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Abstract: We discuss two-stage dilaton-axion inflation models [1] and describe ↵-attractor

models with either exponential or polynomial approach to the plateau. We implement one of

the models of primordial black hole production proposed in [2] in the ↵-attractor context, and

develop its supergravity version. The predictions of this model following from its polynomial

attractor properties are: ns and r are ↵-independent, r depends on the mass parameter µ

defining the approach to the plateau. The tachyonic instability at the transition point between

the two stages of inflation is proportional to the negative curvature of the hyperbolic space

RK = �2/3↵. Therefore the masses of primordial black holes (PBHs) and the frequencies of

small-scale gravitational waves (GWs) in this model show significant dependence on ↵.
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1 Introduction

Cosmological ↵-attractors represent a broad class of models which can describe all presently

available inflation-related observational data by a choice of a single parameter (or a single

combination of two parameters) [3–6]. These models can be formulated as models of a single

real inflaton field '. However, a particularly good theoretical motivation of these models

is found in the framework of hyperbolic geometry based on SL(2,R) symmetry or SU(1, 1)

symmetry of the kinetic terms. They arise naturally in supergravity where the scalar field

is complex. These models were called attractors because their cosmological predictions are

rather stable with respect to considerable modifications of their potential. Many of these

predictions are determined by the underlying hyperbolic geometry.

There are two simplest classes of such models: T-models, with potentials V ⇠ tanh2('/
p

6↵),

and E-models, with V ⇠ (1 � e�
p

2/3↵ ')2, which predict ns = 1 � 2/Ne [3]. In addition,

there is a class of polynomial attractors [5], which include KKLTI models with V ⇠ �2

�2+m2

with ns = 1 � 3/2Ne and V ⇠ �4

�4+m4 with ns = 1 � 5/3Ne [7, 8]. As one can see in Fig. 1,

predictions of these simple single field inflation models completely cover the area favored by

the latest Planck/BICEP/Keck data [9]. These models can describe any small value of r, all

the way down to r = 0.
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Figure 1: We use Figure 2 for the ns � r plane from ‘Snowmass2021 Cosmic Frontier: CMB Measurements

White Paper’ [10]. Predictions of the simplest ↵-attractor T-models with V ⇠ tanh2('/M) are shown in [10]

as a grey band. Seven light purple lines show predictions of advanced ↵-attractor models inspired by string

theory/M-theory models with 7 Poincaré disks. We added here also predictions of simplest E-models (area

between two red lines), and predictions of quartic and quadratic polynomial KKLTI ↵-attractors (area between

the dark purple and orange lines, respectively).

Historically, in most of the models of this type, one of the two components of the complex

field was stabilized during inflation, and the remaining one played the role of the inflaton. In

SL(2,R) models the complex scalar is a dilaton-axion, the axion was usually stabilized, the

dilaton was an inflaton. In SU(1, 1) models the complex scalar represents a Poincaré disk

with its radial and angular components. The angular component was stabilized, and the radial

one played the role of the inflaton.

More recently it was realized that models where both of the components of the complex

scalar field contribute to the two-field dynamics of inflation may have some potentially

interesting features. The supergravity versions of such models were developed in [11–13] and

in [1, 14]. It was shown, in particular, that it is possible to find supergravity description of

models with arbitrary scalar potentials V (T, T̄ ) [1, 12, 13]. Bosonic versions of two-stage

inflation in hyperbolic geometry, mostly in disk variables, were studied in particular in [15–21];

more references can be found in [14].

The relation between the dilaton-axion type half-flat space metric and Poincaré disk

metric describing hyperbolic geometry was discussed in the context of the ↵-attractors in

[11, 16, 19]. All of these represent negative space curvature manifolds with the Kähler curvature

RK = �2/3↵. This was the way these models were introduced in [4] in supergravity with

one chiral multiplet, i.e. one complex scalar1. In Fig. 2 we show Escher’s pictures for the

1The curvature of the hyperbolic geometry with 2 real fields is R = �4/3↵.
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hyperbolic space in disk coordinates and in half-plane coordinates, from [11]. In particular, in

the context of ↵-attractors [3] the relation between the T-models and E-models is the relation

between Poincaré disk and half-flat space geometry: the kinetic terms are related by the

change of coordinates, however, the potentials are not.

