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Abstract— We consider the problems of asymptotic stability
and robustness in large-scale second-order consensus networks
and vehicle platoons in the discrete-time domain. First, we
develop a graph-theoretic methodology to design the state
feedback law for the second-order consensus networks and
vehicle platoons in a discrete-time framework. We analyze the
stability of such networks based on algebraic properties of the
Laplacian matrices of underlying graphs and each vehicle’s
update cycle (also known as the time step). We further provide
a necessary and sufficient condition of stability of a linear
second-order consensus network in the discrete-time domain.
Moreover, we evaluate the robustness of the consensus networks
by employing the expected value of the steady-state dispersion
of the state of the entire network, also known as squared H2-
norm, as a performance measure. We show the connection
between performance measures with respect to network size,
connectivity, and the update cycle. The main contribution of
this work is that we provide a formal framework to quantify the
relation between scaling performance measures and restrictions
of the vehicles’ update cycles. Specifically, we show that denser
networks (i.e., networks with more communications/edges) re-
quire faster agents (i.e., smaller update cycles) to outperform
or achieve the same level of robustness as sparse networks (i.e.,
networks with fewer communications/edges).

I. INTRODUCTION

A multi-agent system consists of multiple interacting au-
tonomous agents to accomplish a mutual goal via a process
of collaboration, feedback, and iteration [1]–[4]. Multi-agent
systems have received enormous attention in recent years
because of the ubiquity of complex dynamical networks in
real-world applications such as smart power grids [5], vehicle
platooning [6], aerial drone display [7], social networks [8],
high-speed satellite internet [9], and Internet of Things (IoT)
[10]. Moreover, the distributed systems have been extensively
studied in the controls community due to their wide range
of applications, from robotics [11]–[13] to biological and
ecological networks [14]–[16].

One critical challenge in multi-agent systems is a com-
munication protocol used for information exchange; each
agent can share its states while obeying this protocol. All
agents can reach an agreement by designing an appropriate
interconnection topology where agents are limited to receive
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and interact with their neighbors. A well-known approach to
investigate the behavior of multi-agent dynamical systems
consensus is algebraic graph theory. Some necessary and
sufficient algebraic conditions to achieve consensus for first-
order and second-order systems in continuous time have
been provided in [17]–[21]. Furthermore, in [22]–[26], an
alternative framework of a consensus problem is studied in
discrete time.

Previous studies mainly focus on identical underlying
graphs for the first and second integrator; the first and
second integrator share the same information flow between
neighbors. In this paper, we construct a different structure
of interrelation topology in a second-order dynamical sys-
tem. Roughly speaking, we consider the case that agents
exchange their states throughout different routes. In this case,
the underlying graph for the agents’ positions is different
from the underlying graph for the agents’ velocities, see
Figs. 1 and 2. Specifically, two directly connected agents via
position topology may not be directly connected via velocity
topology. Upon this interconnection protocol, we investigate
vehicle platoons models that have received growing attention
in the past few decades due to their potential contribution to
road transportation.

The primary goal of vehicle platoons is to make all
vehicles in the group reach and remain at a common moving
speed while maintaining a certain distance from their prede-
cessors. Several challenging issues arise from this area of
research: for instance, the role of delayed agents (i.e., long
update cycle) and external disturbances on the stability and
performance of the entire network. In [27], [28], the authors
consider the robustness control which the system is subjected
to stochastic disturbances. The disturbances can grow up
and propagate along with information interchanging within
vehicles. Article [29] studied the stability of a vehicle platoon
network with a ring coupling graph and path graph in the
presence of time delays. Spacing policy in [30], [31] specifies
the desired distance between vehicles such that guarantee
all vehicles asymptotic tracking a group of heterogeneous
mobiles.

