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Abstract— Several sources of delay in an epidemic network
might negatively affect the stability and robustness of the entire
network. In this paper, a multi-delayed Susceptible-Infectious-
Susceptible (SIS) model is applied on a metapopulation net-
work, where the epidemic delays are categorized into local and
global delays. While local delays result from intra-population
lags such as symptom development duration or recovery period,
global delays stem from inter-population lags, e.g., transition
duration between subpopulations. The theoretical results for a
network of subpopulations with identical linear SIS dynamics
and different types of time-delay show that depending on
the type of time-delay in the network, different eigenvalues
of the underlying graph should be evaluated to obtain the
feasible regions of stability. The delay-dependent stability of
such epidemic networks has been analytically derived, which
eliminates potentially expensive computations required by cur-
rent algorithms. The effect of time-delay on the H2 norm-based
performance of a class of epidemic networks with additive noise
inputs and multiple delays is studied and the closed form of
their performance measure is derived using the solution of
delayed Lyapunov equations. As a case study, the theoretical
findings are implemented on a network of United States’ busiest
airports.

I. INTRODUCTION

In epidemiological models, a metapopulation consists
of several interacting subpopulations with an underlying
graph representing the map and strength of inter-population
connections [1]. The prediction of epidemic progress in
communities has been studied in [2], where a macro-
modelling approach is used. The stochastic and deterministic
metapopulation SIS dynamics are compared in [3], where
the effect of variable disease transmission rates and inter-
action rates between the subpopulations is considered. A
significant number of other research studies in this field
have been accomplished; some focusing on the improve-
ment of metapopulation models by introducing more epi-
demic compartments, e.g. Susceptible-Infected-Susceptible
(SIS) [4], Susceptible-Infected-Removed (SIR), Susceptible-
Exposed-Infected-Removed (SEIR) [5], and Susceptible-
Infected-Quarantined-Susceptible (SIQS) [6].

The stability of single-delayed LTI systems has been
investigated in [7], where an exact numerical approach to de-
termine the regions of delay-dependent stability is presented.
The same method is then extended for LTI systems with
multiple time-delays in [8]. A frequency-domain stability
analysis approach for LTI systems with two time-delays
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is developed by [9]. The delay-dependent α-stability and
delay-independent asymptotic stability of multi-delayed LTI
systems using Lyapunov-type stability criteria is studied in
[10]. Moreover, the global stability of SIS ans SIR network
models is investigated in several studies [11], [12].

The performance of noisy linear consensus networks has
been investigated in [13], where a performance measure
based on the H2 norm of system is introduced and es-
tablished for consensus networks with different types of
input noise. The H2 norm of delayed LTI systems by
solving the delay Lyapunov equation is studied in [14],
where a spectral discretization scheme is offered for systems
with commensurate and non-commensurate time-delays. The
performance of epidemic networks with single-delayed SIS
dynamics has been studied in [15] and the effect of time-
delay on the network performance is evaluated.

Although there is a strong literature on the networked
epidemic models and multi-delayed systems with SIS dy-
namics, to the best of our knowledge, the investigation of
explicit delay-dependent stability criteria and performance
measure for this class of networks has not received suffi-
cient attention. The importance of this problem comes from
the fact that the computational complexity of the current
algorithms for stability and performance analysis of such
networks grows significantly with the increase of the network
size. In this work, we aim to present efficient stability criteria
and performance measure for a class of delayed epidemic
networks with linear SIS dynamics. Our results show that
local and global delays contribute to the network behaviour
in different ways. We base our analysis on distinguishing
the local and global delays and investigate their role in the
epidemic progress. Our contributions are as below,
• Investigation of stability in epidemic networks with SIS

dynamics and different types of time-delay, i.e., local
delay, global delay, identical delays, and commensurate
delays (Sections II and III).

• Performance analysis of delayed noisy networks with
SIS dynamics and different time-delays (Section IV).

The simulation results for a network of United States’
airports are presented in Section V, and the discussion around
the key results is followed in Section VI.

