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Abstract

Chronic stress has been associated with a variety of pathophysiological risks including developing mental illness.
Conversely, appropriate stress management, can be used to foster mental wellness proactively. Yet, there is no
existing method that accurately and objectively monitors stress. With recent advances in electronic-skin (e-skin) and
wearable technologies, it is possible to design devices that continuously measure physiological parameters linked to
chronic stress and other mental health and wellness conditions. However, the design approach should be different
from conventional wearables due to considerations like signal-to-noise ratio and the risk of stigmatization. Here, we
present a multi-part study that combines user-centered design with engineering-centered data collection to inform
future design efforts. To assess human factors, we conducted an n=24 participant design probe study that examined
perceptions of an e-skin for mental health and wellness as well as preferred wear locations. We complement this with
an n=10 and n=16 participant data collection study to measure physiological signals at several potential wear loca-
tions. By balancing human factors and biosignals, we conclude that the upper arm and forearm are optimal wear locations.
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Daily stress is defined as the routine challenges of day-
to-day living. These challenges can either be predictable
(e.g., daily commutes) or unpredictable (e.g. a sudden dead-
line) and occur in 40% of all days!"! Daily stress has been
shown to cause psychological distress and exacerbate symp-
toms of existing physical health conditions? Repeated trig-
gering of daily stress can also lead to chronic stress, which
has been associated with a variety of pathophysiological
risks—conditions that impair quality of life, shorten life
expectancy, and can include developing mental illness.>!
Six hundred million people are devastated by depression
and anxiety, and it is the cause for the loss of trillions of
dollars each year from our global economy!! Mental ill-
ness is now the number one silent killer of adults, and the
number one cause of disability worldwide?) According to
the World Health Organization, one person dies by suicide
every 40 seconds.%! Despite this crisis, available resources
and access to care scarcely begin to meet the need. Compli-
cating matters further, we have no objective tests or scalable
technologies for detecting chronic stress, the type of mental
illness a person is at risk for, what stage of illness they are
in, nor do we know how to best intervene.

Toward addressing these needs, one promising area of re-
search focuses on continuous sensing of physiological data
using wearable sensors and devices. Wearable devices can
provide unobtrusive and non-invasive monitoring of health
markers making them ideal platforms for mental health and
wellness monitoring. A growing body of literature indi-
cates physiological parameters such as heart rate variability
(HRV),”-% and skin conductance (SC)"%'2 and biochemi-
cal signals, such as cortisol('*~"0] are linked to stress, anx-
iety, and depression. HRV and SC are normally collected
with large desktop signal acquisition units, while cortisol
levels in bodily fluids are measured using enzyme-linked
immunosorbent assay (ELISA)") and liquid chromatogra-
phy/mass spectrometry (LC/MS) in lab settings. With excit-
ing advancements in electronic-skin (e-skin) and wearable
technology, it is now possible to design wearables that can
easily measure HRV,[18.19] 5 [20.21] gpd potentially corti-
s0l1223] Such a wearable can potentially enable a better
understanding of how these parameters are linked to chronic
stress, anxiety, and/or depression thus allowing users and
their health providers to detect the onset of related mental
health issues for earlier treatment and intervention. Cur-
rently, wearables are widely used for lifestyle (e.g., fit-
ness) and medical monitoring.[24‘26] In these wearables, the
biosignals dictate design choices while form factor is often
a secondary concern. However, in the case of wearables
for mental health and wellness that may be used widely by
people and patients, both biosignals and human factors are

important to consider to improve long term adherence when
used for proactive, preventative, and treatment purposes.

Here, we present an approach that combines user-
centered design with engineering-centered biosignal mea-
surement to identify optimal wear locations for designing
mental health and wellness wearables that take into account
both biosignals and human factors. In our multi-part user-
centered design study, we first examined usability factors
such as comfort, placement, and ease-of-use through a de-
sign probe study (n=24) that utilized a low-fidelity e-skin
wearable prototype. This first component of the study in-
vestigated user perceptions and preferences of e-skin wear-
ables for mental health and wellness applications, identified
several factors that may contribute to acceptance and adher-
ence, and explored how these perceptions and preferences
might change after a short wear session using a follow-up
survey. We then performed a complementary on-body data
collection study to measure HRV (n=10), SC (n=10), and
cortisol levels (n=16) at several of these potential body
locations. While the wrist and the forehead are rich for
sensing, users tend to prefer more discreet wear locations
for privacy, such as the upper arm and torso. Thus, we used
a weighting mechanism to merge both human factors and
biosignals. This weighting yielded the upper arm as the
optimal wear location, followed by the forearm, for e-skin
mental health and wellness wearables.

