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Abstract— Labeled data are paramount for modern, deep
learning object detection models. However, such data are not
always available, either due to time and financial constraints
or due to the rarity of certain objects. In this paper, we
show that the CARLA simulator can be used effectively to
provide automatic annotations for custom street-view objects,
boosting datasets for objects with few labels. We evaluate our
models on real world images and show that low-shot training
data expanded by synthetic images rendered in CARLA can
provide better performance than training models with low-
shot examples alone. To overcome the sim-to-real domain gap,
we perform domain randomization by taking advantage of
CARLA’s diverse simulations of weather conditions, actors, and
maps. We train detectors on CARLA-generated images of two
different object classes and evaluate them on publicly available
datasets. We provide access to our synthetic fire hydrant3 and
crosswalk4 datasets as well as provide step-by-step instructions5
to generate custom datasets in CARLA.

I. INTRODUCTION

Detection of objects in images is a crucial part in many
transportation applications like autonomous driving or traffic
counts from video cameras. Deep learning has proved to be
the best approach for such computer vision tasks. This is
due to highly non-linear, end-to-end training and the learning
of millions of parameters. However, deep learning is data-
hungry, needing large amounts of accurately labeled and
diverse data. This makes it especially difficult for models
to learn objects or events when only a few labeled examples
are available. In addition, a frequent challenge for modern
datasets is the presence of a long-tail distribution of object
classes, representing an imbalance in the dataset, causing
models to fail to detect objects with low frequency. On
top of that, datasets often contain their own biases, as
they are usually created with a particular goal in mind. A
quick comparison between the Microsoft Common Objects
in Context (MS COCO) dataset [1] and the Mapillary Vistas
Dataset (MVD) [2] shows that the instance most labeled in
MS COCO is a person, while that in MVD is a utility pole.

We therefore propose the use of the CARLA [3] simulator
to tackle the issue of detecting novel, rare, or ignored
objects. The primary benefit is the ability to have inexpensive
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data collection and annotation, large data volume, and data
diversity. One particular scenario to which we can apply
this is city infrastructure monitoring. Objects such as fire
hydrants and crosswalks play important roles in everyday
safety. However, they fall on the long tail of object instances
and often have different shapes, sizes, and styles based
on geographic region, thus being relevant use cases where
synthetic data can be applied. Examples of such synthetic
data are shown in Fig. 1.

We address this scarce object detection challenge by first
creating a pipeline to easily add objects of interest in the
CARLA simulator and then by benchmarking models trained
with synthetic CARLA images on relevant datasets. We
choose datasets that are publically accessible and cover a
wide range of variations. For fire hydrants, we evaluate
the detector on the MVD dataset, MS COCO dataset, and
a locally collected Pittsburgh dataset. For crosswalks, we
evaluate on the MVD dataset.

The contributions of this paper are:
• a method to create synthetic data for custom objects;
• methods to generate domain-randomized synthetic data

to train a model that works relatively well on real
images;

• analysis that shows that synthetic CARLA data outper-
form other synthetic data strategies;

• analysis that shows synthetic CARLA images can be
used to augment existing datasets to improve model
performances.

II. RELATED WORK

A. Object Detection

In recent years, a number of deep learning approaches have
achieved state-of-the-art performance in object detection [4],

Fig. 1: Synthetic image data and annotations created in
CARLA for fire hydrants and crosswalks.

2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Indianapolis, USA. September 19-21, 2021

978-1-7281-9142-3/21/$31.00 ©2021 IEEE 2794

20
21

 IE
EE

 In
te

rn
at

io
na

l I
nt

el
lig

en
t T

ra
ns

po
rt

at
io

n 
Sy

st
em

s C
on

fe
re

nc
e 

(IT
SC

) |
 9

78
-1

-7
28

1-
91

42
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IT
SC

48
97

8.
20

21
.9

56
49

32

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 30,2022 at 17:10:56 UTC from IEEE Xplore.  Restrictions apply. 



