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ABSTRACT: We construct a-attractor versions of hybrid inflation models. In these models,
the potential of the inflaton field ¢ is uplifted by the potential of the second field . This
uplifting ends due to a tachyonic instability with respect to the field y, which appears when
 becomes smaller than some critical value .. In the large N limit, these models have the
standard universal a-attractor predictions. In particular, ng = 1 — % for the exponential
attractors. However, in some special cases the large IV limit is reached only beyond the horizon,
for N 2 60. This may change predictions for the cosmological observations. For any fixed N,
in the limit of large uplift V;,,, or in the limit of large ¢., we find another attractor prediction,
ns = 1. By changing the parameters V;,;, and ¢, one can continuously interpolate between the
two attractor predictions ng =1 — % and ns; = 1. This provides significant flexibility, which
can be very welcome in view of the rapidly growing amount and precision of the cosmological
data. Our main result is not specific to the hybrid inflation models. Rather, it is generic
to any inflationary models where the inflaton potential, for some reasons, is uplifted, and
inflation ends prematurely.
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1 Introduction

In this paper we will study two-field cosmological attractors, using the a-attractor generaliza-
tion of the original version of hybrid inflation as an example [1, 2].

In cosmological a-attractors of a single inflaton field, the predictions for the spectral index
ns and for the tensor to scalar ratio r are very stable with respect to significant modifications of
the inflaton potential. The inflaton field in these models can be real, but the most interesting
interpretation of these models appears in supergravity describing complex fields with hyperbolic
geometry [3-8]. In such models, kinetic terms of the scalar field are singular at the boundary
of the hyperbolic space. The singularity disappears after a transformation making the real part
of the scalar field canonically normalized. This transformation modifies the original inflaton
potential V', which acquires an infinitely long plateau in terms of the canonically normalized
inflaton field ¢.



In this paper we will focus on phenomenology of a-attractors in hybrid inflation. Therefore
in the main part of the paper for simplicity we will consider models describing real scalar fields,
but our results can be also formulated in terms of complex fields, in context of supergravity,
see Appendix A.

While the plateau shape of the potential is a generic property of all a-attractors, the
approach to the plateau can be slightly different.

In exponential a-attractors [5], where the field approaches the plateau exponentially fast,
in the large N limit, where N is the number of e-foldings, one has
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Predictions of the simplest models of this class can completely cover the left part of the ng —r
area favored by the latest Planck/BICEP /Keck data [9], nearly independently of the choice of
the original inflaton potential.

For the family of polynomial a-attractors [10], where the potential approaches a plateau
as inverse powers of the inflaton field, one has
1" 2k+1 8k2 w2
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Here k can take any positive value. For example, in k = 2 case
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For N = Niota1 = 55 we have 3

By taking smaller k, one can increase the value of ng in this scenario from 1 — % to1— % Asa
result, predictions of the simplest models of exponential and polynomial attractors completely
cover the ns — r area favored by the latest Planck/BICEP /Keck data, see Fig. 3 of [10].

Thus it would seem that a rather simple set of models of this type can describe any set of
data which any future observations may bring. However, there are still some issues which one
may try to address.

1) One may wonder whether it is possible to increase ns to cover the right part of the
ns — r area favored by the latest Planck/BICEP /Keck data within the more familiar class of
exponential a-attractors (1.1).



2) There are ongoing efforts to solve the Hy and Sg problems by modifying the standard
ACDM model [11, 12]. Some of these efforts require a significant re-interpretation of the
available data, resulting in much higher values of ng, all the way up to the Harris-Zeldovich
value ngy = 1, see [13, 14] and references therein. Thus one may wonder whether one may find
some versions of a-attractors which would be compatible with such values of n.

3) In models of a-attractors inspired by string theory and M-theory, one may encounter
many interacting scalar fields, each of which may have inflaton potentials with different values
of v [15-24]. Therefore it is important to explore multi-field a-attractors. In the simplest
cases, one may have several different stages of inflation, but in many models the last N ~ 50
- 60 e-foldings of inflation are described by a single stage of inflaton, with the predictions
described above.

However, this is not always the case. For example, suppose that there is a short secondary
stage of inflation describing AN e-foldings after the a-attractor stage. In this case, we must
carefully distinguish between the total number of e-foldings N, ~ 50 - 60 responsible for the
observable structure of the universe, and its part N related to inflation in the a-attractor
regime:

N =N.— AN . (1.6)

The observational predictions of a-attractors are still described by (1.1), (1.4), but the value of
N = N.— AN becomes smaller than N, ~ 50 - 60 [20, 25]. This may significantly decrease the
value of ng, which may contradict the observational data unless the second stage of inflation
is very short.

This issue is less important for polynomial attractors (1.3) because they predict higher
values of ng. That is why some of the popular models of large PBH formation [26] can be
formulated in the context of the KKLTI polynomial a-attractors [24], whereas similar models
based on exponential a-attractors tend to predict very small PBHs [27]. It would be interesting
to see whether one may overcome these limitations and find a way to increase ng, if required.

In this paper we will show how one can significantly increase ng in two-field inflationary
models. The main mechanism which we are going to discuss is rather general. As an example,
we will study the original version of the hybrid inflation scenario [1, 2], and then explore its
a-attractor implementation. In these models, the potential of the inflaton field ¢ is uplifted by
the potential of the second field y, but this uplifting ends due to a tachyonic instability with
respect to the field y, which happen when the field ¢ becomes smaller than its critical value
e This instability typically leads to a nearly instant end of inflation and rapid reheating,
but it may also occur slowly, in a secondary inflationary stage.

We will confirm that the main attractor predictions (1.1), (1.4) remain true in these
models in the large N limit. However, we will show that in some models the large N limit is
achieved only for N > 60, and for N < 60 one may have an intermediate asymptotic regime
with ng that can be greater than the attractor values (1.1), (1.4). In particular, for any fixed
N (e.g. for N ~ 50), in the large uplift limit, or in the limit of large value of ¢., we find



another attractor prediction, the Harrison-Zeldovich spectrum with ng — 1.

