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Abstract 20

Chronic stress has been associated with a variety of pathophysiological risks including developing mental illness. 21

Conversely, appropriate stress management, can be used to foster mental wellness proactively. Yet, there is no 22

existing method that accurately and objectively monitors stress. With recent advances in electronic-skin (e-skin) and 23

wearable technologies, it is possible to design devices that continuously measure physiological parameters linked to 24

chronic stress and other mental health and wellness conditions. However, the design approach should be different 25

from conventional wearables due to considerations like signal-to-noise ratio and the risk of stigmatization. Here, we 26

present a multi-part study that combines user-centered design with engineering-centered data collection to inform 27

future design efforts. To assess human factors, we conducted an n=24 participant design probe study that examined 28

perceptions of an e-skin for mental health and wellness as well as preferred wear locations. We complement this with 29

an n=10 and n=16 participant data collection study to measure physiological signals at several potential wear loca- 30

tions. By balancing human factors and biosignals, we conclude that the upper arm and forearm are optimal wear locations. 31

32
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Daily stress is defined as the routine challenges of day-33

to-day living. These challenges can either be predictable34

(e.g., daily commutes) or unpredictable (e.g. a sudden dead-35

line) and occur in 40% of all days.[1] Daily stress has been36

shown to cause psychological distress and exacerbate symp-37

toms of existing physical health conditions.[2] Repeated trig-38

gering of daily stress can also lead to chronic stress, which39

has been associated with a variety of pathophysiological40

risks—conditions that impair quality of life, shorten life41

expectancy, and can include developing mental illness.[2, 3]
42

Six hundred million people are devastated by depression43

and anxiety, and it is the cause for the loss of trillions of44

dollars each year from our global economy.[4] Mental ill-45

ness is now the number one silent killer of adults, and the46

number one cause of disability worldwide.[5] According to47

the World Health Organization, one person dies by suicide48

every 40 seconds.[6] Despite this crisis, available resources49

and access to care scarcely begin to meet the need. Compli-50

cating matters further, we have no objective tests or scalable51

technologies for detecting chronic stress, the type of mental52

illness a person is at risk for, what stage of illness they are53

in, nor do we know how to best intervene.54

Toward addressing these needs, one promising area of re-55

search focuses on continuous sensing of physiological data56

using wearable sensors and devices. Wearable devices can57

provide unobtrusive and non-invasive monitoring of health58

markers making them ideal platforms for mental health and59

wellness monitoring. A growing body of literature indi-60

cates physiological parameters such as heart rate variability61

(HRV),[7–9] and skin conductance (SC),[10–12] and biochemi-62

cal signals, such as cortisol[13–16] are linked to stress, anx-63

iety, and depression. HRV and SC are normally collected64

with large desktop signal acquisition units, while cortisol65

levels in bodily fluids are measured using enzyme-linked66

immunosorbent assay (ELISA)[17] and liquid chromatogra-67

phy/mass spectrometry (LC/MS) in lab settings. With excit-68

ing advancements in electronic-skin (e-skin) and wearable69

technology, it is now possible to design wearables that can70

easily measure HRV,[18, 19] SC,[20, 21] and potentially corti-71

sol.[22, 23] Such a wearable can potentially enable a better72

understanding of how these parameters are linked to chronic73

stress, anxiety, and/or depression thus allowing users and74

their health providers to detect the onset of related mental75

health issues for earlier treatment and intervention. Cur-76

rently, wearables are widely used for lifestyle (e.g., fit-77

ness) and medical monitoring.[24–26] In these wearables, the78

biosignals dictate design choices while form factor is often79

a secondary concern. However, in the case of wearables80

for mental health and wellness that may be used widely by81

people and patients, both biosignals and human factors are82

important to consider to improve long term adherence when 83

used for proactive, preventative, and treatment purposes. 84

Here, we present an approach that combines user- 85

centered design with engineering-centered biosignal mea- 86

surement to identify optimal wear locations for designing 87

mental health and wellness wearables that take into account 88

both biosignals and human factors. In our multi-part user- 89

centered design study, we first examined usability factors 90

such as comfort, placement, and ease-of-use through a de- 91

sign probe study (n=24) that utilized a low-fidelity e-skin 92

wearable prototype. This first component of the study in- 93

vestigated user perceptions and preferences of e-skin wear- 94

ables for mental health and wellness applications, identified 95

several factors that may contribute to acceptance and adher- 96

ence, and explored how these perceptions and preferences 97

might change after a short wear session using a follow-up 98

survey. We then performed a complementary on-body data 99

collection study to measure HRV (n=10), SC (n=10), and 100

cortisol levels (n=16) at several of these potential body 101

locations. While the wrist and the forehead are rich for 102

sensing, users tend to prefer more discreet wear locations 103

for privacy, such as the upper arm and torso. Thus, we used 104