[5], [6], [7], [8], [9]. However, the success of these deep de-
tectors has been driven by large-scale detection benchmarks
with fully-annotated bounding boxes. In the real world, a rich
dataset may not always exist for a given target, creating an
upper bound and bottleneck for many modern deep learning
detectors.

B. Few-Shot Learning

Few-shot learning tackles this problem by learning from
a limited number of training examples. Works done in [10]
and [11] optimize fine-tuning of pretrained models on new
classes, while [12], [13], [14] have shown meta-learning
approaches are appropriate. In [15], few-shot learning is
applied to driving datasets where they detect objects on the
street. However, because few-shot learning primarily benefits
detection on a limited number of samples ranging from 1 to
30 and we experiment with training our models from 20 to
2,000 images, we use fine-tuning methods to train our models
to convergence.

C. Synthetic Data

Others have used synthetic data for training neural net-
works, as seen in the growing number of synthetic datasets,
generated from simulators such as SYNTHIA [16], GTA5
[17], and CARLA [3]. The simulators are built upon a game
engine like Unreal Engine. Another approach to generate
synthetic data is Cut-Paste [18], which pastes object instance
cut-outs on random background images. This method is
relatively straightforward and easy to implement. However,
it is not geometrically aware and is not able to simulate
objects in context like a backpack carried by a person.
Nevertheless, we do use Cut-Paste as a baseline for creating
synthetic images. A third type of synthetic data is neural
renderings [19], which make use of Generative Adversarial
Networks (GANs). However, GANs have an issue of unstable
convergence [20], require a pre-existing dataset, and cannot
be used when no real images are available.

D. Domain Adaptation

Since there are subtle but important differences between
synthetic and real-world data in color style, texture, and
appearance, training with synthetic images requires a do-
main adaptation strategy to overcome the domain gap. Past
works have analyzed different methods to maximize the
performance of domain adaptation from synthetic-to-real
object detection. For example, [21] uses a domain ran-
domization strategy, where they perturb the environment in
non-photorealistic ways, adding “flying distractors”, random
background images, lighting, camera positioning, and tex-
tures, while Cut-Paste does something similar by pasting
object instances on as many backgrounds as possible to
provide enough variety for the model to learn from.

We build upon past works on synthetic image genera-
tion and domain randomization, by using the open-source
CARLA simulator, with its active community of developers,
to create a diverse dataset of custom objects. We believe that
simulators like CARLA have the advantage over methods

like Cut-Paste by better preserving geometric consistency and
providing a much larger variety of domains. Furthermore,
in contrast to past works that focus on pedestrians and car
detection [21], [22], we focus on long-tail objects whose 3D
observations are relatively sparse, such as fire hydrants and
crosswalks.

III. METHODS

Following the strategy of other domain randomization
methods, we try to create a variety of random renderings
with the CARLA simulator, with the idea that the real world
will be interpreted as part of the synthetic data distribution.
Randomization properties include lighting, precipitation, and
actor parameters that can be changed to allow for different
appearances of our objects. We evaluate our crosswalk model
on the MVD dataset and our fire hydrant model on the
MVD dataset, MS COCO dataset, and a locally collected
Pittsburgh dataset. The reason we evaluate the fire hydrant
model on three different datasets is that we sought to evaluate
the generality of our trained models on different images
collected from different environments and with different
methodologies, since models trained on one dataset generally
will perform the best when evaluated on the same dataset.
However, to explore the effectiveness in detecting local fire
hydrants, some of our 3D models of fire hydrants are gen-
erated from images of Pittsburgh fire hydrants as described
in Sec. III.A, which biases the CARLA synthetic dataset but
also makes the 3D models more realistic. To compare our
method with another synthetic data approach, we use Cut-
Paste synthetic images as a baseline.