2 Single field a-attractors

We will begin with describing single field a-attractors. The simplest example is given by the
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Here ¢(x) is the scalar field, the inflaton. In the limit @ — oo the kinetic term becomes
the standard canonical term —%. The new kinetic term has a singularity at |¢| = v/6a.
However, one can get rid of the singularity and recover the canonical normalization by solving

the equation —22 0y, which yields ¢ = v/6a tanh \/%. The full theory, in terms of the

ﬁ =

6a
canonical variables, becomes a theory with a plateau potential
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We called such models T-models due to their dependence on the tanh \/%. Asymptotic

— V(v6a tanh (2.2)

behavior of the potential at large ¢ > 0 is given by

V() = Vo —2v6a V] e V¥ 2.3
0

Here Vo = V(¢)|,—, /65 is the height of the plateau potential, and Vj = 03V|,_, 55- The
coefficient 2v/6a V{ in front of the exponent can be absorbed into a redefinition (shift) of the

_/2
field ¢. Therefore inflationary predictions of this theory in the regime with e~ V3” <« 1 are
determined only by two parameters, Vj and «, i.e. they do not depend on many other features
of the potential V(¢). That is why they are called attractors.

At large N, predictions of these models for Ag, ngs and r coincide in the small « limit,
nearly independently of the detailed choice of the potential V(¢):
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These models are compatible with the presently available observational data for sufficiently
small a.

Importantly, these results depend on the height of the inflationary plateau, which is
given by Vp = V(9¢)] s=+/6a> but they do not depend on many other details of behavior of
the potential V(¢) in (2.1). This explains, in particular, stability of the predictions of these
models with respect to quantum corrections [28].

The amplitude of inflationary perturbations in these models matches the Planck normal-
ization A, ~ 2.01 x 107 for 2 ~ 1071°, N = 60, or for 2 ~ 1.5 x 1071, N = 50. For the



simplest model V' = %2q52 one finds

V = 3m2atanh? —— . (2.5)

V6o
This simplest model is shown by the prominent vertical yellow band in Fig. 8 of the paper on
inflation in the Planck2018 data release [29]. In this model, the condition 2 = 3m? =~ 1071
reads m ~ 0.6 x 107°. The small magnitude of this parameter accounts for the small amplitude
of perturbations A, ~ 2.01 x 10~°. No other parameters are required to describe all presently
available inflation-related data in this model. If the inflationary gravitational waves are
discovered, their amplitude can be accounted for by the choice of the parameter « in (2.4).

The results described above are valid under assumptions that the potential V(¢) and its
derivatives are non-singular at the boundary |¢| = v/6c. If one keeps the requirement that the
potential V(¢) is non-singular, but allows its derivatives to be singular, the potential V' (¢)
remains a plateau potential in canonical variables, but it may become a polynomial attractor,
with properties and predictions described in (1.3), (1.4) [10].

One should note also, that these results rely on a hidden assumption that inflation occurs
in the single field regime with a potential (1.1) or (1.3), and ends when the slow-roll conditions
are no longer satisfied. This assumption is natural indeed, but one can find, or engineer, some
models where it may be violated.

As we already mentioned in the previous section, the simplest possibility to do it is to
arrange for a second stage of inflation with duration AN. This modification decreases ns. For
exponential a-attractors (1.1) this decrease is not particularly desirable.

However, there is yet another possibility, which may allow many interesting variations of
the main theme. One may consider multi-field models, where the single-field inflation regime
ends prematurely because of the instability of the inflationary trajectory, or because of its
sharp turn.

The simplest well-known example is provided by hybrid inflation [1, 2]. In this scenario,
inflation driven by the field ¢ is terminated because of the tachyonic waterfall instability
with spontaneous generation of the second field . This mechanism involves two ingredients,
each of which allow to control (increase) ng. First of all, this scenario involves uplift of an
inflationary potential by some potential depending on ¢. This uplift disappears after the
waterfall instability, but during inflation with ¢ > ¢, the uplift increases V' while keeping V'
intact. This decreases slow-roll parameters and increases ng for ¢ > ¢.. Secondly, one can
control the value of ¢. by a proper choice of parameters. As a result, one can also control
the value of the field ¢ corresponding to IV e-foldings prior to termination of inflation. This
provides an additional tool to control ng.

In this paper we will consider hybrid models of a-attractors and explain how both of
these mechanisms affect inflationary predictions for ns; and r. To avoid misunderstandings,
we should emphasize that hybrid a-attractors are more complicated than the single-field



a-attractors. However, realistic inflationary models often involve more than one scalar field.
As we will see, investigation of their a-attractor versions can be quite instructive.

3 Hybrid inflation

3.1 Original hybrid inflation model

Let us first consider the simplest hybrid inflation model [1, 2]. The effective potential of this
model is given by

2 2
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To illustrate the main features of this potential, we show it in Fig. 1.

Figure 1: Hybrid inflation potential (3.1) for m = 0.2, M = 1,A =0.5,g = 0.8.

The effective mass squared of the field o at o = 0 is equal to
Voolo =0) = —M? + g*¢* . (3.2)

For ¢ > ¢. = M /g the only minimum of the effective potential V (o, ¢) with respect to o is at
o = 0. The curvature of the effective potential in the o-direction is much greater than in the
¢-direction. Thus we expect that at the first stages of expansion of the Universe the field o
rolled down to o = 0, whereas the field ¢ could remain large for a much longer time.

The potential at ¢ = 0 can be written as

V(e =0,6) = Vip + =67 . (3.3)
where the uplifting potential is
M4
= 4
Vup 4\ (3 )



At the moment when the inflaton field ¢ becomes smaller than ¢. = M /g, the phase
transition with the symmetry breaking occurs. For a proper choice of parameters, this phase
transition occurs very fast, and inflation abruptly ends [1, 2]. However, there are some
situations where inflation may continue for a while in the process of spontaneous symmetry
breaking, which may lead to production of primordial black holes (PBHs) [30].

Unfortunately, these models are disfavored by the data in most of its parameter space: at
%2¢2 2 Vup the tensor-to-scalar ratio is too high, whereas at m72¢2 < Vyp the spectral index
ns is too high: ng > 1 [31].

Once we switch to a-attractor version of hybrid inflation, the first of these problems
disappears. As we will show later, the second problem may also disappear: in the large N
limit these models lead to the standard a-attractor predictions (1.1), (1.3). The issue we need
to carefully examine is whether NV ~ 60 is large enough to be described by the large N limit.