a weighting mechanism to merge both human factors and 105

biosignals. This weighting yielded the upper arm as the 106

optimal wear location, followed by the forearm, for e-skin 107

mental health and wellness wearables. 108

Our results also suggest that wearable technologies could 109

be adopted by end-users for not only treatment but also 110

proactive mental wellness applications like the daily mon- 111

itoring of stress. Interestingly, participants proposed such 112

adoption could have the added benefit of normalizing con- 113

versations around mental health and wellness. However, 114

participants remained concerned about such technologies 115

marking them as part of a stigmatized group. As a re- 116

sult, factors such as comfort, size, and concealability were 117

viewed as critical to adoption and factored into their choice 118

in where to wear our low-fidelity wearable prototype during 119

their short exposure. 120

Design criteria of a wearable for mental health and 121

wellness 122

To increase adoption, the following desired properties, as 123

shown in Fig. 1a, should be considered during the design 124

process of the wearable. If a sensor is imperceptible, skin- 125

like, and seamless to use then there is a greater chance 126

of adoption. Additionally, the device should not hinder the 127

movement or comfort of the user. Privacy is another key fac- 128

tor that should be considered during the design process. The 129

wearable should be private and concealable under everyday 130
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Figure 1. Design criteria for a mental health and wellness wearable. (a) Desired properties of the device: (i) The
sensor should be skin-like and imperceptible to the user. (ii) Due to the sensitive nature of the device and data, the
sensor should be private. (iii) The device needs to be multi-sensory, and collect the necessary physiological biosignals,
namely, skin conductance, heart rate variability, and cortisol levels. (iv) To take a precision psychiatry approach, the
device should be personalized, tailored to each individual, and use case. (v) To ensure reliable sensor operation and
ease-of-use, the wearable should be low-cost and disposable. (b) Overview of the design approach used in this study.
We collected user feedback and preference data from a n=24 participant study. We also performed on-body sensing to
assess the quality of the biosignals at the preferred body locations. Then we weighted both human factors and biosignal
qualities to create a wear index for different wear locations on the body. (c) Visual overview of estimating the optimal
wear location. User preference data (SP���������) and biosignal data (SB���������) are used to find the optimal wear
locations (I���� ) on the body.

clothing. Since we want to get an overall snapshot of the131

wearer’s state of mind, the device should be multi-sensory.132

HRV, SC, and cortisol sensing capabilities are highly de-133

sirable. Furthermore, a personalized approach should be134

taken to customize the design, software, and hardware to135

address the needs of different individuals. Finally, to en-136

sure personal hygiene, data quality, and convenience, the 137

wearable should be low-cost and disposable. 138

Existing wearables in commercial and academic domains 139

are designed mostly by focusing on biosignal quality. For 140

example, the electrocardiography (ECG) signal is the most 141

important factor for an ECG patch. While biosignals are 142
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Figure 2. Summary of the user study on wearability, wear locations, and desired properties of a mental health and
wellness wearable. (a) Photographs of participants interacting with low-fidelity devices with the same form factor of the
developed wearable. (b) Sensor utilized for collecting skin conductance (SC) and heart rate variability (HRV) data. The
wearable uses an optoelectronic sensor to collect HRV derived from photoplethysmography (PPG) signals. The SC data
is collected using a pair of hydrogel-coated electrodes. Both SC and PPG data is transferred using Bluetooth
low-energy to a compatible smartphone. (c) Summarized table listing different body locations, positive and negative
responses from the participants when asked where they would prefer to wear (Yes) or not to wear (No) the device. The
presented data is condensed from the actual survey results for better understanding and visualization. The complete
dataset is provided in Supplementary Fig. 5. (d) Summary data is shown visually on the body. Red regions indicate a
positive preference (Yes), and blue regions indicate a negative preference (No).

very important, it is necessary to include the human fac-143

tors in the design process to address privacy concerns.144

In this work, we used both human factors and biosignals145

for our wearable (Fig. 1b). We studied user perception146

and preference (SP���������) on the wearability of such a147

sensor through a design probe study and collected biosig-148

nals (SB���������) through a lab-based data collection study.149

We weighted both SP��������� and SB��������� using differ-150

ent weights to reveal optimal wear locations on the body151

using a wear index created using a weighting mechanism:152

(IW ��� = �1×SP���������+�2×SB���������). Human factors 153

are expressed in SP���������, while SB��������� expresses the 154

contribution from the biosignals. Fig. 1c visually shows how 155

SP��������� and SB��������� are utilized to find the optimal 156

wear location. 157

Human factor considerations in mental health and 158

wellness wearable design 159

In our n=24 participant design probe study, we investigated 160

prior experience with wearable devices as well as percep- 161
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tions and preferences of a future e-skin mental health and162