Our results also suggest that wearable technologies could
be adopted by end-users for not only treatment but also
proactive mental wellness applications like the daily mon-
itoring of stress. Interestingly, participants proposed such
adoption could have the added benefit of normalizing con-
versations around mental health and wellness. However,
participants remained concerned about such technologies
marking them as part of a stigmatized group. As a re-
sult, factors such as comfort, size, and concealability were
viewed as critical to adoption and factored into their choice
in where to wear our low-fidelity wearable prototype during
their short exposure.

Design criteria of a wearable for mental health and
wellness

To increase adoption, the following desired properties, as
shown in Fig. 1a, should be considered during the design
process of the wearable. If a sensor is imperceptible, skin-
like, and seamless to use then there is a greater chance
of adoption. Additionally, the device should not hinder the
movement or comfort of the user. Privacy is another key fac-
tor that should be considered during the design process. The
wearable should be private and concealable under everyday
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Figure 1. Design criteria for a mental health and wellness wearable. (a) Desired properties of the device: (i) The
sensor should be skin-like and imperceptible to the user. (ii) Due to the sensitive nature of the device and data, the
sensor should be private. (iii) The device needs to be multi-sensory, and collect the necessary physiological biosignals,
namely, skin conductance, heart rate variability, and cortisol levels. (iv) To take a precision psychiatry approach, the
device should be personalized, tailored to each individual, and use case. (v) To ensure reliable sensor operation and
ease-of-use, the wearable should be low-cost and disposable. (b) Overview of the design approach used in this study.
We collected user feedback and preference data from a n=24 participant study. We also performed on-body sensing to
assess the quality of the biosignals at the preferred body locations. Then we weighted both human factors and biosignal
qualities to create a wear index for different wear locations on the body. (c) Visual overview of estimating the optimal
wear location. User preference data (Spyeference) and biosignal data (Sgiosignats) are used to find the optimal wear

locations (/yeqr) on the body.

clothing. Since we want to get an overall snapshot of the
wearer’s state of mind, the device should be multi-sensory.
HRV, SC, and cortisol sensing capabilities are highly de-
sirable. Furthermore, a personalized approach should be
taken to customize the design, software, and hardware to
address the needs of different individuals. Finally, to en-

sure personal hygiene, data quality, and convenience, the
wearable should be low-cost and disposable.

Existing wearables in commercial and academic domains
are designed mostly by focusing on biosignal quality. For
example, the electrocardiography (ECG) signal is the most
important factor for an ECG patch. While biosignals are
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Upper torso 17 71% 2 8%
Upper arms 16 67% 2 8% SPreference
Middle torso 11 46% 6 25%
Thighs 11 46% 9 38% Yes
Lower torso 9 38% 4 17%
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Feet 1 4% 11 46% Human
Face/head 1 4% 19 79% factors
Elbows 0 0% 4 17%

Figure 2. Summary of the user study on wearability, wear locations, and desired properties of a mental health and
wellness wearable. (a) Photographs of participants interacting with low-fidelity devices with the same form factor of the
developed wearable. (b) Sensor utilized for collecting skin conductance (SC) and heart rate variability (HRV) data. The
wearable uses an optoelectronic sensor to collect HRV derived from photoplethysmography (PPG) signals. The SC data
is collected using a pair of hydrogel-coated electrodes. Both SC and PPG data is transferred using Bluetooth
low-energy to a compatible smartphone. (c) Summarized table listing different body locations, positive and negative
responses from the participants when asked where they would prefer to wear (Yes) or not to wear (No) the device. The
presented data is condensed from the actual survey results for better understanding and visualization. The complete
dataset is provided in Supplementary Fig. 5. (d) Summary data is shown visually on the body. Red regions indicate a
positive preference (Yes), and blue regions indicate a negative preference (No).

very important, it is necessary to include the human fac-
tors in the design process to address privacy concerns.
In this work, we used both human factors and biosignals
for our wearable (Fig. 1b). We studied user perception
and preference (Spreference) On the wearability of such a
sensor through a design probe study and collected biosig-
nals (Sgiosignats) through a lab-based data collection study.
We weighted both Spreference and Sgiosignats using differ-
ent weights to reveal optimal wear locations on the body
using a wear index created using a weighting mechanism:

(Iwear = m X5Preference+W2XSBiosignals)' Human factors
are expressed in Spreferences While Spigsignats expresses the
contribution from the biosignals. Fig. 1c visually shows how
Spreference and Sgigsignats are utilized to find the optimal
wear location.