Due to the significant effect of external disturbances on
consensus behavior, a tremendous amount of researches are
dealing with the stochastic force. The performance of vehicle
platoons in which each agent has to maintain a certain
agreement, such as common velocity, steering angle, or inter-
vehicular spacing, is deteriorated by exogenous stochastic
disturbances. In [32], the performance measurement in terms
of H2-norm, which captures the notion of coherence, is
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studied and shows the connection between performance
measures scale of a multi-dimensional vehicular formation
dynamical network and system size. Another performance
measure that quantifies the expected value of the steady-state
dispersion has been investigated in [33].

This paper provides some necessary and sufficient con-
ditions to stabilize a discrete-time vehicle platoons model
based on algebraic properties of the Laplacian matrices of
underlying graphs and each vehicle’s update cycle (a.k.a.,
the time step). Besides, this paper provides a quantitative
method to evaluate the performance measure of vehicular
formation dynamical systems in a discrete-time framework.
We assess the robustness of the consensus networks by
employing the expected value of the steady-state dispersion
of the state of the entire network, i.e., squared H2-norm, as
a performance measure. We show the connection between
performance measures with respect to network size, connec-
tivity, and the update cycle. Fundamental tradeoffs reveal the
interplay between performance measures and restrictions of
the vehicles’ update cycles and are discussed in Section V.

In this conference paper, the proofs are omitted due to the
space limitation.

II. PRELIMINARIES

Throughout this paper, the n×n identity matrix is denoted
by In, the m × n zero matrix by 0m×n, the n × n matrix
of all ones by Jn, the transposition of matrix A by AT ,
pseudo-inverse of matrix A by A†. All graphs are assumed
to be finite, simple, and undirected. Let G = {V, E , w}
denote an undirected graph, where V is the set of nodes,
E ⊆ {(i, j) | i, j ∈ V, i 6= j} is the set of edges, and
w : E → R+ is the weight function. An unweighted graph
G is a graph with weight function w(e) = 1 for e ∈ E .
The neighbors of the i-th agent are denoted by Ni = {i ∈
V | (i, j) ∈ E , j 6= i}. The adjacency matrix A = [aij ] of
graph G is defined by setting aij = w(e) if e = (i, j) ∈ E .
The Laplacian matrix L of graph G = (V, E , w) is defined
by: 

lij = −aij for i 6= j, i, j ∈ V

lii = −
n∑

j=1,j 6=i
lij for i ∈ V. (1)

The directed incidence matrix D of graph G is defined by:

Dij =

{
e for edge j is (k, i), k is the tail and i is the head
−e for edge j is (i, k), i is the tail and k is the head
0 otherwise.

(2)

III. MODELING AND SYSTEM ANALYSIS

In this paper, we formulate two types of models, consen-
sus networks and vehicle platoons. Both are second-order
discrete-time dynamic models with differing involvement of
absolute data in feedback law. Specifically, absolute position
and absolute velocity are involved in the feedback law of
a vehicle platoon model, while a consensus problem only
considers the relative date. We begin with designing the
feedback law based on the communication topologies. For
the simplicity of notations, we denote the first integrator

Fig. 1: Example of different underlying graphs with 3 agents: (a)
position graph Gx (b) velocity graph Gv .

by x as position states, and second integrator by v as
velocity states. It is assumed that a reduced-order model of
these dynamical networks can be expressed using two state
variables of each agent: i-th vehicle’s position xi and i-th
vehicle’s velocity vi for i ∈ V .