Before we switch to a-attractors we should mention a property of such models, which
may be either a problem or an advantage. As one can see from Fig. 1, at the ¢ < ¢, the
field o may fall into one of the two minima of the potential, at o = =M/ VA This may divide
the universe into many domains with o = =M/ VA separated by domain walls. Unless Vip is
extremely small, this leads to unacceptable cosmological consequences.

The simplest way to avoid this problem is to study models where the field o is a complex
field. Then, instead of domain walls, one has cosmic strings [2]. If M/+v/X is not too large,
these strings may have interesting cosmological implications. On the other hand, in the
models with large magnitude of symmetry breaking, one may want to avoid productions of
topological defects. The simplest possibility is to add a tiny linear term co to the potential
(3.1). If this term is very small, it leads only to a minor tilt of the potential towards one of the
directions, which may be sufficient to eliminate the production of the topological defects, while
leaving other predictions of the scenario intact. Other ways to avoid production of topological
defects can be found in [32, 33]. In the next section and in the Appendix we will describe two
novel mechanisms which can suppress production of the topological defects in the context of
a-attractors.

3.2 Hybrid a-attractors

Here we will explore what may happen if we generalize the hybrid inflation model (3.1) by
embedding it in the context of exponential a-attractors. We will discuss polynomial attractors
[10] in section 8.
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Upon a transformation to canonical variables ¢ and y, the hybrid inflation potential becomes
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tanh? —— (3.6)
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The shape of this potential for some particular values of parameters is shown in Fig. 2.
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Figure 2: Hybrid inflation potential for the model (3.6) with m = 0.2, M =1,A=0.5,g =0.8,a =1, = 1.
It looks very similar to the original potential shown in Fig. 1, but the potential along the valley x = 0 is much
more flat, see Fig. 3.

In Fig. 3 we show by the blue line the original potential (3.1) along the flat direction ¢
for o = 0, and we also show by the brown line the potential of the a-attractor (3.6) for « =1
along the flat direction ¢ for x = 0. It illustrates the flattening of the inflaton potential for
a-attractors.
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Figure 3: The blue line shows the original potential (3.1) along the flat direction ¢ for 0 = 0 and ¢ < 5
The brown line shows the potential of the a-attractor (3.6) for & = 1 along the flat direction ¢ for x = 0 and

© < 5. Note that the a-attractor potential is much more flat, because the full potential V' (¢) is produced by
the horizontal stretching of the part of the potential V(¢) with ¢ < v/6a.

The curvature of the potential in the x direction at x = 0 coincides with the curvature
with respect to o at o = 0:

Vix(x =0) = Vo o(0 = 0) = =M? + g*>¢* = —M? + 6 g* tanh? (3.7)
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Figure 4: Left panel shows potential (3.6) for m = 0.2, M = 1,A = 0.5,g = 0.35,a = 1, 3 = 1. Right panel
shows potential (3.6) for m =0.2,M =1,A=0.5,g=08,a=1,8=1/4.

For ¢ > ¢. = M /g, this curvature is positive, and the inflationary trajectory with y = 0
remains stable until field ¢ rolls below the critical point

¢c=V6_atanh;%=M/g. (3-8)

If the last 60 e-foldings of inflation occur when |¢| < V6a, |o| < /68, then most
cosmological consequences of this model will coincide with those of the original version of
hybrid inflation [1, 2].

Notice that in the limit when |¢| < v6a, |o| < /60, the kinetic terms in eq. (3.5)
become canonical, and therefore the shape of the potential reduces to the one in the original
version of hybrid inflation. In particular, in the large « limit inflation ends at ¢. ~ p. = M/g.
In this paper we will be interested in the opposite possibility, when the last 60 e-foldings occur
in the a-attractor regime where ¢. > /6.

One should note also that the standard scenario with the waterfall phase transition shown
in Fig. 2 occurs only if ¢, = M/g < V6a. In the opposite case ¢, = M/g > V6o the field
x does not vanish at any values of ¢, because all values of ¢ correspond to ¢ < v/6a. The
amplitude of spontaneous symmetry breaking grows during inflation starting from y? = m
at ¢ — 00, and gradually approaching its maximal value y? = MTQ at ¢ = 0. Since the symmetry
breaking with respect to the sign of the field y is present from the very beginning of inflation,
see the left panel of Fig. 4, topological defects do not form in this scenario. Thus it does not
suffer from any problems with topological defects which may appear in the scenario shown in

Figs. 1, 2, see the previous section.

To illustrate what happens for M/g > v/6a, we plot in the left panel of Fig. 4 the
potential (3.6) for the same values of parameters as in Fig. 2. The only parameter we change
is g, which we take smaller, g = 0.35.

This is not the last of the surprises which may await us after introducing hybrid a-



attractors, see the right panel in Fig. 4, where we plot the same potential for the same
parameters as in Fig. 2, but for a smaller value of 5. As we see, in this case the position of
the minimum of the potential with respect to x disappears, and we end up with the potential
describing the a-attractor generalization [34-36] of the quintessential inflation [37, 38]. This
happens because for sufficiently small S the position of the minimum of the potential with
respect to o moves outside the boundary of the moduli space at o = /6.

It is not our goal to describe all of these interesting possibilities in this paper. In what
follows we will study the more traditional regime described by Fig. 2. In this regime, the
initial stages of inflation occur at xy = 0, until the field reaches a critical point .. After that,
the tachyonic instability with respect to the field x terminates the stage of inflation at y = 0.
Depending on the parameters of the model, this may lead either to an abrupt end of inflation,
or to a beginning of a short additional period of inflation. We will focus on the first of these
two possible outcomes, and calculate inflationary parameters Ag, ns and r assuming that
inflation ends at the moment when the field ¢ reaches ¢, (3.8).

Inflationary potential at x = 0 is given by
M* ©
V(p) = — + 3m*atanh? —— . 3.9
(¥) = - (3.9)

Using equation (2.3), one can represent this potential during inflation at ¢ > /6« in this
model as

2
V=Vyp+W(l—4e V3?4 ), (3.10)

where V;,p, = %\4 is the value of the uplifting potential ﬁ(M2 —Xo?)? at 0 =0, and V = 3m3a
is the value of the a-attractor potential 3m2a tanh? \/% at its plateau.