A. Baseline: Cut-Paste

Our Cut-Paste method is based on [18]. We started with
their code and made it compatible with Python 3.x, modified
it to avoid some edge artifacts, and added a 3D reconstruction
method to speed up the creation of cutout examples. Usually
one takes several pictures from different vantage points of
the object and then cuts the object out from each image. This
can be tedious, and it does not scale well. Instead, we took
many images of a fire hydrant and used COLMAP [23] to
create a 3D model of it. After cleaning the model we took
virtual snapshots of the fire hydrant on a white background
to produce the cutouts. Fig. 2 shows such a snapshot pasted
onto some background. Before pasting, the snapshot was
manipulated by scaling, rotating, blurring, and changing

Fig. 2: Example of a fire hydrant pasted on a background
image using the Cut-Paste method.
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contrast and intensity. We produced additional varieties of
fire hydrants by changing texture and shading. Our code and
detailed instructions are publicly available6.

B. CARLA

The simulator we use is CARLA [3], an open source
simulator for urban driving built on the Unreal Engine
rendering platform. CARLA was developed to support train-
ing, experimenting, and validation of autonomous driving
models, including perception and control, and includes 8
urban layouts and a flexible setup of sensor suites that can
be used to collect RGB images and ground-truth semantic
segmentations. A wide range of environmental conditions
can be specified, including 9 independent weather parameters
and 2 sun angles.

We constructed large-scale and diverse synthetic datasets
using publicly available 3D CAD models of fire hydrants
and crosswalks and our own set of 3D reconstructed models
of fire hydrants. We specifically chose objects that are not
in CARLA’s default object semantic segmentation labels to
show the ease of creating annotated datasets of new objects.
We manually placed each 3D model into the CARLA map
and duplicated the same model in different locations. We
then used Unreal Engine’s ray tracing to generate semantic
segmentations of the captured image. Photos were taken from
the perspective of a virtual vehicle-mounted camera and were
saved whenever the area of the object met a certain area
threshold in the frame. Because we make the assumption
that the objects have minimal occlusion and do not overlap,
bounding box annotations were then created by performing a
closing morphological operation on the segmentation image
and by taking the minimum and maximum positions of each
disconnected object segmentation.

C. Domain Randomization

CARLA provides a variety of parameters for generating
diverse images, as shown in Fig. 3.

• Content Variation: CARLA provides eight pre-built
maps with different buildings and environments. Not
only is each map unique, but different locations within
each map provide interesting and valuable variation to
allow for at least 20 object placements. Furthermore,
random actors can be placed in the maps using some
of the default blueprints. As of this writing, 30 vehicle
and 26 pedestrian blueprints exist. These actors can add
more uniqueness to each snapshot of a particular object
and can also provide occlusion of the object, forcing
the model to learn how to ignore these distractors. Also,
CARLA makes it easy to select all target objects and
modify the material style in bulk, such as going from
white to yellow crosswalks.

• Viewpoint Variation: CARLA allows users to change
the positioning and orientation (6 DoF) of the virtual
camera within the vehicle. These parameters are initial-
ized at the start of each simulation. Driving varies x,

6https://github.com/chrmertz/synth_train_data

Fig. 3: Example images of synthetic images. CARLA-
generated images are shown in the first two columns,
where we illustrate domain randomization of fire hydrants
and crosswalks from camera positioning, weather, vehicle-
pedestrian obstacles, and styles. In the third column, we
show Cut-Paste images for fire hydrants with different poses,
styles, and background images.

y, and heading of the vehicle and thereby of the virtual
camera.

• Weather Variation: For each map, the weather param-
eters are continuous random variables with ranges as
follows: cloudiness ε [0, 100], precipitation deposits ε
[0, 100], sun altitude angle ε [-90, 90], sun azimuth
angle ε [0, 360], precipitation ε [0, 100], wind intensity
ε [0, 100], fog density ε [0, 180], fog distance ε [0,
180], and wetness ε [0, 100]. For every frame of the
simulation, we increment one parameter with a step
size of 25, and if the value exceeds the parameter’s
upper bound, we set the parameter to the modulus after
dividing by the parameter’s upper bound.