A. Second-order Consensus Network

The goal of a second-order consensus network is the
states of all agents in the system reach certain agreement. A
general second-order discrete-time version of second-order
consensus (SOC) network without any feedback loops has
the following form:[

x(k + 1)
v(k + 1)

]
=

[
I γI
0 I

] [
x(k)
v(k)

]
+

[
0
γI

]
ū(k)

where γ is the update cycle and ū(k) is a cooperative
feedback of the network. This proposed feedback law can
be expressed as certain virtual springs and dampers between
the agents. Specifically, each agent is controlled based on the
interconnection of relative position and relative velocity. The
underlying graphs for position/velocity represent the access
to relative position/velocity measurements. For example,
given a position graph Gx = (Vx, Ex, wx), if agent j is a
neighbor of agent i, the system is able to measure the relative
position xi−xj . To obtain relative position/velocity between
vertices and their neighbors, we define r and q as relative
position/velocity:

r := DTx x and q := DTv v

where x = [x1, x2, · · · , xn]T , v = [v1, v2, · · · , vn]T , Dx and
Dv are the corresponding incidence matrix with orientation
on Gx and Gv , respectively. The proposed feedback law with
underlying graphs Gx = (Vx, Ex, F ) and Gv = (Vv, Ev, G) is
as follow:

ū(k) = −DxF (r(k))−DvG (q(k)) . (3)

The interrelation feedback on agent i can be written as:

ūi = −
∑

j|(i,j)∈Ex

fij(xi − xj)−
∑

j|(i,j)∈Ev

gij(vi − vj) (4)

where fij ∈ Ex and gij ∈ Ev are nonnegative weight on
edges between agent i and j, or they can be interpreted as
virtual spring/damper constants between agent i and j. Let
Lx and Lv be the corresponding Laplacian matrices of Gx =
(Vx, Ex, F ) and Gv = (Vv, Ev, G). From graph theory, the
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Fig. 2: Feedback law of the SOC networks in terms of block
diagram. This network consists of n agents V1, · · · , Vn.The outputs
from agent i are position xi and velocity states vi that are multiplied
by the transposed incidence matrix of the underlying graph Gx and
Gv to obtain relative position r and velocity q. Then multiplied these
relative states by weights and incidence matrix of the underlying
graphs to obtain the feedback ū.

feedback law in (3) can be rewritten as:

ū(k) = −Lxx(k)− Lvv(k). (5)

The state space of this second-order discrete-time consensus
system, where all agents collaborate based on the sharing
information from their neighbors, can be rewritten as:[
x(k + 1)
v(k + 1)

]
=

[
I γI

−γLx I − γLv

] [
x(k)
v(k)

]
+

[
0
γI

]
ξ(k) (6)

where ξ is the external input. Fig. 2 depicts the feedback
law of the complex network systems in terms of block
diagram. The output from the agents x and v are posi-
tion/velocity states, which are multiplied by the incidence
matrix transposition of the underlying graph Gx and Gv to
obtain relative position/velocity r and q. Then, we multiplied
these relative states by weights and the incidence matrix of
the underlying graphs to obtain the feedback ū.

B. Vehicle Platoons

Next, we extend the idea of cooperative feedback in SOC
networks to formulate a vehicle platoon model. We assume
all vehicles in the platoons have access to their own states;
that is, xi and vi are available.

Consider having all vehicles in the platoon follow a desired
trajectory with driving at the desired speed of vd while
maintaining certain spacing ∆ between each other. The
desired trajectory xd for i-th vehicle is:

xdi := γvd + i∆. (7)

The position/velocity deviations from desired trajectory of
agent i are defined as

x̃i := xi − xdi , and ṽi := vi − vdi .

The interrelation feedback of i-th vehicle that satisfies the
goal that follows the desired trajectory xdi at a desired moving

speed of vd while keep distance from predecessor is:

ūi = −
∑

j|(i,j)∈Ex

fij(x̃i−x̃j)−
∑

j|(i,j)∈Ev

gij(ṽi−ṽj)−x̃i−ṽi.

(8)
The vehicle platoons system in state space can be written as:[

x̃(k + 1)
ṽ(k + 1)

]
=

[
I γI

−γ(I + Lx) I − γ(I + Lv)

] [
x̃(k)
ṽ(k)

]
+

[
0
γI

]
ξ(k), (9)

where ξ(.) is external input.