Let us first consider the regime V,,;, > V1j, i.e

M* > 120am? . (3.11)

The Hubble constant in this case is .

M

2
= —, 12
12X (3.12)
Thus M? > H? for

M? < 12) . (3.13)

If M? < 12), then shortly after the field ¢ moves below the critical value ¢. = M/g,
the effective mass squared of the field y becomes negative. Once its absolute value becomes
greater than H?, the tachyonic instability of the field y develops, which leads to an abrupt
termination of inflation at ¢ &~ ¢., as in the standard version of the hybrid inflation scenario
[1, 2].

,10,



4 Inflationary predictions of hybrid a-attractors

In our investigation of perturbations in the hybrid inflation, we will try to be as model-
independent as possible. The results to be obtained in this section will be applicable not only
to hybrid inflation, but to any a-attractor potentials uplifted by an additional term similar to
the first term in (3.1). We will also assume that the single-field regime may end not because of
the violation of the slow-roll conditions, but because some kind of instability terminating the
original stage of inflation in a vicinity of a critical field ¢, as in the hybrid inflation scenario.

The general a-attractor potential (2.3) at large ¢ can be represented as

V(s)=Vo(l—eVias 1., (4.1)

_ 3a |4
s=p—\5 ln<2\/6a Vo> : (4.2)

and Vy = 04V s=/Ga ab the boundary ¢ = V6o, as in (2.3). To give a particular example, in
the simplest T-model (2.5) one has

3
s:@—\/§1n4%gp—1.7\/a. (4.3)

Thus for o <1 one has ¢ = s+ O(1).

where s is given by

Now we will uplift this potential by adding to it a constant V,,. In the hybrid inflation
model (3.1) one has V;, = %—;. The full potential becomes

V(s)=Vip +WVo(1—e77%), (4.4)

where v is related to the Kahler curvature

This form correctly describes the potential for
e xl. (4.6)

We consider a stage of N > 1 e-foldings of inflation which begins at sy and ends at s..
Inflation may continue when the field reaches s., or it may end abruptly if the inflationary
trajectory changes at s. because of the waterfall instability at in hybrid inflation.

Equation describing evolution of s in the slow-roll regime is

ds B % B Voy e 7®

dN = V(s)  Vap +Vo(l— e77) 0
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We are interested in the regime e™7% < 1. In that case one can ignore the exponent in the
denominator and find a solution of this equation:

evon = J + eV %, (4.8)

where sy is the value of the field s at N e-foldings before the end of this stage of inflation
before it reaches s., i. e. sy = s. at N =0.

The standard expression for ng is

7 2 v 3V2~2 ¢—27sN AV~y2e=7 SN AV 2e~ Y SN
L L IR e B T )
Vv V (Vip + Vo) Vap + Vo Vap + Vo
Here the derivatives are taken with respect to s. Using equation (4.8), we find
2Vy?
ns = 1 o (4.10)

" Vo2N + (Vap + Vo)erse

In the large IV limit we always have the standard universal a-attractor prediction, independently
of all other parameters of the model,

2
ng=1-—. (4.11)

However, the range accessible to observations is limited, N < 50 — 60. For

2
o YV WN
e > L0 4.12
one has, in accordance with (4.8),
7N~ eV, (4.13)
and instead of the large N limit, one has a different limiting case,
2Voy2e VN Ve s 2
long="% o 200° 2 (4.14)

Vot Vo Vet Vo N

where the last inequality follows from (4.12). Thus in the large V4, limit (for large ratio
Vup/Vo), or in the large s. limit (for ys. > 1), when inequality (4.12) is satisfied, we have
ns — 1, i.e. the Harrison-Zeldovich spectrum.

Interpolating between these two limiting cases by changing V;,,/Vp, or by changing s.,
one can find any value of ns in the range

2

1—- =2
N

Sns S L (4.15)

In particular, for
Vap + Vo = Voy>Ne 7% (4.16)
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we have 1
s=1——. 4.1
" N (4.17)

Let us consider the implications for the amplitude of perturbations A, and for r.

*12m2(V7)2 12m2V2y2 (4.18)
In the large N limit one finds
(Vap + Vo)N?
Ag=——7" 4.1
® 18am? ’ (4.19)
Meanwhile for V,p, + Vo > W v2Ne 7% one has
2
A o(Vap + 10)° P/ (4.20)
s 82V ’ '
and for Vi, + Vo = Wy v2Ne 7% one has
2(Vup + Vo) N?
Ay =" 7 4.21
3 92 (4.21)
Finally, let us calculate the tensor to scalar ratio r:
1 2 ]V2~2¢—275N
%4 (Vap + Vo)
In the large N limit one has the standard a-attractor result
12«
Meanwhile for Vi, 4+ Vo > Vo v2Ne 75 the value of r is smaller,
8VEy2e 27 e 12a
= 4.24
' (Vap + V0)? <<N2 ’ ( )
and for Vi, + Vo = Vg v2Ne~ 7% one has
3a

What is the meaning of these results? First of all, we confirmed that in the large N limit
3 2 |74
N> 2eVaas [l 4 ) (4.26)
2 Vo
the predictions of a-attractors are universal, as shown in equation (2.4). To be more precise,

the amplitude of the perturbations As in (4.19) now depends not on Vp, but on the total
height of the plateau Vi, + Vb.

,13,



Meanwhile, for smaller values of N (smaller wavelengths), such that
N« %eg% Vup +1), (4.27)
2 Vo

which may still exceed N ~ 50 — 60 for sufficiently large V,,, and \/%sc, the predictions
approach the flat Harrison-Zeldovich spectrum:

A ~ a(Vap + Vo)? 62\/%56 —n. = 4%67\/%86 < 2 ra 16‘/02672\/3%86 < 120
s 872V ’ * T 3a(Vip+Vo) N T 3a(Vp+ V)2 N2
(4.28)

Note that these predictions are also universal. They do depend on constants Vi, Vo, a and
S¢, but not on the detailed choice of the original a-attractor potential.