II. MULTI-DELAYED SIS NETWORK MODEL

Let the undirected and weighted graph G = (V ,E ,w) rep-
resent an epidemic network with node set V = {1, 2, . . . , n}
for n ∈ N, where node i represents the ith subpopulation
in the network. E ⊂ V × V denotes the edge set, which
shows the connection between pairs of nodes in V with
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the corresponding weight of w(e) = we = ai j ∈ R+ for all
e = {i, j} ∈ E . Note that the underlying graph is undirected;
therefore we have, ai j = a ji = we. w ∈ Rm is the vector
of edge weights defined as w = [w1, w2, . . . , wm], where
m = |E |. The adjacency matrix of the underlying undirected
graph, which has no self-loops, is then defined as A = [ai j],
where ai j = 0 for i = j. The vector of eigenvalues of the
adjacency matrix is λ= [λ1, λ2, · · · , λn], where λ1 < λ2 <
· · · < λn.

For an epidemic network with the described underlying
graph, the nodes are representative of subpopulations, the
edges show the map of connection between the subpop-
ulations, and the edge weights indicate their connection
strength. For this network, the state of the infectious sub-
populations at time t ≥ 0 is represented by the vector
p(t) = [p1(t), . . . , pn(t)]

>, where pi ∈ [0,1] is the marginal
probability of subpopulation i being infectious at time t such
that pi(t) = 1 if the entire population of i is infectious and
pi(t) = 0 if it is completely susceptible. Therefore, pi(t)
can be interpreted as the fraction of infectious individuals
in subpopulation i at time t. The fraction of susceptible
individuals in subpopulation i at time t is denoted by si(t).
Every subpopulation might experience a local delay τl ∈R+,
which is caused by the considerable duration of recovery
from the disease. There is also a global delay τg ∈ R+,
corresponding to the interconnection between subpopulations
which accounts for the time it takes for infectious members
of a subpopulation to travel to another subpopulation and
start a potential connection with its susceptible members.

Assumption 1. In this study we assume that the population
of every subpopulation remains approximately constant over
the course of epidemic. In other words, although the members
can have inter-population travel, for every subpopulation the
net of population change is close to zero.

Considering a constant population size for each node i, we
have si(t)+ pi(t) = 1; therefore, the fraction of susceptible
individuals of i can be determined by si(t) = 1− pi(t).

The approximated SIS dynamics of subpopulation i can
now be described using the mean-field approximation model
with multiple time delays and uncertainty as below,

ṗi(t) = −δ pi(t− τl)+β (1− pi(t))
n

∑
j=1

ai j p j(t− τg)+ξi(t);

t > τm,

pi(t) = φi(t); t ≤ τm. (1)

where τm = max[τl ,τg], β ∈R+ is the infection rate at which
a subpopulation will get contaminated by its neighbors, and
δ ∈ R+ is the recovery rate of infectious individuals. ai j is
the i jth component of the adjacency matrix of the coupling
graph which is equivalent to the weight of edge e = {i, j}.
The effect of uncertainties on the disease spread dynamics of
subpopulation i is reflected through ξi(t), which is modeled
as an independent Gaussian white noise with zero mean. φi(t)
is the history function of infection for node i.

The compact representation of the above multi-delayed
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Fig. 1. Representation of an epidemic network with dynamics (3).

SIS model can now be expressed as below,

ṗ(t) = −δp(t− τl)+βAp(t− τg)−βP(t)Ap(t− τg)+ξ(t);
t > τm,

p(t) = φ(t); t ≤ τm. (2)

where P(t) = diag(p(t)), ξ(t) is the vector of independent
Gaussian noise, and φ(t) = [φ1(t), . . . ,φn(t)] is the vector of
history functions.

As shown in the literature [11], this system always has a
unique disease-free equilibrium p∗(t) = 0. Linearizing this
set of delayed differential equations around the equilibrium
p∗(t) = 0, we have

ṗ(t) = −δp(t− τl)+βAp(t− τg)+ξ(t); t > τm,

p(t) = φ(t); t ≤ τm. (3)

Fig. 1 illustrates a block diagram representation of linear
network (3). The reproduction number of this network is
determined by [16], [17],

R0 =
β

δ
λn, (4)

which will be used later in the stability analysis of the
network.