Figure 2: Here are Escher’s pictures from [11] for the hyperbolic space in disk coordinates, |Z|2 < 1, at the

left and in half-plane coordinates, T + T̄ > 0, at the right. The boundary of the disk (with smaller and smaller

angels and demons) is at |Z| = 1, the boundary of the half-flat space is (with smaller and smaller angels and

demons) at ReT = 0.

Two-field inflationary models with non-trivial field metric have been used recently in

the context of PBHs and GWs production. For single stage ↵-attractors, the potential with

inflection point2 was introduced and studied in [17, 19, 21] in disk coordinates. In two-stage

hyperbolic geometry models, a far richer dynamical behavior is possible.

The new aspect of hyperbolic geometry, namely the metric in coordinates of the half-flat

space taken in a standard stringy form of a dilaton-axion, appears to play an important

role when the primordial black holes, gravitational waves production, and reheating are

studied. Various cosmological models with PBHs and GWs production and stages of reheat-

ing/preheating were investigated recently both in disk and well as in half-plane coordinates.

Some of these, such as [17–19, 21, 27, 28], were formulated in an obvious way as models in

hyperbolic geometry, with curvature R = �4/3↵, some others [2, 20] were not.

We will discuss here dilaton-axion inflationary models in hyperbolic geometry with

exponential or polynomial ↵-attractors and their supergravity realization. We will show that

one of the phenomenologically interesting dllaton-axion inflationary models proposed in [2]

can be interpreted as a model with hyperbolic geometry. Then, using the methods developed

in [1, 11–13], we will develop the supergravity generalization of this model.

This will allow us to use the ↵-attractor predictions for ns and r and compare them with

the numerical results obtained in [2]. We will find a very good agreement. Moreover, our new

understanding of inflation in [2] will explain why the PBH masses and the frequencies of the

GWs in this model depend on the curvature of the hyperbolic geometry.

2Importance of the inflection point near the exit of inflation for PBH’s production was realized in [22–26].
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2 2-moduli inflationary models in hyperbolic geometry

2.1 From exponential to polynomial ↵-attractors

In the simple case the one-inflaton T- and E-models [3] with exponential approach to the

plateau have ns and r independent of the properties of the large class of potentials. However,

r depends on the curvature of the Kähler geometry RK = � 2

3↵ . At large values of ' the

potential is V0(1 � e�'/µ + . . . ). The tensor to scalar ratio r depends on the parameter

µ =
p

3↵/2 describing the approach of the canonical field to the plateau.

for the model described here), the observational data will be determined by this last stage
of ↵-attractor inflation.

On the other hand, if we take the same potential with c = +3, the first stage of ↵-
attractor inflation will continue for a long time, until the field ' falls down to its minimum
at ' = c, and then the new stage of inflation begins, which will be driven by the field ✓

with the natural inflation potential, see Fig. 6.

Figure 6: ↵-attractor inflation along each of the ridges of the potential, shown either by a
red line, or a purple line, follows by natural inflation driven by the field ✓.

8 Models with a finite plateau

Until now we studies the standard ↵-attractor models with nonsingular potentials in terms
of the original geometric variables. However, one of the way to describe the E-models such
as the Starobinsky model is to start with a T-model and assume that the original potential
is singular in one of the two directions [8]. Let us see what may happen in the context of
the U(1)-symmetric models discussed in this paper.

As an example, consider the T-model scenario discussed in Section 2, with

V (Z, Z̄) = V0 ZZ̄

�
1 +

A

1 � ZZ̄

�
. (8.1)

If the parameter A is very small, the last term is important only in the vicinity of the
singularity. The potential in terms of the inflaton field ' looks as follows:

V (', ✓) = V0

�
tanh2

'p
6↵

+ A sinh2
'p
6↵

�
. (8.2)
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Figure 3: One of the two-stage dilaton-axion inflation models studied in [1]. The dilaton plateau potential

stage starts with some initial value of the axion and dilaton fields. Two di↵erent trajectories (purple and red)

correspond to two di↵erent initial values of the axion field. The axion during the dilaton inflation remains at

its initial value, and starts moving only when the field � approaches its minimum at � = �0. Notice the sharp

turn of the inflationary trajectories at � = �0.

In polynomial approach to the plateau one-inflaton ↵-attractor models [5] the potential at

large values of ' is V0

�
1 �

�µ
'

�k
+ . . .

�
. In these models ns depends on k, whereas r depends

both on k and µ, [7, 8]. Both ns and r do not depend on the curvature of the Kähler geometry

RK = � 2

3↵ .

