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ABSTRACT:

It was argued in [1] that the Volkov-Akulov (VA) model as well as similar models in
supergravity and the related KKLT model in string theory, suffer from tachyonic instabilities
due to goldstino condensation. The authors of [1] constructed a specific model with two
unconstrained interacting chiral superfields with linearly realized supersymmetry which has
an unstable vacuum. They claimed that this model becomes equivalent to the VA model in
the UV limit. We show that the UV limit of their model is discontinuous, and the vacuum
instability of the model proposed in [1] is not relevant to the VA model, to related models in
supergravity, and to the KKLT construction.
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1 Introduction

The investigation of the non-linear realization of supersymmetry plays an important role in
particle physics. The relation between models with linearly realized supersymmetry and the
Volkov-Akulov (VA) model [2] with a global non-linearly realized supersymmetry, was studied
in great detail over the last 50 years, for example in [3-7] and in Appendix A here.

A consistent supergravity with local non-linearly realized supersymmetry involving a
nilpotent field was constructed only relatively recently in [8, 9] and it was called de Sitter
supergravity. An action depending on vierbein, gravitino and goldstino was constructed, and
was shown to be invariant under non-linear local supersymmetry, see Appendix B here. This
theory was also derived from a superconformal model underlying supergravity with linearly
realized supersymmetry [10]. Lagrange multiplier superfields were introduced there in addition
to physical superfields: once the equations of motion for the Lagrange multiplier superfields
were solved, the physical superfields become constrained. The linear supersymmetry of the



original models becomes non-linearly realized and its exact form was deduced from the original
linear supersymmetry.

One more way to derive the de Sitter supergravity was presented in [11] using non-Gaussian
integration of an auxiliary field F', by adding corrections to the Kéahler potential that are
of the type employed in the globally supersymmetric case in [6]. These developments are
extensively used in many recent investigations related to string theory and cosmology.

A different approach to theories with non-linear realization of supersymmetry was recently
proposed by Dall’Agata et al [1]. The authors of [1] made their own attempt to derive the theory
of a nilpotent superfield starting from a theory with linearly realized supersymmetry and with
two unconstrained superfields. Their model suffers from a vacuum instability due to a tachyonic
mass squared for the scalars. This result was interpreted in [1] as goldstino condensation and
as a vacuum instability in theories with non-linear realization of supersymmetry.

The main goal of our paper is to study the relation between the models in [1] and models
with non-linear realization of supersymmetry developed in [2, 8, 9]. We will find that there is
a discontinuity, a gap between the models with linear realization of supersymmetry proposed
in [1], and models with the non-linear supersymmetry. Therefore, the vacuum instability found
in [1] demonstrates the problem of their specific model, but does not imply the existence of a
similar instability in theories with non-linear realization of supersymmetry.

To explain it in a more detailed way, let us remember that the Volkov-Akulov model [2],
as well as the de Sitter supergravity model [8, 9], involves a single chiral nilpotent superfield X
such that X2 = 0, and supersymmetry is non-linearly realized. This theory, when formulated
with a Lagrange multiplier superfield 7', has a term in the superpotential of the form TX? as
suggested in [6]. The equation of motion for this Lagrange multiplier is X? = 0. Meanwhile
in [1] the authors made an unconventional step of promoting the Lagrange multiplier superfield
T to the status of a normal propagating superfield: such a theory has two superfields X and
T with linearly realized supersymmetry. As a result of this and several other unconventional
modifications made in [1], the models they proposed suffer from a vacuum instability.

This result by itself does not say anything about a vacuum stability in models with
non-linearly realized supersymmetry [2, 8, 9]. To extend their results to the models [2, 8, 9] the
authors of [1] are using the so-called exact renormalization group (ERG) equations, following
the rarely used procedure proposed in [12].

Note that the goldstino condensation proposal made in [1] for the VA theory has important
features distinguishing it from the Nambu-Jona-Lasinio (NJL) type models [13, 14] used more
commonly for studies of condensates and bound states. In models where a large N expansion
is available, one usually adds auxiliary fields which allow a bosonization of the fermionic
models. Such auxiliary fields have terms quadratic and linear in the action, they do not have
kinetic terms. The next step is a 1-loop computation of the diagrams involving the original
fields coupled to an auxiliary field. This computation produces a kinetic term for an auxiliary



field, as well as other terms in the effective action. See for example [15-22] where the bosonic
and fermionic bound states were investigated in the large N approximation, which allowed to
avoid significant problems with using the renormalization group approach in this context.

Since VA theory has only one fermion, the authors of [1] could not use the large N
approximation to support their statements. That is why they refer to [12] as the only case
in the literature where the NJL type model was discussed for a single fermion N =1 in a
non-perturbative renormalization group flow. And they argued that the ERG equations in the
UV limit may continuously relate the unstable models they proposed in [1] to the models with
non-linearly realized supersymmetry [2, 8, 9].

It is not our goal to debate the reliability of the renormalization group equations in the
context of a non-renormalizable theory, though we have some concerns about its consistency,
to be discussed later. In the main part of this paper we will simply follow the lead of [1] and
confirm many of their results obtained in the context of the models with two unconstrained
interacting chiral superfields X and 7. However, we will also show that these models with
linearly realized symmetry and tachyons do not coincide with the models with the non-linearly
realized supersymmetry [2, 8, 9] in the UV limit. This discontinuity invalidates the main
conclusions of [1].

To understand the origin of the discontinuity, which we will discuss in great detail in this
paper, consider a simple toy model with the following Kéahler potential K and superpotential
wW:

K=XX +TT, W= fX. (1.1)

Here t and f are some parameters.
One could expect, that in the limit ¢ — 0 the term t?TT disappears, and the model
becomes a theory of a single field X with
K=XX, W=/fX. (1.2)

However, such conclusion would be premature. Taking the limit £ — 0 in the Kahler potential
(1.1) is problematic since the Kéhler metric tends to zero in this limit, K7p — 0, and the
inverse one is divergent, K77 — oo.

The field 7" in (1.1) is not canonically normalized. Switching to canonical variables for T
in (1.1) by making a field redefinition t7" — T', which is a valid procedure for any finite t, one
finds that the model (1.1) for any ¢ # 0 is equivalent to the model

K=XX+1T, W= fX. (1.3)

This model describes two canonically normalized non-interacting massless fields X and 7.

Thus we see that the theory (1.1) for ¢ = 0, given in (1.2), is not equivalent to the theory
(1.1) in the limit ¢ — O given in (1.3). In other words, the limit ¢ — 0 in the model (1.1) is

discontinuous.



The existence of this discontinuity could suggest that if one adds the term t*TT to the
models such as (1.2), the field T" is there to stay, and one cannot get rid of it in the limit
t — 0. This rule is generally valid, but there are some possible exceptions. As an example,
consider a theory

K =XX +t*TT, W=fX+T2 (1.4)

If one takes t = 0, the field T" no longer propagates, its equation of motion becomes T = 0,
and the theory reduces to (1.2).

On the other hand, for any finite ¢ this theory is equivalent to

) _
K=XX+1TT, W:fX—i—% = V:f2+4%. (1.5)
In the limit ¢ — 0 this theory describes a massless field X and a massive field T" with the mass
mp proportional to 1/t?, and with the potential having a minimum at 7' = 0. In the limit
t — 0 this field becomes infinitely heavy and decouples from all dynamical processes. In that
sense, the model (1.4) in the limit ¢ — 0 may become effectively equivalent to the model (1.2).
However, even in this case it is hard to reliably establish the equivalence of the two models
because quantum corrections to the potential V' typically blow up in the limit mp — oo.