D. Detection Network

We use the Detectron2 [24] library, which provides high-
quality implementations of state-of-the-art object detection
algorithms, including Faster R-CNN [6]. In this work, we
used the ResNet network with a depth of 101 layers [25]
combined with a Feature Pyramid Network (FPN) [26],
which extracts features of the input image at different scales.
The decoder of the network consists of output heads for
bounding-box recognition, i.e., classification and regression,
with a loss function of L = Lclass + Lbbox. Lbbox uses an
L1 loss, and Lclass uses a cross-entropy loss. The crosswalk
detector is trained for 20 epochs on the synthetic data and
has a learning rate 0f 0.001, while the fire hydrant detector
is trained for 200 epochs with a learning rate of 0.005.

IV. EXPERIMENTS

We benchmark our methodology on the MVD dataset for
the tasks of fire hydrant and crosswalk detection. And for
the fire hydrant, we additionally evaluate on the MS COCO
dataset and a locally collected Pittsburgh dataset. MVD is a
large-scale street-level dataset of 25K images with instance-
level annotations of 100 object categories. MS COCO has
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TABLE I: Instance distribution of crosswalks for the
CARLA, MVD low shot, and MVD full and test datasets,
where the column headings, M and L, refer to medium
and large object instances, according to COCO standards,
respectively.

Dataset S M L total
MVDst

test 0 348 282 630
CARLAst

train 0 10,000 10,000 20,000
MVD20sttrain 0 10 10 20

MVD120sttrain 0 60 60 120
MVD600sttrain 0 300 300 600
MVD2000sttrain 0 1000 1000 2000
MVDFullsttrain 0 2817 2305 5122

TABLE II: Instance distribution of fire hydrants for the
MVD, MS COCO, Pittsburgh, CARLA, and Cut-Paste
datasets for standard (a) and medium-sized (b) object training
and testing, denoted by the superscript st and M , respec-
tively. The column headings S, M, and L refer to small,
medium, and large object instances, respectively. The / in
(b) is to indicate separate datasets.

(a) Standard training and testing

S M L total
MVDst

test 66 85 28 179
COCOst

test 126 172 352 650
Pittsttest 0 337 1021 1358

MVDst
train 657 738 242 1637

COCOst
train 268 329 719 1316

CARLAst
train 10000 10000 10000 30000

Cut-Pastesttrain 10000 10000 10000 30000

(b) Medium-sized object training and testing

S M L total
COCOM

test / MVDM
test / PittMtest 0 200 0 200

CARLAM
train / Cut-PasteMtrain 5000 10000 5000 20000

COCO20Mtrain / MVD20Mtrain 5 10 5 20
COCO120Mtrain / MVD120Mtrain 30 60 30 120
COCO600Mtrain / MVD600Mtrain 150 300 150 600

200K images and 80 object categories. The Pittsburgh dataset
has 1,358 images of Pittsburgh fire hydrants.

For the MVD and COCO datasets, we filter them to search
for our target objects. Because the MVD dataset images
range from eight to forty megapixels in size, we resize and
crop the images for memory purposes so that the shortest side
is 600 pixels. Because some objects seen at high resolution
become unrecognizable after resizing to a low resolution, for
crosswalks, we remove bounding boxes that are below 10
pixels in height. For fire hydrants, we cropped the original
images to 800 by 600 resolution. In Tables I and II, we
specify the instance counts from each dataset used to train
and test models for crosswalk and fire hydrant detectors,
respectively.

A. Synthetic and Real World Training Image Comparison

We evaluate our detectors on real world images. For cross-
walks, because very few small instances exist, we remove
all small instances in the training and test sets, and balance
the number of medium and large instances in CARLA and

low-shot experiments as indicated in Table I. The different
crosswalk models we train are indicated below:

• CARLA: trained with domain-randomized synthetic
data.

• N-Shot: trained with N real-world images.
• CARLA + N: trained with domain-randomized synthetic

data and N real-world images.
• Full: trained with all available real-world images.
• CARLA + Full: trained with CARLA and all available

real-world images.
For fire hydrants, we noticed that the MVD and MS COCO
datasets are unbalanced in different ways (see Table IIa).
MVD has more small and medium examples, whereas MS
COCO has more large examples in their standard dataset. We
will later see that this has a significant effect on the evalua-
tion. We therefore created additional “medium” training and
testing sets. For medium training, we balance the set so that
the numbers of small, medium, and large instances are in a
1:2:1 ratio. For medium testing, there are only medium-sized
instances. We perform these balances to accurately assess the
performance of these models across the different datasets.
In addition, we also trained the same model on synthetic
data generated by the Cut-Paste method and CARLA without
domain randomization. The different models we train are
indicated below:

• Cut-Paste: trained with Cut-Paste method-generated
synthetic data.