Here we will describe the two-stage dilaton-axion models of inflation developed in [1], as

well as their their generalizations. The original E-model dilaton potential with the exponential

approach to plateau studied in [1] can be replaced by a polynomial attractor [5], i.e. we can

replace an E-model potential by the one which has a power law approach to the plateau, a

quadratic KKTTI attractor [7, 8].

Both types of models have the same dilaton-axion kinetic term

Lkin =
1

2

h
(@')2 + e

2

q
2
3↵'

(@a)2
i

. (2.1)
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The potentials studied in [1] are

V (', a) = V0

⇣
1 � e

�
q

2
3↵ ('�'0)

⌘
2

+
1

2
m2

aa
2 . (2.2)

The dilaton potential in (2.2) is the E-model exponential ↵-attractor with the position of the

minimum at ' = '0. The axion has a mass term potential3.

We now replace the potential V0

⇣
1 � e

�
q

2
3↵ ('�'0)

⌘
2

with an exponential approach to

the plateau used in [1] by a polynomial attractor [5], which has a power law approach to the

plateau, and find the dilaton-axion potential of the form

V (', a) = V0

'2

'2 + µ2
+

1

2
m2

aa
2 . (2.3)

In a class of models considered in [2, 20], where the PBHs can be produced, a kinetic

term was chosen in the form

Lkin =
1

2

⇥
@µ'@µ' + f(')@µa@µa

⇤
. (2.4)

One of the models studied in [2] has

f(�) = e2b1' , (2.5)

but it was not clear whether this choice may have a fundamental geometric interpretation,

and whether it is any better than another choice f(�) = e2b2'2
also studied in [2].

Now we can relate it to the hyperbolic geometry of ↵-attractors and incorporate this

model in supergravity with the corresponding Kähler geometry i↵

f(�) = e2b1' = e
2

q
2
3↵'

, i.e. b1 =

r
2

3↵
. (2.6)

Thus, if we choose the kinetic term in [2] as in (2.5), we can relate their parameter b1 to

the Kähler curvature,

b2

1 = �RK =
2

3↵
, e2b1' = e2

p
|RK |' . (2.7)

The phenomenology of this cosmological model introduced in [2], which we now embedded

into hyperbolic geometry, was studied extensively with regard to PBHs and GWs. We will

describe the microscopic origin of both models in (2.2), and in (2.3) in supergravity, and

extract an interesting information about phenomenology from the fact that the model in (2.3)

3The axion potential used in [1] at � = �0 is more general, it is proportional to cos2 ✓
2 where ✓� ⇡ =

q
2
3↵a.

For small deviation of the axion from the minimum the model becomes the one shown in (2.2).
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is a dilaton-axion inflationary model in hyperbolic geometry which has attractor properties of

polynomial ↵-attractors.

Importantly, one of the parameters in this model defining the properties of PBHs and

GWs is actually a curvature of the hyperbolic geometry, as shown in (2.6). Other features

of this model following from the fact that it is embedded into hyperbolic geometry with

inflationary plateau potential approaching polynomially [5] will be identified. We will show

that ns and r are defined by their plateau potential attractor values [5, 7].

The point of transition to the second stage of inflation is characterized by the e↵ective

mass square of the isocurvature perturbations m2

e↵
. It can abruptly and temporarily become

large and negative; we will find out that m2

e↵
⇠ RK .

2.2 Hyperbolic geometry in half-plane coordinates

A simple way to introduce this class of metrics is to start with equation (5) in [29], where the

Kähler potential defining the Kähler geometry metric is given by

K = �3↵ ln(T + T̄ ) , (2.8)

in notation (c = 3↵) adapted to the definition of ↵-attractor E-models. The Kähler metric is

gT T̄ = @T @T̄ K and the geometry defines the kinetic term for a complex scalar

Lkin = 3↵
@µT@⌫ T̄ gµ⌫

(T + T̄ )2
. (2.9)

It has an SL(2,R) symmetry. It was explained around equations (5) and (6) in [29] that the

case 3↵ = 3 corresponds to the dilaton-axion in string theory [30] where the total volume

is defined by the dilaton, and no-scale supergravity [31, 32]. The case 3↵ = 1 is a single

dilaton-axion case. Now we know more examples of discrete 3↵ = 7, 6, 5, 4, 3, 2, 1 [33] as well

as continuous 3↵ in the context of N = 1 supergravity [3, 4]. Following [29] we present our

complex field T , a half-plane coordinate of the hyperbolic geometry, as a dilaton and an axion:

T (x) = e
�
q

2
3↵'(x)

+ i

r
2

3↵
a(x) , T + T̄ > 0 . (2.10)

The real part of the T -field is an exponent of the dilaton ', therefore clearly positive, which

explains the ‘half-plane’ coordinate name. The dilaton-axion kinetic term (2.9) is

Lkin =
1

2

h
@µ'@⌫'gµ⌫ + e

2

q
2
3↵'

@µa @⌫agµ⌫
i
. (2.11)

Here ' is a dilaton and a is the axion whose kinetic term couples exponentially to the dilaton.