These examples will play a crucial role in our analysis of the investigation performed in
[1]. Indeed, the authors considered the Volkov-Akulov model [2] in a form proposed in [6]

_ 1
K=XX, W:fX+§TX2, (1.6)

where the field T is not a physical degree of freedom but a Lagrange multiplier. Then they
modified the first term of the Kéhler potential in eq. (1.6) and added to it several new terms
which were absent in the original VA theory:

K= a(XX + SOTT + )X X1T+ W xx2 . w=ypx+lrx, )

with a(t) > 1, S(t) > 0, g(t) > 0, ¢(t) > 0.

In this new model the field T is no longer a Lagrange multiplier, it becomes a new
propagating field. This modification is a substantial and highly nontrivial step, as we
illustrated by the toy models discussed above. One should not take for granted that the new
theory is equivalent to the original one even when the limit

a(t) =1, B(t) — 0, g(t) =0, q(t) =0, at t =0 (1.8)

is taken in the Kéhler potential. Meanwhile that is exactly what the authors of [1] did, and
that is what they call a UV limit.

The authors interpreted the parameters of their model in eq. (1.7) as effective coupling
constants in the RG equations with respect to the running parameter ¢t = In %, where p is



the normalization mass scale, and A is a cut-off. Then they found specific solutions of the
RG equations such that eq. (1.8) is valid. On the basis of this result they conjectured that
the model (1.7) coincides with the VA theory in the UV limit. And since they also found
that their own theory (1.7) suffers from the tachyonic instability at any ¢ at X =T = 0, they
conjectured that the VA model has a similar problem.

However, in the UV limit a component of a Kéhler geometry vanishes and its inverse is
singular: .
g7 = Kpp = Bt) +g) XX -0, ¢'7 w00 att—0. (1.9)

But supersymmetry and supergravity theories are well defined only for a non-singular Kéhler
geometry. Therefore the model (1.7) is not well defined at ¢ — 0. This is yet another
manifestation of the issue illustrated by our toy models (1.1)-(1.5), which demonstrated that
adding new terms such as 3(¢t)TT to the Kihler potential may irreversibly alter the physical
content of the model, and make a transition from the VA model (1.6) to the model (1.7)
discontinuous.

To further explore the model (1.7) at small (but finite) ¢t one may switch to canonical
variables at t # 0, as we did in the toy example in eqgs. (1.4), (1.5), and study this model and
its properties. No such analysis of the possible discontinuity between the models (1.6) and
(1.7), or between their supergravity generalizations, was performed in [1], and the issue of the
Kéhler metric singularity in the UV limit presented in eq. (1.9) was never raised. This issue
requires a new detailed investigation, which is the goal of our paper.

The main conclusion of our investigation is that the limit ¢ — 0 is discontinuous, and
therefore the vacuum instability of the model proposed in [1] is not relevant to the VA model,
to related models in supergravity, and to the KKLT construction.

We would like to add a comment here about the relation between the VA model and a
single superfield model with a linearly realized supersymmetry, where X is not a nilpotent
superfield [6], but the theory has (X X)? correction to Kihler potential originating from a
certain one-loop diagram, see eq. (A.4) in Appendix A. The model (A.4) coincides with (1.7)
with T =0, a =1, # = —qpz- The one-loop corrections are known to lead to ¢ > 0 in the
model (A.4), and to positive scalar mass squared m? = 401\];—22. It is widely accepted that the
one-loop corrections bring this model with linear supersymmetry to the VA theory with a
non-linear supersymmetry. Scalars are heavy and decoupled at large positive c¢. In Ref. [7]
‘From Linear to Non-linear SUSY’ the constant ¢ was also taken to be positive. But in the
recent paper [1] two of the authors of [7] decided to take ¢ < 0 for the consistency of their
ERG equations in the presence of the superfield 7. This change of sign of a quartic coupling
in the Kéahler potential is not supported by known quantum corrections in these models, see
Appendix A for details. After this change of the sign of ¢, the scalars in a one-superfield model
with T = 0 become tachyonic, and the model is no longer related to the VA theory.

Independently of the above, we also point out that the results obtained in [1] cannot be



extrapolated to the anti-D3-brane uplift in the KKLT construction [23]. The reason is the
following shortcoming stated at the end of the introduction in [1]: light states surviving in the
IR can disrupt their procedure. Given that the SUSY breaking scale for the anti-D3-brane
in the KKLT scenario is the warped down string scale, which is above the warped down KK
scale, there are plenty of light fields below the SUSY breaking scale. In particular, the world
volume fields on the anti-D3-brane contain in addition to the goldstino a massless U(1) gauge
field. Such light fields have been neglected in the analysis of [1]. We will discuss below in
section 5 explicit examples where the presence of light states ensures the absence of potential
instabilities and we argue that this should also apply to the anti-D3-brane in KKLT.

2 Lagrange multiplier and instability

Let us consider a theory with a Lagrange multiplier 7" in eq. (1.6). It was given in this form
in the globally supersymmetric case in [6]. A Lagrange multiplier is a field which appears
linearly in the action. Therefore, it is different from auxiliary fields which appear quadratically.
The equation of motion for T" means that the factor in front of T" has to vanish, which is a
nilpotency equation for the superfield X

X?=0, (2.1)
and VA theory is restored. Note that T is not uniquely defined, which is also different from

the situation with the auxiliary field.

Following [1] we add to this theory a kinetic term for the Lagrange multiplier T
- = 1
K=XX+2ZyTT, W:fX+§TX2. (2.2)

Now, if Z7 # 0 as suggested in [1] we cannot solve the equation for T as it is not algebraic
anymore. We have a model with two unconstrained coupled superfields X,T. This is a
simplified version of the model studied in [1] in their egs. (3.1), (3.2), where we can take

¢ =0,9=0 to get from eq. (2.2)

K=XX+1TT, W=fX+ TX?. (2.3)

1
2V Zr
The model in (2.3) at any Zp # 0 is equivalent to the model in (2.2). The term added to the
Kihler potential of the VA theory in [1] is of the form ZyTT. To make it canonical one had

to rescale it so that Z7TT — TT. Therefore the couplings of the form T X? was rescaled as

TX? — 211/2 TX?2. The vertex involving the T-scalar and 2 fermions of the X superfield and a

T
vertex involving the scalar from the X multiplet with fermions from the T' and X multiplets

blow up in the limit Zp — 0. Already in this simple model we see the issues with the claim
in [1] that the model where T is a propagating field is equivalent to a model where T is a
Lagrange multiplier.



In the supergravity version of this model with K, W in eq. (2.2) the masses squared of

the 4 canonical real scalar fields at X =T = 0 (with double multiplicity) are blowing up in
SN (2.4)

the limit Zp — 0
1 1
2
mi=—-f(f=* f2+>
72 ( \ Zr )| 00 VZr

There are 2 tachyons with negative masses squared at fixed values of Z. In the limit Zp — 0

all masses diverge: this means that 2 states with positive masses squared decouple, but two
states with negative masses squared grow exponentially.

The heavy scalars in equation (2.4) have the time-dependent wave functions proportional

1
GVEAmL (2.5)

At large positive m%r these are superheavy particles. In the large mass limit they are expected

to

to immediately decay, and it is hard to produce them, even as virtual particles.

On the other hand, tachyons are particles that have negative mass squared m? . Quantum
fluctuations of the tachyonic states with |m? | > k? have components growing as

eVImiI=kzt (2.6)

At small k£ these modes grow exponentially as
MU M= mE Y2 (2.7)

In our case in equation (2.4) we have M? = % An increase of the tachyonic mass when

Z7 — 0 does not lead to decoupling. Instead of that, quantum fluctuations of the tachyonic

Mt

scalars grow exponentially, as e”'*, which leads to immediate decay of the initial vacuum state

within the time O(1/M) [24].