III. STABILITY ANALYSIS

The goal to this section is to drive the regions of stability
for the linear system (3) when there is no noise input in
effect. The investigation of stability in multi-delayed LTI
(MDLTI) systems is challenging due to the existence of
infinitely many characteristic roots. One approach towards
extracting the delay-dependant stability regions of such sys-
tems is the conversion of time delay domain such that the ex-
ponential terms in the characteristic equation are eliminated.
This conversion allows us to evaluate the behaviour of system
by its finite characteristic roots in an alternative domain.
This approach is implemented by the Rekasius substitution
defined below

e−τs =
1−T s
1+T s

, τ ∈ R+, (5)
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in which s = jω , ω ∈ R+, and T ∈ R is called the agent
parameter. Note that this is an exact substitution, not an
approximation, with the following mapping condition,

τ =
2
ω

[
tan−1(ωT )± `π

]
, `= 0,1,2, . . . ,∞. (6)

This equation represents an asymmetric mapping in which
a given T will be mapped into infinitely many τ’s for a
specific ω . For the same ω and one τ , only a unique T can
be found.

Now consider the network with delayed dynamics (3) and
no input noise. We define its transfer function by

G(s) =
(
sIn +δ Ine−τls−βAe−τgs)−1

. (7)

Note that the underlying graph is undirected; therefore,
the eigenvalue decomposition of its symmetric adjacency
matrix gives: A = QΛQ>, where Q and Λ = diag(λ) are
the eigenvector and eigenvalue matrices of A. Equation (7)
can then be expressed as

G(s) = Q
(
sIn +δ Ine−τls−βΛe−τgs)−1 Q>. (8)

Here, sIn + δ Ine−τls− βΛe−τgs is a diagonal matrix and
its determinant is the product of its diagonal elements,
which also gives the determinant of G(s). The corresponding
characteristic equation of system can then be expressed by

χ(s) = det
(
sIn +δ Ine−τls−βΛe−τgs)

=
n

∏
i=1

(
s+δe−τls−βλie−τgs)= 0. (9)

A network with dynamics (3) (without noise) and charac-
teristic equation (9) is asymptotically stable if all the roots of
(9) are located on the left half of the complex plane. Given
that the exponential terms in the characteristic equation of
system result in having infinitely many characteristic roots,
it is difficult to analyse the asymptotic stability of system in
the time delay domain. The Rekasius substitution can now be
applied to generate a polynomial-type characteristic equation,
rather than an exponential one. Applying the Rekasius sub-
stitution of both time delays, τl and τg, on the characteristic
equation (9), it will be converted to

χ(s) =
n

∏
i=1

(
s(1+Tls)(1+Tgs)+δ (1−Tls)(1+Tgs)

−βλi(1−Tgs)(1+Tls)
)
=

n

∏
i=1

(
3

∑
k=0

ck,isk

)
= 0 (10)

with the following polynomial coefficients,

c0,i = δ −βλi,

c1,i = 1+(δ +βλi)(Tg−Tl),

c2,i = Tl +Tg− (δ −βλi)TlTg,

c3,i = TlTg. (11)

These coefficients are functions of the agent parameters
Tl and Tg. Note that only the imaginary spectra of (10) and
(9) are identical. The degree transcendental characteristic
equation (9) is now converted into a product of polynomials

with degree of 3 without transcendentality and its purely
imaginary characteristic roots coincide with those of (9)
exactly.

Now, let us consider four different versions of network (3)
(without noise) as below,
• Network 1: The local time delay is negligible compared

to the global delay, i.e., τl = 0.
• Network 2: The global time delay is negligible com-

pared to the local delay, i.e., τg = 0.
• Network 3: The global and local time delays are

approximately identical, i.e., τg = τl = τ .
• Network 4: The global and local time delays are

commensurate, i.e., τg = aτ1 and τl = bτ1 for τ1 > 0
and a, b ∈ Z∗.

We present the following theorems for their stability condi-
tion.

Theorem 1. For Network 1, if R0 < 1, then the system is
delay-independently stable.