All results obtained above are formulated in terms of the field s related to the field
¢ by the equation (4.2). As we already noted, in the simplest T-model (2.5) one has

§=@— \/370‘1114 ~ ¢ — 1.7y/a. Thus for « < 1 one has ¢ = s + O(1). In many cases this
difference can be ignored, but if an exact relation is needed, one can always return back from
s to ¢ in the final results using (4.2).

In particular, for the simplest hybrid inflation model (3.1) one has

3a(Vip + W 2 2
N ~ W <€ 3a PN _ e 3a<pc> . (429)

We have also derived this formula in Appendix A directly for the model (3.1).

In the limit of large Vj,, and/or large ¢, one has

2 2 2
A Wip + V0)? ¢*V 3ave o VR VI 2 256V 2¢ 2V 3a e o 120
° 12872V? ’ P 3a(Vp+ Vo) N 3a(Vip + V0)? N2
(4.30)

4
where Vy, = %\ and Vp = 3m2a.

5 Interpretation and some examples

Since the hybrid inflation models considered in the previous section belong to the general
class of a-attractors, some of the formal results obtained above may seem rather unexpected,
especially the existence of the Harrison-Zeldovich attractor with ny = 1. In this section we
will provide a simple interpretation of our results.

The standard approach to evaluation of ns(V) consists of two steps. First of all, we find
the point where the slow-roll approximation breaks down and inflation ends. Then we solve
equations of motion to find the values of the fields driving inflation N e-foldings back in the
cosmological evolution, and find ns(¢) at that time.
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In hybrid inflation, the approach is somewhat different. We find the position of the
inflaton field ¢, (or s.) where the slow-roll conditions with respect to the field ¢ may still be
satisfied, but inflation ends because of the tachyonic instability with respect to the field y.
The value of the field ¢. depends on parameters M and g, so by taking proper values of these
parameters one can dial almost any desirable value of the field ¢.. After that one finds N
(or, equivalently, sy ), see equation (4.8).

We found that in the limit of large uplift and/or large s. (or ¢.) one has oy ~ . (4.13).
And once ¢ is known, one can further increase V,,;, without changing V”. One may also
exponentially decrease V”(¢x) by increasing ¢.. In both cases, the slow roll parameters
decrease, and ns asymptotically increases up to the Harrison-Zeldovich value ng = 1.

To explain potential implications of these results, we will consider some simple numerical
examples illustrating these ideas A fully developed example of a hybrid inflation model will be
considered in the next section.

1) Let us take v =1, V4, = V. Suppose first that we want to achieve N = 50 e-foldings
of inflation, and then trigger the waterfall transition along the lines of the hybrid inflation
scenario at s = 1. Then ns will be given by equation (4.11), ns = 0.96 for N = 50. The value
of s50 will be determined by equation (4.8) with v =1,

N
SN = — | 5.1
€ 5 (5.1)
Here we ignored e*® ~ 2.7 as compared to 5 = 25 (large N approximation). This gives
S50 ~ In25 = 3.2.

2) Now let us change our game. Let us trigger the end of inflation not at s, = 1 but at
sk = 3.2. We put here a star to emphasize that this is a different regime, where inflation ends
at the point s} = s50 ~ 3.2. In that case (for v =1, Vi, = Vp) the point from which inflation
goes for N = 50 e-foldings until it reaches s} = s50 = 3.2 will be given by

%50 = % + s =50. (5.2)
Equation for ng for N = 50 will read
=1- 1 0.98 (5.3)
ng = & = 0.98. .

That is a significant modification of ng achieved by changing the point at which N e-foldings
of inflation end. This is achieved because if not for the waterfall, inflation from the point
sy would last 2N = 100 e-foldings. We just interrupted it midway, but the calculation
of ng for the perturbations prior to the waterfall goes the same way as if it began at the
beginning of inflation of duration N = 100. That is why instead of ny = 1 — 2/50 we have
ns =1—2/100 = 0.98.

3) Let us change the game once more. Suppose that after (or during) the waterfall phase
transition at s} = sz0 ~ 3.2 inflation does not end, but continues in the waterfall regime for
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additional AN = 20 e-foldings. This may happen, in particular, in the models where the
distance from the ridge to the minimum of the potential with respect to the field y is greater
than M, = 1, see [30, 39] and also a discussion in the next section near equation (6.9). Then
the inflationary perturbations that we are going to see at the horizon are the ones generated
in the a-attractor regime during N = 50 — AN = 30 e-foldings prior to the waterfall. This
corresponds to the point from which (if not for the waterfall), the field would roll during
N = 80 e-foldings. This yields )
ng=1-— 30~ 0.975 . (5.4)
4) Finally, suppose that the waterfall occurs at s. = 1. Naively, in that case one would
not expect any major changes in n,. However, this is not the case if the uplift Vi, = ﬁ/f—; is
much greater than Vo = 3m?a. This condition is very similar to the standard assumption
H? = % > m? made in the original hybrid inflation scenario [1, 2]. In particular, from (4.17)
one may conclude that for a =1, s, =1, N = 50 and V,,, = 11V} one would have
ne=1- -5 =098. (5.5)
These examples show that a large uplifting, or a premature ending of the a-attractor stage
of inflation at s, > 1, may lead to a significant increase of ns in the a-attractor versions of
the hybrid inflation models.

6 A fully developed example

In this section we will give a fully developed example including all parameters of the hybrid
inflation model (3.1). In all estimates we will assume, for definiteness, that a = 1 (i.e.
v = \/2/73), the number of e-foldings is N = 50 and the critical value of the field is given by
se = 2. This corresponds to ¢, ~ s, + 1.7 = 3.7. In terms of the original geometric field ¢, the
critical point is at ¢, = 2.22.