wellness wearable (Supplementary Note 1 and Supplemen-163

tary Figs. 1-7). When asked about their prior experience164

with wearable technology, we found that a majority of par-165

ticipants (87%, 21/24) strongly associated wearables with166

wrist-worn technology for fitness tracking, in particular, with167

smartwatches. A third (33%, 8/24) defined wearables as de-168

vices that monitor an aspect of the user’s health. Nearly169

half mentioned medical devices as examples of wearables170

including heart monitors, nicotine patches, and hearing aid171

devices. While some (17%, 4/24) had previously worn wear-172

ables for fitness tracking or medical reasons, only a small173

fraction (8%, 2/24) reported that they used a wearable at174

the time of the interview. A majority (75%, 18/24) noted that175

they did not need a wearable device, suggesting that they176

did not see a utility in them that was not covered by other177

common devices like their smartphones. Participants also178

reported high cost and lack of comfort as barriers to own-179

ership. Of the few who were using a wearable device, most180

cited utility and comfort as their top criteria in selecting181

their wearables.182

While a relatively novel use case, most participants (58%,183

14/24) expressed general interest in wearables for mental184

health and wellness monitoring. A majority (79%, 19/24)185

said they would be more likely to use an e-skin wearable186

to measure their stress levels if it was recommended by their187

doctor. Those who were opposed (21%, 5/24) said medical188

advice would not impact their decision.189

We used paper body maps (Supplementary Fig 3) and190

a low-fidelity version of our wearable device in the design191

probe study (Fig. 2a) to assess where participants might192

wear the e-skin. This low-fidelity device was similar to the193

wearable used to collect biosignals (Fig 2b) in terms of size,194

shape, and weight as well as the planned method of attach-195

ment (i.e., using medical grade tape). In terms of where196

future users might wear such a device, participants showed197

a strong preference for the upper arms and upper torso (i.e.,198

chest and back) followed by the stomach, waist, and thighs199

(Figs. 2c,d). Participants reported that concealability and200

comfort were the top decision factors. Thus, we note that201

all these body locations are usually covered by everyday202

clothes (e.g., t-shirt, shorts). On the other hand, visible lo-203

cations such as the head and extremities (i.e., hands, wrists,204

and feet) were undesirable. Similarly, they disliked loca-205

tions where the placement of the wearable would interfere206

with the body’s natural movement (e.g., elbows, knees). A207

condensed version of the body map results is shown in Figs.208

2c,d. The complete set of results are discussed in Supple-209

mentary Fig. 5.210

When asked about how often they would change the211

wearable, assuming the ideal scenario where the wearable 212

is cheap, durable, and waterproof, the answers ranged from 213

daily to monthly with most participants preferring weekly or 214

bi-weekly changes. In rationalizing these decisions, partic- 215

ipants balanced several factors such as personal hygiene, 216

signal continuity, convenience, and cost (Supplementary 217

Fig. 7). 218

For a wearable to be socially acceptable, more than half 219

(58%, 14/24) said its appearance is also an important fac- 220

tor. Participants emphasized that the ideal wearable should 221

be fashionable (corroborating[27]) but also inconspicuous; it 222

must seamlessly blend in with the rest of the wearer’s attire 223

to avoid unwanted attention. Finally, a third said a wear- 224

able would be more acceptable if it was part of a broader 225

social trend normalizing the management and monitoring of 226

mental health and wellness factors. These comments are 227

also corroborated more generally by our pre- and post- 228

survey results indicating that while participants were ini- 229

tially somewhat concerned about judgment by others or sim- 230

ilar negative consequences of wearing such a device, they 231

grew more positive about these concerns after a short wear 232

session: in the post-wear survey, interest in the e-skin 233

wearable increased and participants showed less concern 234

that the wearable might make others uncomfortable, cause 235

awkwardness, or result in them being ridiculed. Paradox- 236

ically, participants became more worried about what such 237

a device might communicate about them and their iden- 238

tity—being marked as someone in need of mental health 239

support. The complete set of survey results are discussed 240

in Supplementary Fig. 6. 241

Biosignal measurement considerations in a mental 242

health and wellness wearable design 243

Three biosignals—SC, HRV, and sweat cortisol levels are 244

evaluated in this work. SC measures the eccrine sweat gland 245

activity. In response to stress stimuli, a number of eccrine 246

sweat glands get activated, and SC quantitatively measures 247

this activity.[10] HRV measures the balance between the two 248

autonomic nervous systems—sympathetic and parasympa- 249

thetic. The sympathetic nervous system gets activated when 250

facing threats or stressors, while the parasympathetic ner- 251

vous system handles the body’s relaxed state.[28] Finally, 252

cortisol is the body’s main stress hormone. In response to 253

internal or external stressors, cortisol is released from the 254

adrenal glands and puts the body into a heightened-alert 255

state. Chronic activation of the stress-response system re- 256

sults in overexposure to cortisol, which can disrupt almost all 257

the body’s processes.[29] We selected sweat cortisol levels 258

because sweat can be non-invasively collected. 259
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Figure 3. Heart rate variability (HRV) and skin conductance (SC) data distribution on the body. (a) Sensor
placement locations - (1) wrist, (2) forearm, (3) upper arm, (4) forehead, (5) upper chest, and (6) stomach. (b)
Photoplethymogharpy (PPG) signal magnitudes for near-infrared (NIR) light on the aforementioned 6 locations. HRV is
derived from PPG, hence, PPG signal magnitudes are used in the analysis. NIR PPG signal was normalized for each
participant in the n=10 participant study, and bar heights represent the average of the normalized value and the error
bars represent the standard deviation of the normalized value. The complete dataset of n=10 participants is shown in
Supplementary Fig. 8. The forehead shows the highest signal magnitude and gradually drops on the wrist, the forearm,
and the upper arm. The signal is the lowest on the chest. (c) Variation of SC over the 6 highlighted locations shown in
a. The SC data was normalized for each participant in the n=10 participant study, and bar heights represent the
average of the normalized value and the error bars represent the standard deviation of the normalized value. The
complete dataset of n=10 participants is shown in Supplementary Fig. 10. (d) PPG from red and NIR channels,
systolic and diastolic peaks from PPG, heart rate (HR), HRV calculated from PPG signal, and SC from the 6
highlighted locations shown in a. The PPG signal is clear on the wrist, forearm, upper arm, and forehead. The PPG
signal gets highly attenuated on the upper chest and stomach.
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Signal strengths of SC, HRV, and cortisol vary signifi-260