In the global case we find the masses squared of the scalar fields at vanishing scalar vevs

are (with double multiplicity)

. R (2.8)

VZr’
confirming the fact that, instead of decoupling, two of the four real scalars grow exponentially
in the limit to the VA theory.

3 The model proposed in [1]

The complete model in [1] where the Kahler potential is given in their eq. (3.1) and the
superpotential in their eq. (3.2) is

K=XX+4+TT+ATTXX +(XXXX , (3.1)

!We use the notation from [1] where trg =t = log% everywhere except in egs. (2.5)-(2.7) below, where t
denotes the normal time.



W=fX+gTx>. (3.2)

We present in Appendix C the steps in the derivation of this model according to [1] starting
with the VA theory where the term T'T is absent in the Kihler potential and 7 = Q: =g-— % = 0.
It is first added in the form ZpTT and Zr is rescaled away afterwards.? The model with the
added kinetic term for the Lagrange multiplier is the starting point for the ERG approach.

We note here that there is only one point in the moduli space geometry where the
Kéahler geometry at ¢ — 0 is not singular. Namely only at the the point T'= X = 0 the
Kéhler geometry is regular in what is called UV limit in [1]. We will see below that at any
non-vanishing vev of the scalars the Kahler metric in the UV limit in [1] is singular and the
models are not well defined in the UV limit.

The coupling constants in this model are function of the renormalization group time
A
trg =t=1log— >0, (3.3)
I

and

f
Here the theory has a cut-off A and u < A is the renormalization scale, related to the
energy scale at which the theory is probed. As a result of solving the ERG equations the

model has the following ¢t-dependent couplings:

B 1— 67215 _ 1— 67215
C = t+e_2t 2 Y= t+ﬁ 1 t+ﬂ . ’ (35)
4 (&3 ~ 57 + 1) (873 Tl 1> <16ﬂ22 - 327r2>
_ ert ~ 1
= = . 3.6
f t+d 1 ’ g t+ﬂ 1 t_;'_ﬂ 1 ( )
MV =2 e +1 2 (873 ~ o T 1) o~ B
The renormalization group solutions proposed in the paper [1] require that
>0, (>0, f>0, §>0. (3.7)

We will focus on the limit £ — 0 where the renormalization scale p is infinitesimally away from
the cut-off A. As we will show below, the singular behavior of the scalar potential becomes
more significant as p approaches the cut-off scale A. This implies a discontinuity between the
VA theory at Zp = 0, i.e. at t = 0, and the model of [1] for Zp — 0, i.e. for ¢ — 0. In the
limit of small ¢ we find from (3.5), (3.6) that

3272
t M

2
5 V= / a

- g— — .
a2 9T

2Here we do not use the T notation as in eq. (C.6), for simplicity.

¢ f—

(3.8)

N |




The couplings of T" and X, namely the couplings 7, § tend to infinity in the limit ¢ — 0. At the
qualitative level this is understandable since the original term added to the Kahler potential
of the VA theory was of the form Z7TT. To make it canonical one had to rescale it so that

ZrTT — TT. Therefore the couplings of the form TX? was rescaled as TX? — le/z TX?
T

and TTXX — %TTX X. More details are given in Appendix C.
T

The supergravity model in [1] with two unconstrained superfields has the Kéhler potential
and superpotential given in eq. (3.1), (3.2). The potential, according to [1] has the standard
form, the only difference is the value of M Pl

_K 2

v =it ( pwigow, — 3 (3.9)
lg Vi M2
Pl

They propose to use Mp; = Aet P where P is some ‘realistic value’ dimensionless parameter,
for instance, P ~ 10%. This is not relevant for the computation of the mass spectrum since
both the normal MI%Z as well as M%l are space-time independent.

The supergravity version of the mass formula was not given in [1], but it was observed
that as in the rigid case, the masses are highly tachyonic. We present here the masses of
the canonical scalar fields, in units Mp; = 1, at X =T = 0. Here Mp, = e'P and we are
interested in values of ¢ close to zero where the dependence of M p; on t can be ignored.

There are 4 real scalars, the masses squared are doubly degenerate and given by
1 -
mi = S f? [A + /A2 ¢ B] , (3.10)

where
A=1-7-4C, (3.11)
g : g =
B:16<J?2+(1—§/)C>, A2+B:16F+(1—’7+4C)2. (3.12)
We confirm, based on eq. (3.7) that there are tachyons in the supergravity model in [1] at
X=T=0.
However, if we would consider the supergravity model in egs. (3.1), (3.2) without assuming

the choice of parameters made in [1] based on the ERG approach, we would observe that for

_ _ ~2
1-5>40 = A>0, —(1—&)<>f§2 —~ B<O0, (3.13)

all 4 masses squared are positive and there are no tachyons. Both conditions are violated at
small ¢ as we can see from eq. (3.8).

At small t we find 2 heavy states and 2 tachyons

1[1i\/1+l] l A%

m3 |t 0 = — (3.14)

¢ l = 16n2f2



The total scalar potential in (3.9) at X =T =0 for ¢ — 0 can be computed and it is constant
f2
Vix=r=0= I (3.15)

However, if we consider a general situation where both of the complex scalars X and T do not
vanish, then the leading term in the small ¢ limit is singular, blowing up as

12874
t3

32721 X2 |72
T

X1 |T e

Voo = (3.16)

The Kéhler geometry g;; = 9;0;K defining the kinetic terms for the scalars and fermions
is also singular at t — 0

14+320°TT (L~ 1) 320°TX (L 1)
9i7 = ) ) +O(t) . (3.17)
32m°TX (3 —3)  1+320°XX (- 3)
We can also compute the part of the action that is quadratic in the fermions

1 o
ﬁferm = iminlXj + h.c., mij = €§DiDjW . (318)

At the saddle point with X = T = 0 all these terms vanish, the fermions are massless. However,
at small ¢ and non-vanishing scalar vevs we find

_ 2
204870\ X T)?T 16n21x2 1712 = TX
mij|t—>0 = 13 e ¢ TX X2 ’ (319)
and the eigenvalues of the matrix m;; are
_ 20487°| X || T 2T 16x21x1% 712 9 o
Eigenvalues| m;j|; 0] = e t {0, T+ X*} . (3.20)

t3

One is vanishing, the other is singular.> The critical points of the potential at small ¢ are not
available for non-vanishing scalar vev’s. But we will find that in the small ¢ limit, there are
flat directions and massless bosons.

It is possible to change variables to make the kinetic term canonical, non-singular and to
express the rest of the action in these variables. The potential and the fermion action at small
t are complicated and might still involve terms singular in the ¢ — 0 limit. But since there
is no extremum of the potential at X # 0 and T # 0 for t — 0 the procedure of switching
to canonical variables does not help to define the physical states and the masses of these
canonical fields. It only shows that the limit to theories with non-linear supersymmetry from

3In the field space coordinate system (X,T), the eigenvectors for each eigenvalue oc {0,72 + X?} are
(=X/T,1),(T/X,1). Therefore, the mass eigenmodes are mixtures of 9~ and 7 for general values of X,T.

,10,



the model in [1] is discontinuous: the scalars go to 0 first and ¢t — 0 afterwards, or vice versa,
the results are different.