To evaluate the importance of the effects considered in the previous sections, we study
here the intermediate regime (4.16), where

1
ny=1- = =098, (6.1)

see (4.17). For a = 1 one can use (4.25) to find

3
r= 1 = 0.0012. (6.2)

For o =1, s, = 2 the condition (4.16) reads

100

Vap +Vo = Vo ?e” 23 =65V, . (6.3)
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Using (4.21) and Planck normalization A = 2.1 x 1079 for @ = 1 and Vj = 3m?, we find

m=1.95x107%, (6.4)
and
Vap = 6.3 x 10711 (6.5)
Then using (6.3), we find
M = 0.004 A4 (6.6)

To have the critical point at ¢. = 2.22 one should take g = M/¢p. = 0.0018)1/4,

To understand the dynamics of the waterfall instability in this model is important to
compare the tachyonic mass —M? at x¥ = ¢ = 0 with the square of the Hubble constant at

that point:

Va _
H?*(0) = 7" =21x10"1. (6.7)

The Hubble constant at the critical point ¢, is very similar. Meanwhile
M?=15x10"°V\. (6.8)

Thus M? > H? unless A < 10712, This means that unless ) is extremely small, the absolute
value of the tachyonic mass —M? + gQgZ)g of the field x¥ becomes much greater than H? almost
instantly after the inflaton field ¢ becomes smaller than its critical value ., and inflation
ends, just as in the original version of the hybrid inflation scenario [1, 2].

Thus we gave here a particular example of the a-attractor version of hybrid inflation,
where ny =1 —1/N = 0.98 instead of the standard result ny =1 —2/N = 0.96 (for N = 50).
This shows that by changing Vi, and ¢. one can change n, anywhere in the range from
ns=1—2/N tons = 1.

This does not mean that the theory of a-attractors is not predictive. In order to modify
the standard prediction ny = 1 — 2/N we needed to consider two-field models with very
special properties, such as uplifting V;, and a premature end of the a-attractor stage of
inflation. Nevertheless, it is important to know that such models do exist, and can be easily
constructed in the familiar framework of hybrid inflation. Other mechanisms which may lead
to a premature end of inflation were reviewed for example in [40].

Finally, let us try to understand what is so special about the exceptional regime A < 10712,
The amplitude of spontaneous symmetry breaking in the Higgs potential ﬁ(M 2 X\o?)? for
A <1072 is given by

c=MX?2>14. (6.9)
In this case, the Higgs potential ﬁ(M 2 — X\o?)? becomes an inflationary potential, because
the length of the slope from o = 0 to o = MA~/? is super-Planckian. This length is even

greater in terms of the canonically normalized field y. It is well known that theories with
super-Planckian symmetry breaking typically allow long stage of inflation, see e.g. [41-43].
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This means that inflation may not end at the critical point, but may continue during the
process of spontaneous symmetry breaking in this model.

A detailed theory of this second stage of inflation in the context of the hybrid inflation
scenario is described in [30]. The second stage of inflation may last long, or it can be short, the
duration AN being controlled by A. The amplitude of perturbations produced at the onset
of the second stage of inflation can be very large, all the way up to O(1), leading to copious
formation of black holes, with masses depending exponentially on the number of e-foldings
AN at the second stage of inflation. As proposed in [30, 39], primordial black holes produced
in such models may be sufficiently abundant to play the role of dark matter.

The existence of the second stage of inflation means that the number of e-foldings at
the a-attractor stage is N, — AN. For example, for N, = 50 and AN = 20, it leaves only
N = 30 e-foldings for a-attractors. Then the standard expression ns =1 — 2/N would lead to
ns ~ 0.933, which is ruled out by Planck2018 [29]. However, in the regime studied above one
has ng =1 —1/N & 0.967, which is in a very good agreement with the Planck data.

7 The second a-attractor regime in the same hybrid inflation model

It could seem that we already fully explored the basic hybrid inflation model (3.6) shown
in Fig. 2. But even this simple model has some other interesting features, which are not
apparent in Fig. 2. To reveal them, we show the potential of this model in Fig. 5, with the
same parameters as in Fig. 2, but in a larger range of values of ¢ and x.

3
72
71

70

Figure 5: The view from the top at the hybrid inflation potential for the model (3.6) with m = 0.2, M = 1,
A=0.5,9g=0.8, a =1, § =1. This is the same potential as the one shown in Fig. 2, with the same parameters,
but now we show it for a much larger range of values of ¢ and .
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As one can see, this potential has not one, but two flat directions, corresponding to each
of the inflaton fields ¢ and x. Until now we studied only the scenario where the field ¢ rolls
down along the yellow valley at xy = 0, see Figs. 2 and 5, and then the inflationary trajectory
turns towards one of the two red minima of the potential at y # 0. All results obtained until
now are describing this possibility.

The second possibility is that initially the field ¢ was small, whereas the field x was large,
and it was playing the role of the inflaton field, rolling down along the blue valley towards one
of the two minima of its potential shown as red areas in Fig. 5.

Fortunately, investigation of this second scenario is fairly simple. The potential of the
field x along the valley ¢ = 0 is not uplifted by the potential of the field ¢, inflation ends in
the standard way at the end of the slow-roll regime, so all observational consequences are
described by the standard a-attractor predictions (1.1).

This means that there are two sets of cosmological predictions for the hybrid inflation
model (3.6), depending on initial conditions for inflation. The first set corresponds to the
hybrid inflation regime starting at x = 0 and large ¢. These predictions are described in
the previous sections. The second set of predictions corresponds to the usual single-field
a-attractor regime, which begins and ends at ¢ = 0, with the predictions given in (1.1).

8 Hybrid polynomial attractors

Similar results can be obtained for other types of plateau inflation models. Let us consider, as
an example, KKLTI models with potentials approaching the plateau as inverse powers of the
canonically normalized inflaton field ¢:

Lk
¥
where k can be any (integer or not) positive constant. Such models, which were invented in
the context of D-brane inflation [44-50] and pole inflation scenario [6, 8, 51, 52], were recently

incorporated in the general a-attractor framework [10].

As before, we uplift this potential by adding to it Vyp, which is going to disappear after
an instability at ¢ = p.. We will only consider here the spectral index ns. Before the uplift,
the spectral index in the large N approximation is given by

21+k

- . 2
N2+k (82)

Ng =

After the uplift, we have

B 2Vok(1 + k)uk
Vok(2 + k)uFN + (Vip + Vo) @2t

ng =1
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In the large N limit one has the original result (8.2). In the large uplift limit (or large ¢

limit) one finds
2Vok(1 + k)p*
ne =1 2RLT B (8.4)
(Vup + ‘/0) SDC+

In the small k limit, one has the Harrison-Zeldovich result ng; = 1, whereas in the intermediate
case with (Vip + Vo) ¢27% = Vok(2 + k)u* N one has

114k
ng=1— ———+. 8.5
° N2+k (8:5)
As in the case of exponential attractors, depending on initial conditions, there is also the
standard single-field a-attractor regime, similar to the one described in the previous section.
In that case, the predictions are given by (1.3).