Human factor considerations in mental health and
wellness wearable design

In our n=24 participant design probe study, we investigated
prior experience with wearable devices as well as percep-
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tions and preferences of a future e-skin mental health and
wellness wearable (Supplementary Note 1 and Supplemen-
tary Figs. 1-7). When asked about their prior experience
with wearable technology, we found that a majority of par-
ticipants (87%, 21/24) strongly associated wearables with
wrist-worn technology for fitness tracking, in particular, with
smartwatches. A third (33%, 8/24) defined wearables as de-
vices that monitor an aspect of the user’s health. Nearly
half mentioned medical devices as examples of wearables
including heart monitors, nicotine patches, and hearing aid
devices. While some (17%, 4/24) had previously worn wear-
ables for fitness tracking or medical reasons, only a small
fraction (8%, 2/24) reported that they used a wearable at
the time of the interview. A majority (75%, 18/24) noted that
they did not need a wearable device, suggesting that they
did not see a utility in them that was not covered by other
common devices like their smartphones. Participants also
reported high cost and lack of comfort as barriers to own-
ership. Of the few who were using a wearable device, most
cited utility and comfort as their top criteria in selecting
their wearables.

While a relatively novel use case, most participants (58%,
14/24) expressed general interest in wearables for mental
health and wellness monitoring. A majority (79%, 19/24)
said they would be more likely to use an e-skin wearable
to measure their stress levels if it was recommended by their
doctor. Those who were opposed (21%, 5/24) said medical
advice would not impact their decision.

We used paper body maps (Supplementary Fig 3) and
a low-fidelity version of our wearable device in the design
probe study (Fig. 2a) to assess where participants might
wear the e-skin. This low-fidelity device was similar to the
wearable used to collect biosignals (Fig 2b) in terms of size,
shape, and weight as well as the planned method of attach-
ment (i.e, using medical grade tape). In terms of where
future users might wear such a device, participants showed
a strong preference for the upper arms and upper torso (i.e.,
chest and back) followed by the stomach, waist, and thighs
(Figs. 2c,d). Participants reported that concealability and
comfort were the top decision factors. Thus, we note that
all these body locations are usually covered by everyday
clothes (e.g., t-shirt, shorts). On the other hand, visible lo-
cations such as the head and extremities (i.e., hands, wrists,
and feet) were undesirable. Similarly, they disliked loca-
tions where the placement of the wearable would interfere
with the body's natural movement (e.g., elbows, knees). A
condensed version of the body map results is shown in Figs.
2c,d. The complete set of results are discussed in Supple-
mentary Fig. 5.

When asked about how often they would change the

wearable, assuming the ideal scenario where the wearable
is cheap, durable, and waterproof, the answers ranged from
daily to monthly with most participants preferring weekly or
bi-weekly changes. In rationalizing these decisions, partic-
ipants balanced several factors such as personal hygiene,
signal continuity, convenience, and cost (Supplementary
Fig. 7).

For a wearable to be socially acceptable, more than half
(58%, 14/24) said its appearance is also an important fac-
tor. Participants emphasized that the ideal wearable should
be fashionable (corroborating?’}) but also inconspicuous; it
must seamlessly blend in with the rest of the wearer’s attire
to avoid unwanted attention. Finally, a third said a wear-
able would be more acceptable if it was part of a broader
social trend normalizing the management and monitoring of
mental health and wellness factors. These comments are
also corroborated more generally by our pre- and post-
survey results indicating that while participants were ini-
tially somewhat concerned about judgment by others or sim-
ilar negative consequences of wearing such a device, they
grew more positive about these concerns after a short wear
session: in the post-wear survey, interest in the e-skin
wearable increased and participants showed less concern
that the wearable might make others uncomfortable, cause
awkwardness, or result in them being ridiculed. Paradox-
ically, participants became more worried about what such
a device might communicate about them and their iden-
tity—being marked as someone in need of mental health
support. The complete set of survey results are discussed
in Supplementary Fig. 6.

