t)). The output would then be invertible in the
projected low-dimensional space.

In the rest of the paper, we discuss details of the rounding
method. Since static scheduling Problem (14) is inherently
a simple variation of time-varying scheduling Problem (15),
from now on we will focus only on deriving the formulation
for Problem (15).

IV. ROUNDING VIA SWAPPING REGRET MINIMIZATION

The following claim shows that if we use a systemic
metric aligned with the properties discussed in Definition 1
to find an integral solution that performs (1 + ε) close to the
fractional solution obtained from a continuous optimization,
we do not need any explicit information on the systemic
metric.

Claim 1. We claim that to solve this rounding problem it
suffices to find an integral solution ŝ ∈ Sd,t that satisfies

t−1∑
k=0

∑
i∈[p]

ŝi(k)(c>i At−k−1)>(c>i At−k−1) �

κ ·
t−1∑
k=0

∑
i∈[p]

πi(k)(c>i At−k−1)>(c>i At−k−1), (18)

for some constant κ = 1−O(ε) > 0.

The following definition gives us a useful tool that allows
us, without loss of generality, to assume that the right-hand
side matrix in (18) is identity matrix I .

Definition 2 (Whitening). Given non-singular coordinate
transformation TTT ∈ Rn×n

x(t) 7→ TTTx(t) := x(t),

the transformed system realization of (1)-(2) can be obtained
by

x(k + 1) = TTT−1ATTT︸ ︷︷ ︸
Â

x(k) + TTT−1B︸ ︷︷ ︸
B̂

u(k), (19)
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y(k) = CTTT︸︷︷︸
Ĉ

x(k). (20)

based on [24]. Furthermore, the observability Gramian
matrix for the transformed system is

X (t) 7→ TTT>X (t)TTT := X̂ (t),

where X (t) is the observability Gramian matrix of the
original system (1)-(2). If we define TTT := X (t)−1/2, this
change of coordinates converts the observability Gramian
matrix of transformed system X̂ (t) to identity matrix I . This
process is called Whitening, since it converts the covariance
matrix of the given samples to the identity matrix.

We then use this result later in our regret minimization to
find a sparse unweighted sensor schedule.

Proposition 2. Let us assume

X̂s(t) =
t−1∑
k=0

∑
i∈[p]

ŝi(k)(ĉ>i Ât−k−1)>(ĉ>i Ât−k−1), (21)

where Â is given by (19) and ĉ>i ’s are rows of matrix Ĉ
given by (20). Then we have X̂s(t) � κI , if and only if
(18) holds.

Proposition 2 allows us to assume without loss of general-
ity that Xπ(t) is the identity matrix. The computational load
imposed by matrix multiplications is not a bottleneck in the
proposed algorithm described later.

Proposition 3. The problem of showing

X̂s(t) � κI, (22)

can be reduced to lower bounding the minimum eigenvalue
of X̂s(t) or

λmin(X̂s(t)) ≥ κ. (23)

We use this result to define our main problem in this
section. The main theorem of this paper is Theorem 1 that
guarantees that polynomial-time (1+ε) approximation exists.
We show that the solution for the problem we define here
together with the bound obtained from continuous relaxation
can simply prove this theorem constructively. Moreover, the
whole process leads us to establish a framework to find
the unweighted sparse schedule with desirable bound. This
problem is defined as follows:

Main Problem (From weighted to unweighted). Consider a
given weighted sensor scheduling

Cd,t =
{
π ∈ [0, 1]t×p :

t−1∑
k=0

∑
i∈[p]

πi(k) ≤ td
}
.

