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Floquet time crystals in driven spin systems with all-to-all p-body interactions
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We show the emergence of Floquet time crystal (FTC) phases in the Floquet dynamics of periodically driven
p-spin models, which describe a collection of spin-1/2 particles with all-to-all p-body interactions. Given the
mean-field nature of these models, we treat the problem exactly in the thermodynamic limit and show that,
for a given p, these systems can host various robust time-crystalline responses with period nT , where T is
the period of the drive and n an integer between 2 and p. In particular, the case of four-body interactions
(p = 4) gives rise to both a usual period-doubling crystal and also a period-quadrupling phase. We develop a
comprehensive framework to predict robust subharmonic response in classical area-preserving maps, and use
this as a basis to predict the occurrence and characterize the stability of the resulting mean-field FTC phases
in the quantum regime. Our analysis reveals that the robustness of the time-crystal behavior is reduced as their
period increases, and establishes a connection between the emergence of time crystals, described by eigenstate
ordering and robust subharmonic response, and the phenomenology of excited state and dynamical quantum
phase transitions. Finally, for the models hosting two or more coexisting time crystal phases, we define protocols
where the periodic subharmonic response of the system can be varied in time via the nonperiodic modulation of
an external control parameter.
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I. INTRODUCTION

While historically the study of many-body quantum sys-
tems has been focused on its equilibrium and near-equilibrium
properties, the emergence of prototypical quantum simulation
platforms in recent years, such as ultracold atoms in opti-
cal lattices, trapped ions, and superconducting circuits, have
opened the door to the study of various few- and many-body
out-of-equilibrium phenomena [1]. These include quantum
quenches [2] and closed-system thermalization [3], dynami-
cal phase transitions [4], and quantum many-body scars [5],
among others. The interest has also been extended to driven
systems which by definition lack an equilibrium regime but
can, in some situations, lead to the emergence of nonequilib-
rium phases of matter, described by the robust nonstationary
behavior of order parameters for generic initial states [6]. One
of the most prominent examples in this area is that of Floquet
time crystals (FTCs) [7,8], which are systems described by a
time-periodic Hamiltonian H (t ) and thus possess a discrete
time-translation symmetry H (t + T ) = H (t ), and in which
the dynamics of generic observables display robust periodic
oscillations with a period which is an integer multiple of T
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(but not T ). In this way, the behavior of the system is seen to
break the aforementioned symmetry of the Hamiltonian. FTCs
describe a scenario in which the interplay between the many-
body interactions and the drive stabilizes the response of the
system to show long-lived oscillations, instead of leading to
its relaxation.

Even though a general FTC can have, in principle, a period
of nT , the case of n = 2 has remained the most common case
in previous works, with a plethora of theoretical as well as
experimental studies related to this particular case [4,9–12].
This type of FTC is particularly common in systems of driven
interacting spin-1/2 particles which naturally present a Z2

symmetry. In this context, we seek to develop a framework
for obtaining FTCs with a higher-order periodic response
(i.e., a large-period FTC), understand their robustness and
physical origin, as well as their potential experimental im-
plementation. In previous works, different alternatives have
been proposed to go beyond period 2T -FTCs [13–16]. Many
of these are based on using different types of interacting
subsystems, such as bosons or higher-spin systems, which do
not present the natural Z2 symmetry that leads to 2T -FTCs.
More recently, other proposals have been put forward to sys-
tematically construct nT -FTCs, including systems inspired in
quantum error correcting codes [17] and clock models [18]
(see also Ref. [19] described below).

In this paper, we show that periodically driven spin mod-
els with all-to-all homogeneous p-body interactions can host
robust time crystalline behavior with nT periodic response
where n is as small as 2, but can be as high as p in gen-
eral. In these models, the mean-field limit describes the
dynamics of the system exactly in the thermodynamic limit,
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and so they constitute an example of a mean-field FTC
[6,20–22]. We show that mean-field FTC phases can be
thoroughly characterized by the area-preserving map (APM)
describing the dynamics of the collective spin in the mean-
field limit. Using tools from dynamical systems theory, we
provide a formal description of defining features of FTCs,
such as subharmonic response and eigenstate order, in terms
of classical precursors such as phase-space resonances and
bifurcations. We then use this description to predict the oc-
currence of FTCs in the quantum regime and to construct
appropriate metrics to characterize them.

Our work significantly expands previous studies on mean-
field FTC phases in spin systems with infinite range two-body
interactions [9,19,23], a scenario which naturally leads to
lack of ergodicity even in clean systems without disorder
or many-body localization. In particular, Ref. [19] described
the emergence of FTCs in these systems by identifying the
periodic orbits of the classical APM describing the dynamics
in the thermodynamic limit, and found subharmonic response
with different frequencies depending on the system parame-
ters. In this paper, we show that by considering the generalized
case of p-body interactions, we can systematically construct
robust higher-order FTCs. This reveals a connection between
FTCs and the physical complexity of the system as described
by the degree of the interactions or, equivalently, by a higher
degree of nonlinearity.

Furthermore, in this paper we present methods for diag-
nosing and controlling FTCs that reveal connections with
well-known physical mechanisms, and which could find ap-
plications beyond the case of mean-field FTCs. Particularly,
we show that eigenstate ordering in the Floquet operator can
be diagnosed via the spectral statistics of an appropriate power
of this operator, which in turn allows us to build a connection
between eigenstate ordering and excited state quantum phase
transitions (ESQPTs) [24]. We also show that the transition
from a non-FTC to an FTC phase (or vice versa) can be treated
as a DQPT [25,26], and although the typical dynamical order
parameters fail at detecting it, certain higher order correlation
functions can be used to characterize the dynamical phase.
Finally, we show that, as a consequence of the multibody
interactions, these models host FTCs of different orders for
the same class of initial states, and that the order of the FTC
can be tuned by a single parameter which can be physically
regarded as an external field. As a result, we propose and
numerically study a time crystal switching protocol whereby
quenching a parameter in the Hamiltonian allows us to change
between FTC phases with different periodic response.

The remainder of the paper is organized as follows. In
Sec. II, we review the definition of FTCs and introduce
the system under study, the family of p-spin Hamiltonians.
We also describe the driving protocol that maps the time-
independent Hamiltonian into a Floquet system. In Sec. III,
we analyze the mean-field limit of these driven models and
describe the mechanisms leading to robust subharmonic re-
sponse in terms of resonances and signatures of structural
changes in phase space (bifurcations).

In Sec. IV, we introduce the quantities we use to character-
ize the emergent FTC behavior in this system, both for finite
sizes and in the thermodynamic limit, and discuss connections
with notions of out-of-equilibrium quantum phase transitions.

In Sec. V, we present extensive numerical calculations pro-
viding evidence for the existence and robustness of the FTC
phases in driven p-spin systems. In Sec. VI, we introduce the
idea of time crystal switching, a control protocol aimed at
models with two or more coexisting FTC phases, i.e., p � 4,
which allow us to switch the periodic response of the sys-
tem and thus dynamically modulate between different FTC
phases. Finally, in Sec. VII, we present our conclusions and
discuss potential future directions related to this paper.

II. FLOQUET TIME CRYSTALS, MODEL
AND DRIVING PROTOCOL

A. Summary of Floquet time crystals

A periodically driven Hamiltonian system exhibits discrete
time-translation symmetry, that is, invariance of the Hamilto-
nian at time intervals separated by one period of the drive, T ,
Ĥ (t + T ) = Ĥ (t ). A FTC is an out-of-equilibrium phase of
matter emerging as a consequence of a physical observable
breaking the discrete time translation symmetry of a many-
body Hamiltonian [6,7]. More precisely, the FTC phase can
be defined by considering a class of initial states {|ψ〉} and a
generic choice of observable Ô, such that the time-dependent
expectation value in the limit of large system size N , given by

fO(t ) = lim
N→∞

〈ψ (t )|Ô|ψ (t )〉, (1)

satisfies the following conditions [9,27]:
(i) Time-translation symmetry breaking: fO(t + T ) �=

fO(t ) while Ĥ (t + T ) = Ĥ (t ).
(ii) Rigidity: fO(t ) has a fixed oscillation period, without

needing to fine-tune parameters in Ĥ .
(iii) Persistence: the oscillations of fO(t ) persist for an

infinitely long time.
Conditions (1)–(3) imply that an FTC phase is not possible

for generic chaotic systems, in which diffusion and equilibra-
tion typically preclude the existence of long-lived oscillations.
Instead, FTC phases are expected to exist either in disordered
systems (where diffusion can be suppressed by many-body
localization [7,8] or by other means [13,28]) or in certain
clean, integrable systems with highly regular motion. Clean
FTCs have been studied in Ref. [27] for a Bose-Hubbard
ladder, in Ref. [9] for the Lipkin-Meshkov-Glick model, and
in Ref. [18] for a family of clock models. See also Ref. [29]
for a precursor of these studies.

The emergence of an FTC implies an structural change in
the nature of the Floquet states, which are the eigenstates of
the unitary evolution operator ÛF corresponding to Ĥ after
one driving period. A key signature of this structural change
is the emergence of eigenstate ordering [6], that is, the Floquet
states become catlike states, i.e., superpositions of macroscop-
ically distinct states [7]. This is reflected in the reorganization
of the Floquet spectrum, where an extensive portion of it is
composed of groups of Floquet phases with spacing on the
unit circle by an angle of 2π/q, with q and integer equal
to the number of states entering in the superposition. As a
consequence, the Floquet spectrum of Û q

F will be composed
of clusters of q-fold degenerated Floquet phases, as all the
Floquet phases in one of the groups seen in the spectrum of
ÛF will collapse to the same value. Eigenstate ordering has
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been recently proposed as the fundamental characteristic of
an FTC phase [6], with the typical subharmonic response as
its dynamical manifestation.

B. p-spin models

In the following, we focus on a class of interacting mag-
netic systems called p−spin models [30–32]. Consider a
system of N spin-1/2 particles with p-body, p � N , Ising-
like interactions, and in presence of an external homogeneous
magnetic field, described by a time-independent Hamiltonian
Hp. We will consider interactions to be homogeneous and
of infinite range, i.e., all-to-all, as to avoid heating to a fea-
tureless thermal phase when the external driving is included
[33]. The interaction Hamiltonian is permutationally symmet-
ric and given an initial state in the symmetric subspace of the
N spin-1/2 particles, any time evolution will be restricted to
that space. The Hamiltonian of the resulting family of p-spin
models is

Ĥp(h) = −hŜx − �

pSp−1
Ŝ p

z , (2)

where h is the strength of the external magnetic field, � the
strength of the p-body interaction, and we have introduced the
collective spin operators Ŝ = ∑N

i=1 σ̂ (i)/2 with σ̂ a vector of
Pauli operators. In terms of the collective spin operators, the
symmetric subspace is spanned by the Dicke states, |S, M〉,
where S = N/2, resulting in a Hilbert space of dimension N +
1, growing only linearly with the system size.

This family of models exhibits a rich and extensively stud-
ied variety of critical phenomena [30], including a ground
state quantum phase transition (GSQPT) between a param-
agnetic and a ferromagnetic phase [34], and ESQPTs [35] as
well as DQPTs [36–38]. The properties of these phenomena
are markedly different depending on the value of p, and in the
following we summarize the aspects which are of particular
importance to our construction of FTCs.