' = �
r

3↵

2
ln

1

2
(T̄ + T ) , a =

1

2i

r
3↵

2
(T̄ � T ) . (2.12)

The total non-gravitational Lagrangian, including the potential, in geometric variables is

L = 3↵
@µT@⌫ T̄ gµ⌫

(T + T̄ )2
� V (T, T̄ ) . (2.13)
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2.3 Supergravity version of the 2-moduli models

The supergravity version of the hyperbolic geometry models with both dilaton and axion

evolving during inflation was developed in [11–13] and [1]. In addition to the dilaton-axion

multiplet T we need a nilpotent one, X2 = 0. The Kähler potential and the superpotential for

models of our interest here were proposed and studied in [13] and in [1].

We generalize supergravity models in [13] and in [1] by introducing two di↵erent parameters.

One is describing the breaking of supersymmetry in the X directions, we call it FX , the other

describing the breaking of supersymmetry in the T directions will be W0 as in [13] and in [1].

Our model is now defined as follows, for ↵ < 1

K = �3↵ ln(T + T̄ ) + GXX̄XX̄ , W = W0 + FXX . (2.14)

GXX̄ =
F 2

X

(T + T̄ )3↵V (T, T̄ ) + 3W 2

0
(1 � ↵)

. (2.15)

The value of the potential in this model, at X = 0 is

Vfinal = V (T, T̄ ) . (2.16)

Thus, in terms of the dilaton and axion bosonic fields of our supergravity models (2.14),

(2.15), the non-gravitational part of the action is

L(', a) = 1

2
[(@')2 + e2

p
2
3↵'(@a)2] � V

�
T (', a), T̄ (', a)

�
, (@')2 ⌘ @µ'@⌫'g

µ⌫ .

(2.17)
This expression is the same as the one in eq. (2.13), for any potential V (T, T̄ ).

2.4 Dilaton-axion models in manifestly geometric variables

Now we can present these models in geometric hyperbolic variables T where the action is

given in eq. (2.13) and T is defined in eq. (2.10). Using

1

2
(T̄ + T ) ⌘ t ,

1

2i

r
3↵

2
(T̄ � T ) ⌘ a , (2.18)

we can present the potentials of the models in [1, 2] which can be used for the supergravity

version of the model.

The supergravity version of the Hypernatural inflation model (2.2) requires a potential

depending on geometric fields T, T̄ . It is given by

V (T, T̄ ) = V0

�
1 � t

�
2
+

1

2
m2

aa
2 . (2.19)

where t(T, T̄ ) and a(T, T̄ ) are given in eq. (2.18). Replacing t by the canonically normalized

field ' results in (2.2) [1].
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The cosmological model developed in [2] is

L =
1

2

⇥
�(@t�)2 � e2b1�(@t�)2

⇤
� V0

�2

µ2 + �2
� 1

2
m2

��2 . (2.20)

It is now easy to recognize it as the one we presented in eqs. (2.1), (2.3) under condition

b1 =

r
2

3↵
, ' ! � , a ! � . (2.21)

It can also be given in the form with the SL(2,R) invariant metric (2.9). The potential breaks

the SL(2,R) symmetry of the kinetic term and is given by the expression where the inflaton

part of the potential was presented in [5]. Namely, the potential of model [2] in geometric

variables is

V (T, T̄ ) = V0

ln2 t

c2 + ln2 t
+

1

2
m2

aa
2 , c2 = µ2|RK | . (2.22)

where t(T, T̄ ) and a(T, T̄ ) are given in eq. (2.18). This also means that the supergravity

version of the model in [2] with (2.5) is now available in eqs. (2.14), (2.15), (2.16), (2.22). It

is a dilaton-axion cosmological attractor model of the type described in [5].

Figure 1. [Top] Evolution of the scalar fields (left) and the e↵ective mass of isocurvature perturba-
tions m2

e� as defined in Equation 3.5. [Bottom] Evolution of the first two slow-roll parameters ✏ (left)
and ✏2 ⌘ ⌘ (right). The parameters used are the ones for the LISA case are provided in the text,
while b1 is varied for a continuous range of values.