• NON-DR-CARLA: trained with synthetic data without
domain randomization.

• CARLA: trained with domain-randomized synthetic
data.

• N-Shot: trained with N real-world images.
• CARLA + N: trained with domain-randomized synthetic

data and N real-world images.
• Full: trained with all available real-world images.

The crosswalk model was pretrained on the MS COCO
2017 dataset for 37 epochs. For the fire hydrant model,
because the MS COCO dataset contained fire hydrants, we
used a pretrained model with ResNet 101 weights trained
on ImageNet data [27]. Pretrained models were provided
by the Detectron2 library [24]. We used the standard MS
COCO evaluation metrics as described in [28] and recorded
the mean average precision (AP), averaged for intersection
over union (IoU) ε [0.5 : 0.05 : 0.95], AP50 (IoU = 0.5),
AP75 (IoU = 0.75), APsmall for small objects (area <
322), APmedium for medium objects (322 < area < 962),
APlarge for large objects (962 < area). For crosswalks, the
quantitative results are shown in Table III with qualitative
results shown in Fig. 4. We show the precision-recall curve
in Fig. 5. For fire hydrants, the quantitative and precision-
recall curve results for standard test sets are shown in Table
IV and Fig. 6, respectively. The same for medium test sets
are shown in Table V and Fig. 7, respectively, where the
precision-recall curve is for detections of the models on the
Pittsburgh dataset. We show the qualitative results of the
CARLA-trained model in Fig. 8. In the discussions below
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TABLE III: Average Precision (%) table for crosswalk de-
tection on the MVD test set.

Model AP AP50 AP75 APM APL

CARLAst
train 11.7 25.4 10.6 4.8 21.4

MVD20sttrain 1.2 3.8 0.3 0.2 2.3
CARLAst

train + MVD20sttrain 16.2 33.8 16.3 7.3 27.7
MVD120sttrain 14.4 35.5 8.4 5.9 25.0

CARLAst
train + MVD120sttrain 19.1 39.5 18.2 9.0 32.2
MVD600sttrain 25.9 53.6 21.6 13.2 42.1

CARLAst
train + MVD600sttrain 26.3 52.6 23.6 15.1 40.4
MVD2000sttrain 34.4 63.6 32.2 19.6 52.0

CARLAst
train + MVD2000sttrain 35.5 63.9 34.2 21.5 53.1
MVDFullsttrain 41.7 71.3 43.4 27.6 58.1

CARLAst
train + MVDFullsttrain 40.1 67.9 39.7 24.1 58.7

we will consider a few % (absolute) differences in AP as
not significant.

B. Fire Hydrants

In the following discussion, we notice two intermixed
tendencies. One is that the models trained on synthetic data
perform best for large-sized objects. The second is that
any model performs worse when tested outside its primary
domain.

The fire hydrant 3D models we used for the synthetic
training data mimicked Pittsburgh fire hydrants. It is there-
fore expected that the CARLA and Cut-Paste-trained models
perform well on the Pittsburgh dataset. As shown in Table
IVc, they are indeed competitive with the standard models
trained on MVD or COCO for large objects (APL). They
are worse for medium-sized objects (APM ). In contrast,
when the synthetic-trained models are tested in different
domains (MVD or COCO standard test sets), they generally
perform worse than the standard models trained on the
corresponding MVD or COCO. The CARLA performance
is especially bad for small-sized objects. This can be seen
in Table IVa and IVb. A similar performance drop when
changing domains can be observed when comparing MVD
and COCO datasets with each other. COCO-trained models
perform best when tested on the COCO test set, but worse
when tested on MVD, and vice versa. This emphasizes
the importance of the domain that is tested. MVD are all
images taken on streets, whereas COCO are more general.
Another significant difference is that COCO has many more
large objects and MVD has more medium- and small-sized
objects. This explains why the COCO-trained model is good
at detecting large objects and the MVD-trained model is good
at detecting small objects.