Theorem 2. For Network 2, if R0 < 1, then the delay-
dependent stability is bounded above by τ̄l , where

τ l =
2√

δ 2−β 2λ 2
n

tan−1

(√
δ 2−β 2λ 2

n

δ +βλn

)
. (12)

Theorem 3. For Network 3, if R0 < 1, then the delay-
dependent stability of network is bounded above by τ̄ , where

τ =
π

2(δ −βλ1)
. (13)

In Network 4 with τg = aτ1 and τl = bτ1, the Rekasius
substitution of the commensurate time-delays gives

e−τgs =

(
1−T1s
1+T1s

)a

, e−τls =

(
1−T1s
1+T1s

)b

, (14)

which return the following characteristic equation,

χ(s) =
n

∏
i=1

(
s(1+T1s)b+a +δ (1−T1s)b(1+T1s)a

−βλi(1−T1s)a(1+T1s)b
)
=

n

∏
i=1

a+b+1

∑
k=0

qk,isk = 0,

(15)

where qk,i = qk,i(T1,δ ,βλi) is a polynomial of agent pa-
rameter T1. This characteristic equation is a product of n
polynomials of degree a+ b+ 1. The Routh’s array is then
formed for every i, where its first column consists of rational
functions of T1. The real roots of these functions create the
set of all the possible T1’s that might cause a change in the
sign of elements in the first column of Routh’s array. Every
member of this set provides one pair of imaginary roots
when plugged in (15). These roots coincide with those of the
original characteristic equation in the domain of time delay.
Given a T1 and its associated frequency, the corresponding
time delay can be found by (6) for ` = 0,1,2, . . . ,∞. The
common range of τ1 that results in asymptotic stability can
then be obtained by applying this method for all the i’s. This
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result provides all the feasible pairs of local and global com-
mensurate delays, (τg, τl), that guarantee system’s stability.
See [7] for more details on this methodology, which is known
as the D-subdivision method.

IV. PERFORMANCE ANALYSIS BY DELAYED LYAPUNOV
EQUATION

In this section, we investigate the performance and robust-
ness of Networks 1-4 in the presence of input noise, where
(3) is the governing dynamic. In this regard, a performance
measure based on H2 norm of the system is adopted from
[18], which is defined as

ρ := ‖G‖2
2. (16)

This is a metric for performance loss when noise is
affecting the network. The H2 norm can be found by its
frequency domain definition as below

‖G‖2
2 :=

1
2π

∫ +∞

−∞

Tr(G∗( jω)G( jω))dω, (17)

where G∗( jω) denotes the complex conjugate transpose of
G( jω). It should be noted that ρ measures the performance
loss of network; therefore, lower values of it are desired.

It is shown in the literature that for delayed systems
with linear dynamics, the H2 norm can be found by the
solution of delayed Lyapunov equations. In what follows, the
performance measure of a general class of noisy and delayed
linear networks is established using the general solution of
delayed Lyapunov equation. It is then shown that the four
studied networks (Networks 1-4) are special cases of this
class of networks and their analytical performance measure
can be found by this approach.

Consider an epidemic network with commensurate time-
delays τa = aτ1, and τb = bτ1, which are integer multiples of
some delay τ1 > 0. Without loss of generality, assume that
the delays are ordered by 0≤ a < b for non-negative integers
a, b. Assume that the network follows the following noisy
linear dynamics

ṗ(t) =
b

∑
k=0

Akp(t− τk)+ξ(t); t > τb,

p(t) = φ(t); t ≤ τb, (18)

where vectors p(t), φ(t), and ξ(t) are defined as before.
The matrices A0, A1, Aa, and Ab will be defined later with
respect to the network type. Moreover, Ai = 0n×n for all i ∈
{2, . . . ,b−1}/{a}.

It is shown by [14, Th. 1] that the H2 norm of an
exponentially stable system with delayed dynamics (18) can
be found by

‖G‖2
2 = Tr(U0) , (19)

where U0 = U(0) is the solution to the standard Lyapunov
equations for the same system without delay. According to
[14, Th. 4], the following equation has a unique solution
Ui ∈ Rn×n for i = −b, . . . ,b− 1 that provides the vector of

U0.

(
M+NeM−1

1 M2τ1
)


vec(Ub−1)
...

vec(U0)
...

vec(U−b)

=

[
−vec(I)
0(2b−1)n2

]
. (20)

We define matrices M1, M2, M, and N ∈ R2bn2×2bn2
for

system (18) as below

M =


A>0 ⊗ In A>1 ⊗ In . . . A>b ⊗ In

In2

In2

. . .

In2

 ,

N =


In⊗A>b . . . In⊗A>1 In⊗A>0

−In2

−In2

. . .

−In2

 ,
M1 = I2bn2 ,

M2 =



A0⊗ In . . . Ab⊗ In
...