As can be easily seen from Figure 1, the heavier of the two fields, i.e. �, rolls down its
potential driving a first phase of inflation while the lighter field � remains frozen. When the
first stage of inflation dominated by � finishes, � undergoes a few damped oscillations around
its e↵ective minimum and the field � starts a second inflationary phase that lasts around
⇠ 20 e-folds. In the central panels of Figure 1, the first slow-roll parameter ✏1 ⌘ ✏ shows a
bump between the two phases and the slow-roll conditions are violated, i.e. ✏2 ⌘ ⌘ > 1.

With this choice of parameters, the non-canonical kinetic term a↵ects the the isocurva-
ture mass (see Equation 3.5 for its definition and next section for a discussion) that becomes
temporarily negative at the transition between the first and the second stage of inflation, as
shown in Figure 1. This plays an important role in the production of PBHs and GWs.

– 4 –

Figure 4: The cosmological predictions of a model in [2], Fig. 1 there based on numerical solution. The

figures show the evolution of the dilaton and axion, of the slow-roll parameters and the e↵ective mass of

the isocurvature perturbation. The dependence on ↵, which here is the dependence on the color codifying

b1 =
q

2
3↵ , is practically absent. This is in agreement with attractor eqs. (3.1).
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3 Observational predictions of the axion-dilaton attractor

3.1 CMB predictions for ns and r

The ↵-attractor models with stabilized axion have stable attractor predictions. In case of the

polynomial ↵-attractors which we have here, we can first look at numerical examples studied

in [2] and see if they are supported by the attractor values presented in eq. (2.14) in [5]. For

slow roll parameters we have

ns = 1 � 3

2Ne
, r =

p
2µ

N3/2

e

. (3.1)

We compare this prediction with the numerical cases studied in [2] and displayed in their

Fig. 1, we show them in our Fig. 4.

Figure 5: The dilaton-axion potential in terms of a dilaton which has a canonical kinetic term and the

axion a which has an exponential coupling to dilaton in his kinetic term. Parameters are from [2]: µ =
p
6,

V0
500 = m2

a, and we took ↵ = 0.0136 for b1 = 7. The dilaton stage of inflation happens when the dilaton field

rolls down the blue plateau of the KKLTI potential, The second stage is the axion chaotic inflation due to the

quadratic potential shown as the red area.

We can explain the main features of the model based on its attractor properties as well

as numerical solutions supporting them, see Figs. 4, 5. The e↵ective mass of the axion

is suppressed by the exponential factor e
�
q

2
3↵'

due to kinetic term coupling. The axion

is exponentially light at large ' at the plateau, and starts moving only when the field '

approaches the minimum of its potential at ' = 0, and the exponential suppression of its

e↵ective mass disappears. This is the ‘rolling on the ridge e↵ect’ e↵ect found in [1, 12]. Thus

the dilaton stage of inflation ends at a ⇡ ai. After ' reaches ' = 0, the axion in models with

ai 6= 0, undergoes a stage of chaotic inflation due to the axion potential 1

2
m2

aa
2. The number

of e-folds at this stage depends on how far is ai from its minimum a = 0 when it rolls along

the valley with the quadratic potential shown as the elongated red area at ' = 0 in Fig. 5.

We plot the trajectory of the fields during the two-stage inflation. At the turning point we

found that ✏ jumps to 1 and ⌘ jumps down to �17 and rises up to +10 before settling to the

slow roll axion inflation stage.
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For the total number of e-folds to be 57, the number of e-foldings Ne responsible for

observations in eq. (3.1) should be smaller than 57, in view of additional e-folds at the axion

stage:

Ntotal = Ne + Naxion ⇡ 57 . (3.2)

Note that if initially at � = 7 the axion would be placed at a = 0, in the middle of the plateau,

it would be only one stage of inflation with Ne = 57, ns ⇡ 0.97.

We will consider 4 di↵erent cases which di↵er by the choice of the initial position of the

axion, as we see in Table 1 in [2] and reproduced here in Fig. 6.

�i [Mpl] �i [Mpl] ns r
SKA 7.0 9.3 0.9184 0.042
LISA 7.0 7.31 0.9537 0.020
BBO 7.0 6.55 0.9601 0.017
ET 7.0 5.6 0.9640 0.014

Table 1. Initial conditions on the scalar fields � and � and spectral index and tensor-to-scalar for
the spectra in Fig. 2.