One can utilize this scheduling to obtain the transformed
system realization described in Definition 2 with the observ-
ability Gramian matrix as

X̂π(t) =
t−1∑
k=0

∑
i∈[p]

πi(k)zi(k)zi(k)> = I,

where zi(k) = (ĉ>i Ât−k−1)> and πi(k) = π(k+1, i). Then,
the goal is to find unweighted sensor scheduling ŝ ∈ Sd,t =
{s ∈ {0, 1}t×p :

∑t−1
k=0

∑
i∈[p] si(k) ≤ td}, such that

λmin

( t−1∑
k=0

∑
i∈[p]

ŝi(k)zi(k)zi(k)>
)
≥ (1− 3ε) = κ, (24)

where ŝi(k) = ŝ(k+1, i). Putting κ = (1−3ε) is intentional.
We will use this adjustment to prove Theorem 1.

In the remainder of this paper, we will illustrate how regret
minimization algorithm can help us to solve this problem.

A. Regret Minimization

In this section, we explain how, by using a learning-based
iterative process (a.k.a. regret minimization), we can solve
Main Problem.

We start with arbitrary unweighted sensor scheduling
ŝ(0) ∈ Sd,t. We define the action space of a regret minimiza-
tion as Υn×n := {M ∈ Sn+ : Trace(M) = 1}. Specifically,
action space Υn×n contains the covariance matrix of the
zero-mean Gaussian initial state x0 ∈ Rn with E(‖x0‖2) =
1. Hence, at each iteration `, the player picks an initial state
x0

(`) ∼ N (0,M (`)) where M (`) ∈ Υn×n for the coordinate-
transformed dynamics described in (19)-(20) with sensor
scheduling ŝ(`) ∈ Sd,t and transient Gramian X̂ (`)

s (t), i.e.,

X̂ (`)
s (t) =

t−1∑
k=0

∑
i∈[p]

ŝ
(`)
i (k)zi(k)zi(k)>, (25)

where zi(k) = (ĉ>i Ât−k−1)>. The player selects x
(`)
0 to

minimize a cost at each iteration. The cost/loss at each
iteration ` is reflected by observing the transient energy of
the system over the time interval 0 to t− 1 as follows,

E(Lo(x0
(`), t)) = E

t−1∑
i=0
‖y(i)‖2,

where u = 0. Based on (10), this cost can be calculated by

E(Lo(x0
(`), t)) = 〈X̂s(t)(`),M (`)〉. (26)

Let us define elementary t-by-p matrices Jk,i which is one
at indices (k + 1, i) and zero elsewhere. At each iteration,
the adversary updates the sensor schedule by swapping active
sensors in time and place (i.e., ŝ(`) = ŝ(`−1) − Jk,i + Jv,j ,
where

(k, i) ∈M = {(m,n) : ŝ(m+ 1, n)(`−1) = 1}, (27)

ŝ(m+1, n)(`−1) is the common notation for the (m+1, n)th

entry of the matrix schedule ŝ(`−1), and (v, j) ∈ (([t −
1] ∪ {0}) × [p]) \ M), to maximize the loss (26). Let us
consider T iterations of this game. The goal of the player is
to minimize their regret, defined as

Regret(
{
M (`)}T−1

`=0 ) := min
U∈Υn×n

T−1∑
`=0
〈X̂ (`)

s (t),M (`) − U〉,

(28)
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which is the difference between cumulative losses with the
single optimal action U when all the previous loss matrices
(or equivalently, observability matrices {X̂ (`)

s (t)}T−1
`=0 ) are

known. We devote the next subsection to a popular strategy
to minimize regret of the player.

B. Strategy to Minimize Regret

One of the popular strategies to minimize regret is follow
the regularized leader or FTRL [25]. In fact, FTRL deter-
mines how to choose action M (`) (or equivalently initial state
x

(`)
0 ) for the player at each round ` (where `+1 ∈ [T ]). Based

on this strategy:

M (`) = argmin
Z∈Υn×n

{
ΩΞ(M (`−1),Z) + η 〈X̂ (`−1)

s (t),Z〉
}
,

(29)
where η > 0 is learning rate, Ξ : Rn×n → R is
the regularizer function, and so-called Bregman divergence
function associated with Ξ is ΩΞ(X,Y ) = Ξ(Y )− Ξ(X)−
〈∇Ξ(X), Y −X〉.