To remove the bias in object size, we created the
“medium” test and training sets as described above. In Table
V, the differences between the MVD and COCO results
are less pronounced than before. Such curated datasets are
more appropriate for a detailed study. The first question we
wanted to investigate was: at what point does the CARLA
model perform similarly to the MVD or COCO models? The
numbers in Table V indicate that MVD or COCO models
trained with 120 images perform similarly to the CARLA
model. The second thing we wanted to find out is how much

a low-shot model improves when adding CARLA images. In
Table V, the COCO models get mostly better and sometimes
stay the same when adding CARLA data. For MVD models,
adding CARLA images gives inconsistent results.

Fig. 8 shows correct, missed, and false detections. The
correctly detected fire hydrants are in a variety of environ-
ments, including snow and poor illumination. Some of the
missed fire hydrants have unusual shapes, are surrounded by
clutter, or are blurred. Among the false detections, people
are the most common objects. This points to the problem
that in CARLA people are not very well simulated.

C. Crosswalks

Crosswalks are more challenging objects than fire hydrants
because they are flat objects mostly viewed at an oblique
angle, which results in large perspective distortions. Table
III shows that the various APs of the MVD (full) trained
model are more than twice the value of those of the CARLA-
trained model. One trend that is similar to the fire hydrants
is that the CARLA-trained model performs relatively better
for large-sized objects.

The comparison with various levels of low- to medium-
shot models shows tendencies similar to those seen with fire
hydrants. The CARLA model performs better than a 20-shot
model and roughly similarly to a 120-shot model. Adding
the CARLA images to those of the low- to medium-shot
generally increases the performance but has little effect when
added to those models with many real images.

Correct, missed, and false detections of crosswalks by the
CARLA-trained model can be seen in Fig. 4. The model
is able to find crosswalks in different states of repair, with
various illuminations, and from different perspectives. Many
of the missed crosswalks are from the perspective of a
pedestrian standing on the sidewalk. This perspective is
underrepresented in the CARLA dataset because we took
the images from a virtual camera mounted on a vehicle. A
frequently occurring false detection is that of a car. Cars, like
people in the case of fire hydrants, might be underrepresented
and not well simulated in CARLA. One category that is not
simulated at all in CARLA is snow. A mixture of snow and
slush is prone to cause a false detection; one example is
shown in the bottom left corner under the “false” column in
Fig. 4.

D. Other Observations

We compared the CARLA-generated synthetic dataset
with the Cut-Paste [18] strategy. In the Cut-Paste strategy, we
take snapshots of 7 3D fire hydrant meshes, while rotating
them 360◦ and randomly placing them on 596 background
images for training. As shown in Tables IV and V, CARLA
performs better than Cut-Paste in the medium test case and
the standard test case in COCO and MVD. However, Cut-
Paste performs better than CARLA on the Pittsburgh dataset.

To test the importance of domain randomization, we tested
one model that was trained on CARLA images without
domain randomization. The AP was only a third of the AP
from a CARLA model with domain randomization. This
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Fig. 4: Qualitative results from crosswalk predictions: CARLA trained model tested on MVD dataset. Shown are correct,
missed and false detections.

Fig. 5: Precision recall curves for crosswalk models evaluated
on the MVD dataset.

clearly shows how important domain randomization is to
decrease the sim-to-real gap.

On a standard desktop PC with one Nvidia graphics card it
took CARLA about 4 hours to produce 1000 training images.
The Cut-Paste method is much faster; it does not require a
GPU and takes about 20 minutes to create 1,000 training
images.