Critical phenomena in these models can be studied using
a mean-field picture, which is exact in the thermodynamic
limit N → ∞ and describes the dynamics of the normalized
mean spin X = 〈Ŝ〉

S on a unit sphere phase space. One tool
to characterize this limit is given by the classical flow in
phase space, Ẋ = F[X; h,�, p], which can be obtained via
the Heisenberg equations of motion for the spin operators after
approximating 〈AB〉 � 〈A〉〈B〉. Explicit expressions for these
equations, which were previously studied in Ref. [37], are
given in Appendix A. A second complementary tool is given
by the semiclassical energy function E (X; h,�, p) = 〈Hp〉

S ,
which serves the role of a free energy, where the average is
taken over a spin coherent state |θ, ϕ〉 = e−iϕŜz e−iθ Ŝy |S, S〉. For
the p-spin models this energy function takes the form

E (φ, Z; h,�, p) = −h
√

1 − Z2 cos(φ) − �

p
Z p. (3)

The critical points of different phase transitions correspond
with certain structural changes of Eq. (3) as a function of the
ratio h

�
. In the limit h

�
→ ∞, the semiclassical energy is a

single well with a minimum at Z = 0, indicating paramagnetic
ordering. As the value of this ratio is reduced, Eq. (3) might
undergo a saddle-node bifurcation at which a saddle and a

FIG. 1. (a) Phase diagrams for the p-spin models described by
Hamiltonian Eq. (2). We plot the spinodal, Eq. (4) (blue dashed),
and critical, Eq. (5) (solid red), lines for the p-spin family up to
p = 10, defining the paramagnetic (dark shaded area) and ferro-
magnetic (light shaded area) phases as a function of h/� for the
whole family. Notice the existence of a metastable ferromagnetic
phase given by the area in between the two lines. (b) Sketch of the
effect of the driving protocol in the clean many-body system. The
time-independent Hamiltonian gets mapped into a Floquet system
with discrete time translation symmetry, i.e., ĤF (t + T ) = ĤF (t ).

local minimum (metastable ferromagnetic phase) emerge.
This point is typically referred to as the spinodal point [39].
Upon further reduction of the value of h

�
→ 0, the local

minimum reaches a point of degeneracy with the current
global minimum, signaling the GSQPT critical point [39], i.e.,
the point at which the ground state of the system changes
character to ferromagnetic. The above scenario describes a
first-order GSQPT, as it is the case in the models with p >

2 [30]. For the model with p = 2, where one recovers the
the Curie-Weiss paramagnet (a special case of the Lipkin-
Meshkov-Glick or LMG model), the spinodal point and the
GSQPT critical point coincide, and the transition from para-
magnetic to ferromagnetic orderings is continuous or second
order. For general p, the spinodal point can be shown to be
(see Appendix B)

hWspino(p) = �, with Wspino(p) =
√

(p − 1)p−1

(p − 2)p−2
, (4)

and the GSQPT critical point is given by

hWGS(p) = �, with WGS(p) = (p − 1)p−1√
(p(p − 2))p−2

. (5)

The behavior of the spinodal and ground-state critical points
is illustrated in the p-spin phase diagrams of Fig. 1(a).
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FIG. 2. Trajectories of the phase space flow of the p-spin model and the area-preserving map of the driven p-spin model (kicked p-spin) for
three different values of p : p = 2 (top left), p = 4 (right), and p = 6 (bottom left), and their respective values of the angle of the drive αB. In
each panel, the left (top) sphere corresponds to the trajectories of the flow, dark lines highlight the trajectories at the interior of the separatrix,
light lines are in the exterior. We explicitly show the effects of the action of the drive in mapping the flow into an area preserving map with the
corresponding resonances, trajectories belonging to the 1 : 2, 1 : 4, and 1 : 6 are shown in blue, red, and green, respectively.

The emergence of a saddle point at the spinodal point
implies the existence of a separatrix line in the classical phase
space, which marks the boundary between two regions of
distinct macroscopic motion of the mean spin. As a conse-
quence of this, an extensive portion of the quantum spectrum
is composed of states localized in the interior of the region
enclosed by the separatrix line. In top-left panel of Fig. 2, we
show an example of the phase portrait for the p = 2-spin. The
dark lines indicate trajectories on the inside of the separatrix
and the light lines indicate trajectories on the outside of it. The
set of eigenstates which are localized in the regions inside the
separatrix correspond to the extensive portion of the spectrum
which have undergone a clustering ESQPT [24,40–42]. These
localized states will be used to define FTC phases in the
present paper, since they will lead to breaking the discrete
time translation symmetry of the driven p-spin system. Thus,
we will consider exclusively the regime of hWGS(p) < �,
where the system is in the ferromagnetic phase. Finally, we
point out that p-spin models have been studied in the context
of so-called boundary time crystals [43–45], in which the
the continuous time-translation symmetry is broken by the
presence of dissipation. In our paper, we focus exclusively on
studying FTCs in these models.

C. Driving protocol and connection to kicked p-spin models

Given an initial state localized inside the region enclosed
by the separatrix of a p-spin model, we consider an external
periodic drive in the form of a train of short pulses or kicks,
as illustrated in Fig. 1(b). The period of this train of pulses is
given by T , which we will fix to T = 1, and at every period
the system undergoes an instantaneous rotation around the x
axis by an angle αB. A single evolution step is thus given by

ÛF = eiαBŜx e−iĤp(h), (6)

where we have taken h̄ = 1. From the point of view of the
quantum (finite-size) system, the external drive transforms

the Hamiltonian system into a Floquet system. Conversely,
in the mean-field description, the evolution of the mean spin
becomes stroboscopic and dictated by an APM [46] rather
than a continuous phase space flow [47]. This latter fact is
of utter importance, as the mean-field description in terms of
an APM brings in phenomenology [46] which is absent in the
continuous flow case. In particular, we will describe how the
emergence of subharmonic system responses as a function
of the drive parameters can be seen in phase space as the
emergence of a resonance of the APM [48]. A resonance is
a region of phase space enclosed by separatrices connecting
hyperbolic periodic points. Trajectories in the interior of the
resonance correspond to macroscopic motion of the mean
spin in the form of oscillations exhibiting a strong periodic
subharmonic component. See Fig. 2 for illustrations of this
phenomenon. It is our aim to exploit the resonances of APMs
to define FTC phases, and we will elaborate on this in the next
section.

Finally, let us point out an important connection between
the Floquet operator in Eq. (6) and the family of kicked p-spin
models, recently introduced in Ref. [49]. In the case h = 0,
corresponding to a pure ferromagnetic p-spin, Eq. (6) exactly
recovers the kicked p-spin unitary. More generally, the con-
nection can be made naturally as long as hWGS(p) � �. This
is precisely the regime in which the initial states discussed in
Sec. II B are relevant. In this limit, we can rewrite the Floquet
operator in Eq. (6) as

ÛF = eiα(h)Ŝx e
i �

pSp−1 Ŝp
z
, (7)

which has the form of a kicked p-spin model. The equality
holds up to order O(h�) provided � is not too large, and
we defined the modified precession angle α(h) = αB + h. The
latter will allow us to examine the robustness of the phase,
for fixed value of �, using h as tunable parameter [50].
The APM for the mean-field limit of Eq. (7) has the form
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Xl+1 = A[Xl ; α(h),�, p], and explicit expressions are given
in Appendix A (see also Ref. [49] for details).

III. RESONANCES, RESONANCE CONDITIONS, AND
BIFURCATIONS IN AREA-PRESERVING MAPS

In this section, we develop a framework to predict and de-
scribe FTCs in mean-field models. First, we discuss so-called
resonances in APMs, which are the basic structure leading to
subharmonic periodic response in the system. We derive con-
ditions for the existence of these resonances by analyzing the
time-dependent periodic Hamiltonian underlying the Floquet
map. From this, we show how symmetry emerges in the driven
system at these resonance conditions. Finally, we argue that
not all resonances will lead to the extensive structural changes
in phase space needed to define a robust FTC and propose
that only resonances that can be linked to bifurcations (i.e.,
resonant bifurcations) in the APM will lead to proper FTC
behavior.

A. Resonances in area preserving maps

A resonance of an APM is a region of finite area in phase
space delimited by separatrices connecting hyperbolic (pe-
riodic) points. Every resonance has a central periodic orbit
with period equal to that of the resonance or some integer
multiple of it [48]. Therefore, the trajectories in the interior
of the resonance exhibit a strong subharmonic behavior with
period q, with q > 1 and integer. Consider a 1 : q resonance
for an initial condition on or near the separatrix. Then, the
stable or unstable character of the separatrix branches will
only be apparent after q steps of the stroboscopic evolution.
Furthermore, any initial condition inside the resonance will
only look localized, as the parent trajectories of the classical
flow of the Hamiltonian system, every q steps of the strobo-
scopic evolution. For instance, take the system with p = 2,
the phase portrait for Ĥp is shown in the upper-left panel of
Fig. 2 (left sphere). In the undriven case, the motion of a state
initially localized inside one of the lobes remains confined
to that lobe. Once driving is included such that a resonance
condition is met, the same type of initial state will now visit all
other lobes before coming back to the initial one. In this case,
αB = π and this process happens after q = 2 steps. Similar
scenarios occur for other values of q, see Fig. 2.

From this description of the classical map, we see that
the macroscopic motion of our chosen set of initial states
will be dominated by the central periodic orbit, and hence
generic physical observables will display discrete time trans-
lation symmetry breaking. The existence of a resonance of
the APM implies that the Floquet states, which in the limit
S → ∞ will correspond to trajectories inside the resonance,
must have support on all lobes of the resonance, and hence
could be written as superpositions of macroscopically distinct
states, each of which has support inside one of the lobes
of the resonance. Thus, a subset of Floquet states will look
likecat states, and thus display eigenstate ordering in phase
space, a key requirement needed for the definition of an FTC
phase [6,51].

Using the resonances of an APM to define FTC phases
brings in the robustness of the phase for free; that is, the ob-

served subharmonic response will be robust to small changes
in the system parameters, a statement that follows from
the persistence of the fixed points. The latter concept can
be explained as follows: Let us consider the APM Xl+1 =
A[Xl ; α(h),�, p] giving the evolution of the mean spin in
the thermodynamic limit. The periodic orbits on a resonance,
hyperbolic or elliptic, are fixed points of Aq[Xl ; α(h),�, p]
with q the period of the resonance. A result in the theory of
APMs guarantees the persistence of fixed points [46], that is,
the resonance and its periodic orbits persist under the action
of small perturbations, at most being moved to some new lo-
cation in phase space, unless the tangent map evaluated at the
fixed point has an eigenvalue equal to 1. If the latter condition
holds, the map undergoes a bifurcation and the periodic orbits
might disappear.

It is desirable to have conditions on the system parame-
ters for which emergence of a resonance is guaranteed. In
the following, we discuss two of these situations: resonance
conditions and bifurcations in APMs.