C. Stability Analysis

It is shown that in continuous-time SOC networks with the
same connected underlying graphs for position and velocity
(i.e., Gx = Gv), all agents in the system will asymptotically
reach an agreement. However, we investigate these dynami-
cal networks in the discrete-time framework where the update
cycle γ plays an important role. The SOC networks (6)
and vehicle platoons (9) can be unstable or fragile with
inappropriate choices for the update cycle (i.e., γ). Therefore,
in this paper, we first investigate the upper bound of the
update cycle γ to have marginally stable systems. To this
end, the following classic and well-known result is used.

Proposition 1: A discrete-time LTI system is marginally
stable if and only if the largest eigenvalue of state matrix A
or the largest magnitude of the poles of the transfer function
is on a unit disk of C.

The next lemma presents necessary and sufficient condi-
tions for stability of SOC networks.

Lemma 1: Discrete-time second-order consensus network
(6) with the same underlying graph but different scalar
weights, i.e. Lx = ζLv , where ζ ∈ R+ is marginally stable
if and only if

0 < γ ≤ λ(v)
n

λ
(x)
n

, where
(
λ
(v)
n

)2
− 4λ

(x)
n < 0

0 < γ ≤ 4

λ
(v)
n +

√(
λ
(v)
n

)2
−4λ(x)

n

, otherwise (10)

where λ(x)n and λ
(v)
n are the largest eigenvalues of Lx and

Lv , respectively.
Lemma 2: Discrete-time vehicle platoon system (9) with

the same underlying graph but different scalar weights, i.e.
Lx = ζLv , where ζ ∈ R+ is stable if and only if 0 < γ ≤ λ

(v)
n +1

λ
(x)
n +1

, where (λ
(v)
n + 1)2 − 4(λ

(x)
n + 1) < 0

0 < γ ≤ 4

λ
(v)
n +1+

√
(λ

(v)
n +1)2−4(λ

(x)
n +1)

, otherwise

(11)
where λ(x)n and λ(v)n are the largest eigenvalues of Lx and
Lv , respectively.

Remark 1: Due to the fact that the upper bound of time
step γ only depends on the largest eigenvalue of Laplacian
matrix, one can relate this to degree of agents. For example,
given a SOC network (6) where Lx = Lv , one is always
the upper bound of time step when the number of agents
n ≤ 4. In addition, Anderson and Morley [34] claimed that
λn ≤ max(di + dj |(i, j) ∈ E), thus we know that when the
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number of agents n > 4, for an unweighted ring or path
graph, the system is always stable while setting γ ≤ 1.

IV. PERFORMANCE MEASUREMENTS

In this paper, we adopt the H2-norm of the system (from
the disturbance input to output) as a scalar performance
measure. Due to the fact that the state matrix of the dynam-
ical system is constructed with interconnection graphs, the
performance measure can be calculated as a function of the
eigenvalues of the Laplacian matrices of corresponding un-
derlying graphs. We consider two cases of networks system:
SOC networks (6) and vehicle platoons (9) with pre-defined
desired trajectory. We begin with a general discrete time LTI
system subjects to persistent stochastic disturbances (white
noise) with zero mean, resulting in the states fluctuate around
the equilibrium:{

z(k + 1) = Az(k) + B ξ(k)
y(k) = C z(k)

where z(k) = [x1, · · · , xn, v1, · · · , vn]T , ξ(k) is an ex-
ogenous uncorrelated white stochastic process with zero-
mean and identity covariance matrix. y(k) is the performance
output of the networks. Matrix C is the output matrix of the
network and takes the following structural constraint

C = CQx
⊕ CQv

where CQx
and CQv

∈ Rn×n are the output graph for
position and velocity, respectively.

Definition 1: Suppose that C is an output graph of the
system. The steady-state variance of the performance output
of the network is considered as the performance measure

ρss(A,C) = lim
k→∞

E
[
y(k)T y(k)

]
. (12)

Since A is not necessarily Hurwitz, the states may not have
finite steady-state variances. However, unstable modes of the
system should not be observable from the output y(k) in
order to guarantee the performance measure is well-defined.