9 Discussion

In this paper we constructed a-attractor versions of the simplest two-field hybrid inflation
e
remain valid in the limit of large number of e-foldings N. However, in some special cases the

models. We found that the standard inflationary predictions of « attractors, such asng = 1—

large N limit is reached only beyond the horizon, for N 2 60, which changes predictions for
the cosmological observations at N < 60.

This happens because the end of inflation in the hybrid inflation scenario is not related to
breaking of the slow-roll condition for the inflaton field ¢, but is due to the waterfall instability
with respect to the field x. Prior to the instability, which happens at ¢ < ., the potential
of the field y contributes to the inflaton potential, but after the instability this contribution
disappears, and inflation either ends, or continues in a very different regime.

The critical value ¢, is controlled by a combination of different parameters of the model.
We studied the situations where . belongs to the a-attractor plateau of the potential (1.1) or
(1.3), and the universe experienced N e-foldings of inflation before the field ¢ rolled down
from ¢n to p.. We confirmed the validity of the standard predictions of a-attractors in the
large N limit. But we also found that for any particular value of N there is another attractor
point: In the limit of large uplift, or of large value of ¢., the position of the point ¢n moves
very close to ¢, all slow roll parameters become very small, and the spectral index approaches
the Harrison-Zeldovich attractor point ng = 1.

This also implies that by changing the uplifting contribution Vi, of the field x, or the
position of the critical point ., one can dial any desirable value of ng in the broad range
1 —2/N < ngz < 1. This does not take anything away from the universality of the standard
single-field a-attractor predictions (1.1) or (1.3), because this flexibility comes at a price of
introducing a very specific two-field model (3.1), (3.5) with many free parameters. However,
there are many situations where such flexibility can be desirable.
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In this paper we only briefly outlined some other aspects of this flexibility. In particular,
now we can have a second stage of inflation during the waterfall instability without violating
the observational constraints on ns. Under some conditions (or with slight modifications of
the original hybrid inflation model), this instability may lead to production of PBHs, which
may be abundant enough to play the role of dark matter [30, 39].

In the models with M/g > +/6« the original inflationary trajectory shifts away from
o = 0, as shown in the left part of Fig. 4. This allows to avoid production of topological
defects, while preserving most of the results obtained in this paper.

Finally, there is a large spectrum of possibilities related to the potential shown in the right
part of Fig. 4. It shows the potential for which the position of the minimum at o = M/ﬁ
is beyond the boundary of the moduli space ¢ = 1/683. In terms of the canonical variable
X, this would mean that instead of having a minimum at x # 0, we have an infinitely long
plateau describing quintessence/dark energy, similar to quintessential inflation in single-field
or two-field a-attractor models studied in [34, 35].

Depending on the parameters M and A, this dark energy stage may be preceded by a
short waterfall stage and reheating, or a secondary inflation stage during the waterfall. For
extremely small V;;,, one may also have a primary stage of dark energy domination during
the waterfall, followed by the secondary dark energy regime during the rolling along the
exponentially flat quintessential potential. Taking into account that this rolling may end up
in the universe with vacuum energy that can be either positive, negative, or zero, and there
can be various phase transitions along the way, modifying density of the dark energy, we have
lots of interesting possibilities to be explored.

We should also mention that whereas in this paper we described hybrid inflation, some of
our qualitative results may apply to other multi-field models as well, such as cascade inflation,
which may occur in some string theory motivated inflationary models [16, 17, 21-23].
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A Supergravity version of hybrid a-attractors

There are several popular versions of the hybrid inflation models in supergravity which are
known as F-term and D-term inflation [53-56]. Original versions of these models, just as the
original hybrid inflation model [1, 2], required various modifications to become compatible
with observations.
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Cosmological a-attractors have deep roots in supergravity describing complex fields with
hyperbolic geometry [3-8]. In such models, kinetic terms of the scalar field are singular at the
boundary of the hyperbolic space.

Some of these models, the so-called E-models [5], can be described by the Kéhler potential

_ _ _jz
K(T,T) = -3aln(T 4+ T), where T = ¢ V3 o) | ia(z) is a geometric half-plane variable.
The Kahler geometry g7 = 0107 K defines the relevant kinetic term Ly, as follows:
_ dT dT
The kinetic term given above describes hyperbolic geometry of a half-plane 7'+ T > 0. The

+T

2
axion a(x) in these models is often stabilized, and the potential depends on ¢t = TT 3a ¥,

=e
The kinetic term of the scalar field T is singular at the boundary ¢t = 7T + T = 0. One
may consider potentials which take the form V' = V(1 — t + - - - ) near the singularity. Then
one can make a field transformation from the geometric variable ¢ to a canonically normalized
field ¢ to reproduce the exponential a-attractors (1.1). Potentials V = V{(1 — %% +-0)
lead to polynomial a-attractors (1.4). See [10] for more information.
Similarly, one may consider the following Kahler potential of the disk variable Z =

e@) ()
tanh Z== + ia(z):

K=-3aln(l-2Z) =  Lgn= _3@(161_2;;2 . (A.2)
The kinetic term given above describes hyperbolic geometry of a Poincare disk ZZ < 1. One
may consider any potential V(Z, Z) such that the field a is stabilized at a = 0 during inflation.
If the potential is not singular at ZZ = 1, it becomes a plateau potential V (tanh \/%) in
terms of the canonical inflaton field ¢ [5], see section 2. Inflationary models of such type are
called T-models [3].

Kahler potentials mentioned above and their generalized versions often appear in string
theory related supergravity models. New powerful methods developed during the last decade
allow us to construct inflationary models in supergravity with almost any desirable potential,
with any degree of supersymmetry breaking, and with any value of the cosmological constant,
by using models with nilpotent fields [15-24]. As we will see, this includes a-attractor models
discussed in this paper.