Biosignal measurement considerations in a mental
health and wellness wearable design

Three biosignals—SC, HRV, and sweat cortisol levels are
evaluated in this work. SC measures the eccrine sweat gland
activity. In response to stress stimuli, a number of eccrine
sweat glands get activated, and SC quantitatively measures
this activity'% HRV measures the balance between the two
autonomic nervous systems—sympathetic and parasympa-
thetic. The sympathetic nervous system gets activated when
facing threats or stressors, while the parasympathetic ner-
vous system handles the body's relaxed state!28] Finally,
cortisol is the body's main stress hormone. In response to
internal or external stressors, cortisol is released from the
adrenal glands and puts the body into a heightened-alert
state. Chronic activation of the stress-response system re-
sults in overexposure to cortisol, which can disrupt almost all
the body's processes2?) We selected sweat cortisol levels
because sweat can be non-invasively collected.
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Figure 3. Heart rate variability (HRV) and skin conductance (SC) data distribution on the body. (a) Sensor
placement locations - (1) wrist, (2) forearm, (3) upper arm, (4) forehead, (5) upper chest, and (6) stomach. (b)
Photoplethymogharpy (PPQ) signal magnitudes for near-infrared (NIR) light on the aforementioned 6 locations. HRV is
derived from PPG, hence, PPG signal magnitudes are used in the analysis. NIR PPG signal was normalized for each
participant in the n=10 participant study, and bar heights represent the average of the normalized value and the error
bars represent the standard deviation of the normalized value. The complete dataset of n=10 participants is shown in
Supplementary Fig. 8. The forehead shows the highest signal magnitude and gradually drops on the wrist, the forearm,
and the upper arm. The signal is the lowest on the chest. (c) Variation of SC over the 6 highlighted locations shown in
a. The SC data was normalized for each participant in the n=10 participant study, and bar heights represent the
average of the normalized value and the error bars represent the standard deviation of the normalized value. The
complete dataset of n=10 participants is shown in Supplementary Fig. 10. (d) PPG from red and NIR channels,
systolic and diastolic peaks from PPG, heart rate (HR), HRV calculated from PPG signal, and SC from the 6
highlighted locations shown in a. The PPG signal is clear on the wrist, forearm, upper arm, and forehead. The PPG
signal gets highly attenuated on the upper chest and stomach.
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Signal strengths of SC, HRV, and cortisol vary signifi-
cantly on the body. HRV, which is derived from the photo-
plethysmography (PPQ) signal in our wearable, depends on
the arterial blood signal collected by an optical sensor. The
higher the signal coming from the arteries, the better the
PPG signal quality. Therefore, locations where the arteries
are near the surface of the skin, provide excellent PPG sig-
nal. The forehead and the underside of the wrist are usually
good choices for reflection-mode PPG sensing.3%3! On the
other hand, SC depends on the density of the eccrine sweat
glands, which is highest on the fingers and the palm, and
drops roughly by half on the wrist and the forearm 3233
We selected 6 locations on the body for an on-body data
collection study (Fig. 3a). These locations, namely, (1)
wrist, (2) forearm, (3) upper arm, (4) forehead, (5) upper
chest, and (6) stomach, were chosen because of high user
preference. Although the wrist and the forehead were not
preferred locations indicated in the design probe study, we
chose the forehead due to the high biosignal intensities, and
the wrist because most commercial wearables are wrist-worn
thus providing a reasonable baseline for comparison.

We used a custom-built wearable (Fig. 2b) to collect
PPG and SC data from these 6 locations on the body. The
PPG data was collected by using red and near-infrared
(NIR) lights. We used the NIR PPG signal for HRV calcu-
lations. The bar chart in Fig. 3b shows the average PPG
signal magnitude and variation at different places on the
body. NIR PPG signal was normalized for each partici-
pant, and the average value (bar height) and the standard
deviation (error bar) of the normalized data are shown in
Fig. 3b. The complete dataset of n=10 participants is
shown in Supplementary Fig. 8. The forehead provides the
highest signal magnitude (100%). For NIR light, the aver-
age normalized PPG signal percentages are 49.54, 16.64,
13.44, 100.00, 1.85, and 4.46 on the wrist, forearm, upper
arm, forehead, upper chest, and stomach, respectively. The
reproducibility of the measurement is shown in Supplemen-
tary Fig. 9, where 5 consecutive PPG measurements were
collected from one participant while donning and doffing
the sensor for each measurement. The upper chest showed
the lowest signal magnitude and was susceptible to motion
artifacts during breathing. A similar study was performed
for measuring SC. We observed SC with average normalized
percentages of 29.53, 38.77, 31.97, 100.00, 26.60, and 24.16
on the wrist, forearm, upper arm, forehead, upper chest, and
stomach, respectively. Similar to the PPG signal, the data
was collected from 10 healthy volunteers. The SC data was
normalized for each participant, and the average value (bar
height) and the standard deviation (error bar) of the nor-
malized data are shown in Fig. 3c. The complete dataset of