cantly on the body. HRV, which is derived from the photo-261

plethysmography (PPG) signal in our wearable, depends on262

the arterial blood signal collected by an optical sensor. The263

higher the signal coming from the arteries, the better the264

PPG signal quality. Therefore, locations where the arteries265

are near the surface of the skin, provide excellent PPG sig-266

nal. The forehead and the underside of the wrist are usually267

good choices for reflection-mode PPG sensing.[30, 31] On the268

other hand, SC depends on the density of the eccrine sweat269

glands, which is highest on the fingers and the palm, and270

drops roughly by half on the wrist and the forearm.[32, 33]
271

We selected 6 locations on the body for an on-body data272

collection study (Fig. 3a). These locations, namely, (1)273

wrist, (2) forearm, (3) upper arm, (4) forehead, (5) upper274

chest, and (6) stomach, were chosen because of high user275

preference. Although the wrist and the forehead were not276

preferred locations indicated in the design probe study, we277

chose the forehead due to the high biosignal intensities, and278

the wrist because most commercial wearables are wrist-worn279

thus providing a reasonable baseline for comparison.280

We used a custom-built wearable (Fig. 2b) to collect281

PPG and SC data from these 6 locations on the body. The282

PPG data was collected by using red and near-infrared283

(NIR) lights. We used the NIR PPG signal for HRV calcu-284

lations. The bar chart in Fig. 3b shows the average PPG285

signal magnitude and variation at different places on the286

body. NIR PPG signal was normalized for each partici-287

pant, and the average value (bar height) and the standard288

deviation (error bar) of the normalized data are shown in289

Fig. 3b. The complete dataset of n=10 participants is290

shown in Supplementary Fig. 8. The forehead provides the291

highest signal magnitude (100%). For NIR light, the aver-292

age normalized PPG signal percentages are 49.54, 16.64,293

13.44, 100.00, 1.85, and 4.46 on the wrist, forearm, upper294

arm, forehead, upper chest, and stomach, respectively. The295

reproducibility of the measurement is shown in Supplemen-296

tary Fig. 9, where 5 consecutive PPG measurements were297

collected from one participant while donning and doffing298

the sensor for each measurement. The upper chest showed299

the lowest signal magnitude and was susceptible to motion300

artifacts during breathing. A similar study was performed301

for measuring SC. We observed SC with average normalized302

percentages of 29.53, 38.77, 31.97, 100.00, 26.60, and 24.16303

on the wrist, forearm, upper arm, forehead, upper chest, and304

stomach, respectively. Similar to the PPG signal, the data305

was collected from 10 healthy volunteers. The SC data was306

normalized for each participant, and the average value (bar307

height) and the standard deviation (error bar) of the nor-308

malized data are shown in Fig. 3c. The complete dataset of309

n=10 participants is shown in Supplementary Fig. 10. We 310

performed a reproducibility study of the SC sensor, which 311

is presented in Supplementary Fig. 11. 312

In HRV calculations, we used the root mean square suc- 313

cessive difference (RMSSD) of the PPG signal. Five con- 314

secutive peaks were used to create a measurement window, 315

which was moved to form a moving window for HRV calcula- 316

tions. Fig. 3d(1) shows the raw red and NIR PPG signals, 317

PPG signal peaks, calculated heart rate (HR), HRV, and SC 318

on the wrist of a volunteer. Figs. 3d(2)-(6) show the red 319

and NIR PPG signals and SC from the forearm, upper arm, 320

forehead, upper chest, and stomach, respectively. The PPG 321

signal is pristine on the wrist and the forehead, but gets 322

attenuated on the forearm and the upper arm. To calculate 323

HRV, it is imperative that the PPG signal quality is good 324

enough for a peak detection algorithm. Figs. 3d(1)-(4) show 325

that the NIR PPG signals on the wrist, forearm, upper arm, 326

and forehead are adequate for the peak detection algorithm. 327

However, on the upper chest and the stomach, the signals 328

barely show PPG peaks, making them unusable for HRV 329

calculations. Both on the chest and the stomach, the PPG 330

signals become modulated with respiration. Representative 331

data where respiration severely affects the PPG signal is 332

shown in Supplementary Fig. 12. 333

1

2 3

4 5

a b

Figure 4. Sweat cortisol distribution on the body. (a)
Sweat collection locations - (1) forehead, (2) right arm
(cubital fossa), (3) left arm (cubital fossa), (4) back of the
right knee (popliteal fossa), and (5) back of the left knee
(popliteal fossa). (b) Sweat cortisol concentrations on the
aforementioned 5 locations. Sweat cortisol concentrations
were normalized for each participant in the n=16
participant study, and bar heights represent the average of
the normalized value and the error bars represent the
standard deviation of the normalized value. The complete
dataset of n=16 participants is shown in Supplementary
Fig. 13.
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Cortisol, the third physiological parameter used in this334