B. Resonance conditions

Given an APM which describes the dynamics of the sys-
tem, we can always assign a time-periodic Hamiltonian,
Ĥ (t ) = aĤ1 + bĤ2

∑∞
n=−∞ δ(t − nT ), giving rise to the same

APM equations in the thermodynamic limit. Then, a reso-
nance condition is given by the values of a, b for which the
system receives an integer number of kicks in the form of
Ĥ2 during the time it takes to complete a full cycle of the
dynamics generated by Ĥ1.

For the Floquet system in Eq. (6), a resonance condition
is given by the value of the angle of the drive for which the
mean spin receives an integer number of kicks during the time
it takes to complete a full period of the trajectory associated
with the corresponding phase space flow. Correspondingly,
for the kicked p-spin in Eq. (7), it is given by the situation
at which the mean spin receives an integer number of kicks
during the time it takes to complete a single precession, that
is, when αB = 2π

q with q an integer. At a resonance condition,
what used to be separatrices emerging from saddle points
of the associated continuous flow, and enclosing regions of
phase space where eigenstates are localized [52], now become
separatrices connecting hyperbolic periodic points. The region
enclosed by the separatrices becomes a 1 : q resonance of the
APM [48].

To explore the consequences of a resonance condition in
our driven system, we define the time-dependent Hamiltonian

Ĥ (t ) = −αBŜx − �

pSp−1
Ŝ p

z

∞∑
n=−∞

δ(t − n), (8)

where we have fixed the period of the drive to be T = 1.
Notice that this corresponds to the kicked p-spin Hamilto-
nian [49]. Equation (8) can be brought into the form Ĥ (t ) =
Ĥreso + V̂ (t ) (see Appendix C for details), where Ĥreso is the
resonance Hamiltonian and V̂ (t ) a time-dependent perturba-
tion which is typically of high frequency and whose effect
vanishes on average.

The resonance Hamiltonian encodes the effects that the
resonance condition induces in the Floquet system. Its form
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its derived in Appendix C and it reads

Ĥreso = − �

qpSp−1

q∑
j=1

(ÔY Z · 	e j )
p, (9)

where ÔY Z = (Ŝy, Ŝz ) is the projection of the collective spin
onto the y-z plane and 	e j = (− sin( 2π

q j), cos( 2π
q j)) are the

vertices of a q-regular polygon (see, for instance, Ref. [53]
and Chap. 6 of Ref. [54]). The resonance Hamiltonian is a
sum of q terms in the form of a p twist, each along one of the
directions 	e j . The form of Ĥreso implies that a region of finite
size in the vicinity of the great circle in the y-z plane develops
a 1 : q resonance, whose central periodic orbit has its points
on the vertices of a q-regular polygon. This resonance then
satisfies an emergent q-fold, Zq, rotational symmetry, which
can be appreciated in the phase space portraits of Fig. 2 [55].

One could, then, use every resonance condition of Eq. (7)
to define an FTC phase, since an appropriate choice of the
initial state and observable will reveal the subharmonic char-
acter of the system response, which will be robust to small
changes in h (leading to small changes in αB away from
2π
q , as discussed in Sec. III A). This is, in fact, the method

employed in Refs. [19,23] for the identification of higher
period FTC phases, which we have put into a more formal
footing. However, the emergent symmetry discussed above
is a feature of only a region of phase space in the vicinity
of the y − z plane. Following previous works [6], we require
the emergent symmetry to be global to define a proper FTC.
For mean-field models, this implies that the symmetry affects
the entirety of phase space (or a majority fraction of it). It
is desirable, then, to introduce further requirements on the
system parameters to position a given resonance condition
as a point where a proper FTC phase exists. To this end, we
investigate the dynamics near the poles,i.e., around the points
X = ±1 and their bifurcations [56].

C. Bifurcations

For an APM, 1 : q resonances can also emerge as conse-
quences of a bifurcation process of a fixed point of the map.
These, generally, are of the types described in the classifica-
tion of generic bifurcations [46,57]. Given a fixed point of
the map, say Xfix, if the eigenvalues of ∂A

∂Xl
|Xfix are equal to 1,

−1, or the qth root of unity, then the fixed point undergoes a
tangent, period doubling, or period q bifurcation, respectively.
In the case of period doubling or period q bifurcation, one also
observes the emergence of a 1 : q, q � 2, resonance in phase
space.

In Ref. [49], bifurcations of the fixed points at the poles
X = ±1 were analyzed. It was shown that the kicked system
with p = 2 has a period doubling bifurcation at αB = π , and
all the other models with p > 2 have d-q bifurcations when-
ever αB = 2πd

q with d, q relative primes, q � 2 and q > d
(expressions for the tangent map eigenvalues are given in
Appendix A). However, not all the allowed bifurcations in
the classical limit introduced large structural changes with
signatures in the quantum system. This can be understood by
analyzing the structure of the multibody interaction term ∼Ŝ p

z .
In terms of raising and lowering operators Ŝ± = Ŝy ± iŜz, the
interaction term will connect states in the Ŝx basis which are

l flips away, where l ∈ [p, p − 2, p − 4, ..., 2(1)], and the set
ends at 2(1) for even (odd) p spins, that is, in the basis of Ŝx it
introduces a coupling between states whose spin projections
differ by l units. Therefore, from all the discrete rotational
symmetries emerging at resonance conditions of the term
∼α(h)Ŝx, only a few of them are permitted by the interaction,
which for the case of p > 2 are also bifurcation points of the
poles. From this considerations, we can define a reduced set
of bifurcations:

B(p)
bifu =

{
2π

m
: m ∈ [p, p − 2, p − 4, ..., 2(1)]

}
. (10)

We refer to the resonance conditions which are also bifurca-
tion points and are contained in B(p)

bifu as resonant bifurcations.
This set was previously identified in Ref. [58], where, using
unitary perturbation theory, it was shown that large structural
changes take place around these points [59].

At resonant-bifurcation points, not only a finite region
in the vicinity of the y-z plane exhibits an emergent q-fold
rotational symmetry, but also these regions extend all the
way up to the poles, making it a global symmetry of phase
space. When the resonance condition is no longer satisfied,
αB /∈ B(p)

bifu, the linear term ∼hĴx introduces a tilt which dis-
places the resonance on the y-z plane to a new location,
and the time-independent part of the Hamiltonian now reads
hŜx + Ĥreso. Under these conditions, a wider region of phase
space contains trajectories with a strong period-q component.
These come from both resonances: those coming from the
resonance condition and those emerging as a consequence of
the bifurcation, and from all the trajectories in between them.
Even though not all phase space exhibits a q-fold rotational
symmetry, a large portion of it does, and so it is an approxi-
mate symmetry. This approximate symmetry provides ground
for the definition of an FTC phase.

D. Classical picture of Floquet time crystal
phases in p-spin models

Let us now collect all the different ideas presented in the
previous sections into a single summary of a classical picture
of FTCs in p-spin models.

Consider an initial state supported inside the ferromagnetic
region of phase space, i.e., the region enclosed by the classical
separatrix of the phase space flow, of a p-spin model. When
the system is driven, this region is transformed into a reso-
nance of the APM, where now separatrices connect hyperbolic
periodic points. The ensuing dynamics of the initial state is no
longer confined inside the original support but rather visits all
the different lobes of the resonance. In fact, the system will
undergo oscillations with the period equal to that of the central
orbit of the resonance, returning to the region of the original
support every q applications of the drive, with q the period of
the resonance. Thus, the period of the resonance dictates the
type of FTC behavior emerging as a consequence of the drive.

We have argued, and will provide evidence, that if the
system has p-body interactions, with p large enough, then
by tuning the angle of the external drive to one of the val-
ues in the set B(p)

bifu, FTC phases beyond a period double
2T -FTC are accessible. These special angles are resonance
conditions at which an emergent dynamical q-fold rotational
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symmetry arises in the system, leading to a special reconfigu-
ration of Floquet states and Floquet phases, as we will discuss
in next section. They are also bifurcation points, therefore
the resonances which exist in phase space can only disappear
via a second bifurcation process, providing a certain degree
of robustness to the emerging FTC phases. The resonant-
bifurcation points are then the key element we exploit to
define qT -FTC phases, where 0 < q � p as discussed above.
In the remainder of the paper, we will characterize, both for
a finite system sizes and in the thermodynamic limit, the dif-
ferent qT -FTC phases emerging in periodically driven p-spin
models.

IV. CHARACTERIZING FLOQUET
TIME CRYSTAL PHASES

In this section, we discuss the different diagnostic tools
we will use in later sections to characterize FTC behav-
ior in driven p-spin models. An important figure of merit
will be the presence of a subharmonic response of fZ (t ) =
〈ψ (t )| Ŝz

S |ψ (t )〉, identified via its power spectrum. In addition,
we will study the structural changes in the Floquet operator
associated with the onset of eigenstate ordering via analyzing
its spectral statistics. Furthermore, this analysis will allow us
to establish a connection between the FTC transition and a
clustering ESQPT in the mean-field limit. Then, we propose
the use of out of time order correlators (OTOCs) as an order
parameter to detect the transition between an FTC and non-
FTC, and connect this to the theory of DQPTs. Finally, owing
to the mean-field nature of these models, we discuss how to
characterize the FTC phase diagrams in the thermodynamic
limit by studying the phase-space average of the dynamical
response of the system.

A. Eigenstate ordering, emergent dynamical
symmetries, and spectral statistics

Eigenstate ordering of the Floquet states refers to a spe-
cial structure of the eigenvectors of the Floquet operator ÛF ,
which have the form of catlike states, i.e., superpositions of
macroscopically distinct states [6,7]. In the mean-field limit,
this translates to Floquet states which have support in all of
the q lobes of a 1 : q resonance, that is, superpositions of q
states, each of which is localized in one of the lobes of the
resonance. Therefore, a portion of the Floquet spectrum is
composed of groups of q Floquet phases, where each of the
Floquet phases in one of these groups define the vertices of a
q-regular polygon in the unit circle.

In the case of p = 2 and α(h) � π , i.e., the FTC phase in
the LMG model [9], this phenomenon was referred to as π

pairing of Floquet phases. More precisely, the Floquet states
with support inside the 1 : 2 resonance come in pairs, with
each member of a pair having a definite parity under eiπ Ŝx . The
eigenphases of Floquet states in one of these pairs are located
at diametrically opposed points on the unit circle and thus they
differ by π . As a consequence, when considering the operator
Û 2

F , the Floquet phases corresponding to Floquet states in
those pairs will be degenerate. Thus, the spectral statistics of
Û 2

F will deviate from the expected Poissonian behavior [60]

FIG. 3. Example of level clustering inside an FTC phase using
the system with p = 3. (a) Floquet phases of ÛF in the vicinity of
α(h) = 2π

3 , the horizontal lines show the values 2π

3 , 0, − 2π

3 ; notice
the symmetry of the spectrum with respect to these lines. The re-
organization of the spectrum into a regular structure indicates the
emergence of a symmetry and 2π

3 pairing of Floquet phases. (b) Flo-
quet phases of Û 3

F . The 2π

3 pairing is now evident in the central
section of the spectrum. Paramaters are p = 3, � = 0.5, N = 128.

due to a strong degeneracy arising from the clustering of levels
by pairs.