...
...

...
...

A0⊗ In Ab⊗ In
−Ab⊗ In . . . −A0⊗ In

...
...

...
...

...
−Ab⊗ In . . . −A0⊗ In


. (21)

The components of matrix Y = [Yi j] = M + NeM−1
1 M2τ1

where Yi j ∈ Rn2×n2
for i, j ∈ {1,2, . . . ,2b} can now be

specified by the following expressions

Yi j =



(
I⊗A>b

)
S1 j +

(
I⊗A>a

)
S(b−a+1) j

+A>j−b⊗ I if i = 1, j ∈ {b+a,2b},(
I⊗A>b

)
S1 j +

(
I⊗A>a

)
S(b−a+1) j if i = 1, j /∈ {b+a,2b},

I−Si j if i > 1, j = i−1,
−Si j if i > 1, j 6= i+1.

(22)
where S = [Si j] = eM−1

1 M2τ1 = eM2τ1 . Equation (20) is a non-
homogeneous linear equation with respect to the vector of
delay Lyapunov matrices. Assuming that Y is invertibe, we
have

X = Y−1 =
(

M+NeM−1
1 M2τ1

)−1
, (23)

which then provides the solution to the linear equation (20).

Note that in order to compute the performance measure,
it is sufficient to determine vec(U0), see (19). Therefore, we
only need to solve the following sub-set of equations in (20)
associated with vec(U0)

vec(U0) =−XV vec(I) , (24)

in which V = [(b− 1)n2 + 1 : bn2,1 : n2]. Using (19), the
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performance measure can now be computed by

ρ =−vec(I)>XV vec(I) . (25)

In a more specific case, when the underlying graph is
undirected and the epidemic rates are identical for all the
subpopulations in the network, the presented results get
even simpler by decoupling the dynamics of subpopulations
using eigenvalue decomposition. This approach will lead
into computing the performance measure of n subsystems
each presenting only one mode of the original network. This
would reduce the computational complexity of the original
approach established in (25).

Let us consider the following dynamics for the ith mode of
the decoupled system, which is a single input, single output,
single delay (SISOSD) subsystem with noise input ξi(t),

Σi =

{
ṗi(t) = αi pi(t)+θi pi(t− τ)+ξi(t); t > τ,

pi(t) = φi(t); t ≤ τ,
(26)

where pi(t) is the fraction of infection in the subpopulation
i and αi, θi ∈R will be specified with respect to the type of
network.

Lemma 1. For the SISOSD subsystem Σi with dynamics (26),
the performance measure defined by (16) is found as below,

ρi = f (αi,θi,τ), (27)

where

f (αi,θi,τ) := − αizi sin(τzi)− z2
i cos(τzi)

2
(
α2

i −θ 2
i

)
(zi sin(τzi)+αi cos(τzi)+θi)

,

and zi = Im
(√

α2
i −θ 2

i

)
if |αi|< |θi|; and zi = j

√
α2

i −θ 2
i

if |αi|> |θi|.

The network performance measure can ultimately be found
by ρ = ∑

n
i=1 ρi. Note that to compute the performance

measure using (25), we need to take the inverse of two n2

by n2 matrices and do matrix multiplication which could be
significantly expensive for large networks. On the other hand,
if the network is undirected with identical node dynamics,
the performance measure computation includes only scalar
inversion and summation over n parameters, which can be
done much faster. With the presented approach, it is now
possible to find a closed form for the performance measure
of networks introduced earlier.
Network 1: The dynamics of this network can be represented
by equation (18) where a = 0 and b = 1. Therefore, we have
τ0 = τa = τl = 0, τ1 = τb = τg, A0 = Aa = −δ In, and A1 =
Ab = βA. Y is now a 2n2 by 2n2 matrix which could break
into 4 sub-matrices/blocks of size n2×n2 as below

Y11 =
(

I⊗A>1
)

S11 +
(

I⊗A>0
)

S21 +A>0 ⊗ I,

Y12 =
(

I⊗A>1
)

S12 +
(

I⊗A>0
)

S22 +A>1 ⊗ I,

Y21 = I−S21,

Y22 =−S22. (28)