Thus we have now shown that the system at X =T = 0, which is a saddle point of the
potential, is highly unstable. This is due to the tachyons with blowing up negative masses
at t — 0 as we see in eq. (3.14). We have also shown that the model defined by egs. (3.1),
(3.2) and studied in [1], which according to this paper represents de Sitter supergravity at
t = 0, actually does not have a well-defined limit ¢ — 0. In particular, the tachyonic masses
of the canonical scalar fields blow up in this limit. Also the action at non-vanishing scalar
values diverges for ¢ — 0, but at vev’s X =T = 0 the action is finite. Of course we still have
quantum vertices with scalar and fermion couplings proportional to g ~ % and to 4 ~ %

In the globally supersymmetric model the potential is based on the same Kéhler potential
and superpotential given in egs. (3.1), (3.2)

V = go,Wo;W . (3.21)

At the critical point X =T = 0 we have found the following double set of masses squared for
the canonical scalar fields *

1 -
2 _ 1
my = 2f

(7 +40) + \/1222 +(H - 45)2] : (3.22)

In a model in [1] where eq. (3.7) is valid, one can see that there are tachyons in (3.22). At
small ¢ the mass formula is the same as in equation (3.14) in the local case.

We find the same type of discontinuity in the properties of the total potential and the
fermionic action of the globally supersymmetric model. Depending on the order of the limits
the total potential and fermion action either are finite at X =T = 0, t — 0 or singular at
t — 0 with X # 0,7 # 0. This means that the limit to the VA theory from the theory in [1]
has a discontinuity.

We studied also the case of X = X =z, T # 0. Using the R-symmetry one can choose
the vev of the X field to be real. We have found that the minimum of the potential is at
X ~ t for non-vanishing 7. The corresponding potentials are shown in Fig. 1 for the case
X =X =2, T =T # 0 at decreasing time. The potential at X = X = z as a function of
T =T = y has a flat direction as it is proportional to ¢ at all values of 7' # 0. It means that
at t = 0 along the valley V' = 0 there is a massless scalar field in [1], which is absent in the
VA theory. Once again we have shown that the model in [1] is not representing the VA theory
with a non-linear supersymmetry.

“Our masses differ from the the ones in [1] by a factor of 1/2.

— 11 —



L [
-0.10 -0.05

! L 0.0
0.00 0.05 A

X

[ L . L
-0.05 0.00 0.05

X
Figure 1: Here we plot the potential in eq. (3.16) for X = X =z, and T =T = y. On the left t = 0.001, on
the right ¢ = 0.0001

We have also looked at the potential at X = X = 0 as a function of T = \%(y +iv). The
corresponding potential at different values of small ¢ is shown in Fig. 2. One can see a flat
complex plane once the field T rolls down from an unstable T" = 0 position. In terms of the
massless scalars we find that the theory at small ¢t has 2 massless scalar degrees of freedom.

This is, as expected, very different from the content of physical states in the VA theory where
there are no massless scalars.

Figure 2: Here we plot the potential for X = X =0, and T = %(y + ). On the left ¢ = 0.0005, on the
right ¢ = 0.00001. The potential becomes a tiny needle peaking out of a flat plane in the ¢ — 0 limit.

4 Scale of energies and numerics

The goldstino condensate construction in [1] is based on the assumption that there is a cut-off
at A and that the ERG evolution is in terms of the RG time ¢ = & where ¢ is non-negative and
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the momenta p? are restricted to be below p2, since the theory is probed at energies below p?
u? < A%, p? <. (4.1)

Here we take the results for the masses of the scalar fields obtained in [1] at their face value
to find out how these masses are related to the cut-off A2. We take the mass eigenvalues
in eq. (3.22) and use the dependence on t of all entries there given in egs. (3.5), (3.6). For
tachyons we get some functions M?(t) and for masses which are not tachyonic at small ¢ but
become tachyonic away from small ¢ we get some functions M3 (t). We plot both functions for
0.001 <t < 1.3 in Fig. 3.

2
M21 M 2

t 200
0.2 0.4 0.6 0.8 1.0 1.2

-5000
100

-10000
-15000
-20000

-100
-25000

-30000 -200

Figure 3: Here we plot the numerical values of the scalar masses as function of t for f = A2

By looking at the plots in Fig. 3 we can see that the numerical value of the tachyonic mass
squared MZ(t) in the limit + — 0 becomes infinitely large and negative. At large t it becomes
exponentially large and negative. Moreover, the absolute value of the tachyon mass square is
always very large, even at its minimum value at ¢ ~ 0.27 where it is given by |MZ(t)| > 3 - 103.

For the second eigenvalue M2 (t) at small ¢ the mass squared is positive and grow infinitely
large at ¢ — 0, but at ¢t ~ 0.34 it changes its sign, and becomes exponentially large and
negative.

The dimensionless values of the masses in eq. (3.22) take these numbers above. The
question is: What are their dimensionful values? In [1] it is suggested that the dimensionful
couplings come in units of u, therefore we may assume that the same holds for the masses. In
fact, there are only 2 mass squared parameters in this construction: u? and A? as the authors
of [1] use &yy = % =1

At small t — 0 we have u — A, at t = 2 we have  — e"?A and the values of the masses
squared are
‘ ~ 3% 10942 | —Mf‘ ~ 5 x 10°A2
=0.001 t=2

~ 500A2 , —MQQ‘ ~ 50A2 | (4.2)
t_

2
— M
2
2 t=0.001 =2
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At the minimum at ¢ = 0.27 g — e %27A we find

— M} ~ 1750 A% . (4.3)
t=0.27
There is a discussion in [1] that the ERG evolution cannot really be trusted for ¢ > 1.
However, we see now that the smallest |M?Z| at t = 0.27 is a thousand times greater than the
cut-off A% that was assumed to exist in the theory. At every other values of t we see in Fig. 3
that M? exceeds A? even more. And in the small ¢ limit which is most interesting for us the
masses become infinitely many times greater than A.

Thus, we are dealing with masses which are numerically either significantly greater or
even many orders of magnitude greater than the cut-off scale A2. This raises questions about
the consistency of the set of assumptions on which the setup of the ERG equations is based,
and suggests that this approach is completely inapplicable in the limit ¢ — 0, where its results
are supposed to match the results of the VA model.

In supergravity it is suggested in [1] that A? ~ 1078M3, for e** ~ O(1). i.e. 8 order
of magnitude below the Planck mass squared. It means that the smallest value of |M?| is
103A2% ~ 10_5M12)l. Clearly, the cut-off assumption is inconsistent with these numbers.

5 Instabilities in string theory?

In this section we would like to revisit the claim of an anti-D3-brane instability [1] from the
point of view of the string theory KKLT setup. To that end let us quickly review the related
developments in recent years.

Given that the background fluxes in the KKLT construction carry charge with the opposite
sign as the anti-D3-brane(s), the backreaction leads to an accumulation of flux near the anti-
D3-brane. One might then worry that this might trigger an immediate annihilation of the
anti-D3-brane against the fluxes (via the decay channels discussed in the probe limit by Kachru,
Pearson and Verlinde (KPV) [25]). Furthermore, the flux accumulation seemed to lead to
nonphysical singularities in the flux background. However, it was recently discovered through
careful analysis that neither of these problems really manifest [26-29]. In particular, [29]
reviews how anti-brane polarization resolves flux singularities and leads to valid supergravity
solutions for sufficiently large numbers of anti-branes.