n=10 participants is shown in Supplementary Fig. 10. We
performed a reproducibility study of the SC sensor, which
is presented in Supplementary Fig. 11.

In HRV calculations, we used the root mean square suc-
cessive difference (RMSSD) of the PPG signal. Five con-
secutive peaks were used to create a measurement window,
which was moved to form a moving window for HRV calcula-
tions. Fig. 3d(1) shows the raw red and NIR PPG signals,
PPG signal peaks, calculated heart rate (HR), HRV, and SC
on the wrist of a volunteer. Figs. 3d(2)-(6) show the red
and NIR PPG signals and SC from the forearm, upper arm,
forehead, upper chest, and stomach, respectively. The PPG
signal is pristine on the wrist and the forehead, but gets
attenuated on the forearm and the upper arm. To calculate
HRYV, it is imperative that the PPG signal quality is good
enough for a peak detection algorithm. Figs. 3d(1)-(4) show
that the NIR PPG signals on the wrist, forearm, upper arm,
and forehead are adequate for the peak detection algorithm.
However, on the upper chest and the stomach, the signals
barely show PPG peaks, making them unusable for HRV
calculations. Both on the chest and the stomach, the PPG
signals become modulated with respiration. Representative
data where respiration severely affects the PPG signal is
shown in Supplementary Fig. 12.

1 2 3 4 3
Sweat collection location

Figure 4. Sweat cortisol distribution on the body. (a)
Sweat collection locations - (1) forehead, (2) right arm
(cubital fossa), (3) left arm (cubital fossa), (4) back of the
right knee (popliteal fossa), and (5) back of the left knee
(popliteal fossa). (b) Sweat cortisol concentrations on the
aforementioned 5 locations. Sweat cortisol concentrations
were normalized for each participant in the n=16
participant study, and bar heights represent the average of
the normalized value and the error bars represent the
standard deviation of the normalized value. The complete
dataset of n=16 participants is shown in Supplementary
Fig. 13.
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Cortisol, the third physiological parameter used in this
study, was measured from sweat samples. The samples were
collected from 16 volunteers at (1) forehead, (2) right arm
(cubital fossa), (3) left arm (cubital fossa), (4) back of the
right knee (popliteal fossa), and (5) back of the left knee
(popliteal fossa) (Fig. 4a). Sweat cortisol concentrations
were normalized for each participant, and the average value
(bar height) and the standard deviation (error bar) of the
normalized data are shown in Fig. 4b. We observed aver-
age normalized cortisol percentages of 81.92, 73.19, 77.70,
60.96, and 59.02 on the aforementioned five locations, re-
spectively. The complete dataset of n=16 participants is
shown in Supplementary Fig. 13.