More generally, in FTC phases of period q with q > 2 we
expect to see 2π

q pairing of the Floquet phases of ÛF as the
manifestation of eigenstate ordering. This pairing will lead
to a strong degeneracy in the Floquet phases of Û q

F , with its
spectral statistics deviating from that of a Poisson distribution.
In Fig. 3, we show an example of the Floquet phases for the
system with p = 3 around the region of the 3T -FTC phase.
Notice the emergent apparent regularity of the spectrum in
Fig. 3(a) and how the 2π

3 pairing is revealed through the
degeneracy of the Floquet phases of Û 3

F in Fig. 3(b). The
existence of this degeneracy is a signature of an emergent
dynamical symmetry, a discrete q-fold rotational symmetry,
which is also manifested in the form of the effective Hamil-
tonian of Û q

F , given by hŜx + Ĥreso as discussed in Sec. III B.
To describe this behavior, we will use the average adjacent
spacing ratio [61], a standard measure of spectral statistics,
defined by

r = 1

N + 1

N+1∑
j=1

r j, r j = min(d j, d j+1)

max(d j, d j+1)
, (11)

where dj = μ j+1 − μ j is the eigenphase spacing and N = 2S.
Further, we define the normalized average adjacent spacing
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ratio r̃ = r/rPOS where rPOS is the value for a Poisson distri-
bution, hence any value of r̃ < 1 will indicate a high degree of
eigenphase clustering, signaling the onset of the FTC phase.

As stated above, the emergence of qT -FTC can be di-
agnosed by the clustering of an extensive portion of the
eigenspectrum of U q

F . This phenomenon admits an in-
teresting connection to a clustering ESQPT [24]. For a
time-independent Hamiltonian with one degree of freedom, a
clustering ESQPT can be identified by a series of vanishing
energy gaps in the spectrum, forming a continuum in the
thermodynamic limit. Due to the closing gaps, the energy
levels cluster around these regions and the density of states
diverges [24,40,41]. ESQPTs have been mostly identified in
systems with clear-cut classical limits (like p-spin models),
and their existence is intimately connected to the emergence
of separatrices in the mean-field phase space. Even though the
p-spin models present ESQPTs, the phenomena shown here
in the driven p-spin models are different, since the associated
classical phase spaces are different. In general, the emergence
of ESQPTs in driven quantum systems is a relatively unex-
plored phenomenon, with only a few examples [62–64].

From a pure kinematic point of view, the non-FTC–FTC
transition, as seen by the emergence of eigenstate order-
ing, displays all the features of a clustering ESQPT [41].
For a system whose thermodynamic limit is described by a
single degree of freedom, a clustering ESQPT corresponds
to a singularity of the density of states in the form of a
logarithmic divergence. This divergence originates in the di-
verging oscillation periods of trajectories corresponding to
initial conditions which get closer and closer to a separatrix
line as a function of a control parameter. Therefore, when
one examines the energy spectrum, it is crossed by a curve
along which excited states cluster together toward degener-
acy. For our system, this observation follows naturally from
the mean-field phase space analysis made in Sec. III, as the
non-FTC–FTC transition, in this limit, is accommodated by
the emergence of resonances of the APM. Let us assume a
1 : q resonance leading to a qT -FTC—recall that under the
effective representation of the dynamics, every q steps the par-
tial separatrices connecting hyperbolic periodic points behave
as actual separatrices emerging from saddle points. In fact,
they correspond to separatrices of the effective Hamiltonian
of Û q

F , given by Ĥeff (h) = hŜx + Ĥreso, with h playing the role
of control parameter. As such, the density of states will display
a logarithmic divergence, a phenomenon we discuss in more
detail in Appendix D.

B. Out of time order correlators as dynamical order parameters
for the non-FTC–FTC transition

The structural change of an extensive portion of the Floquet
states from lacking eigenstate ordering to displaying eigen-
state ordering has a direct consequence on the dynamics. In
fact, the emergence of an extensive 2π

q pairing of the Floquet

phases makes ω = 2π
q be the dominant frequency in the sys-

tem response. As such, the macroscopic motion of the mean
spin undergoes a drastic change, going from approximating
the Larmor precession at some frequency, whose value is in
principle arbitrary and changes continuously with the system
parameters, to be precessing with a frequency locked at the

qth subharmonic of the frequency of the drive. This change
in the macroscopic motion can be thought of as a DQPT
[26,65,66], and technically it’s associated with an order pa-
rameter DQPT or DQPT of type I [25]. We note that the
drastic change in the macroscopic motion concerns only the
frequency of precession and not the precession axis, therefore
the asymptotic value of the quasi-steady-state of an observable
which begins out of equilibrium remains unchanged, having
the consequence that the usual DQPT order parameters, such
as the time-averaged magnetization and the time-averaged
two point correlation function, fail at detecting this dynamical
transition.

To have a faithful identification of this DQPT, we resort
to higher-order correlation functions, in particular, OTOCs.
OTOCs are widely used in studies of out-of-equilibrium dy-
namics and information scrambling [67–69]. Recently, it has
been shown that in cases where a dynamical order parameter
might not be well-defined or is difficult to construct, the long-
time average of the OTOC can be used to dynamically detect
quantum phase transitions, be it of equilibrium or dynamical
nature [70–72]. The OTOC is defined as

FW,V (t ) = 〈Ŵ †(t )V̂ †Ŵ (t )V̂ 〉, (12)

where Ŵ (0) and V̂ are two operators which commute and
Ŵ (t = lT ) = Û †l

F Ŵ (0)Û l
F is the Heisenberg evolution of

Ŵ (0), and the average is taken on some reference initial state.
We consider the infinite time average of Eq. (12):

F∞
W,V = lim

t→∞
1

t

∫ t

0
FW,V (t ′)dt ′. (13)

We will be focusing on OTOCs with operators Ŵ (0) = V̂ =
Ŝz

S , which we denote FZ,Z (t ) and F∞
Z,Z , where the average is

taken over an infinite-temperature state ρ0 = I
N+1 . Using the

long-time average of the OTOC as a diagnostic, we will see
that the transition between non-FTC to FTC behavior can be
regarded as a DQPT, where F∞

Z,Z = 0 in the non-FTC phase
and F∞

Z,Z �= 0 inside the FTC phase.

C. Averaged classical response and mean-field phase diagram

To complement the characterization of the FTC phases
made via the spectral statistics and the OTOC, we study phase
diagrams of our FTC phases in the thermodynamic limit.
These will be constructed based on the dominant frequency
of the mean response of the system, obtained via the phase-
space average of the long-time evolution of the classical ZZ
correlation function. This correlation function is defined as

CZ
PS(l ) =

〈
lim

l→∞
CZ

l

〉
PS

=
〈

lim
l→∞

Zl Z0

〉
PS

, (14)

where Zl is the stroboscopic evolution of the z coordinate
of the mean spin and the brackets 〈.〉PS indicate phase-space
average. Furthermore, to directly observe the subharmonic
character of the system response we investigate the power
spectrum |CZ

ω |2 of the averaged correlation function, where CZ
ω

is given by

CZ
ω =

Tmax∑
l=0

CZ
PS(l )e−iωl , (15)
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FIG. 4. (a) Characterization of the 2T -FTC and (b) 3T -FTC phases in the family of models driven p-spin models. (a.1)–(b.1) Snapshot
of fZ (t ) in the long-time regime and its normalized power spectrum. A clear subharmonic response with ω/2π = 1

2 , 1
3 is observed in (a) and

(b), respectively. (a.2)–(b.2) r̃ as a function of α(h) and � in the vicinity of αB = π and αB = 2π

3 , respectively. White indicates Poisson
statistics, nonwhite indicates some degree of pair/triplet clustering of levels and indicates the region of parameters where the system behaves
as a 2T -FTC and 3T -FTC, respectively. (a.3)–(b.3) F∞

Z,Z as a function of α(h) and � in the vicinity of αB = π and αB = 2π

3 , respectively.
Green indicates F∞

Z,Z = 0, nongreen indicates F∞
Z,Z �= 0, hence the region of parameters where the system behaves as a 2T -FTC and a 3T -FTC,

respectively. Parameters are N = 1024 in (a.2) and (b.2), and N = 256, Tmax = 16 000 in (a.3) and (b.3). h = 0.1, � = 0.7, Tmax = 60 000,
N = 1024 in(a.1) and h = 0.05, � = 0.7, Tmax = 60 000, N = 1024 in (b.1).

the discrete Fourier transform of the finite-time averaged cor-
relation performed over Tmax 
 1 periods. A phase diagram
as a function of α(h) and � can then be constructed by iden-
tifying the regions in parameter space where |CZ

ω |2 presents a
peak at ω = 2π/q. The actual quantity to be computed reads

G(�,α(h)) =
{ |CZ

ω |2
max |CZ

ω |2 if arg max
ω

∣∣CZ
ω

∣∣2 = 2π
q

0 otherwise,
(16)

where the normalization is included for convenience, since
for systems with coexisting FTC phases, the 2T -FTC might
overshadow all the other phases.

As mentioned in the previous subsection, the change in
the macroscopic motion only concerns the frequency of os-
cillation, as such the asymptotic value of classical two point
correlation functions in the dynamical steady state, remains
unchanged. However, we are constructing the phase dia-
gram based on the frequency of this correlation. Furthermore,
the phase-space average will, in the absence of a single
strong global frequency, act as a classical dephasing process.
However, inside an FTC we expect a large portion of the
phase space to be populated by trajectories whose dominant
frequency is the qth subharmonic of the drive frequency.
Therefore, the existence of an non-negligible peak at ω = 2π

q
in the phase-space-averaged system response provides strong
evidence of the extensivity of the FTC under study.

V. EMERGENCE OF FLOQUET TIME CRYSTAL PHASES
AROUND BIFURCATION POINTS

In this section, we present and discuss the numerical results
which characterize the emergence of various FTC phases in

driven p-spin models. As discussed previously, these will
appear in the vicinity of the points in B(p)

bifu, the set defined
in Eq. (10). We will present results on the 1-2, 1-3, and 1-4
bifurcations and then 1-q, q � 5, higher period ones [73]. Fol-
lowing previous studies [9], we will characterize the extension
of the FTC phases in parameter space not only in the α(h)
direction but also in the direction of the interaction strength
�. Notice that, for sufficiently large �, it is known that the
kicked p-spin family transitions to chaos [49], which will lead,
unavoidably, to the system thermalizing in the long-time limit.

A. Period doubling

The 2T -FTC phase emerging at the 1-2 bifurcation in the
vicinity of αB = π is the most prominent one for all even
values of p, as the emergent symmetry agrees with the Z2

symmetry the Floquet system inherits from the time indepen-
dent Hamiltonian. In particular, the case with p = 2 recovers
the FTC phase in the LMG first discussed in Ref. [9].