The case of a small number of anti-branes or actually a single anti-brane (potentially
placed on top of an O-plane) has also been studied extensively in the last few years [26, 30-42].
This is particularly important for our discussion here since in this case the connection between
the VA action for the goldstino and the anti-D3-brane worldvolume fields has been made
manifest (see also [43] for a generalization to multiple anti-branes). So, we will from now

5

on mostly focus on the case of a single anti-D3-brane.” For a single anti-brane in a flux

°It was shown in [44] that multiple anti-D3-branes seem to repel each other. Given that they are confined
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background the authors of [26] argue that one should include the anti-D3-brane action (that
contains the VA action) as part of the low energy field theory, which is what has been done
so far in the literature and also in [1]. However, the authors of [26] find no instability in
this setup and show that divergences in the flux cloud near the anti-brane get resolved by
matching onto string theory at short distances. Furthermore, the authors of [26] show that
the only allowed anti-D3-brane instability is the NS5-brane instanton described by KPV [25].
As mentioned above this decay channel has been studied in great depth and in particular from
the stand point of non-linear supersymmetry in [39, 41]. There exists now universal agreement
in the literature that there are metastable vacua after the polarization of the anti-D3-branes
into an NS5-brane. As stated in [1], the connection of their instability to the KPV paper is
unclear, so it could be that their result is related to the polarization of anti-D3-branes into a
metastable NS5 brane. However, at least for a single anti-D3-brane the claims in [1] seem to
be at odds with the perturbative stability that was observed in [26] via a more explicit study
of an anti-D3-brane in a flux background.

The explicit connection between an anti-D3-brane and the VA action was first made
in [30], where it was shown that the low energy effective action for an anti-D3-brane on top
of an O3-plane is actually given by four copies of the VA action. This setup is particularly
simple (since it is in flat space without fluxes) and it was shown to be stable by an explicit
string theory calculation in [45]. In [31] this setup was generalized by including background
fluxes and it was found that these give masses to three of the four copies of the VA fermions,
leaving at low energies essentially only the VA action. It was then shown that such a setting
of an anti-D3-brane on top of an O3-plane can arise in the warped throats that are required
for the KKLT construction [32, 34]. The full action of an anti-D3-brane in a warped throat
(that is not placed on top of an O3-plane) was worked out in [40, 42]. Each of these previous
described works that study different variants of the anti-D3-brane action in backgrounds,
varying from flat space to KKLT flux compactifications, contain the goldstino and the VA
action as well as other light fields.

The authors of [1] start from a particular realization of the VA action imposed via a
Langrange multiplier field 7" that then becomes dynamical and ultimately leads to an instability.
If that argument were to carry over to the anti-D3-brane and in particular to the anti-D3-brane
uplift in the KKLT scenario, then one has to wonder whether it equally carries over to other
scenarios as well: Four copies of the VA action arise from the worldvolume fermions on an
anti-D3-brane on top of an O3-plane [30]. If we remove the O3-plane, the fermionic action
is unaltered [46] and supplemented with a U(1) gauge field and three complex scalars. In
flat space, however, there is no distinction between an anti-D3-brane and a D3-brane. This
means these worldvolume fields on the brane form an N = 4 vector multiplet and the action
is invariant under 16 linearly and 16 non-linearly realized supersymmetries. Clearly this
supersymmetric system of an N = 4 vector multiplet is stable, although the action for the

to the bottom of a warped throat in KKLT type constructions, this might then justify the study of each of
them as a single anti-D3-brane, even when multiple anti-D3-branes are present [26].
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fermions is of VA type [46]. Now let us do an O3 orientifold projection again but place the
anti-D3-brane away from the orientifold (that maps it to a mirror anti-D3-brane). The action
for this anti-D3-brane in flat space is exactly the same as the N’ = 4 vector multiplet action
on the D3-brane. The orientifold background only projects out the 16 linear supersymmetries
but it does not project out any of the fields on the anti-D3-brane. So, as is common in
(intersecting) brane models in string theory, locally the amount of preserved supersymmetry
is larger (N =4 in 4d) than globally (M = 0 in this case). This simple thought experiment
shows that it is nonsensical to conclude from the sheer presence of the VA action that a
vacuum is unstable. The completion of the VA action through other fields leads for D3-branes
and anti-D3-branes to locally supersymmetric actions. Any potential instability can only arise
via the coupling to the background fields that requires a careful study and has been performed
for the anti-D3-brane in the KKLT setup in the existing string theory literature, reaching the
conclusion that the system is (meta-)stable.

The above string theoretical argument carries over to for example any 4d globally super-
symmetric theory: If in a vacuum four supercharges are spontaneously broken, then there
is a massless goldstino whose action is given by the VA action.® If the pure VA model has
an instability, then this would either render any partially SUSY breaking vacuum in any
SUSY theory unstable, which seems absurd, or it does not necessarily imply a problem once
other fields are included and therefore requires a model dependent study. Such a model
dependent study for the KKLT model was not performed in [1] for the anti-D3-brane uplift, so
no conclusion regarding its stability can be reached based on the analysis in [1]. In particular,
for the anti-D3-brane in the KKLT scenario the SUSY breaking scale is set by the string
scale at the bottom of the warped throat. This string scale is above the (warped down) KK
scale so in addition to the light open and closed string states with masses below the warped
down string scale, there are also many states from the KK tower that are lighter than the
SUSY breaking scale. Furthermore, for a single anti-D3-brane at the bottom of a warped
throat there is a massless U(1) gauge field [40, 42] in addition to the massless goldstino. It
is therefore impossible to remove all light fields from the theory by reducing the UV cutoff.
Therefore, one cannot apply the results of [1] to the anti-D3-brane uplift in KKLT.

The concern of the previous paragraph is briefly addressed at the end of the introduction
in [1] were the authors say: “The only way to avoid the instability ... would be to always
have some additional light states”. If one identifies the UV scale with the supersymmetry
breaking scale, then there seem to be generically additional light states at or below this scale.
If one deals with a vacuum in which all fields but the goldstino are massive, then one could
potentially choose the UV scale to be below the mass of the lightest states and the theory
reduces to only the VA model. However, this would at best apply to an anti-D3-brane on top
of O3-plane and not to the generic anti-D3-brane uplift of KKLT since there is a massless
U(1) gauge field in addition to the goldstino.

51f all other fields are massive, then this is actually the entire action of the theory at sufficiently low energies.
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The supergravity model used in [1] to discuss the KKLT model is the model in their
Sec. 4.2 with two propagating unconstrained superfields X, T in addition to a superfield p
representing the volume of the extra dimensions. The KKLT supergravity model in Mp; = 1
units is [47]

K=-3n(p+p +X?, W=fX+Wo+Ac ™,  X?*=0. (5.1)

This model is replaced in [1] by the one where there is also a superfield T' which is a propagating
superfield. Namely, the total Kahler and superpotential include the terms in egs. (3.1) and
(3.2) as well as AK = —3In(p + p) and AW = Wy + Ae~*". They include some t-dependent
factors of the form e’ which at small ¢ are regular. Most importantly, the superfield X is not
nilpotent anymore, since 1" is a dynamical superfield.

The presence of Wy leads to a shift of the saddle point of the potential to some non-
vanishing values for the scalar fields. We have computed the masses and the potential in this
more general model, only to confirm that at small ¢ eqs. (3.14) and (3.16) are beyond repair:
all the additional terms in K and W are regular at small ¢ and cannot remove the singularities
in these equations.

It is also interesting that Fig. 5 in [1] shows the numerical example of the KKLT volume
field potential at ¢ = 0.1,0.3, 1 where the authors of [1] find that at ¢t = 0.3, 1 the volume field
potential is negative at the critical point but at smaller £ = 0.1 the minimum is still in de
Sitter. But the t — 0 limit remains not well defined and singular in the X, T sector, which
means that the anti-de Sitter minimum for the volume at ¢ = 0.3,1 is not relevant to the
model with a nilpotent multiplet at ¢ = 0.

This explains a technical error in the statement in [1] about the tachyonic instability in
the KKLT model. The tachyonic instability takes place in the model studied in [1], however,
the limit from this model to the KKLT model involves a singularity and therefore these are
two different models.