study, was measured from sweat samples. The samples were335

collected from 16 volunteers at (1) forehead, (2) right arm336

(cubital fossa), (3) left arm (cubital fossa), (4) back of the337

right knee (popliteal fossa), and (5) back of the left knee338

(popliteal fossa) (Fig. 4a). Sweat cortisol concentrations339

were normalized for each participant, and the average value340

(bar height) and the standard deviation (error bar) of the341

normalized data are shown in Fig. 4b. We observed aver-342

age normalized cortisol percentages of 81.92, 73.19, 77.70,343

60.96, and 59.02 on the aforementioned five locations, re-344

spectively. The complete dataset of n=16 participants is345

shown in Supplementary Fig. 13.346

Optimal placement locations for mental health and347

wellness wearables348

To increase adoption and social acceptability, it is essen-349

tial to reconcile both human factors and biosignals. In our350

analysis, the user preference data was collected from the351

design probe study, and the biosignals data was collected352

from the on-body sensing. For better visualization, we cre-353

ated body contour maps from the collected data. SC, HRV,354

and cortisol contour maps are shown in Figs. 5a-c. Here,355

the red regions signify higher signal quality, and the blue356

regions signify lower signal quality. The black dots repre-357

sent data collection locations. All three were combined to358

create the biosignal body contour map using equal weights,359

SB��������� = �1 × SSC + �2 × SHRV + �3 × SC������� ,360

where, �1 = �2 = �3 = 0�33 (Fig. 5d). The user pref-361

erence body contour map was generated from the design362

probe study (Fig. 5e). Here, the red regions imply higher363

user preference, and the blue regions imply lower user pref-364

erence. Finally, both human factors and biosignals were365

balanced to find the optimal wear location using the wear366

index, IW ��� = �1 × SP��������� + �2 × SB���������, as367

shown in Figs. 5f-h. The impact of SSC and SHRV on368

IW ��� is discussed in Supplementary Fig. 14. We used369

various weight combinations to examine the evolution of the370

wear location based on SP��������� and SB���������. When371

the preference data is weighted highly at SP��������� =372

75% and SB��������� = 25%, the IW ��� is high at locations373

that are generally hidden under clothing (Fig. 5f). In the374

opposite case, when the biosignals are weighted heavily at375

SB��������� = 75% and SP��������� = 25%, the IW ��� is high376

at the extremities of the body such as the forehead or the377

wrist (Fig. 5h). When both user preference and biosignals378

are balanced at SP��������� = 50% and SB��������� = 50%, a379

compromise is reached, and IW ��� is high on the upper arm380

and the forearm. Hence, the upper arm or the forearm is381

the optimal sensing location for our e-skin wearable, where 382

the biosignals are of adequate strength and the location 383

provides privacy to the users. 384

Conclusions 385

Our work corroborates aspects of prior work around factors 386

that influence wearable design while highlighting concerns 387

more specific to mental health and wellness applications. 388

For example, Zeagler et al. developed various body contour 389

maps that can be used to inform wearable design noting 390

items like motion impedance (similar to our work) as a con- 391

cern or that certain areas of the body are optimal for PPG 392

sensing.[34] However, these factors were viewed individually. 393

Our work unifies biosignals with human factors to build a 394

context-aware body contour map in addition to contribut- 395

ing body contour maps for additional sensing (i.e., SC and 396

cortisol) and location preferences. As our context is mental 397

health and wellness, privacy and discreetness are prioritized 398

due to concerns around social stigmatization.[35, 36] We find 399

that these concerns may be a significant barrier to the ac- 400

ceptability of mental health and wellness wearables. In our 401

study, half of the participants considered perceived judg- 402

ment by others to be a downside of using one. A third 403

were worried the wearable would distract from their daily 404

conversations or prompt questions by others. 405

These social considerations are reflected in participants’ 406

preferred wear locations and must be considered during the 407

design process. Whereas most common health and fitness 408

wearables are worn on the wrists, we observe that par- 409

ticipants particularly care about discreetness of the wear 410

location when it comes to mental health and wellness wear- 411

ables. For instance, exposed body locations such as the 412

face, hands, and wrists were among the wear locations most 413

disliked by participants because they were perceived as dis- 414

tracting, uncomfortable, and public. However, when it comes 415

to building wearables, designers are limited not only by user 416

preferences but also by the availability of biosignals in dif- 417

ferent body locations. Since much of the wearable industry 418

has focused on a few specific body locations (e.g., wrists), 419

there is limited research into the availability of biosignals 420

in other areas (e.g., upper arms, back, and chest) preferred 421

by participants in our study. Our aim with these results 422

is to encourage designers and researchers to develop new 423

wearables that work on these discreet locations of the body. 424

Thus, our findings and approach (i.e., the union of biosig- 425

nals and user preferences) may serve as design guidelines 426

for future mental health and wellness wearables. 427

While our work has focused on the complexity of and 428

potential barriers to adopting e-skin wearables, it is im- 429
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Figure 5. Optimal wear locations for a mental health and wellness sensor. (a-c) Distribution of skin conductance
(SC), heart rate variability (HRV), and cortisol on the body. Red regions designate higher signal magnitude, and blue
regions designate lower signal magnitude. (d) Distribution of combined biosignals (SB���������) on the body. SC, HRV,
and cortisol signal magnitudes are equally weighted to generate the contour map. (e) User preference data (SP���������)
is shown using a contour map on the body. Here, red regions show a positive preference, and blue regions show a
negative preference. (f-h) Optimal wear locations are shown using the wear index (IW ��� ). Red regions show a high
IW ��� and blue regions show a low IW ��� . Three different weight combinations are used to generate contour maps. In f,
user preference is weighted heavily at SP��������� = 75% and SB��������� = 25%. It is evident that using user
preference, the wear locations are mostly hidden under the clothing on the upper body. In g, both SP��������� and
SB��������� are weighted at 50%, which yields forearms and upper arms as the optimal wear locations. In h, the
biosignals are weighted heavily at SB��������� = 75% and SP��������� = 25%. In this case, the optimal wear locations
move to the extremities of the body where the biosignal strengths are strong.
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portant to note some concerns about novelty effects when430