V. CONCLUSION

In this paper, we show that synthetic data generated in
CARLA can be an effective way to generate data for rare,
novel, or ignored objects. It works best if the model is
well adapted to the tested domain while at the same time
domain randomization is applied. We further observe that
the best performance is on large-sized objects. We apply our
method to two object classes in MVD to show the ease of
generating novel classes in CARLA and our method’s wide
applicability for augmenting existing datasets and training
detectors with zero to few-shot real image labels. Our method
of using CARLA is a promising tool for the expanding need
of data collection and is especially helpful for improving the
performance of models trained on small datasets.

There are several avenues for future steps. One is to
create more realistic simulations in CARLA by improving
the simulations of vehicles and people and the incorporation

TABLE IV: Average Precision (%) table for fire hydrant
detection on the COCO, MVD, and Pittsburgh standard test
sets.

(a) COCO standard test set

AP AP50 AP75 APS APM APL

Cut-Pastesttrain 30.5 47.8 33.4 6.3 20.5 44.8
CARLAst

train 34.9 55.6 39.4 2.8 26.3 50.7
MVDst

train 40.2 71.0 43.9 19.9 47.4 43.9
COCOst

train 60.2 83.0 69.1 25.9 56.3 74.1

(b) MVD standard test set

AP AP50 AP75 APS APM APL

Cut-Pastesttrain 15.0 28.2 12.1 4.8 19.1 35.4
CARLAst

train 25.2 44.8 26.4 6.9 32.5 49.2
MVDst

train 46.4 81.9 49.7 29.7 55.6 58.0
COCOst

train 39.5 66.9 44.9 16.8 49.3 62.8

(c) Pittsburgh standard test set

AP AP50 AP75 APS APM APL

Cut-Pastesttrain 24.8 64.4 13.4 - 14.0 32.5
CARLAst

train 21.5 61.4 7.6 - 11.3 32.5
MVDst

train 28.3 75.7 13.2 - 27.8 33.4
COCOst

train 34.1 87.9 16.4 - 23.1 39.3

of snow. Better renderings can decrease the domain gap
between synthetic and real world images and lead to fewer
false detections. Another avenue is to improve the network
architecture and training method to better adapt to real
world images. For example, an adversarial loss could be
incorporated in training to penalize significant differences
between predicting on real and synthetic images. Another
example is to take advantage of the abundant real-world
images and use self-supervision like constrastive learning to
train a better backbone.

Applications of this work include monitoring of city-
specific objects that are poorly represented in public datasets,
such as a new crosswalk style or novel traffic equipment. In
the case of autonomous driving, it would be important to be
aware of any additions or removals of these rare objects that
could change the meaning of traffic rules, and synthetic data
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(a) Pittsburgh (b) COCO (c) MVD

Fig. 6: Precision recall curves for fire hydrant standard models evaluated on the COCO, MVD, and Pittsburgh standard test
sets.

TABLE V: Average Precision (%) table for fire hydrant detection on the MVD, MS COCO, and Pittsburgh medium test set.

APCOCO
M APMV D

M APPITT
M APCOCO

M APMV D
M APPITT

M

Cut-PasteMtrain 18.7 14.8 10.7 CARLAM
train 28.2 37.5 16.5

MVD20Mtrain 32.6 32.3 20.5 CARLAM
train + MVD20Mtrain 29.5 39.9 20.2

MVD120Mtrain 39.2 39.6 23.5 CARLAM
train + MVD120Mtrain 39.7 49.2 30.3

MVD600Mtrain 46.2 52.5 26.2 CARLAM
train + MVD600Mtrain 40.8 54.1 28.3

COCO20Mtrain 22.9 14.3 18.8 CARLAM
train + COCO20Mtrain 36.9 36.1 20.9

COCO120Mtrain 40.4 34.1 19.8 CARLAM
train + COCO120Mtrain 41.8 44.8 24.0

COCO600Mtrain 51.4 47.6 22.7 CARLAM
train + COCO600Mtrain 49.8 48.7 27.1

Fig. 7: Precision recall curves for fire hydrant medium
models evaluated on the medium Pittsburgh dataset.

(a) Fire hydrant medium COCO-trained models

(b) Fire hydrant medium MVD-trained models

can allow engineers to train detection models preemptively.
We therefore hope to explore this direction in the future.
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