6 Discussion

The proposal in [1] is to modify the Volkov-Akulov theory [2] in the form given in [6] which
we present here in eq. (1.6). In [1] they have introduced a kinetic term for the Lagrangian
multiplier superfield T by adding a term to the Kéahler potential such that T instead of being
a Lagrange multiplier becomes a propagating field

K—K+ZrTT . (6.1)

The analysis in [1] after they make the Lagrange multiplier a propagating field, proceeds along
the lines of the non-perturbative ERG equations. They were following [12] where the bound
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states in a model with a single fermion were studied and a kinetic term for the auxiliary scalar
was added to the fermion action ad hoc. In [12] and [1] the 3, approximation used normally

for studies of fermion condensates is not available.

The narrative in [12] where a kinetic term Z,0,¢0"¢ was added to the model, required
the study of the limit Z; — 0 of the solutions of the ERG equations. The authors of [12, 48]
argued that their model with bosonization is equivalent to the original fermion model. They
explained it as follows: ‘the corresponding bosonic species becomes very massive and therefore
effectively drop out of the flow’.

In [1] the renormalization group equations were solved at Zp # 0. The model has 2
complex scalar fields, the first components of the unconstrained superfields X and 7. A change
of variables 1 1

ZrTT =TT , -TX? -
4 2 2 Zr

converted the former Lagrange multiplier into a canonical propagating field. It also made the

TX? (6.2)

coupling between T" and X proportional to ﬁ This feature of the coupling is the reason for
the problem: The model in [1] encounters a singularity on the way back to Zp = 0. If this
singularity would be only in the sector of scalar fields with positive mass squared, it might
work well towards the limit to the original VA fermionic theory as these heavy scalars would
decouple from the spectrum. But such a singularity in the tachyonic sector of the theory
shows that the theory is not related to a fermionic model since there is an instant vacuum
instability with respect to the generation of classical scalar fields, instead of decoupling.

The detailed form of the model in [1] is given in our egs. (3.1), (3.2). The model has two
unconstrained superfields with canonical kinetic terms at X = T = 0. The couplings 7, ¢, f, §
depend on the renormalization group time ¢ = In % There is a claim in [1] that in the limit
t = 0 their model in the global supersymmetric case is the Volkov-Akulov model, and in the
local supersymmetric case it represents supergravity interacting with the nilpotent multiplet.
However, this claim is not justified for several reasons:

1) In the limit t — 0 (Zp =~ m%tZ — 0) two of the couplings between the canonical scalars in

egs. (3.1), (3.2) blow up,

327 2

g— — . 6.3
Pt (6.3)
2) The masses of scalars at X =T = 0 were computed and tachyons were discovered in [1].

However we have found that the limit of negative mass squared is singular at ¢ — 0. This leads
to an instant vacuum decay and shows that the corresponding scalar fields are not decoupled
in this limit.

3) We have computed the scalar potential at small ¢ in the case where all scalars do not vanish.
We have found that this potential has terms diverging polynomially in the global case and
exponentially in supergravity
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Here F1, F5 are functions of the scalar fields which are not vanishing when the scalar vevs are
not vanishing, see eq. (3.16).

4) The part of the action quadratic in fermions vanishes at vanishing values of the scalars,
but it blows up at small ¢ when the scalar fields have non-zero values. The matrix m;; in the
action (3.18) has one vanishing eigenvalue and one non-vanishing eigenvalue singular at ¢t — 0,
F3 Fy
myli—o ~ Be (6.5)
Here F3, Fy are functions of the scalars which are not vanishing when the scalars are non-
vanishing, see eq. (3.20).

5) In the case of X = 0 we studied the potential of the T field and we have found a complex
flat direction at small ¢, shown in Fig. 2. This corresponds to a massless complex scalar field,
which is absent in the VA theory.

In addition to conceptual problems concerning a relation between the 2-superfield model
in [1] to the VA theory in the UV limit  — A there is a significant internal problem within
the 2-superfield field model in [1]. Namely, the scale A? is declared to be a UV cut-off so that
only scales below this cut-off scale are relevant. However, as we have shown in Sec. 4 the
masses squared of the tachyons and normal scalars at t — 0 become infinitely large. At small
t ~ 1073 with /f ~ A = p(1 +1073)

|Mt2achyons’ ~ 105A27 |M7%ormal| ~ 102‘/\2 : (66)
The smallest value of |Mt2achy ons| 15 at t ~ 0.27, and at larger ¢ it grows exponentially, so
|Mt2achyons| Z 103A2 ) (67)

for the full range of ¢ along the ERG trajectory. These masses are even greater in the regime
f > A? considered in [1]. This makes the whole setup of the ERG in the theory in [1]
questionable, regardless of its relation to theories with non-linear supersymmetry. In this
evaluation of masses we are using their own eq. (3.7) in [1]. But the Polchinski flow equation
[49, 50] for a Wilsonian action approach is based on a restriction on the allowed momenta of
the form

P2 <p? < A%, (6.8)

This is not consistent with masses they have found, as we show in eq. (6.6), (6.7). Thus the
statement in [1] that they have found a self-consistent ERG flow clashes with the values of the
scalar masses they have found but did not compare with their cut-off scale AZ.

We conclude that the supersymmetry/supergravity model in egs. (3.1), (3.2) with two
unconstrained superfields studied in [1] is, indeed, unstable at vanishing scalars. However, the
limit when the theory studied in [1] approaches the Volkov-Akulov theory is discontinuous. For
example, at X = 0 there are 2 massless scalars, which are absent in the VA theory. Therefore,
we do not see any evidence that the model developed in [1] represents the VA global non-linear
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supersymmetry model (A.3). We found that the same conclusion is valid for the de Sitter
supergravity model (B.1) and the KKLT model. Moreover, it is doubtful that the ERG flow
approach [49, 50] proposed in [1] is consistent in view of the fact that in both in the UV limit
and in the IR limit it describes states with masses significantly above the UV cut-off. We
conclude that the assertion in [1] of an instability of de Sitter vacua in theories with non-linear
realization of supersymmetry is not substantiated by their investigation.

Moreover, concerning the arguments of an instability of the KKLT string theory construc-
tion, we have explained in Sec. 5 that one cannot reach such a conclusion based on the analysis
performed in [1]. This argument is completely independent of the discussion above and relies
on the simple observation that the VA theory arise at low energies for any theory with a
(partially) supersymmetry breaking vacuum. Clearly not all such theories have unstable vacua.
The loophole in the analysis presented in [1] is stated at the end of their introduction. The
authors assume the absence of light states below their cut-off scale. Given that the SUSY
breaking scale in the KKLT scenario is set by the warped down string scale, which is above
the warped down KK scale, there are many additional light fields in the KKLT construction.
In particular, a single anti-D3-brane has among its worldvolume fields a massless U(1) gauge
field [42]. Such light modes were not taken into account in [1] and therefore one cannot claim
that the work in [1] applies to the anti-D3-brane in the KKLT scenario.
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A From linear to non-linear supersymmetry in a simple example

The VA theory [2] can be presented in the form of a nilpotent chial superfield X2 = 0 [6]

SvA_KS = /d%« [/ d*OK + </ d20(W+c.c>} : (A1)

K=XX, W=/fX, X2=0. (A.2)

where

Solving the constraint equations X? = 0 one finds that the superfield depends only on the
goldstino G and on a constant F', so that X = % + V260G + 6*F and one can identify the

— 20 —



action with a non-linearly realized supersymmetry in the form given in [6]

Lva-kgs=—f*+i0,Go"G + 4}2G282G2 — 161f6G2G282G282G2 . (A.3)
The supergravity version of this theory was constructed in [8, 9]. We display it for the
convenience of the reader in Appendix C. We present there an action which is invariant under
a non-linear local supersymmetry and that is called de Sitter supergravity. In the global case,
the action depends on only the goldstino and is given in eq. (A.3) above. In the local case,
the action depends on the goldstino, the graviton and the gravitino and it is given in egs.
(B.1)-(B.5) below. The non-linear supersymmetry transformations are presented in egs. (B.6)-
(B.11). Moreover, in the de Sitter supergravity due to local supersymmetry one can take a
gauge where the goldstino is vanishing.