Here we present two supergravity versions of the a-attractor generalization (3.6) of the
original hybrid inflation model (3.1). This can be done by introducing two chiral multiplets
Z1 and Zs, both described by some hyperbolic geometries with non-canonical kinetic terms,

Pi it

vV 60[2' ’

Z; = ziewi = tanh

(A.3)

and one nilpotent multiplet X.
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1) The first supergravity version is designed to have the angular fields §; and 6, stabilized
at their minimum 6; = 63 = 0. The class of models described in (3.5), (3.6) can be presented
by the following Ké&hler potential and superpotential [22, 23] (here we call ¢ = 1, x = 2 and
a=a; and = az).

F% —

K=-3 og(1 — Z;Z; — XX, Ad

i=1,2
and superpotential
W= (Wo+FxX) [ (01— 27/, (A.5)
i=1,2
which yields
Viota(2i) = A+ Vina(Zi, Z4)), ., (A.6)

Z,=Z;=z;

where Viua(Z;, Z;) is a Hermitian function and A = F )2( — 3W02 is the cosmological constant.

For z; = tanh \/%, 01 = 65 = 0, this provides a supergravity embedding of the models with
a broad class of inflationary potentials of the real part of the fields z;. In most cases, the
potentials have stable minima at 6; = 63 = 0, or they can be stabilized by adding some terms

to the Kahler potential.

As an example, one may consider the potential

_ 1 o o

Vi (Zi, Zi) = Bam* 212y + 1 (M* = 68022 25)" + 189°aB 21212275 (A.7)
In this model the fields 6; are stabilized, 6; = 0, and using (A.3) one can show that the
potential coincides with the a-attractor version of hybrid inflation (3.5), (3.6).

In this model the two inflatons are real fields. Therefore if at the end of inflation the
“Higgs” field x can fall to the two different minima where it has either positive or negative
value, it leads to formation of domain walls, which may lead to undesirable cosmological
consequences.

To avoid this problem, it is sufficient to make the potential slightly asymmetric with
respect to the field y. To do it, one may add to Viyg(Z;, Z;) a small term proportional to
Zy + Z3 = 2x, and also slightly modify the SUSY breaking parameter Wy to achieve vanishing
of the cosmological constant at the minimum of the potential. This practically does not affect
the early stages of inflation, but the term proportional to Z, + Z slightly breaks the symmetry
with respect to the change x — —x, which is responsible for the formation of topological
defects, see Fig. 6. As a result, the inflationary trajectory brings the field y to the deeper
minimum, which eliminates the domain wall problem.
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Figure 6: Hybrid inflation potential for the model (3.6) with m = 0.2, M =1,A=0.5,g =0.8,a=1,8=1,
modified by adding a small term linear in x and by modifying A to make the cosmological constant (almost
exactly) vanish at the minimum. The looks very similar to the original potential shown in Fig. 2, but inflation
always ends in the minimum with x < 0.

Alternatively, one may consider the version of the model in the regime shown in the left
panel of Fig. 4, where symmetry breaking occurs at the very early stages of inflation and
domain walls do not form.

2) The second model of this type is a model where the complex parts of both fields are
not fixed, the theory has U(1)? symmetry, resulting in production of cosmic strings instead of
domain walls [18-20, 24].

K =-3 Z (67 log(l - ZzZZ)

i=1,2
F2XX
+ — X — . (A8)
[Tic1 2 (1 = ZiZy)3e <F)2( — 3W5 + Vina(Zi, Zz)) + 305 (1 = 2im12 O‘Z’)
and superpotential

W=Wy+ FxX, (A.9)

For Zi:m a; < 1 this yields
‘/total(z’i) =A+ Vinﬂ(Zia 7@) ) (AlO)

where A = F)Q( — 3W02. Importantly, this result describes the potential of the complex fields Z;,
not only of their real parts as in (A.6). This gives lots of freedom in the choice of inflationary
potentials of the two fields, under the condition ), ; 5 a; < 1.

For the same choice of the hybrid inflation potential as the ones considered above in
equation (A.7), one reproduces the hybrid potential (3.6), but in this context the variables
o and & describe the absolute values of complex fields, and the potentials do not depend on
the phases ;. For a sufficiently small amplitude of spontaneous symmetry breaking, cosmic
strings produced in this scenario do not affect the amplitude of scalar perturbations.

— 24 —



If one wants to avoid any topological defects, which is important if the field x after
inflation becomes large, then, just like in the previous model, one can add a small term
proportional to Zy 4+ Zs, or one may consider the version of the model in the regime shown in
the left panel of Fig. 4, where symmetry breaking occurs at the very early stages of inflation

and cosmic strings do not form.

. . 2
B Inflationary evolution in models V,, + V; tanh \/%

In section 4 we analyzed inflationary evolution in general a-attractor models with potentials
of the type

Vis) = Vo(l—e Va1 .., (B.1)
where s is given by

s=@— 3£1n<2¢63£) , (B.2)

and Vj = 0, V| $=/Ga at the boundary ¢ = v/6a. Here we will do it directly in terms of the
field ¢, for the simplest model

V = Vyp + Vo tanh? \/% , (B.3)

which is a part of the hybrid inflation model (3.6).

The number of e-foldings N for inflation beginning at the point ¢ and proceeding via
slow-roll up to the point ¢, is given by

oN Vv
N ~ dp — . B4
| e (B.4)
Here
| 2 @ @
V, =1/ —Vytanh sech? —/— | B.5
v 3a " V6o Vba (B:5)
and

% 3a 2 . P
dp— = — | (V, Vi hy/— Vip | 41 h—) -1 . B.6
[y =2 ((w o) cos o+ Vo (10 (sn 2 )) (B.6)

Thus in the slow roll approximation

PN 1% 3a 2 . YN
N~ dp — = 22 (Vip + Vo) cosh | — o + 4Vip lo (smh—)
/pc 90 Vgp 4‘/0 (( 19 0) 30680]\[ p g \/GE

3o 2 . Pe
- W ((Vup + Vo) cosh 4/ 35%° + 4Vyp log (smh m)) . (B.7)
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In the a-attractor regime with ¢n > ¢, and %goc > 1 this equation reads

3a(Vip + Vo) [ JZ z
Nga(;x‘vfjo)(e Zon _ s‘isoc> _ (B.8)

Using equation (4.2), one can show that is equivalent to equation (4.8), which was obtained
for generic a-attractors.
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