In Fig. 4(a), we show the results of the characterization
of the 2T -FTC phase for two example cases with p = 2, 4.
Figure 4(a.1.1) shows a snapshot of fZ (t ), computed with
the initial state |θ, ϕ〉 = |π/5, 0〉 in the long-time limit. The
period doubled oscillation is clearly seen for both cases of
p = 2 and p = 4, indicated by circles and triangles, respec-
tively. Figure 4(a.1.2) shows the normalized power spectrum
of fZ (t ), displaying the clear peak at ω = 2π

2 , accordingly
to the subharmonic response of the system in the 2T -FTC
phase. The extension and robustness of these 2T-FTC phases
are studied in the subsequent figures. Figure 4(a.2) shows
the normalized mean adjacent spacing ratio r̃(α(h),�) in the
vicinity of αB = π for systems with p = 2, 4, respectively.
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The nonwhite areas indicate the parameter region where the
spectral statistics deviates from that of a Poisson distribution
due to large degeneracies by pairs in the spectrum of Û 2

F .
Finally, Fig. 4(a.3) shows the long-time average of the OTOC
F∞

Z,Z (�,α(h)) for systems with p = 2, 4. The green area indi-
cates F∞

Z,Z = 0 and thus the non-FTC phase, whereas nongreen
area indicates F∞

Z,Z �= 0 thus the FTC phase.
At small values of �, the phase boundary of the FTC is

essentially a straight line with a slope proportional to �, as
can be seen in Fig. 4(a.2). At larger values of �, the shape
of this boundary becomes more complicated, however, it can
be computed using the APM in the mean-field limit. We
give an example for the system with p = 2 in Appendix A.
The extent of the 2T -FTC phase in the direction of � is,
in principle, unconstrained and there will always be a nar-
row strip of the FTC phase around αB in the limit � → ∞.
This can be understood from the fact that the Floquet sys-
tem at α(h) = αB is fully integrable and never transitions to
chaos. In fact, the largest Lyapunov exponent in the limit of
strong chaos (thermal regime) is given by λ+(α(h),�, p) =
ln[�(p − 1) sin(α(h))] − (p − 1) (see Ref. [49] for details).
Hence, as α(h) → π one requires � → ∞ to give λ+ > 0.
This fact is illustrated in Figs. 4 a.2,a.3 (also Fig. 6) where the
region of the FTC phase appears to extent indefinitely in the
� direction. This is a feature only of the 2T -FTC phase and
its emergence in the vicinity of αB = π , and is not present in
the other FTCs present in this system.

B. 1-3 bifurcation

As discussed in Sec. III, we can go beyond period dou-
bling FTCs by setting αB = 2π

3 leading to a 1 : 3 resonance
and identifying for which models a significant period-tripling
bifurcations takes place, i.e., for which model 2π

3 ∈ B(p)
bifus.

The first of those models corresponds to p = 3, the second
and third ones have p = 5, 6, respectively. We illustrate the
characteristic period tripling behavior of this phase using the
systems with p = 3, 6 in Fig. 4(b). In Fig. 4(b.1.1), we show a
snapshot of fZ (t ) computed with the initial state |φ0〉 = |0, 0〉,
where dots and triangles show p = 3, 6 respectively. The pe-
riod tripling behavior is manifested in the normalized power
spectrum of fZ (t ) in Fig. 4(b.1.2), where the peak is locked at
ω = 2π

3 for both cases.
The extension of the phase in parameter space is in-

vestigated using the normalized average level spacing ra-
tio r̃(�,α(h)) and the long-time average of the OTOC
F∞

Z,Z (�,α(h)). In Fig. 4(b.2), we show r̃(�,α(h)) in the
vicinity of the bifurcation point, where white areas indicate
Poisson statistics and nonwhite areas indicate deviations from
Poisson statistics, which we connect to the presence of FTC
behavior. Notice that the FTC phase for the system with p = 3
in Fig. 4(b.2.1) is highly constrained, as chaos emerges around
this value of α(h) fairly rapidly [49], erasing any footprint of
the locked subharmonic periodic behavior. On the other hand,
for the system with p = 6 the phase is wider in both the α and
� directions. For this case, the system gains stability thanks to
the Z2 symmetry of the even p spin systems, and the period-3
bifurcation is double, thus being structurally similar to a 1-6
bifurcation. The FTC phase extends to larger values of � since
higher values of p have a delayed emergence of global chaos

[49]. The long-time average of the OTOC in Fig. 4(b.3) shows
very good agreement with the results of r̃ for the 3T -FTC
phase. Here green indicates non-FTC behavior and nongreen
indicates FTC behavior.

C. 1-4 bifurcation

Following the discussion in Sec. III, models where 2π
4 ∈

Bbifus host a 4T -FTC phase in the vicinity of αB = 2π
4 . We

fix the angle of the drive at this value and investigate the
emergence of this phase with two exemplary systems with
p = 4, 6. Figure 5(a.1.1) shows, for the initial state |θ, ϕ〉 =
|π/5, 0〉, a snapshot of fz(t ) in the long-time limit, revealing
the period quadrupling behavior (circles and triangles indicate
p = 4, 6, respectively). Correspondingly, Fig. 5(a.1.2) shows
the normalized power spectrum of fZ (t ), displaying a clear
peak at the subharmonic frequency ω = 2π

4 in both cases.
The extension of this FTC phase in parameter space is

investigated with both the normalized average level spacing
ratio r̃(�,α(h)) and the long-time average of the OTOC
F∞

Z,Z (�,α(h)). The normalized spectral statistics indicator
shows a region in parameter space associated with the
4T -FTC phase, which grows in the � direction as we increase
the value of p, compare Fig. 5(a.2.1) (p = 4) and Fig. 5(a.2.2)
(p = 6), here white indicates Poisson statistics and nonwhite
indicate a value deviating from Poisson statistics which we
associate with some degree of level clustering by quartets. The
long-time average of the OTOC is shown in Fig. 5(a.3) for
the systems with p = 4, 6, respectively. Here green indicates
F∞

Z,Z = 0 and nongreen indicates F∞
Z,Z �= 0. Notice that F∞

Z,Z
agrees with r̃ on the region they associate with signatures of
a 4T -FTC. We point out that these two indicators identify
very well the finite-size phase diagram of our FTC phases,
regardless of the period of the phase.

An important issue arises here. Could we have identified a
4T − FTC for a system with p = 2? As mentioned in Secs. I
and III, APMs naturally develop resonances, a simple way of
identifying them is via the resonance conditions associated
with a delta-kicked Hamiltonian. Thus, one could define FTC
phases (or, rather, their precursors) using those resonances.
However, the requirement of a global Zq dynamical symme-
try is usually not satisfied. This is the case for p = 2 when
one tries to define a 4T -FTC at at the resonance condition
αB = 2π

4 . We discuss this case in more detail in Appendix E.

D. Higher-order bifurcations

So far, we have discussed FTC phases up to period qua-
drupling. However, higher period FTC phases are accessible
provided we work with a system with large enough p-body
interactions. A given kicked p-spin will always have a 1-p
bifurcation at αB = 2π

p , whose vicinity can be used to define a
pT -FTC phase. Additional qT -FTC phases with q < p could
be defined, in the vicinity of the appropriate value of αB, if
αB = 2π

q ∈ Bbifu.
Let us consider the system with p = 6, whose lower period

FTC phases have been analyzed in the previous subsections.
We focus on values of α(h) in the vicinity of αB = 2π/6,
pointing at which the corresponding mean-field system has
a 1-6 bifurcation. The response of the system is characterized
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FIG. 5. (a) Characterization of the 4T -FTC and (b) 6T -FTC phases in our family of models. (a.1)–(b.1) Snapshot of fZ (t ) in the long
time and its normalized power spectrum. A clear subharmonic response with ω = 1

4 , 1
6 is observed in (a) and (b), respectively. (a.2)–(b.2) r̃

as a function of α(h) and � in the vicinity of αB = 2π

4 and αB = 2π

6 , respectively. White indicates Poisson statistics, nonwhite indicates some
degree of quartets/sextets clustering of levels and indicates the region of parameters where the system behaves as a 4T -FTC and 6T -FTC,
respectively. (a.3)–(b.3) F∞

Z,Z as a function of α(h) and � in the vicinity of αB = 2π

4 and αB = 2π

6 , respectively. Green indicates F∞
Z,Z = 0,

nongreen indicates F∞
Z,Z �= 0, hence the region of parameters where the system behaves as a 4T -FTC and a 6T -FTC, respectively. Parameters

are N = 1024 in (a.2) and (b.2) and N = 256, Tmax = 16 000 in (a.3) and (b.3). h = 0.05, � = 0.7, Tmax = 60 000, N = 1024 in (a.1) and
h = 0.05, � = 1.0, Tmax = 60 000, N = 1024 in (b.1).

using fZ (t ) for an initial state of the form |θ, ϕ〉 = |π/10, 0〉.
Figure 5(b.1.1) shows a snapshot in the long-time limit of
this response, where a clear six-periodic oscillation can be
observed. To complement this observation, we look at the
normalized power spectrum of the fZ (t ) signal in Fig. 5(b.1.2),
showing a clear peak at the frequency ω = 2π/6, signaling a
6T -FTC.

To investigate the extension of this FTC phase in parameter
space, we look at both the average adjacent level spacing
ratio r̃(�,α(h)) and the long-time average of the OTOC
F∞

Z,Z (�,α(h). In Fig. 4(b.2.1), the spectral statistics indica-
tor is shown, where nonwhite areas indicate deviation from
Poisson statistics providing evidence for the level clustering
by sextets, a signature of the onset of the 6T -FTC phase. In
Fig. 5(b.3.1), the long-time average of the OTOC is shown.
Here, green indicates F∞

Z,Z = 0 and nongreen indicates F∞
Z,Z �=

0, signaling nonFTC and FTC phases, respectively.
We close the analysis of finite-size systems by stressing

that the two indicators proposed here, one based on the spec-
tral statistics of the appropriate power of the Floquet operator
and the other based on the behavior of the OTOC, have shown
to provide excellent characterizations of the non-FTC–FTC
phases. These two indicators are also complementary, as the
first one is purely kinematic and the second one purely dy-
namic, providing then interesting tools for the characterization
of FTC phases in systems beyond the p-spin models studied
here.

E. Emergent FTC phases in the thermodynamic limit

The results in previous subsections characterize the emer-
gent FTC phases for finite system sizes. In this subsection,

we will construct the phase diagram of the different FTC
phases directly in the thermodynamic limit for kicked p-spin
models up to p = 6. For these models, this can be done simply
by solving numerically the nonlinear classical equations of
motion for the magnetizations (X,Y, Z ). From this, we can
compute the measure G(�,α(h)) introduced in Sec. IV C. In
the following, we show results where the phase-space average
was done using a uniform grid on the sphere with 14 000
points and evolution times going up to Tmax = 16 000.

Results are shown in Fig. 6. In all cases with even p, the
2T -FTC phase emerging around αB = π is robust in the �

direction. As pointed out previously, for this angle of the drive
the system never transitions to chaos and thus the system
avoids thermalization in the long-time limit (see discussion in
Sec. V A). The 4T -FTC phase in the system with p = 4 exists
up to � ∼ 5 as it is then that the system becomes globally
chaotic [49]. On the other hand, as we increase p the 4T -FTC
phase gains in extension along the � direction, since higher
values of p delay the emergence of global chaos in this family
of models [49].