We explain now why some linear supersymmetry models are related to non-linear super-
symmetry ones, and some are not. In an example studied in [6] it was shown how to get from
linear SUSY to constrained superfields. The proposal in [6] is to start with the theory with an
unconstrained single superfield ® with linear supersymmetry and a canonical Kéhler potential
K = ®® with W = f®. The scalar field here is massless. One can add corrections to the
Kahler potential which can be motivated, e.g. by the 1-loop computation in the O’Raifeartaigh
model [51] (see details in the next subsection)

_ Is -
K =83 - 50800,  W=f&, >0, (A.4)

D =+ V2004 + 6°Fy . (A.5)

Such a theory can arise as the low-energy Lagrangian below some scale M after neglecting
higher order terms in ﬁ It is valid for energies /f < E < M. The scalar potential of this
theory is

B f? N dc -
V_Wwﬂ[uwgbm...}, (A.6)

where terms small at large M are neglected. There is a minimum at ¢ = 0 and the mass of

the complex scalar ¢ is
2

At this point things depend crucially on the sign of the constant ¢. The minimum of this
potential near ¢ = 0 requires that c is positive. This was a suggestion in [6], and in such case
one finds that mé = éltc]{i[—(z2 > 0, the minimum at ¢ = 0 is stable. If the sign is negative, the
point ¢ = 0 is unstable.

We can see exactly the same example in eq. (3.2) in [7] where ¢ in eq. (A.4) is taken to
be +1 and M? is called A%2. However, in the recent paper [1] two of the authors of [7] argued
that the sign of ¢ in eq. (A.4) has to be negative for the consistency of their ERG equations.
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To explain the importance of this step, we recall how the reasoning of [6, 11] works in the
context of eq. (A.4) with ¢ > 0 and why it explains how to go from linear SUSY to constrained
superfields. For example, in [6] they have integrated out massive bosons with the mass given
in eq. (A.7), and at small momenta in the IR they found that

C
[,:_f2+|F¢+f]2—W|2¢F¢—¢2\2+... (A.8)

Here ... stand for terms with derivatives. They have solved the equations of motion in the IR
where neglected terms are small in their approximation and concluded that

¢>:¢—2, d*=0, PrX, = X%=0. (A.9)
2F,

This derivation of the constrained superfield in the IR starting from the unconstrained
superfield” would be invalid for ¢ < 0, where the scalars near ¢ = 0 are tachyonic. This means
that the model with linear supersymmetry in eq. (A.4) with negative c¢ is unstable at small ¢.
But it also means that it is not related to the VA theory. This is opposite to the case with

positive ¢, which is related to the VA theory, as shown in [6, 11].

The 1-loop computation in the O’Raifeartaigh model leads to an effective quartic term in
the Kéhler potential in (A.4) with ¢ > 0, see for example [6]. The original detailed computation
was done in [52] and the positive value of ¢ was confirmed in [53, 54]. These results for the
O’Raifeartaigh model were applied in the context of O’KKLT supergravity in [55].

The classic O’Raifeartaigh superpotential [51] involves three superfields ¢1, ¢2, X with
the superpotential in the notation of [54]

W = maoido + gx P+ fX (A.10)

and canonical Kéhler terms. There is also a Zo symmetry under which ¢; and and ¢- are odd.

The 1-loop potential was computed in [52] as a function of X. The value of X is not fixed
at tree level, but the 1-loop contribution lifts this flat direction through contributions from
bosons and fermions in the Coleman-Weinberg [56] type potential depending on X

M2 (X)
M2

cutoff

— 1 4
Vet = Viree + 6472 STrM (X) In (All)

The total 1-loop potential in the O’Raifeartaigh model is complicated but explicitly given in
[52], see egs. (4.7)-(4.9) there. This potential was shown to have a minimum at X = 0.

In [54] it was also found that for y = ‘%‘ < 1 the vacuum of the classical theory has

the Zo symmetry unbroken. For y > 1, the Zs symmetry is broken, and X is arbitrary in

"This procedure was generalized in [11] where the complete VA action was derived, including higher derivative
terms, starting with eq. (A.4).
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both cases. This degeneracy is lifted by the 1-loop Coleman-Weinberg potential so that the
potential at small X is

Ver(X) = Vo +mX|X[* + O(IX|Y) | (A.12)
1 .
mi = 3973 ‘h2m2’ faly) >0, (A.13)

where the function fazl(y) is positive for y < 1:

A~

hy) =y ((1 +)’In(l+y) — (1 -y)’In(l—y) - 2y) . y= ’ hf

m2

<1. (A.14)

Thus, the positive mass formula derived by Huq [52] back in 1975 was confirmed. The second
phase with the Zy symmetry broken was discovered in [54] and also has a positive mass
squared. The function f,—2(y) in eq. (A.13) is positive for y > 1

R0) =5y = (= 1Py~ 1)~ (= UG- 1/2+1) . y= |G > 1. (1)

Higher loop corrections are suppressed by powers of hZ.

One can interpret this 1-loop corrected potential Vg in eq. (A.12) at small X as the
expression in eq. (A.6) coming from the corrected Kéhler potential (A.4). There is no doubt
in this case that eq. (A.4) with positive ¢ is an example of the 1-loop quantum correction of
the O’Raifeartaigh model. This was also a choice in eq. (3.2) in [7] since at that time the
authors were interested in the transition ‘From Linear to Non-linear SUSY".

Thus, the Kahler potential stabilizes X at the origin. If one decides to apply an RG
approach here and resum the logs one can see that this leads to a Landau pole and creates
problems for the physics of this model at large X. To avoid the Landau pole and make the
ERG approach consistent, one has to make mg( tachyonic. This was the choice in [1] where,
to avoid the Landau pole at all X and based on the ERG equations, the authors studied a
theory that is unstable at small X.

Moreover, it was observed in [53, 54] that in more general supersymmetric models where
also non-abelian gauge couplings are added at large | X| the 1-loop potential behaves as

| X2

2
Mcutoff

Veg(X) = (eph? — cvg®) In [ } ) cp, >0, ¢cg>0, (A.16)
where h is a Yukawa coupling and ¢ is a non-Abelian gauge coupling. In the absence of
non-Abelian couplings the theory with scalars and fermions is known to have a positive term
cph? in front of the In|X|?. An opposite choice is now taken in eq. (3.1) in [1] where the

_c_

constant ¢ = — 37

is positive, i.e. ¢ in eq. (A.4) here is negative.

To conclude, the 1-loop quantum corrections of the O’Raifeartaigh model show that this
case is an example of a model with linear supersymmetry which can be related to a model
with a non-linear supersymmetry. In the opposite case of a linear supersymmetry model with
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¢ < 0 at small X the model is unstable, but also not related to the VA theory. The bridge
between the linear and non-linear theories involves integrating out the scalars, which is only
possible for ¢ > 0.