Figure 2. [Top] scalar and [bottom] tensor power spectra at the end of inflation. The parameters
used are given in the Table in the main text and b1 is varied over a continuous range of values.

We note that the spectral index becomes more red as � increases and the peak in
the power spectrum moves to larger scales. Indeed, for scales that cross the Hubble radius
far from the transition the prediction are essentially those of single field inflation Ref. [43].
Therefore, as the second stage of inflation gets longer, CMB scales cross the horizon when
the inflaton � is in a less flat region of its potential and the spectral index gets redder.

In particular, note that the SKA example is in tension with the constraints on ns from
current cosmological CMB data [57]. However, we emphasise that choosing a di↵erent form
for V (�) that gives a bluer power spectrum can improve the agreement of the SKA example
with CMB constraints.

The crucial finding of this work is the large bump in the power spectra at small scales.
As shown in Ref. [43], when the coupling f1(�) is large enough, the isocurvature mass defined
as

m2

e↵
⌘ Vss + 3✓̇2 + b2

�g(t) + b�f(t) � b���̇2 � 4
V 2

s

�̇2
, (3.5)

– 6 –

Figure 6: Initial conditions for the dilaton and axion and ns and r .

The number of e-foldings Ne which we have to use in our attractor formula (3.1) can

be identified by the values of ns or r in the table. We get Ne from r using the table, and

calculate ns with the same Ne we find a good agreement with the table of numerical solutions

given in [2]. Namely, we find for SKA, LISA, BBO, ET examples from (3.1)

Ne = 19 ns = 0.921 r = 0.042

Ne = 32 ns = 0.952 r = 0.020

Ne = 35 ns = 0.957 r = 0.017

Ne = 39 ns = 0.961 r = 0.014 (3.3)

One should take into account also that the parameters µ =
p

6 and r > 10�2 are above the

values of these parameters where the attractor regime is reached in these models, as explained

in [7]. One can also see it in Fig. 3 in [5], which shows that the attractor regime is reached

only for r . 10�2.

And we definitely see the trend which is also clear from the properties of the dilaton-axion

model of inflation. In particular, the attractor values of ns and r in eq. (3.1) are ↵-independent,

which clearly explains why in Fig. 4 almost all curves for di↵erent values of b1 =
q

2

3↵ coincide.

3.2 PBHs and GWs dependence on hyperbolic space curvature

Here in Fig. 7 we describe the transition area at the fixed value of Kähler curvature. The

kinetic term for the axion field is e2

p
|RK |'(@a)2. It means that the ‘physical distance’ is

e
p

|RK |'@a, which is the reason why at large positive ' the axion field a is not moving for

a long time. We can see it in Fig. 4 at the upper left corner where � = a remains at his
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initial position for a long time during the first stage of the dilaton inflation. When the field

' reached his minimum at ' = 0 this protection of the axion position at its initial value

vanishes. Moreover, when ' becomes negative during the oscillation near the minimum, this

factor becomes e�
p

|RK ||'|@a. This forces the axion first to change dramatically from its initial

position and after a while a slow roll axion inflation takes place.
Out[� ]=

68 69 70 71 N

0.5

1.0

1.5

�

Out[� ]=

68 69 70 71 N

6.6

6.8

7.0

7.2

a

Out[� ]=

Figure 7: Near transition area where the axion inflation stage replaces the dilaton inflation. We can see the

correlation between the fast change of the axion and ' crossing zero and oscillating to negative value.

Note that this e↵ect is significant for large curvatures |RK | and less significant for smaller

ones, which explains the color dependence of the value of m2

e↵
/H2 in the blow-up region

in the upper right plot in Fig. 4. The color there is codifying b1 =
q

2

3↵ , it changes from

blue to red when b1 is increasing. Note that in all figures in in Fig. 4 there is no color

dependence. The only exception is a blow-up region in the upper right plot of the e↵ective

mass of isocurvature perturbations m2

e↵
/H2. This color-dependence of m2

e↵
/H2 is practically

absent during the first and the second stage of inflation, it is only present at the point of

transition. Our Fig. 7 compliments a blow-up region in the upper right plot of the e↵ective

mass of isocurvature perturbations m2

e↵
/H2 in Fig. 4. The e↵ective mass of isocurvature

perturbations m2

e↵
becomes temporarily negative at the transition between the two stages of

inflation and leads to a transient tachyonic amplification of the isocurvature perturbations

leading to a large peak in the power spectrum. We found an additional explanation of the

color dependence of m2

e↵
defined in [2] at the region of transition where �tran ⇡ 0. We have

found that the e↵ective mass to Hubble ratio depends on the Kähler curvature RK = �b2

1
as

follows
m2

e↵

H2
) 5 RK

⇣ @a

@N

⌘
2

+ . . . (3.4)
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The . . . in (3.4) are for terms which mildly depend on RK , only in the form e
p

|RK |�tran with

�tran ⇡ 0, or are independent on RK .