Optimal placement locations for mental health and
wellness wearables

To increase adoption and social acceptability, it is essen-
tial to reconcile both human factors and biosignals. In our
analysis, the user preference data was collected from the
design probe study, and the biosignals data was collected
from the on-body sensing. For better visualization, we cre-
ated body contour maps from the collected data. SC, HRV,
and cortisol contour maps are shown in Figs. 5a-c. Here,
the red regions signify higher signal quality, and the blue
regions signify lower signal quality. The black dots repre-
sent data collection locations. All three were combined to
create the biosignal body contour map using equal weights,
5Biosigna[s = w1 X Ssc + w2 X SHry + w3 X Scortisol,
where, wi = wy = w3 = 0.33 (Fig. 5d). The user pref-
erence body contour map was generated from the design
probe study (Fig. 5e). Here, the red regions imply higher
user preference, and the blue regions imply lower user pref-
erence. Finally, both human factors and biosignals were
balanced to find the optimal wear location using the wear
index, lwear = Wi X Spreference + W2 X 5Biost’gnals: as
shown in Figs. 5f-h. The impact of Ssc and Sygy on
Iweqr is discussed in Supplementary Fig. 14. We used
various weight combinations to examine the evolution of the
wear location based on Speference and Sgiosignats- When
the preference data is weighted highly at Spreference =
75% and Sgiosignats = 25%, the lyeq, is high at locations
that are generally hidden under clothing (Fig. 5f). In the
opposite case, when the biosignals are weighted heavily at
5Biost’gnuls = 75% and Speference = 25%, the lyeq, is high
at the extremities of the body such as the forehead or the
wrist (Fig. 5h). When both user preference and biosignals
are balanced at Spyeference = 50% and Spigsignatis = 50%, a
compromise is reached, and /4, is high on the upper arm
and the forearm. Hence, the upper arm or the forearm is

the optimal sensing location for our e-skin wearable, where
the biosignals are of adequate strength and the location
provides privacy to the users.

Conclusions

Our work corroborates aspects of prior work around factors
that influence wearable design while highlighting concerns
more specific to mental health and wellness applications.
For example, Zeagler et al. developed various body contour
maps that can be used to inform wearable design noting
items like motion impedance (similar to our work) as a con-
cern or that certain areas of the body are optimal for PPG
sensing>!l However, these factors were viewed individually.
Our work unifies biosignals with human factors to build a
context-aware body contour map in addition to contribut-
ing body contour maps for additional sensing (i.e., SC and
cortisol) and location preferences. As our context is mental
health and wellness, privacy and discreetness are prioritized
due to concerns around social stigmatization.3>3% We find
that these concerns may be a significant barrier to the ac-
ceptability of mental health and wellness wearables. In our
study, half of the participants considered perceived judg-
ment by others to be a downside of using one. A third
were worried the wearable would distract from their daily
conversations or prompt questions by others.

These social considerations are reflected in participants’
preferred wear locations and must be considered during the
design process. Whereas most common health and fitness
wearables are worn on the wrists, we observe that par-
ticipants particularly care about discreetness of the wear
location when it comes to mental health and wellness wear-
ables. For instance, exposed body locations such as the
face, hands, and wrists were among the wear locations most
disliked by participants because they were perceived as dis-
tracting, uncomfortable, and public. However, when it comes
to building wearables, designers are limited not only by user
preferences but also by the availability of biosignals in dif-
ferent body locations. Since much of the wearable industry
has focused on a few specific body locations (e.g., wrists),
there is limited research into the availability of biosignals
in other areas (e.g., upper arms, back, and chest) preferred
by participants in our study. Our aim with these results
is to encourage designers and researchers to develop new
wearables that work on these discreet locations of the body.
Thus, our findings and approach (i.e., the union of biosig-
nals and user preferences) may serve as design guidelines
for future mental health and wellness wearables.

While our work has focused on the complexity of and
potential barriers to adopting e-skin wearables, it is im-
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Figure 5. Optimal wear locations for a mental health and wellness sensor. (a-c) Distribution of skin conductance
(SC), heart rate variability (HRV), and cortisol on the body. Red regions designate higher signal magnitude, and blue
regions designate lower signal magnitude. (d) Distribution of combined biosignals (Sgissignats) on the body. SC, HRV,
and cortisol signal magnitudes are equally weighted to generate the contour map. (e) User preference data (Spreference)
is shown using a contour map on the body. Here, red regions show a positive preference, and blue regions show a
negative preference. (f-h) Optimal wear locations are shown using the wear index (/iyeq,). Red regions show a high
Iweqr and blue regions show a low /yyeq,. Three different weight combinations are used to generate contour maps. In f,
user preference is weighted heavily at Spreference = 75% and Spiosignats = 25%. It is evident that using user
preference, the wear locations are mostly hidden under the clothing on the upper body. In g, both Sp,eference and
SBiosignals are weighted at 50%, which yields forearms and upper arms as the optimal wear locations. In h, the
biosignals are weighted heavily at Sgiosignats = 75% and Spreference = 25%. In this case, the optimal wear locations
move to the extremities of the body where the biosignal strengths are strong.
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portant to note some concerns about novelty effects when
working with participants. While our participants were fa-
miliar with wearable devices, e-skin devices are still rel-
atively new, and negative reactions to their use in public
has been noted in other contexts (e.g. , e-skins devices for
interactions with other electronic devices™™]). Moreover, we
derived our usability and experiential questionnaires from
the WEAR Scale®39 to understand perceptions of e-skin
wearables as this is important for early design work; how-
ever, future work should explore using a more robust (or the
complete) acceptability scale when evaluating higher fidelity
iterations. Finally, as far as we know all participants were
healthy individuals and future work should involve patients.