Some other important observations can be drawn from
these results. For the models with odd values of p, FTC
phases tend to be highly constrained [notice the extent of
the horizontal axis in Figs. 6(b) and 6(d) with respect to the
rest]. For instance, for p = 3 the model hosts a 3T -FTC phase
around αB = 2π

3 , however, the poles at the bifurcation point
are unstable and chaos emerges fairly rapidly for this model
around this value of the angle of the drive. In fact, as seen in
Fig. 6(b) the phase only goes up to � ∼ 1.5. The 3T -FTC
phase in the model with p = 5 is essentially identical to that
in the model with p = 3, whereas the 5T -FTC is narrower
in the direction of α. This phenomenon keeps occurring as
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FIG. 6. Phase diagrams of the different FTC phases in the mean-
field limit constructed using G(�,α(h)) defined in Eq. (16), for the
kicked p-spin systems with p = 2, 3, 4, 5, 6 in (a)–(e), respectively.
Notice the correspondence between the observed phases and the set
of resonant-bifurcation points B(p)

bifu.

p becomes larger in the models with odd p’s. Finally, the
3T -FTC phase in the system with p = 6 is structurally sim-
ilar to the 6T -FTC phase, see Fig. 6(e). This is due to the
fact that the APM of the kicked p-spin, A[Xl ; α(h),�, p],
is a double reversible map for models with even p [46,49],
in other words, the inherited Z2 symmetry imposes special
constraints to bifurcations which have odd periods, in this case
they are double, meaning that one observes the emergence
of two 1 : 3 resonances looking structurally identical to a
single 1 : 6 resonance. Finally, we highlight the resemblance
between the finite-size phase diagrams constructed with the
spectral statistics indicator and the long-time average of the
OTOC, and shown in Figs. 4 and 5, with those constructed for
the systems in the N → ∞ thermodynamic limit, discussed in
the present subsection and shown in Fig. 6.

VI. TIME CRYSTAL SWITCHING

In this section, we propose a family of protocols that
enable us to switch the system response between different
FTC phases by quenching a parameter of the Hamiltonian
in time, but in a nonperiodic way. In previous sections, we
considered the rotation angle αB in Eq. (6) as the parameter
that tunes between different FTC phases for a given value of
p. In particular, we discussed how setting αB at or near one
of the values in the set B(p)

bifu lead to a particular FTC phase.
As discussed in the previous sections, the set B(p)

bifu has more
than one element for all p > 3. Physically, this implies that
for a given p the same family of initial states (localized within
the ferromagnetic well), one obtains a robust subharmonic
dynamical response of the system with a period that depends
only on the choice of αB. Interestingly, from a physical point

view, αB can be regarded as the strength of an external field,
which is applied to the system as a train of periodic pulses. So,
we propose a control scheme in which this parameter changes
in time to switch, on the fly, the subharmonic response of the
system from one phase to the other. The easiest protocol that
can achieve this is a sudden change, or quench, from, say, α

(1)
B

to α
(2)
B happening at a some time t = mT , with arbitrary m ∈

N and α
(i)
B ∈ B(p)

bifu. We call this scheme time crystal switching.
For concreteness, consider p = 4, which is the simplest

case that can host this behavior. As discussed in previ-
ous sections and illustrated in Fig. 2, in this case we
have that B(p=4)

bifu = {π, π
2 }, leading to a period-doubling and

period-quadrupling FTC phase, respectively. The time crystal
switching protocol involves preparing an initial fully polarized
state with extensive support inside the region enclosed by the
separatrix, driving the system with a train of m pulses at an an-
gle α

(1)
B = π , and then quenching the field to produce an angle

α(2) = π
2 . The resulting dynamics is shown in Figs. 7(a) and

7(b), where the sudden change of the subharmonic response
of the system from ω = 2π

2 to ω = 2π
4 can be clearly seen.

As we increase the value of p, the richness of the available
protocols increases substantially. We illustrate this for the case
of p = 6, in which the set of available values of αB hosting
FTC phases is B(p=6)

bifu = {π, 2π
3 , π

2 , π
3 }. We can then consider

a variety of possible protocols. In a first example, we take the
usual initial stretched state along the z − axis |ψ0〉 = |S, S〉
and choose to quench αB in time in the sequence 2π

3 → 2π
4 →

2π
6 . The results can be seen in Figs. 7(c)–7(e), where we

observe how the system switches from a 3T -FTC to a 4T -FTC
and finally to a 6T -FTC. As a final illustration, we consider
a more intricate protocol where, for the same initial state,
we now quench αB in the sequence: π → 2π

3 → 2π
4 → 2π

6 .
Again, we observe a clear transition between different FTCs,
first with period 2 to 3, then 3 to 4, and finally 4 to 6.
Note that, although the switching process introduces a small
amount of modulation and thus some heating, reflected in the
emergence of small broadening of each of the subharmonic
peaks in Figs. 7(b), 7(e) and 7(j), the system remains locked
to the appropriate frequency of each of the FTC phases it is
switching into.

We stress that even though the feasibility of this proto-
col follows naturally from the description of FTC phases in
terms of classical APMs, from a physical point of view it is
enabled by a set of unique properties of the kicked p-spin
models, which we have described extensively in this paper:
(i) increasing the degree of interaction p leads to many differ-
ent FTC phases with different periods mT , with m � p, (ii)
the subharmonic response is seen for an extensive family of
initial states, which is roughly independent of the particular
FTC phase, and determined by the equilibrium properties of
the underlying p − spin Hamiltonian, and (iii) the parameter
controlling the period of the FTC phase, αB, can be regarded
as produced by an external magnetic field, which in principle
can be tuned in time in a way that is independent of the
details of the interacting many-body system. We consider that
these time crystal switching protocols are just a particular
example of a more general class of control schemes in Flo-
quet systems which could lead to responses beyond the usual
FTC phases.
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FIG. 7. (a), (b) Time crystal switching in the system with p = 4. (a) Example of fZ (t ) at the switching moment between a 2T -FTC and
a 4T -FTC. (b) Normalized power spectrum of fZ (t ). We can immediately identify the two subharmonic frequencies which take part in the
system response, ω = 1

2 and ω = 1
4 . (c)–(e) Example of time crystal switching in the system with p = 6, involving a 3T -FTC, a 4T -FTC, and

a 6T -FTC. (c), (d) Examples of fZ (t ) showing the switching between 3T -FTC to 4T -FTC and between 4T -FTC and 6T -FTC. (d) Normalized
power spectrum of fZ (t ) displaying three clear peaks at the subharmonic frequencies which take part in the system response. (f)–(i) Examples
of switching in the system with p = 6, showing switching between 2T -FTC and 3T -FTC, between 3T -FTC and 4T -FTC, between 4T -FTC
and 6T -FTC, and between 6T -FTC and 4T -FTC, respectively. (j) Normalized power spectrum of fZ (t ) showing four clear peaks at the
subharmonic frequencies appearing in the system response. The dashed vertical lines are guides for the eye and they signal the different
subharmonic frequencies of the FTC phases we switch between. Paramters are h = 0.02 in (a), (b) and h = 0.01 in (e)–(j), � = 0.7, and
N = 1024.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have shown that periodically driven
p-spin models can host a wide variety of mean-field FTC
phases showing robust subharmonic responses with period
mT , where m is as low as 2 and as high as p, and T is the
period of the drive. The dynamics of these models can be
treated exactly in the thermodynamic limit via its mean-field
description, which takes the form of an APM, i.e., the clas-
sical dynamical systems analog of a Floquet map. We have
identified the precursor of the subharmonic response of the
system as the existence of a resonance in the APM, that is, a
parameter regime in which an integer number of periods of the
drive fits exactly in one natural cycle of the undriven system.
Then we have discussed how bifurcations at these resonance
points explain the major structural changes in phase space
which accompany the emergence of dynamical symmetries

leading to an FTC phase. In particular, the emergence of a
global q-fold rotational symmetry of phase space can be con-
sidered as one of the defining characteristics of FTC phases
[6]. Finally, we have shown that the degree of the multibody
interaction p determines which of these resonant bifurcations
will ultimately lead to a proper FTC phase in the driven
system, highlighting the key role played by the multibody
interaction in the studied mean-field FTC phases.

Using the insight provided by the mean-field analysis,
we have predicted and extensively described FTC phases in
driven p-spin models in the quantum regime and showed that
the subharmonic response is robust to parameter variations
even for finite system sizes. We have shown that systems
with p > 3 can host several FTC phases, and that phases with
higher periods are less robust to parameter variations. In all
cases, however, we have identified a finite parameter regime
for which the phases survive in the thermodynamic limit.
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In the quantum regime, we have proposed a number of
static and dynamical indicators to characterize the emergence
of FTC phases. On one hand, we have analyzed the emergence
of clustering in the spectrum of Floquet eigenphases as a
signature of the emerging eigenstate ordering. Furthermore,
we have argued that in the mean-field models this ordering
can be identified with a clustering ESQPT of the effective
Hamiltonian associated with Û q

F . Conversely, we have shown
that the nonFTC-FTC transition can be described as a DQPT.
Following recent works [70–72], we used the long-time aver-
age of OTOCs to detect such transition.

The results presented here open several several different
avenues of future research. One of them is to explore in
more detail the connection between multibody interactions
and higher-order FTC phases, beyond the mean-field regime.
A path forward in this direction is to consider many-body
models with finite-range multibody interactions. Even without
driving, breaking the natural permutation symmetry present
in the p-spin models will break the integrability of the sys-
tem, and most studies so far have been focused on p = 2,
which has a natural connection to ion-trap quantum simulators
[4,25,74,75]. For the case with driving, not much is known
even for p = 2. Going beyond the mean-field regime would
also enable one to explore the relation between the behavior
observed here and so-called many-body resonances reported
in Ref. [76], which correspond to parameter regimes in which
an otherwise ergodic driven quantum system fails to thermal-
ize and shows long-lived temporal correlations.

As a side note, even though in this paper we have been
concerned with breaking of the discrete time-translation in-
variance, the relation we have found between the large-period
FTCs and the order of the many-body interaction bears an
interesting resemblance to previous results on continuous time
crystals. In Ref. [77], the authors found that some long-range
interacting spin-1/2 models could lead to the desired symme-
try breaking (bypassing the no-go theorem previously proven
in Ref. [78]). The required Hamiltonian is intrinsically non-
local and contains p-body interactions, however, p ∼ N in
that case, as opposed to p � N in the cases discussed in the
present paper.

Finally, another natural extension of the present paper is
to explore more general control protocols in Floquet systems
which can host more than one FTC phase as a control parame-
ter is varied. In this paper, we have explored a simple protocol
where the control parameter is quenched between the values
corresponding to different phases. However, more general
schemes could be deviced; for instance, a slow, quasiadiabatic
passage between those two values. These protocols could lead
to interesting responses of the system beyond the time crystal
switching shown in Sec. VI.
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APPENDIX A: CLASSICAL EQUATIONS OF MOTION

In this Appendix, we give explicit expressions for the
equations of motion of the classical flow associated with the
undriven system and the APM associated with the Floquet
system.