The performance measure can then be found by

ρ =−vec(I)>
[
Y−1

11 +
(
Y−1

11 Y12
)(

Y22−Y21Y−1
11 Y12

)−1(
Y21Y−1

11
)]

vec(I) . (29)

A simpler version of this result can be obtained by the
implementation of Lemma 1, where αi =−δ , θi = βλi, τ =
τg for the ith mode of system. According to Theorem 1,
Network 1 is stable for any R0 ≤ 1, which is equivalent
to |βλi| < |δ | for all i ∈ V . This condition is equivalent to
|αi|> |θi| and therefore, zi = j

√
δ 2−β 2λ 2

i . The correspond-
ing performance measure of mode i can now be found by
ρi = f (−δ ,βλi,τg)) in (27). The overall performance of the
network, defined in (16), is then determined by,

ρ =
n

∑
i=1

f (−δ ,βλi,τg). (30)

Network 2: The dynamics of this network can be represented
by equation (18), where a = 0 and b = 1, τ0 = τa = τg =
0, τ1 = τb = τl , A0 = Aa = βA, and A1 = Ab = −δ In. The
performance measure of this network is found by the same
approach as (29) where the matrix Y is defined in (28).

When this network is associated with an undirected graph
we can use Lemma 1 to compute the performance measure
analytically. In this regard, we define αi = βλi, θi =−δ , τ =
τl for the ith mode of system. The condition |βλi| < |δ |
is a necessary condition for the stability of system which
is equivalent to |αi| < |θi|. As a result, we have zi =

Im
(√

β 2λ 2
i −δ 2

)
. The resulting performance measure for

mode i, ρi = f (βλi,−δ ,τl), can be determined by substitut-
ing the above parameters in (27). The performance of the
network can then be computed by,

ρ =
n

∑
i=1

f (βλi,−δ ,τl). (31)

Network 3: The dynamics of this network can be represented
by equation (18) where a = 0, b = 1, τ0 = 0, τ1 = τl = τg,
A0 = Aa = 0n×n, and A1 = Ab = βA−δ In. The performance
measure of this network can be found by the same approach
as (29) where the matrix Y is defined in (28).

When the underlying graph is undirected, we have: αi =
0, θi = βλi − δ for the ith mode of system. Having zi =
δ −βλi, the corresponding performance measure of mode i,
ρi = f (0,βλi−δ ,τ), can be found by substituting the above
parameters in (27), which gives the following simple form,

f (0,βλi−δ ,τ) = − cos((βλi−δ )τ)

2(βλi−δ )(1+ sin((βλi−δ )τ))
.

(32)
The network performance can then be derived by,

ρ =
n

∑
i=1

f (0,βλi−δ ,τ). (33)

Network 4: Assuming that τg < τl the dynamics of this
network can be represented by equation (18) where τa =
τg = aτ1, τb = τl = bτ1, A0 = 0n×n, A1 = 0n×n, Aa = βA, and
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Ab = −δ In. The matrices (21)-(22) can now be formed to
obtain the network performance measure by (25).

Note that for the studied networks, the condition βλi < δ

for all i ∈ V must be satisfied in order to avoid unstabilities;
and therefore, be able to obtain the network performance.
Table I represents the stability criteria and performance
measure of Networks 1-3 found in closed form.

V. CASE STUDY

As a case of study, we consider a selected group of
15 states in the United States as the representative of an
epidemic network within the country, where every state is a
subpopulation in the network. The states are ranked based on
the number of passengers traveled to or from the states by air
transportation in a certain period of time. The top 15 busiest
airports and their corresponding states are then selected to
generate the epidemic network, see Fig. 2. Without loss
of generality, the interstate transportation is limited to air
transportation. Assume the a virus first arrives to the United
States by 3 of these airports and infects 2 percent of the
entire metapopulation while spreading through the rest of
the states by air transportation. Please note that this scenario
is just for the purpose of illustration and does not affect the
generality of the studied epidemic problem.

Fig. 2. The network of United States’ 15 busiest airports and their
air traffic volume specified by the edge colors.

For this network, all the simulations are based on the
linear epidemic SIS model (3). The United States’ air
traffic data used in this study can be found in [19]. The
range of the eigenvalues of the underlying graph is: [λ1 =
−1.582,6.641 = λ15]. For Network 4, assume that a = 1 and
b = 2.