Methods

Human factors study

We conducted a two-part design probe study to investi-
gate users’ perceptions of wearable devices and emerging
e-skin technologies for stress monitoring and other men-
tal health applications (Supplementary Figs. 1-7). In part
one, public kiosks were set up at three different locations:
a campus café, the campus bookstore, and the local pub-
lic library. From these kiosks, we recruited passersby for
brief semi-structured interviews (Median=24 min, standard
deviation=4.5 min). In addition to questions about their
wearable device use, participants were asked to indicate on
paper body contour maps (Supplementary Fig. 3) where
they would and would not wear an e-skin for mental health
and wellness applications while “thinking aloud” to explain
their rationale. They then applied a low-fidelity version of
our sensor to their preferred body location using medical
grade tape and completed a short survey (derived from the
WEAR scalel®39) about their demographics, the comfort of
the low-fidelity wearable prototype, and the perceived so-
cial acceptability around its use. In part two, we asked
participants to go about the rest of their day while contin-
uing to wear the low-fidelity wearable prototype and then
to complete a follow-up survey similar to the prior but with
additional open-text response questions about their expe-
rience; this data was then treated as a pre-post test with
results presented in Supplementary Fig. 6.

Human factors study participants: In total, we recruited
24 participants (12 male, 11 female, 1 non-binary) from
the Palo Alto, California area. Participants were, on aver-
age, 35.8 years old (Median=28, standard deviation=15.4).
Most (79%) had a high degree of formal education (bach-
elor's and higher) and most (79%) were white or asian.
Half (50%) were working full-time and over a third (38%)
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were students. Scores on the short Perceived Stress Scale
(PSS-4)*041 indicate that most experienced moderate lev-
els of stress over the last month (Median=6.44, standard
deviation=3.29) (Supplementary Fig. 2). All experiments
were performed in strict compliance with the guidelines of
IRB and were approved by the Committee for Protection of
Human Subjects at Stanford University (protocol no., IRB-
45825). Informed consent was obtained from all participants.
Human factors data and analysis: In sum, data from this
study includes: survey responses, paper body contour maps,
and interview transcripts. Descriptive statistics were calcu-
lated from closed-form survey results while open-response
questions were thematically analyzed. Similarly, descrip-
tive statistics were generated about regions indicated on the
paper body contour maps. All interviews were recorded and
professionally transcribed for computer-assisted qualitative
data analysis using NVivo (v12). A researcher began the
analysis by designing a preliminary codebook based on our
research questions as well as concepts raised in prior liter-
ature. Random selections of 12% of the interview transcripts
were independently coded by two researchers according to
this primary codebook and inter-rater reliability (IRR) was
measured using Cohen’s kappa (k). Between rounds, the
researchers met to resolve disagreements and update the
codebook. An overall k=0.83, considered an almost perfect
agreement, was achieved after two rounds of coding. The
remaining interviews were then independently coded.

Biosignal data collection and processing

SC and HRV data collection study: SC and HRV data
collection were performed using a custom-built wearable
device. In the sensor, a pair of electrodes with hydrogel
was used to collect the SC data. Using a feedback loop
with a pair of operation amplifiers (op amps), we ensured
that <10pA current flows for typical SC in the range of
0-50 pS. Texas Instruments TLV9102, dual 1MHz, 16-V
rail-to-rail op amps were used to implement the SC read-
out circuit. The output signal was sampled using a 12-bit
analog-to-digital-converter (ADC) of a Nordic Semiconduc-
tor nRF52832 Bluetooth transceiver.

The HRV signal was obtained from PPG signals collected
by an optical sensor. SFH 7050 from OSRAM Opto Semi-
conductors Inc. was interfaced with the nRF52832 Blue-
tooth transceiver using a serial peripheral interface (SPI).
Red (660 nm) and NIR (950 nm) lights were used to collect
the PPG signals at 100 Hz sampling frequency. A silicon
photodiode of the SFH 7050 sensor was used to collect the
reflection-mode optical signal.