The phase-space flow associated with Eq. (2) can be ob-
tained from the Heisenberg equations of motion of Ŝ and
in the limit S → ∞ assuming all correlations factor, that is,
〈ÂB̂〉 = 〈Â〉〈B̂〉. After those steps, the equations of the flow
are

dX

dt
= �Z p−1Y, (A1a)

dY

dt
= hZ − �Z p−1X, (A1b)

dZ

dt
= −hY. (A1c)

The classical equations associated with the kicked evolution in
Eq. (7) are obtained from the classical limit of the Heisenberg
evolution of Ŝ, that is, Ŝl+1 = Û †l

F ŜlÛ l
F , and they are given by

Xl+1 = cos
(
�Z p−1

l

)
Xl − sin

(
�Z p−1

l

)
Yl , (A2a)

Yl+1 = [
sin

(
�Z p−1

l

)
Xl + cos

(
�Z p−1

l

)
Yl

]
cos (α(h))

− sin (α(h))Zl , (A2b)

Zl+1 = [
sin

(
�Z p−1

l

)
Xl + cos

(
�Z p−1

l

)
Yl

]
sin (α(h))

+ cos (α(h))Zl . (A2c)

To find the bifurcation points of the poles X ± 1, we evaluate
the tangent map of Eqs. (A2) at the fixed point. We find two
different situations, when p = 2 the eigenvalues read

A±(�,α(h)) = ±� sin(α(h)) + 2 cos(α(h))

2

± 1

2

√
(∓� sin(α(h)) − 2 cos(α(h)))2 − 4,

(A3)

for all the other models with p > 2, the eigenvalues read

A±(α(h)) = e±iα(h), (A4)

thus the models with p > 2 the poles undergo a d-q bifur-
cation anytime α(h) = 2πd

q , with d , q relative primes and
q � 2. Further details of stability calculations can be found
in Ref. [49].

Before finishing this Appendix, let us comment on an
additional calculation which the eigenvalues above and the
resonance Hamiltonian in Eq. (9) allow us to do. We can
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FIG. 8. Classical phase diagram for the 2T -FTC in the p =
2 system. The white continuous line shows the phase boundary
constructed using Eq. (A6). This expression provides an excellent
approximation to the phase boundary.

estimate the boundary of the FTC phases in the thermody-
namic limit. Let us illustrate this with the case of the 2T -FTC
in the p = 2 system. For this particular FTC phase, we take
α(h) = π + h and look for conditions such that in Eq. (A3)
are a real number, that is, the fixed point is hyperbolic, hence
its separatrices enclose a 1 : 2 resonance. We find

h(p=2)
2T −FTC = arctan

(
4�

4 − �2

)
. (A5)

We can now write the boundary of this phase as given by the
curves

α(�) = π ± 1

2
arctan

(
4�

4 − �2

)
, (A6)

where we have included a factor of 1
2 accounting for the fact

that time is being measured in steps of two. To illustrate how
well the above expressions approximate the boundary of the
2T -FTC phase in the p = 2 system, we show in Fig. 8 the
corresponding phase diagram with Eq. (A6) on top (white
solid line).

APPENDIX B: SPINODAL, GROUND STATE CRITICAL
AND DYNAMICAL CRITICAL POINTS

IN THE p-SPIN FAMILY

The starting point for the computation of spinodal and
critical points is the semiclassical energy function in Eq. (3)
constrained to the x − z plane, as it is in this plane where it
develops new extreme values. We thus have

E (Z; h,�, p) = −h
√

1 − Z2 − �

p
Z p. (B1)

This equation has two extreme points at X = ±1. New ex-
treme points are solutions of the implicit equation

Z = W (p)Z p−1
√

1 − Z2, (B2)

where W (p) = �
h . For the calculation of each of the three

points of interest, we need to find a complementary equa-
tion to Eq. (B2), such that the resulting system of coupled
equations has a solution.

In the case of the spinodal point, we define

g(Z;W, p) = W (p)Z p−1
√

1 − Z2, (B3)

and notice that the spinodal point corresponds with a bifur-
cation point of the above equation, thus the complementary
equation is given by dg

dZ = 1, that is,

(p − 1)W (p)Z p−2
√

1 − Z2 − W (p)Z p

√
1 − Z2

= 1. (B4)

Additionally, from Eq. (B2) one has

W (p) = 1

Z p−2
√

1 − Z2
. (B5)

Plugging this value in Eq. (B4) and solving for Z , then using
the found value of Z to solve for W , we find the solutions

Zspino =
√

p − 2

p − 1
, Wspino(p) =

√
(p − 1)p−1

(p − 2)p−2
. (B6)

which is the same vale as the one in Eq. (4) in the main text.
For the ground-state critical point, the complementary

equation can be found by equating Eq. (B1) to the energy of
the paramagnetic ground state X = 1, that is,√

1 − Z2 + W (p)

p
Z p = 1, (B7)

by substituting Eq. (B4) in the above equation and solving
for Z , then using the found value to solve for W , we find the
solutions

ZGS =
√

p(p − 2)

(p − 1)2
, WGS(p) = (p − 1)p−1√

(p(p − 2))p−2
, (B8)

which is the same value in Eq. (5) in the main text.
The complementary equation in the case of the dynamical

critical point is obtained by equating Eq. (B1) to the energy of
the DQPT initial condition Z = 1, that is,

p

W (p)

√
1 − Z2 + Z p = 1. (B9)

Substituting Eq. (B4) in the above expression, we find the
algebraic equation for the z position of the DQPT critical
point:

Z p −
(

p

p − 1

)
Z p−2 + 1

p − 1
= 0. (B10)

For the models with even values of p, Z = ±1 are two solu-
tions of this equation, and for systems with odd values of p,
Z = 1 is a solution to this equation. Thus we can make use of
these known solutions and reduce the degree of the algebraic
equation, allowing us to solve it analytically up to p = 6. We
find for p = 3:

ZDQPT =
√

3 − 1

2
, WDQPT = 2

√
2

(
√

3 − 1)
√√

3
; (B11)

for p = 4,

ZDQPT = 1√
3
, WDQPT = 3

√
3√

2
; (B12)
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for p = 5,

ZDQPT = 1

4
(

√
5 + 4

√
5 − 1), (B13a)

WDQPT = 128
√

2

(5 + 4
√

5)3/2

√
5 − 2

√
2 +

√
5 + 4

√
5

; (B13b)

and for p = 6,

ZDQPT = 1√
10

√
1 +

√
21, (B14a)

WDQPT = 50
√

10

(11 + √
21)

√
9 − √

21
. (B14b)

For values of p > 6, one can then solve Eq. (B10) numerically
and find the exact value of the DQPT critical point. We offer
here a way of estimating this critical point, which becomes
exact in the limit p 
 1. We are going to study the properties
of Eq. (B10), to do so we define

h(Z; p) = Z p −
(

p

p − 1

)
Z p−2 + 1

p − 1
. (B15)

Note that h(0, p) > 0 for all p � 2, and h(1, p) = 0 thus Z =
1 is always a root. Now, if there is a value Zmin, 0 < Zmin < 1,
such that h(Zmin, p) is a minimum and h(Zmin, p) < 0, then
there is always another value ZDQPT, 0 < ZDQPT < 1, which is
a root of h(Z; p), and monotonicity of h(Z; p) in the interval
Z ∈ [0, Zmin] implies that 0 < ZDQPT < Zmin < 1.

Now, the extreme points of h(Z; p) are solutions of

Z p−3

(
pZ2 − p

p − 2

p − 1

)
= 0, (B16)

thus the point Z = 0 is an extreme value only if p > 3; the

other extreme values have the form Z∗ = ±
√

p−2
p−1 . The latter

gives d2h
dZ2 |Z∗ > 0, i.e., it is always a minimum.

Given that Z = 0 is a maximum or a saddle and point Z∗
is always a minimum, it is true that there is a point Zinfle, the
inflection point, such that 0 < Zinfle < Z∗ < 1, at which the
concavity of h(Z; p) changes. This point is a solution of d2h

dZ2 =
0 and is given by

Zinfle =
√

(p − 2)(p − 3)

(p − 1)2
, (B17)

and h(Zinfle; p) > 0, thus we have 0 < Zinfle < ZDQPT < Z∗ <

1, that is, the inflection point is a lower bound to ZDQPT.
Finally, we know that h(Z; p) < 0 for all Z ∈ [ZDQPT, 1],

with a minimum at Z∗. If h(Z; p) were to be symmetric
around Z∗ in this interval, then the root ZDQPT will be given
by ZDQPT = 1 − 2(1 − Z∗). However, an inspection of h(Z; p)
reveals its asymetric character in the interval of interest. Thus,
the above value is not the desired root but some approximation
to it, we denote it Z∗

DQPT,

Z∗
DQPT = 2

√
p − 2 − √

p − 1√
p − 1

, (B18)

and h(Z∗
DQPT; p) < 0, thus this constitutes an upper bound to

the desired root ZDQPT. Collecting the different points, we

have the following chain of inequalities:

0 < Zinfle < ZDQPT < Z∗
DQPT < Z∗ < 1. (B19)

From here we approximate the z position of the DQPT critical
point and the arithmetic mean between the lower and upper
bounds, ZDQPT ≈ 1

2 (Zinfle + Z∗
DQPT), giving

ZDQPT ≈ 2
√

(p − 1)(p − 2) + √
(p − 2)(p − 3) − (p − 1)

2(p − 1)
,

(B20)

which is true if p > 6. We note that the error between the
above expression and the numerical solution of Eq. (B10) is
∼10−3 for p = 7 and decreases from there as a function of p.
From here, we obtain WDQPT(p) as

WDQPT(p > 6) ≈ 1

Z p−2
DQPT

√
1 − Z2

DQPT

, (B21)

where ZDQPT is given in Eq. (B20).

APPENDIX C: RESONANT HAMILTONIAN
AND EMERGENT SYMMETRIES

In this Appendix, we present the details of the derivation of
the resonant Hamiltonian in Eq. (9). We also present the de-
tails of the derivation of the resonant Hamiltonian associated
with the APM in the vicinity of the poles.

For the resonant Hamiltonian in Eq. (9), the starting point
is the delta-kicked Hamiltonian:

Ĥ (t ) = −αBŜx − �

pSp−1
Ŝ p

z

∞∑
n=−∞

δ(t − n). (C1)

We will work at a resonance condition, that is, we take αB =
2π
q with q an integer. As mentioned in Sec. III B, at a reso-

nance condition the delta-kicked Hamiltonian can be brought
into the form Ĥ (t ) = Ĥreso + V̂ (t ). To show this, we go to the
frame rotating with the precession part of Eq. (C1), that is,
interaction picture with respect to −αBŜx. We then have

ˆ̃H (t ) = − �

pSp−1
(cos(αBt )Ŝz − sin(αBt )Ŝy)p

∞∑
n=−∞

δ(t − n).