The Average Infection Size (AIS), p̄ = 1
n ∑

n
i=1 pi(t), of

Networks 1-4 is presented in Figs. 3(a), (b), (c), and (d),
respectively. Note that having AIS outside the physically
meaningful range [0,1] in some cases is due to the lineariza-
tion of dynamics.

Fig. 3(a) indicates that when R0 < 1, Network 1 is
delay-independently stable, which corroborates the result of
Theorem 1. Additionally, the infection size of networks expe-
riencing a longer global delay take more time to converge to
a zero AIS. This is due to the fact that a larger global delay,
i.e., longer transition time between subpopulations, results in
a slower progress in the spread of disease within the network.

(a) (b)

(c) (d)

Fig. 3. The AIS of (a) Network 1, (b) Network 2, (c) Network
3, (d) Network 4 with respect to different time delays. The dotted
black curves show the marginally stable behaviour when the critical
time-delay (found in section III) is applied.

The range of delay-dependent stability of Network 2 for
R0 < 1 is a function of local delay threshold (12) found
by Theorem 2, which is τ l = 14.54 days for the simulated
network. In Fig. 3(b), the AIS of network for τl = τ l is shown
by dotted black line. When τl = τ l , the system is marginally
stable and for any local delay higher than that, it is unstable.

The AIS of Network 3 when R0 < 1 is shown in Fig. 3(c).
As discussed in Theorem 3, for R0 < 1, the range of delay-
dependent stability of network is found by (13) which is
τ = 18.3 days for the simulated network (shown by dotted
black line). The marginal stability happens at τ = 18.3 days,
as expected by theoretical results. Fig. 3(d) represents the
epidemic trend for Network 4.

The performance measure of Networks 1-4 with respect
to time-delay is shown in Figs. 4(a), (b), (c), and (d),
respectively. The dashed red line in Figs. 4(a-c) indicates
the result of analytic delay thresholds, which is exactly
in line with the tangent of performance curves found in
section IV. According to Fig. 4(a), increasing the global
time-delay would improve network robustness against input
noises, which results from the fact that a larger global delay
would slow the spread of disease down. On the other hand,
when there is only a local delay involved (Fig. 4(b)), it
is desired to decrease the delay as much has possible to
avoid performance loss caused by longer recovery periods.
In Fig. 4(c) for Network 3, the presence of global delay
along with local delay has reduced the scale of performance
loss in compared to Fig. 4(b), which results from the positive
effect of longer global delays on network performance. When
the network is experiencing a local delay twice as long as
its global delay, Fig. 4(d), it is expected to see a higher
performance measure as well as lower range of time-delay
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TABLE I
THE ANALYTIC RANGE OF STABILITY AND PERFORMANCE MEASURE FOR NETWORKS 1-3

Network 1 Network 2 Network 3

Stability criteria τg > 0 0≤ τl ≤ 2√
δ 2−β 2λ 2

n
tan−1

(√
δ 2−β 2λ 2

n
δ+βλn

)
0≤ τ ≤ π

2(δ−βλ1)

Performance measure
ρ = ∑

n
i=1 f (−δ ,βλi,τg)

zi = j
√

δ 2−β 2λ 2
i

ρ = ∑
n
i=1 f (βλi,−δ ,τl)

zi = Im
(√

β 2λ 2
i −δ 2

) ρ = ∑
n
i=1 f (0,βλi−δ ,τ)
zi = δ −βλi

(a) (b) (c) (d)

Fig. 4. The H2 norm of network Fig. 2 with respect to the number of days past from epidemic onset. (a) Network 1. (b) Network 2.
(c) Network 3. (d) Network 4.

to keep the system stable, because longer local delay would
impair the performance.

VI. DISCUSSIONS

In this study, the multi-delayed SIS dynamics of an epi-
demic network when it is experiencing (i) only global delay,
(ii) only local delay, (iii) identical global and local delays,
and (iv) commensurate delays, is established. The delay-
dependent stability analysis for every scenario is then accom-
plished to determine the necessary and sufficient conditions
of stability and find a closed-form stability criteria regardless
of network size. Furthermore, a performance measure based
on network’s H2 norm is adopted to investigate the effect of
additive noise and time-delay on the network performance.
The simulation results on the network of United States’ 15
busiest airports corroborate the analytical findings.
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