SC and HRV data collection study participants: 10
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healthy volunteers (b male, 4 female) participated in the
on-body SC and HRV data collection study. The volunteers
were asked to put on the sensors on b different locations on
the body. Then SC and HRV data were collected using the
wearable and a mobile app for 2 minutes at every location.
All experiments were performed in strict compliance with
the guidelines of IRB and were approved by the Commit-
tee for Protection of Human Subjects at Stanford University
(protocol no., IRB-41837).

SC and HRYV data analysis: SC raw data was collected
from the sensor and sent over Bluetooth to a smartphone. In
the case of HRV, PPG signals from red and NIR channels
were collected, and the NIR signal was used in a peak
detection algorithm to find the systolic peaks. HR and HRV
were calculated from the systolic peaks. RMSSD of the

n—1
"~ (Peaki—Peaki;1)?
peaks, Lzt ean‘q eoki) \were used to calculate the

HRV. Here, five consecutive systolic peaks (n=>5) were used
to create a windowed measurement.

Cortisol data collection study: Sweat cortisol samples
were collected from volunteers during a body temperature
manipulation study, which was part of a larger protocol.
Volunteers sat in a portable dry infrared sauna that zipped
up around the chin. Their whole body was enclosed in the
sauna except their head. The sauna temperature was set
to 60 °C (140 °F). Volunteers remained in the sauna until
either 45 min had elapsed, or until their core body temper-
ature reached the maximum safety limit of 39.4 °C (103 °F).
Volunteers had their core body temperature measured using
an infrared tympanic membrane thermometer every 3 min
that they were in the sauna to ensure that their core body
temperature did not get too high. We collected sweat sam-
ples from participants as their bodies attempted to requlate
their core body temperature. Sweat was collected utiliz-
ing an array of non-woven dental sponges to absorb the
sweat from the skin surface. Dental sponges were affixed
to the body using a transparent stretchable and waterproof
medical dressing (Tegaderm, 3M). Sweat was collected from
the forehead proximal to the frontal bone, the cubital fossa
(inside of elbow), popliteal fossa (back of the knee). The
cubital fossa and popliteal fossa dental sponges were placed
bilaterally on both the left and right sides. Once volunteers
exited the sauna the sweat saturated dental sponges were
placed in centrifuge-compatible tubes originally designed to
extract saliva from cotton swabs (Salivette system, Sarstedt,
inc). The dental sponges were centrifuged at 3300 revolu-
tions per minute (rpm) for 10 min to separate sweat from the
dental sponge. Sweat samples were then frozen and stored
at -80 °C until they were thawed for analysis.

Cortisol data analysis: The analysis of sweat samples

1"

was conducted by Dresden lab service utilizing a standard
ELISA with a 0.2 nmol limit of detection (LOD) and a co-
efficient of variability of <7% for both the inter-assay and
intra-assay measures.

Optimal placement location

In the optimal sensor placement analysis, the biosignal data

for SC, HRV, and cortisol were normalized first using the

- SB[asiqnal,i
equation: 5Biost’gnul,normalized = X (SBiosignal) "

the overall effects of biosignals, SC, HRV, and cortisol data
were equally weighted using the equation: Sgiosignais =
w1 X Ssc+wy X SRy + w3 X Scortisol, Where, wi = w) =
w3 = 0.33. Throughout this work, the contour maps were
generated by interpolating the sensor data in 2D space. A
false average color was assigned to the corners of the plots
for better visualization. After that, both human factors and
biosignals were used to generate the wear index, lyeqr =
W1 X Spreference + W2 X SBiost’gnals- Here, wy and w; were
assigned the combinations of (wy = 0.75, wy = 0.25), (w4
0.50, wp = 0.50), and (wq = 0.25, wp = 0.75) to investigate
the effects of human factors and biosignals in determining
the optimal sensor placement. All analyses were performed
using custom-written Python 3.6 scripts.

To compute

Reporting Summary

Further information on research design is available in the
Nature Research Reporting Summary linked to this Article.

Data availability

All the raw data used in this study are included in the
supplementary figures.

Code availability

All data analyses were performed using custom-written
Python 3.6 scripts. However, these scripts were used strictly
for visualization, hence, not included in the manuscript.
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