This performance index (12) is equivalent to (squared)H2-
norm of the network, which measures the expected output
value of the system subjected to a stochastic perturbation
defined as follow:

‖H‖22 =
1

2π

∫ π

−π
Trace(H(ejω)TH(ejω))dω

= Trace(CWcC
T ) = Trace(BTWoB).

(13)

Without any exogenous input, all agents in the SOC networks
(6) converge to a common state, while all vehicles in the
vehicle platoon (9) follow their desired trajectory and desired
velocity with the values of the performance measures equal
to zero.

Remark 2: If a stable discrete-time LTI system is control-
lable, there is a unique solution Wc such that AWcA

T −
Wc = −BBT , where Wc is positive definite and given by

Wc =
∞∑
k=0

AkBkBT (AT )k. Similarly, if the stable system

is observable, there is a unique solution Wo such that

ATWoA − Wo = −CTC, where Wo is positive definite

and given by Wo =
∞∑
k=0

(Ak)TCTCAk.

We next evaluate the performance measures with respect
to their corresponding output graph.

Theorem 1: Given SOC network (6) with the same un-
derlying graphs for position and velocity but different scalar
weights, i.e. Lx = ζLv where ζ ∈ R+, the performance
measure of the system can be quantified as:

ρss(A;Mn ⊕ 0) =

n∑
i=2

γλ
(v)
i − γ2λ

(x)
i − 2

λ
(x)
i M

(14)

ρss(A; 0⊕Mn) =

n∑
i=2

−2

M
(15)

ρss(A;Mn ⊕Mn) =

n∑
i=2

γλ
(v)
i − (γ2 − 2γ + 2)λ

(x)
i − 2

λ
(x)
i M

(16)
where

M = γ3
(
λ
(x)
i

)2
+2γ

(
λ
(v)
i

)2
+4γλ

(x)
i −3γ2λ

(x)
i λ

(v)
i −4λ

(v)
i .

Theorem 2: Given vehicle platoon (9) with the same un-
derlying graphs for position and velocity but different scalar
weights, i.e., Lx = ζLv where ζ ∈ R+, the performance
measure of the system can be quantified as:

ρss(A;Mn ⊕ 0) =

n∑
i=2

γ(λ
(v)
i + 1)− γ2(λ

(x)
i + 1)− 2

(λ
(x)
i + 1)M

(17)

ρss(A; 0⊕Mn) =

n∑
i=2

−2

M (18)

ρss(A;Mn ⊕Mn) =

n∑
i=2

γ(λ
(v)
i + 1)− (γ2 − 2γ + 2)(λ

(x)
i + 1)− 2

(λ
(x)
i + 1)M

(19)

where M = γ3
(
λ
(x)
i + 1

)2
+ 2γ

(
λ
(v)
i + 1

)2
+ 4γ(λ

(x)
i +

1)− 3γ2(λ
(x)
i + 1)(λ

(v)
i + 1)− 4(λ

(v)
i + 1).

V. NUMERICAL EXAMPLES

In this section, we consider several numerical examples to
demonstrate our theoretical results.