working with participants. While our participants were fa-431

miliar with wearable devices, e-skin devices are still rel-432

atively new, and negative reactions to their use in public433

has been noted in other contexts (e.g. , e-skins devices for434

interactions with other electronic devices[37]). Moreover, we435

derived our usability and experiential questionnaires from436

the WEAR Scale[38, 39] to understand perceptions of e-skin437

wearables as this is important for early design work; how-438

ever, future work should explore using a more robust (or the439

complete) acceptability scale when evaluating higher fidelity440

iterations. Finally, as far as we know all participants were441

healthy individuals and future work should involve patients.442

Methods443

Human factors study444

We conducted a two-part design probe study to investi-445

gate users’ perceptions of wearable devices and emerging446

e-skin technologies for stress monitoring and other men-447

tal health applications (Supplementary Figs. 1-7). In part448

one, public kiosks were set up at three different locations:449

a campus café, the campus bookstore, and the local pub-450

lic library. From these kiosks, we recruited passersby for451

brief semi-structured interviews (Median=24 min, standard452

deviation=4.5 min). In addition to questions about their453

wearable device use, participants were asked to indicate on454

paper body contour maps (Supplementary Fig. 3) where455

they would and would not wear an e-skin for mental health456

and wellness applications while “thinking aloud” to explain457

their rationale. They then applied a low-fidelity version of458

our sensor to their preferred body location using medical459

grade tape and completed a short survey (derived from the460

WEAR scale[38, 39]) about their demographics, the comfort of461

the low-fidelity wearable prototype, and the perceived so-462

cial acceptability around its use. In part two, we asked463

participants to go about the rest of their day while contin-464

uing to wear the low-fidelity wearable prototype and then465

to complete a follow-up survey similar to the prior but with466

additional open-text response questions about their expe-467

rience; this data was then treated as a pre-post test with468

results presented in Supplementary Fig. 6.469

Human factors study participants: In total, we recruited470

24 participants (12 male, 11 female, 1 non-binary) from471

the Palo Alto, California area. Participants were, on aver-472

age, 35.8 years old (Median=28, standard deviation=15.4).473

Most (79%) had a high degree of formal education (bach-474

elor’s and higher) and most (79%) were white or asian.475

Half (50%) were working full-time and over a third (38%)476

were students. Scores on the short Perceived Stress Scale 477

(PSS-4)[40, 41] indicate that most experienced moderate lev- 478

els of stress over the last month (Median=6.44, standard 479

deviation=3.29) (Supplementary Fig. 2). All experiments 480

were performed in strict compliance with the guidelines of 481

IRB and were approved by the Committee for Protection of 482

Human Subjects at Stanford University (protocol no., IRB- 483

45825). Informed consent was obtained from all participants. 484

Human factors data and analysis: In sum, data from this 485

study includes: survey responses, paper body contour maps, 486

and interview transcripts. Descriptive statistics were calcu- 487

lated from closed-form survey results while open-response 488

questions were thematically analyzed. Similarly, descrip- 489

tive statistics were generated about regions indicated on the 490

paper body contour maps. All interviews were recorded and 491

professionally transcribed for computer-assisted qualitative 492

data analysis using NVivo (v12). A researcher began the 493

analysis by designing a preliminary codebook based on our 494

research questions as well as concepts raised in prior liter- 495

ature. Random selections of 12% of the interview transcripts 496

were independently coded by two researchers according to 497

this primary codebook and inter-rater reliability (IRR) was 498

measured using Cohen’s kappa (κ). Between rounds, the 499

researchers met to resolve disagreements and update the 500

codebook. An overall κ=0.83, considered an almost perfect 501

agreement, was achieved after two rounds of coding. The 502

remaining interviews were then independently coded. 503

Biosignal data collection and processing 504

SC and HRV data collection study: SC and HRV data 505

collection were performed using a custom-built wearable 506

device. In the sensor, a pair of electrodes with hydrogel 507

was used to collect the SC data. Using a feedback loop 508

with a pair of operation amplifiers (op amps), we ensured 509

that <10µA current flows for typical SC in the range of 510

0-50 µS. Texas Instruments TLV9102, dual 1MHz, 16-V 511

rail-to-rail op amps were used to implement the SC read- 512

out circuit. The output signal was sampled using a 12-bit 513

analog-to-digital-converter (ADC) of a Nordic Semiconduc- 514

tor nRF52832 Bluetooth transceiver. 515

The HRV signal was obtained from PPG signals collected 516

by an optical sensor. SFH 7050 from OSRAM Opto Semi- 517

conductors Inc. was interfaced with the nRF52832 Blue- 518

tooth transceiver using a serial peripheral interface (SPI). 519

Red (660 nm) and NIR (950 nm) lights were used to collect 520

the PPG signals at 100 Hz sampling frequency. A silicon 521

photodiode of the SFH 7050 sensor was used to collect the 522

reflection-mode optical signal. 523

SC and HRV data collection study participants: 10 524
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healthy volunteers (6 male, 4 female) participated in the525