B Pure de Sitter supergravity

The action invariant under spontaneously broken local supersymmetry depends on the vierbein
and gravitino from the gravitational multiplet e}, 1, and on the goldstino x from the nilpotent
multiplet [8, 9]:

7 0 m? 2
R(w(e)) = Guy** DIV, + LsG gorsion | + 35 — f
+ L s X+5 @m "y + 2x X
\/>

1
—1
L=
€ 212

1 _ ) 1 B
—*le X = g5ie” Ll o) o XVaYo X — 5 YuPRXVU Prx

>Z2 X x2 X X2x? [ Ox Ox
47 377 5r%) e (f ~2n) (f 28). B

where
1
X° = XxPrx, DY) =0, + Zwuab(e)%b,

1. _ _ _ _
ESG,tOrSiOn = _E [(¢p7u¢y)(¢p7uwu + 2%%%) - 4(¢/f7 : ¢)(¢N’Y : lb)]

e, (e ) | (B.2)
A silL ]-- —1 I 1 uv
=0+it 8M+§1e Ou(eth) +r, D:ﬁu\/ﬁg Oy, (B.3)
tH — le VPHq) — _1 R( — b, ~+ve p(0) L o 8r2 2
~ v py T = 6 w(e)) %ﬁ v ’pr + L3G torsion Ll Al
1 _ - 2 _ 1-
B = ﬁ —€ 18# (ewV'YH'YVPLX) - 3XPL'7”UDM¢V] + f<2m + §¢u7m/PL¢V> , (B4)
1 ab
D,uwu = au + Zwu (67 w)'Yab Py . (B'5)
All notations are explained in [8]. The non-linear supersymmetry transformations of the fields

x and e}, ¢, are the following:
For the ﬁelds of the gravity multiplet we have

a 17 a
o€, = 5€ " Yu (B.6)

1 3 1
Py, = P, (8“ + —wuab(e,w)*y zA + z'yﬂA + 2\[7“F0> (B.7)

4
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with
1

— 2 m
PR R LU Y LU ST B.
Wo \/g I{ + \/g’if \/g K \/g’iX ( A) ’ ( 8)
and
KT I _ )
Ay =i (X0, X = X0,X) = 5 [V20u(PLXX — PaxX) + XPL%X]} : (B.9)
where
Sy A=X (41X _p B.10
X=—-—"=(1- = == = - . .
A 7 (437 2) (0
The local supersymmetry transformation for the goldstino is
5Py = ——P —f+(@-mX - fA 1—3A—X—2f§ _1p Fe, P (B.11)
LX—\/éL m 2/3 € 2L'Y€uLX- .

The action (B.1) is locally supersymmetric. We now impose the unitary gauge condition
that the goldstino is vanishing, x = 0, and the action simplifies dramatically

3m?

_ = mo— .
€ 1‘CXZO = [R(e,w(e)) - ¢u7“ le(/O)@ZJp + £SG,t0rsion:| _1_?_]?2_1_27%21!)#7# 1/1,, . (812)

22
For A = f? — 3m?/k? > 0 we have a pure dS supergravity with a positive cosmological
constant. If some additional chiral unconstrained multiplets are present, a more general action
of the type given in eq. (B.1) are also known, see for example [9, 57, 58] in case of one or
more chiral matter multiplets, in addition to a nilpotent one.

C Steps from Volkov-Akulov to the model proposed in [1]

The KS model of a rigid supersymmetry [6] with 2 chiral superfields, X and T, is

S(X,T) = /d4x U dOXX + </ *O(fX + %TXZ) —|—c.c>} : (C.1)

Here X is satisfying the equation X? = 0, a nilpotency condition, as an equation of motion
for the Lagrange multiplier superfield T'.

The proposal in [1] is to start with eq. (C.1) and add the following features to it: a
cut-off A and a suggestion that all couplings which are space-time constants depend on the
‘renormalization group time’ tpg =t = log % > 0 as a result of a solution of the ERG equations.
Here p is the renormalization scale, related to the energy scale at which the theory is probed.

It is clearly explained in [6] that in the minimal case (C.1) the on-shell description of
the theory with two superfields with linearly realized supersymmetry coincides with [3] and
is equivalent to the VA non-linearly realized theory in eq. (A.3). But the setup studied
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by Dall’Agata et al in [1] is different from [6] since they promote the Lagrange multiplier
superfield T to a propagating field, following [12]. They add new terms in the Kéhler potential

AK = BTT + gXXTT + %XXXX . (C.2)

The first two terms make 71" not a Lagrange multiplier anymore but a propagating superfield.
Next the authors of [1] have changed variables to make 7" a canonical superfield and computed
the masses of all scalars. However, unlike the authors of the ERG approach [59], Dall’Agata et
al did not study the relation of their model to the original theory where T is not a propagating
field, by looking at the limit

Zr = ,8 — 0. (03)

Their model replacing the one in eq. (C.1) is
Shan = / d'z / ‘o [aXX +BTT + gXXTT + %(XXﬂ

+</ﬁ%<ﬂ¥+;ﬂﬁ>+aa]. (C.4)

The original action in eq. (C.1) is recovered for a« = 1,5 =0,9 =0,g =0
Shaula=1,8=0,9=0,¢=0)=8(X,T) . (C.5)

The ERG equations are imposed ® in [1] and solved for space-time constants depending on
the ‘renormalization group time’ t = log% so that the solutions for «, 5, g,q, f are given as
functions of ¢, u? and A. At ¢t = 0 the couplings take values a = 1,3 =0,9=0,q = 0.

To compute the masses of the 4 real scalars, which are present in the theory with 2
unconstrained chiral superfields, one changes variables so that all kinetic terms of new scalars
in X , T are canonical

St = [ 6 | [ @0 [XX + T 4 STTRS + (XXRA]
+ ( / 20 (FX + 3757 + )} | (.6)

Here the relation between the rescaled superfields and the rescaled superspace coordinates to
the ones in eq. (C.4) is given by

T .
X=p—, T=p—, z=ap"", 9:9/11/2. C.7
Va VB ©
The new couplings in eq. (C.6) are
2 2 2t
~ q ~ e 1
§— ) #g(1) oot (C.8)

A2\/a7 §:2a\/B7

8There is no underlying computation of the 1-loop quantum corrections of the kind we have explained in

4a2 ) 7 = aﬁ )

the example of the O’Raifeartaigh model.
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where «, 3, g, q, f are functions of t. Using the scalar potential V= Aiiaivifaj-ﬁ/ based on eq.
(C.6) the masses of the two complex scalars in the X , T superfields can be computed in the
globally supersymmetric case. To find these at small ¢ we need to present the dependence of
the couplings on ¢ as given by the solutions of the ERG equations in [1]

N 1— ef2t ~ 1— 67215 B thf ~ 1
C = 72 b ’y el — ) f = 2 ) g = ) (C'g)
4o af A2\ /a 200/
where
1 1 1 1 1 1
- Tt ge), _— 5 (t+ e ™). C.10
“ 1672 T grz\' T3¢ F=—5m T o2 U1 3¢ (C.10)
At small ¢ one has 1
~1 ~ 2 11
onl, B (1)
This leads to ) s
~ 327 ~ 2
~ — ) ~ g=— . C.12
(g AR R 9= (C.12)

Note that A > p. Therefore, t = log% > 0 and all £ dependent constants are positive.

The action in (C.4) at t # 0 is related to the action in (C.6) by a change of variables in
eq. (C.7) which is singular at ¢ = 0. The standard analysis of the supersymmetric theory
proceeds using (C.6) with canonical kinetic terms. We have shown in Sec. 3 that the limit of
this theory to ¢ — 0 is discontinuous and therefore there is no relation between the theory in
[1] and the theory with a non-linearly realized supersymmetry.
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