Example 1: Assume that a discrete-time vehicle platoon
model (9) has five vehicles, and both underlying graphs Gx
and Gv are star graphs with F = 2 and G = 1.5, where F
is the scalar weights of Gx, and G is the scalar weights of
Gv , respectively. From Lemma 2, direct computation shows
that the upper bound of time step γ ' 0.2895. We then
simulate the dynamic model (9) with random initial states in
three cases: γ = 0.2885, γ = 0.2895, γ = 0.2905. Fig. 3
demonstrates that when the update cycle is slightly smaller
that the upper bound; γ = 0.2885, the system is stable.
Velocity output converge asymptotically to desired velocity
while all vehicles keeping spacing ∆ = 1 between each
others. The system is marginally stable where γ = 0.2895,
which is equal to upper bound. Both position and velocity
keep fluctuating around its equilibrium. When the update
cycle is slightly larger than the upper bound; γ = 0.2905, the
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Fig. 3: Example of different time step γ in a discrete-time vehicle
platoon dynamic (9) consisting of n = 5 vehicles with setting δ = 1
and desired velocity v̄ = 0.1. In subplots (a-1) and (a-2), the update
cycle is γ = 0.2885; according to Lemma 2 the system is stable,
and vehicles’ velocity converge to vd while all vehicles keeping
spacing δ = 1 from each others. In subplots (b-1) and (b-2), the
update cycle is γ = 0.2895; based on Lemma 2 the system is
marginally stable, both position and velocity output keep fluctuating
around its equilibrium. In subplots (c-1) and (c-2), the update cycle
is γ = 0.2905, based on Lemma 2 the system is unstable, both
position output and velocity output diverge.

system is unstable. Both position output and velocity output
diverge.

Example 2: Next, we evaluate the relationship between
connectivity and the performance measures. We consider
the performance measures by three different structures of
output matrices of a vehicle platoon networks (9) consisting
of twenty agents with their underlying graphs constructed
by the Erdős–Rényi model [35]. In the Erdős–Rényi model,
two parameters are determined to create random networks,
where n is the number of nodes and p is the probability
of connecting edges between each two nodes. As shown
in Fig. 4, the values of the performance measure grow in
association with the time step.

Remark 3: For continuous-time consensus network, it is
shown that the more connected the networks, the more coher-
ent or better performance measures the system has (see [33],
[36], [37] and references therein). As a result, these networks
are more capable of reducing the influence of stochastic
disturbance by increasing the number of connections/edges.
However, in the discrete-time domain, as demonstrated in
the subplots of Fig. 4, depending on value of the update
cycle adding edges can improve or worsen the performance
measure. Specifically, for small value of the update cycle,
adding edges improves the performance loss; however, for
the large update cycle, increasing the connectivity of the
underlying graph can result larger performance loss. This
implies a fundamental tradeoff among connectivity of the
networks, performance measure, and limitations or restric-
tions of time step in the discrete-time framework. For large
value of H2-norm, one can see from Fig. 4 that denser

networks require faster agents (i.e., smaller update cycles)
to achieve the same level of robustness as sparse networks.
Moreover, the subplots in Fig. 4 show that the values of
performance measure dramatically increase where the time
step γ is approaching the condition of marginally stable
discussed in Section III-C.

In Fig. 4, we can see that the value of performance loss
grows as the update cycle increases. Moreover, where the
update cycle tends to zero (i.e., γ → 0), the value of perfor-
mance measure can be approximated by the continuous-time
counterpart.

VI. CONCLUDING REMARKS

This paper investigates the distributed consensus and ve-
hicle platoons control problems by introducing a graph-
theoretic methodology to design the feedback law of these
systems in a discrete-time framework. The stability of this
class of dynamical networks can be evaluated by the specific
structure of the underlying graphs and the update cycle (the
time step) of autonomous agents where a necessary and
sufficient condition is presented. Furthermore, we investi-
gated the robustness and performance of cooperative control
approaches in discrete-time vehicle platoons using algebraic
graph theory. We use a H2-based metric as a macroscopic
performance measure capturing the notion of coherence [32].
This performance measure quantifies the expected values of
output dispersion of the linear consensus networks subjected
to stochastic disturbances. The measure is monotonically
increasing as the network size enlarges or the connectivity
of the underlying graph reduces. We observed a fundamental
tradeoff between the graph connectivity and the update cycle.

A potential future direction is to cast the feedback design
problem as a convex optimization problem to improve both
stability and robustness of second-order consensus networks
at the same time, similar to [38].
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