on-body SC and HRV data collection study. The volunteers526

were asked to put on the sensors on 6 different locations on527

the body. Then SC and HRV data were collected using the528

wearable and a mobile app for 2 minutes at every location.529

All experiments were performed in strict compliance with530

the guidelines of IRB and were approved by the Commit-531

tee for Protection of Human Subjects at Stanford University532

(protocol no., IRB-41837).533

SC and HRV data analysis: SC raw data was collected534

from the sensor and sent over Bluetooth to a smartphone. In535

the case of HRV, PPG signals from red and NIR channels536

were collected, and the NIR signal was used in a peak537

detection algorithm to find the systolic peaks. HR and HRV538

were calculated from the systolic peaks. RMSSD of the539

peaks,
��

�−1
�=1 (P����−P����+1)2

�−1 were used to calculate the540

HRV. Here, five consecutive systolic peaks (n=5) were used541

to create a windowed measurement.542

Cortisol data collection study: Sweat cortisol samples543

were collected from volunteers during a body temperature544

manipulation study, which was part of a larger protocol.545

Volunteers sat in a portable dry infrared sauna that zipped546

up around the chin. Their whole body was enclosed in the547

sauna except their head. The sauna temperature was set548

to 60 ◦C (140 ◦F). Volunteers remained in the sauna until549

either 45 min had elapsed, or until their core body temper-550

ature reached the maximum safety limit of 39.4 ◦C (103 ◦F).551

Volunteers had their core body temperature measured using552

an infrared tympanic membrane thermometer every 3 min553

that they were in the sauna to ensure that their core body554

temperature did not get too high. We collected sweat sam-555

ples from participants as their bodies attempted to regulate556

their core body temperature. Sweat was collected utiliz-557

ing an array of non-woven dental sponges to absorb the558

sweat from the skin surface. Dental sponges were affixed559

to the body using a transparent stretchable and waterproof560

medical dressing (Tegaderm, 3M). Sweat was collected from561

the forehead proximal to the frontal bone, the cubital fossa562

(inside of elbow), popliteal fossa (back of the knee). The563

cubital fossa and popliteal fossa dental sponges were placed564

bilaterally on both the left and right sides. Once volunteers565

exited the sauna the sweat saturated dental sponges were566

placed in centrifuge-compatible tubes originally designed to567

extract saliva from cotton swabs (Salivette system, Sarstedt,568

inc). The dental sponges were centrifuged at 3300 revolu-569

tions per minute (rpm) for 10 min to separate sweat from the570

dental sponge. Sweat samples were then frozen and stored571

at -80 ◦C until they were thawed for analysis.572

Cortisol data analysis: The analysis of sweat samples573

was conducted by Dresden lab service utilizing a standard 574

ELISA with a 0.2 nmol limit of detection (LOD) and a co- 575

efficient of variability of <7% for both the inter-assay and 576

intra-assay measures. 577

Optimal placement location 578

In the optimal sensor placement analysis, the biosignal data 579

for SC, HRV, and cortisol were normalized first using the 580

equation: SB������������������� = SB����������

���(SB��������) . To compute 581

the overall effects of biosignals, SC, HRV, and cortisol data 582

were equally weighted using the equation: SB��������� = 583

�1 ×SSC +�2 ×SHRV +�3 ×SC������� , where, �1 = �2 = 584

�3 = 0�33. Throughout this work, the contour maps were 585

generated by interpolating the sensor data in 2D space. A 586

false average color was assigned to the corners of the plots 587

for better visualization. After that, both human factors and 588

biosignals were used to generate the wear index, IW ��� = 589

�1 × SP��������� + �2 × SB���������. Here, �1 and �2 were 590

assigned the combinations of (�1 = 0.75, �2 = 0.25), (�1 = 591

0.50, �2 = 0.50), and (�1 = 0.25, �2 = 0.75) to investigate 592

the effects of human factors and biosignals in determining 593

the optimal sensor placement. All analyses were performed 594

using custom-written Python 3.6 scripts. 595

Reporting Summary 596

Further information on research design is available in the 597

Nature Research Reporting Summary linked to this Article. 598

Data availability 599

All the raw data used in this study are included in the 600