(C2)
At a resonance condition, the system has undergone a full

precession after exactly q time steps. So, let us count kicks in
groups of q, i.e.,

∞∑
n=−∞

δ(t − n) =
q∑

j=1

∞∑
l=−∞

δ(t − (lq + j)). (C3)

The idea is then to replace the kicking at every step with H̃ (t )
with a kicking every q steps with some other Hamiltonian
H̃q(t ). The main contribution for this operator will be given
by

H̃q(m) =
∫ mq

(m−1)q
H̃ (t )dt . (C4)
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We now compute the integral using that αB = 2π/q:∫ mq

(m−1)q
(cos(αBt )Ŝz − sin(αBt )Ŝy)pδ(t − lq − j)dt

= (
cos (αB(mq + j))Ŝz − sin (αB(mq + j))Ŝy

)p

=
(

cos

(
2π

q
j

)
Ŝz − sin

(
2π

q
j

)
Ŝy

)p

. (C5)

We then get

H̃q(m) � �

pSp−1

q∑
j=1

(ÔY Z · 	e j )
p, (C6)

which is independent of m up to this order, and where ÔY Z =
(Ŝy, Ŝz ) is the projection of the collective spin onto the y-z
plane, and 	e j = (− sin( 2π

q j), cos( 2π
q j)) are the vertices of a

q-regular polygon. Replacing this into Eq. (C2), we have

H̃ (t ) �
∞∑

m=−∞
H̃q(m)δ(t − mq). (C7)

Then we write the Dirac comb defined by the sum over the
m index in its Fourier series representation, that is,

∞∑
m=−∞

δ(t − mq) = 1

q

∞∑
m=−∞

ei 2π
q mt

, (C8)

and by isolating the term with m = 0 on the right-hand side of
Eq. (C8), we can write

∞∑
m=−∞

ei 2π
q mt = 1 + 2

∞∑
m=1

cos

(
2π

q
mt

)
. (C9)

Finally, by substituting Eqs. (C3), (C8), and (C9) into
Eq. (C7), we obtain the desired Hamiltonian:

ˆ̃H (t ) = − �

qpSp−1

q∑
j=1

(ÔY Z · 	e j )
p

− 2�

qpSp−1

q∑
j=1

(ÔY Z · 	e j )
p

∞∑
m=1

cos

(
2π

q
mt

)
. (C10)

The Hamiltonian in Eq. (C10) is in the desired form, with the
resonant Hamiltonian as given in Eq. (9) in the main text.

Around the poles, the map in Eqs. (A2) can be simplified
in the following form, considering Z → v and Y → u with
u, v � 1, and X = ±1 + √

u2 + v2 ≈ ±1, then we have:

u′ = [u ± �vp−1] cos(α(h)) − sin(α(h))v, (C11a)

v′ = [u ± �vp−1] sin(α(h)) + cos(α(h))v, (C11b)

and we can associated a delta-kicked Hamiltonian to this
mapping. It is given by

Ĥ (t ) = 1

2
α(h)(u2 + v2) ± �vp−1

∞∑
n=−∞

δ(t − n). (C12)

From now on, we will consider the system to be at a reso-
nance condition, that is, we take α(h) = αB = 2π

q with q and
integer. Let us now change variables to polar coordinates, u =

ρ cos(ϕ), v = −ρ sin(ϕ), with ρ2 = u2 + v2 ∼ 0 the radius of
the orbit around the pole, we then rewrite Eq. (C12) as

Ĥ (t ) = αBI ± (−1)p�(ρ sin(ϕ))p
∞∑

n=−∞
δ(t − n), (C13)

where I = 1
2ρ2. We now move to a frame rotating with fre-

quency αB, using a canonical transformation generated by the
generating function F = (ϕ − αBt )J , where the new variables
are ν = ϕ − αBt , J = I . In this frame, the Hamiltonian takes
the form

Ĥ (t ) = ±(−1)p�(ρ sin(ν + αBt ))p
∞∑

n=−∞
δ(t − n), (C14)

and using the same identities for the Dirac comb in Eqs. (C3),
(C8), and (C9) into Eq. (C14), we obtain

Ĥ (t ) = ± (−1)p�

q

q∑
j=1

(−	ρ · 	e j )
p

± (−1)p2�

q

q∑
j=1

(−	ρ · 	e j )
p

∞∑
m=1

cos

(
2π

q
m(t − j)

)
,

(C15)

where 	ρ = (v, u) and 	e j = (cos( 2π
q j),− sin( 2π

q j)). Before

moving on, let us mention in what sense the terms V̂ (t ),
both in Eqs. (C10) and (C15), can be treated as a small
perturbation. Although Ĥreso and V̂ (t ) have the same order of
magnitude (∼�), and thus there is no a small perturbation
parameter, the minimal frequency of harmonics in V̂ (t ) is
q, if the dynamics driven by Ĥreso occurs at a characteristic
frequency �(reso)

q = �
q � q, then V̂ (t ) can be regarded as a

high-frequency perturbation and all terms beyond m ≈ 1, 2
can be in principle ignored, were the effect of the terms we
kept should be understood as in the principle of averages (see
Chap. 3 of Ref. [79]).

APPENDIX D: DENSITY OF STATES FOR THE KICKED
p-SPIN IN THE VICINITY OF A POINT IN B(p)

bifu

In this Appendix, we use the techniques introduced in
Ref [62] to compute the density of states for the kicked p-spin
model in the vicinity of a point in B(p)

bifu. This is done by
considering the effective Hamiltonian of Û q

F .
We focus on the situation of a value of αB ∈ B(p)

bifu such
that the resulting FTC phase has period q. Then the Floquet
operator of interest is the one driving the dynamics forward by
q steps, that is, Û q

F . As mentioned in Sec. IV A, the effective
Hamiltonian, provided � is small and V̂ (t ) can be regarded as
a high-frequency perturbation, is given by

Ĥeff = hŜx + �

qpSp−1

q∑
j=1

(ÔY Z · 	e j )
p, (D1)

where ÔY Z , 	e j defined as in Eq. (C10). The semiclassical
energy associated with the effective Hamiltonian in the limit
s → ∞ and defining classical variables as X = 〈γ | Ŝeff

S |γ 〉,

023018-17



MUÑOZ-ARIAS, CHINNI, AND POGGI PHYSICAL REVIEW RESEARCH 4, 023018 (2022)

with |γ 〉 a spin coherent state, is given by

E (γ , γ ∗) = 〈γ | Ĥeff

S
|γ 〉 = hX + �

qp

q∑
j=1

(OY Z · 	e j )
p, (D2)

with OY Z = (Y, Z ), and γ the complex number obtained via
the stereographic projection of the unit vector (X,Y, Z ) on the
surface of the sphere.

The density of states associated with this Floquet operator
is given by ρ (q)(ε) = 1

N+1

∑
μ δ(ε − ε (q) ). We can write this

density of states as

ρ (q)(ε) = 1

2π (N + 1)

∞∑
n=−∞

(∑
μ

e−inε (q)

)
einε, (D3)

where the terms inside the brackets are traces of powers of Û q
F ,

that is, (∑
μ

e−inε (q)

)
= Tr

[∑
μ

e−inε (q) |μ〉〈μ|
]

= Tr
[(

Û q
F

)n] = Tr[Q̂n], (D4)

where we have introduced Q̂ = Û q
F , leading to the following

expression for the density of states:

ρ (q)(ε) = 1

2π (N + 1)

∞∑
n=−∞

Tr[Q̂n]einε . (D5)

The traces can be approximated with the help of the effective
Hamiltonian in Eq. (D1), and one has [62]

Tr[Q̂n] = N + 1

π

∫
d2γ

(1 + γ γ ∗)2
e−inSE (γ ,γ ∗ ), (D6)

where E (γ , γ ∗) is given in Eq. (D2). The integral can be
approximated via stationary phase formula [62], and one finds

Tr[Q̂n] = π

N + 1

∑
τ∈Tst

2π (1 + ττ ∗)2eiβτ
π
4 e−inSE (τ,τ ∗ )

nS
√|det[HE (γ , γ ∗)]|γ=τ

, (D7)

where Tst is the set of stationary points of the phase space
flow associated with the effective Hamiltonian in Eq. (D1),
HE (γ , γ ∗) is the Hessian matrix of the classical energy and
βτ is the index of the stationary point τ , i.e., the difference
between the number of positive and negative eigenvalues of
the Hessian.

Using the result in Eq. (D7), we can write the density of
states as

ρ (q)(ε) = 1

2π
+ 1

π
Re

[ ∑
τ∈Tst

(1 + ττ ∗)2eiβτ
π
4

S
√|det[HE (γ , γ ∗)]|γ=τ

× Li1[ei(ε−SE (τ,τ ∗ ))]

]
, (D8)

with the polylogarithm given by Li1[ei(ε−SE (τ,τ ∗ ))] =∑∞
n=1

ei(ε−sE (τ,τ∗ ))

n .

With this form of the density of states, one can see that at
a saddle point, with index equal to zero, there is a logarithmic
divergence, see, for instance, Ref. [62]. This is the landmark
of a clustering ESQPT in systems with one degree of freedom
[24], leading to the conclusion presented in the main text.
Eigenstate clustering in a qT-FTC phase can be diagnosed as
an ESQPT of the effective Hamiltonian associated with the
qth power of the Floquet operator Û q

F .

APPENDIX E: ABSENCE OF HIGHER PERIOD FTCS
IN SYSTEMS WITHOUT ENOUGH MULTIBODY

INTERACTIONS

As discussed in Sec. III, one could use every resonance
condition as a point where an FTC phase emerges. However,
in such situations the system fails to exhibit a global Zq

symmetry, a requirement which is key for the definition of
an FTC phase [6]. We can build a better understanding of this
phenomena by considering an example. Take the system with
p = 2 at the resonance condition αB = 2π

4 , a value which is
not in B(2)

bifu but is a valid resonance condition.
Therefore, the classical system sees the emergence of a 1 :

4 resonance on the y-z plane, whose central periodic orbit has
its points on the vertices of a square. Thus, if one takes the
initial state |ψ0〉 = |S, S〉, and measures fZ (t ), a clear period
four subharmonic response will be seen. However, the system
lacks a global Z4 symmetry. In fact, the global symmetry of
the system at that resonance condition is a Z2 × Z2 symmetry.

This system, as an all even kicked p-spin, has a Z2 sym-
metry inherited from the parity symmetry of the clean model.
In the mean-field limit, this is manifested as invariance of
A[Xl ; α(h),�, p] to rotations around the x axis by an angle
of π [80], that is, the classical limit of the operator eiπ Ŝx .
Consequently, the map A2[Xl ; α(h),�, p] has this symmetry
as well. It was originally showed by Haake et al. [81] that at
the special value of α(h) = 2π

4 the map A2[Xl ; 2π
4 ,�, p] is

invariant to rotations around the y axis by an angle of π , that
is, the classical limit of the operator ei 2π

4 Ŝy . This additional
symmetry is a consequence of the system being a double
reversible map, and the fact than in those systems parity
symmetry can be constructed as the composition of the two
involutions defining time reversal operations [49,81]. There-
fore, at this special value of α(h), the phase space develops a
second Z2 symmetry, this time along the y axis. The overall
symmetry group of phase space is Z2 × Z2.

On the contrary, consider the system with p = 4 at this
same resonance condition. We know the system has an emer-
gent global Z4 symmetry, however, this symmetry exists
independently of the Z2 inherited from the p-spin Hamil-
tonian, that is, if we block diagonalize ÛF with respect to
the Z2 symmetry, each of the resulting blocks will exhibit
this emergent symmetry, which can be diagnosed with the
different metrics introduced in the main text. On the contrary,
when we block diagonalize ÛF corresponding to the p = 2
system, the period-4 response emerging around the value of
αB = 2π

4 disappears. It is in this sense that the stabilization
of higher period FTC phases requires multibody interactions
with p > 2.
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