Although the matrix entropy Ξ(M) = 〈M, logM − I〉
is likely the most famous choice for Ξ [26], in this pa-
per, we decide to use l1/2-regularizer defined as Ξ(M) =
−2 Trace(M1/2), which is first introduced in [27]. The
reason is this matrix generalization leads to a better algorithm
for similar problems such as graph sparsification [27] and
online eigenvector problems [28]. The closed form strategy
resulted by l1/2-regularizer was obtained in [17] (see its
appendix) as

M (`) =
(
f (`)I + ηH(0) + η

`−1∑
j=0
X̂ (j)
s (t)

)−2
, ∀ ` ∈ Z++,

(30)
where η > 0 and H(0) is a positive semidefinite matrix
such that (f (0)I + ηH(0)) � 0. Moreover, f (`) ∈ R is the
unique constant such that M (`) � 0 and Trace(M (`)) = 1.
In the next subsection, by leveraging the learning approach
discussed here, we solve Main Problem.

C. Swapping Regret algorithm

In this section, we first state two fundamental lemmas and
illustrate how one can use the result of these lemmas to build
an iterative solver for the Main Problem. Then, we present
our main theorem and show how the tools we have developed
so far can be combined to obtain the proof for Theorem 1
constructively.

We denote the contribution of swapping the sensors in
Gramian transient at each iteration ` by N (`)(t) and define
it as N (`)(t) = X̂ (`)

s (t)−X̂ (`−1)
s (t), where X̂ (`)

s (t) is defined
in (25). This contribution can also be expressed equivalently
as

N (`)(t) = (ĉ>j(`)Â
t−v(`)−1)>(ĉ>j(`)Â

t−v(`)−1)

−(ĉ>i(`)Â
t−k(`)−1)>(ĉ>i(`)Â

t−k(`)−1), (31)

where (k(`), i(`)) ∈M are the indices for the sensor getting
deactivated, (v(`), j(`)) ∈ (([t− 1] ∪ {0})× [p])\M are the

indices for the sensor getting activated at iteration `, and
M is defined as (27). It is obvious that N (`)(t) is a rank-2
matrix.

Lemma 1. Assume in this game, strategies {M (`)}T−1
`=0 ∈

Υn×n taken by the player are defined according to the l1/2
strategy with some learning rate η > 0 and H(0) = X̂ (0)

s (t).
If η〈(M (`))1/2, (ĉ>

i(`)Â
t−k(`)−1)>(ĉ>

i(`)Â
t−k(`)−1)〉 < 1/2

for all `, then for any U ∈ Υn×n we have

〈X̂ (0)
s (t) +

T−1∑
`=0

N (`)(t),U〉 = λmin(X̂ (T )
s (t)) ≥

T−1∑
`=0

(
−

〈M (`), (ĉ>
j(`)Â

t−v(`)−1)>(ĉ>
j(`)Â

t−v(`)−1)〉

1 + 2η〈(M (`))1/2, (ĉ>
j(`)Â

t−v(`)−1)>(ĉ>
j(`)Â

t−v(`)−1)〉

+
〈M (`), (ĉ>

i(`)Â
t−k(`)−1)>(ĉ>

i(`)Â
t−k(`)−1)〉

1− 2η〈(M (`))1/2, (ĉ>
i(`)Â

t−k(`)−1)>(ĉ>
i(`)Â

t−k(`)−1)〉

)
+2
√
n

η
. (32)

In (32), the equality holds since U can be chosen ar-
bitrary matrix from Υn×n. Lemma 1 presents the lower
bound for the final transient Gramian matrix of the
sparse system. The complementary step is to find indices
{(v(`), j(`)), (k(`), i(`))} to make the right-hand side of (32)
as small as possible. The following lemma leads us to
establish an iterative process toward this end.