The first term is linear in Kähler curvature, depends on how fast the axion a changes as

a function of N , and it is dominant at the transition, the second term depends on Kähler

curvature times �tran ⇡ 0. This means that at the region of transition the negativity of the

e↵ective isocurvature mass is due to the negativity of the Kähler curvature as the first term in

eq. (3.4) shows.

�i [Mpl] �i [Mpl] ns r
SKA 7.0 9.3 0.9184 0.042
LISA 7.0 7.31 0.9537 0.020
BBO 7.0 6.55 0.9601 0.017
ET 7.0 5.6 0.9640 0.014

Table 1. Initial conditions on the scalar fields � and � and spectral index and tensor-to-scalar for
the spectra in Fig. 2.

Figure 2. [Top] scalar and [bottom] tensor power spectra at the end of inflation. The parameters
used are given in the Table in the main text and b1 is varied over a continuous range of values.

We note that the spectral index becomes more red as � increases and the peak in
the power spectrum moves to larger scales. Indeed, for scales that cross the Hubble radius
far from the transition the prediction are essentially those of single field inflation Ref. [43].
Therefore, as the second stage of inflation gets longer, CMB scales cross the horizon when
the inflaton � is in a less flat region of its potential and the spectral index gets redder.

In particular, note that the SKA example is in tension with the constraints on ns from
current cosmological CMB data [57]. However, we emphasise that choosing a di↵erent form
for V (�) that gives a bluer power spectrum can improve the agreement of the SKA example
with CMB constraints.

The crucial finding of this work is the large bump in the power spectra at small scales.
As shown in Ref. [43], when the coupling f1(�) is large enough, the isocurvature mass defined
as

m2

e↵
⌘ Vss + 3✓̇2 + b2

�g(t) + b�f(t) � b���̇2 � 4
V 2

s

�̇2
, (3.5)
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b1 =

r
2

3↵
=

p
|RK |

Figure 8: The cosmological predictions of a model in [2] where the potential with polynomial approach to

plateau is embedded into hyperbolic geometry has ↵-dependent predictions for the the tensor power spectra at

the end of inflation and for the properties of the PBHs.

Figure 5. Relic energy density of gravitational waves computed from the spectra in Figure 2. b1 is
varied for the same continuous range of values.

this range we found the striking result that �GW h2 (at least for the highest values of b1) can
be detected simultaneously by the DECIGO/BBO, Magis-AION-space [106], the Einstein
Telescope [107], Advanced Ligo + Virgo [108] and CE [109].

We stress again that the height of the peak in �GW is only logarithmically dependent
on f tot

PBH
and thus detectable GWs can be produced even when there are no PBHs [110].

For this reason, the production of small scales GWs is even more robust phenomenological
prediction than PBH for our model.

6 Changing the non-canonical coupling

In this section, we explore the sensitivity of the results of the previous sections to the func-
tional form of the coupling. We assume fB(�) = exp(2b2�2) as in Equation 2.5 and, to
facilitate the comparison, we restrict to the LISA case. Besides the di↵erent form of b(�) and
b�, the main di↵erence between this coupling and fA(�) is a non-vanishing second derivative
b�� = b2 = const. A non-vanishing b�� adds a new contribution to the change of curva-
ture perturbation R and also modifies the e↵ective mass of the isocurvature perturbations
in Equation 3.5.