supplementary figures. 601

Code availability 602

All data analyses were performed using custom-written 603

Python 3.6 scripts. However, these scripts were used strictly 604

for visualization, hence, not included in the manuscript. 605

References 606

[1] Almeida, D. M. Resilience and vulnerability to daily stressors as- 607

sessed via diary methods. Current Directions in Psychological Sci- 608

ence 14, 64–68 (2005). 609

[2] McEwen, B. S. Stress, adaptation, and disease: Allostasis and 610

allostatic load. Annals of the New York academy of sciences 840, 611

33–44 (1998). 612

[3] Epel, E. S. et al. Accelerated telomere shortening in response to 613

life stress. Proceedings of the National Academy of Sciences 101, 614

17312–17315 (2004). 615

11



[4] Patel, V. et al. The lancet commission on global mental health and616

sustainable development. The Lancet 392, 1553–1598 (2018).617

[5] Friedrich, M. J. Depression is the leading cause of disability around618

the world. Jama 317, 1517–1517 (2017).619

[6] (WHO), W. H. O. et al. Suicide: One person dies every 40 seconds.620

Retrieved February 3, 2020 (2019).621

[7] Kemp, A. H. et al. Impact of depression and antidepressant treatment622

on heart rate variability: a review and meta-analysis. Biological623

Psychiatry 67, 1067–1074 (2010).624

[8] Chalmers, J. A., Quintana, D. S., Abbott, M. J., Kemp, A. H. et al.625

Anxiety disorders are associated with reduced heart rate variability:626

a meta-analysis. Frontiers in Psychiatry 5, 80 (2014).627

[9] Alvares, G. A., Quintana, D. S., Hickie, I. B. & Guastella, A. J.628

Autonomic nervous system dysfunction in psychiatric disorders and629

the impact of psychotropic medications: a systematic review and630

meta-analysis. Journal of Psychiatry & Neuroscience (2016).631

[10] Boucsein, W. Electrodermal activity (Springer Science & Business632

Media, 2012).633

[11] Vahey, R. & Becerra, R. Galvanic skin response in mood disorders:634

A critical review (2015).635

[12] Sarchiapone, M. et al. The association between electrodermal ac-636

tivity (eda), depression and suicidal behaviour: A systematic review637

and narrative synthesis. BMC Psychiatry 18, 22 (2018).638

[13] Knorr, U., Vinberg, M., Kessing, L. V. & Wetterslev, J. Salivary639

cortisol in depressed patients versus control persons: a systematic640

review and meta-analysis. Psychoneuroendocrinology 35, 1275–641

1286 (2010).642

[14] Stetler, C. & Miller, G. E. Depression and hypothalamic-pituitary-643

adrenal activation: a quantitative summary of four decades of re-644

search. Psychosomatic Medicine 73, 114–126 (2011).645

[15] Murri, M. B. et al. Hpa axis and aging in depression: systematic646

review and meta-analysis. Psychoneuroendocrinology 41, 46–62647

(2014).648

[16] Boggero, I. A., Hostinar, C. E., Haak, E. A., Murphy, M. L. &649

Segerstrom, S. C. Psychosocial functioning and the cortisol awak-650

ening response: Meta-analysis, p-curve analysis, and evaluation of651

the evidential value in existing studies. Biological Psychology 129,652

207–230 (2017).653

[17] Hogenelst, K., Soeter, M. & Kallen, V. Ambulatory measurement of654

cortisol: Where do we stand, and which way to follow? Sensing655

and Bio-Sensing Research 22, 100249 (2019).656

[18] Valenza, G. et al. Wearable monitoring for mood recognition in657

bipolar disorder based on history-dependent long-term heart rate658

variability analysis. IEEE Journal of Biomedical and Health Infor-659

matics 18, 1625–1635 (2013).660

[19] Mohan, P. M., Nagarajan, V. & Das, S. R. Stress measurement from661

wearable photoplethysmographic sensor using heart rate variabil-662

ity data. In 2016 International Conference on Communication and663

Signal Processing (ICCSP), 1141–1144 (IEEE, 2016).664

[20] Poh, M.-Z., Swenson, N. C. & Picard, R. W. A wearable sensor for665

unobtrusive, long-term assessment of electrodermal activity. IEEE666

Transactions on Biomedical Engineering 57, 1243–1252 (2010).667

[21] Yoon, S., Sim, J. K. & Cho, Y.-H. A flexible and wearable human668

stress monitoring patch. Scientific Reports 6, 23468 (2016).669

[22] Parlak, O., Keene, S. T., Marais, A., Curto, V. F. & Salleo, A. Molec- 670

ularly selective nanoporous membrane-based wearable organic elec- 671

trochemical device for noninvasive cortisol sensing. Science Ad- 672

vances 4, eaar2904 (2018). 673
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