Lemma 2. Let ŝ(`) ∈ Sd,t be the sparse sensor schedule
at iteration `, but λmin(X̂ (`)

s (t)) ≯ 1− 3ε. Moreover, let us
assume the action the player pick at iteration ` is given by
M (`) = (f (`)I+ηX̂ (`−1)

s (t))−2, where f (`) ∈ R is a unique
number that guarantees M (`) � 0 and Trace(M (`)) = 1.
Then, these statements hold:

τ := min
(k(`),i(`))∈G

〈M (`), zi(`) (k(`))zi(`) (k(`))>〉
1− 2η〈(M (`))1/2, zi(`) (k(`))zi(`) (k(`))>〉

≤ 1− ε
td

, (33)

max
T ⊆[t−1]∪{0}

(v(`),j(`))∈(T ×[p])\M

〈M (`), zj(`) (v(`))zj(`) (v(`))>〉
1 + 2η〈(M (`))1/2, zj(`) (v(`))zj(`) (v(`))>〉

≥ τ + ε

td
. (34)

where zα(β) := (ĉ>α Ât−β−1)> for all (β, α) ∈
([t − 1] ∪ {0}) × [p] and G = {(x, y) ∈ M :
2η〈(M (`))1/2, (ĉ>y Ât−x−1)>(ĉ>y Ât−x−1)〉 < 1}.

Remark 3. One can show that setting ε ∈ (0, 1/6], td ≥
5n/ε2, and η =

√
n/ε guarantees that we can always find

a pair of indices (k, i) ∈ M such that the denominator of
(33) is positive.

By (33) and (34) becoming true, for (32), one can say

−λmin(X̂ (T )
s (t)) ≤

T−1∑
`=0
− ε

td
+ 2
√
n

η
. (35)
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Let assume that the parameters of the game were chosen such
that they are aligned with the conditions stated in Remark
3. Therefore, considering η =

√
n/ε, the right-hand side of

inequality (35) is reduced to −Tεtd +2ε. Moreover, if we take
T ≥ td/ε, the following inequality holds

λmin(X̂ (T )
s (t)) ≥ 1− 2ε. (36)

Claim 2. Lemma 2 offers a way to solve the Main Problem
iteratively.

Theorem 1. Assume ε ∈ (0, 1/6], d ∈ [5n/(tε2), p], and
ρ : S+

n → R is an systematic metric that satisfies all the
properties in Definition 1. Then, there exists a polynomial-
time algorithm that computes a schedule ŝ that satisfies

∃ ŝ ∈ Sd,t : ρ(ŝ) ≤ (1 + 8ε) · min
s∈Sd,t

ρ(s).

Remark 4. Theorem 1 requires td ≥ Ω(n/ε2) in order to
achieve (1 + ε) approximation.

Based on this remark, we can see the bigger d and t we
get, the more accurate approximation we achieve.

The results presented in [11]- [12] are based on the spectral
approximation of Gramians of the fully actuated/sensed
systems using randomized and deterministic greedy-based
algorithms. However, in this work, we consider a fundamen-
tally different problem which is exploiting a learning-based
algorithm to find a near optimal unweighted sensor schedule,
and we compare the result with an optimal solution rather
than the performance of the fully sensed system. Interestingly
for both cases, the lower bound on the performance loss ε is
linearly proportional to 1/

√
d for large d.

V. CONCLUDING REMARKS

In this paper, we have investigated designing an un-
weighted sparse sensor schedule for discrete-time linear dy-
namical networks where sparsification is performed in time
and place. We show how the recent advances in theoretical
computer science can be exploited to choose a relatively
small number of sensors at each time. Specifically, we show
that applying a learning-based algorithm known as regret
minimization achieves near-optimal deterministic approxi-
mation guarantees for sensor sparsification. This learning-
based algorithm is fed with an approximate continuous
solution available from a convex optimization. All the al-
gorithms introduced in this paper can be modified for the
case where we are dealing with an actuator scheduling. We
have attempted to put the dual tools for actuator scheduling
alongside the sensor scheduling materials. Therefore, one
can easily derive the algorithms for the actuator schedule
problem. A potential future direction is to extend the results
presented in this paper to uncontrollable and unobservable
systems.
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