In Figure 6, we show the results for the scalar power spectrum, PBHs mass fraction and
induced SBGW for a range of values of the non canonical coupling b2. As stated above, we
have used the same parameters as the LISA case except for the initial conditions on the second
inflaton �i that we have fixed to the lower value �i = 6.8 Mpl, in order for the peak in PR(k)
to be at the same scale in the fA and fB case. Indeed, although the background evolution is
essentially the same in the two cases, a non vanishing b�� makes the isocurvature tachyonic
instability more prominent during the transition between the two stages of inflation. As a
result a broader range of scales feel the isocurvature feedback and the peak has a broader
structure. This a↵ects both the large and small scale phenomenology of the model. At CMB
scales, a smaller �i reduces the duration of the second stage of inflation and the spectral
index is now given by ns = 0.9628, which is no more in tension with the CMB constraints.
On the other hand, such a broad peak in the power spectrum modifies the mass fraction of
primordial black holes. This is important as a broader mass function that extends to a larger
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Figure 9: The cosmological predictions of a model in [2] where b1-dependence of the properties of the

induced GW is presented by color coding and b1 =
q

2
3↵ .

The upper right plot in Fig. 4 shows that the most negative e↵ective mass of isocurvature
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perturbations in the blow-up region can be explained by the formula (3.4) which says that

for bigger |RK | the most negative value is reached (the red part of the figure at N ⇡ 68).

This property of the ratio m2

e↵
/H2 explains why the phenomenology of the PBHs and GWs

strongly depends on the curvature. In Figs. 8 and 9 we reproduce figures from [2] where

one can see that the change in b1 =
q

2

3↵ leads to dramatic changes in phenomenology. In

particular, when 6.4  b1  8.4 we need very small ↵ so that 0.028  3↵  0.049 and very

high Kähler curvature �RK = b2

1
& 40.

An additional set of models with parameters V0
m2

a
= R = 30, 1050, 3800 was also studied in

[2], see Figure 10 here.

�i [Mpl] V0 [10�10M4

pl
] R b1[Mpl]�1

1 3.2 6.4 30 9.466
2 7.31 7.08 500 7.837
3 8.1 7.6 1050 7.382
4 8.5 8.21 3800 6.233

Table 2. Parameters used to reproduce Fig. 7.

Figure 7. [Top-left] ✏ parameter, [top-right] Scalar power spectra, [bottom-left] PBHs mass func-
tion and [bottom-right] relic energy density of GWs for the fB model. We plot the results for the
correspondent case in the fA model with Using the values in the Table in the main text.

We show our results in Figure 7. As can be seen, the slow-roll violation gets more violent
when the ratio between the two potential is higher. In fact, for the case 3 and 4, ✏ becomes
larger than 1 and inflation ends at the transition to start again driven by the second lighter
scalar field. This resembles a phase of intermediate matter-domination that is well known to
occur in the case of two massive inflaton when the mass ratio is large enough [27, 31].

The di↵erent pattern of the slow-roll violation is clearly imprinted in the scalar power
spectrum. For larger values of the potential ratio R, in fact, we note an oscillatory the
bump splits in a series of di↵erent peaks. This multi-peaked shape modifies the PBHs mass

– 14 –

Figure 10: Changes in axion masses m2
a = V0

R and initial conditions for the axion and the resulting change

in Kähler curvature b21 = 2
3↵ = �RK .

It was observed in [14] that rapid-turn inflation models in hyperbolic geometry tend to

have high-curvature. This underscores the di�culty of obtaining such models from string

theory. For example, the ones associated with M-theory and type IIB string theory in [34]

without rapid terms have 3↵ = 7, 6, 5, 4, 3, 2, 1.

Interestingly, with increasing R = V0
m2

a
which corresponds to lighter axions, the required

value of b1 is decreased and ↵ is increased. We can provide here a qualitative explanation of

this feature, comparing the cases with R = 500 and R = 3800 in [2].

The mass squared of the axion is decreasing from the case described in details with

m2
a = V0

R to the case m̃2
a with di↵erent V0 and R and (case 2 and case 4 in Fig. 10). Also the

initial conditions change from ai to ãi. We can compare the e↵ective mass of the axion in

case 2 and case 4

e�2b1�m2

aa
2

i , e�2b̃1�̃m̃2

aã
2

i . (3.5)

It follows that

e2b1�c�ln C2 ⇡ e2b̃1�̃c . (3.6)

and numerically ln C2 ⇡ 1.57. If we assume that we can compare these two models at the

point �c ⇡ 0.49 which is approximately the same in both cases, we find that

b1 � b̃1 ⇡ 1.55 , (3.7)

to be compared with the di↵erence between b1 = 7.837 to b̃1 = 6.233, which is 1.6.

This is desirable modification of the parameters in the model since increasing ↵ would be

a step towards smaller Kähler curvature. For example, with 3↵ = 1 the Kähler curvature is
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�RK = 2/3↵ = 2. This is a smallest Poincaré disk associated with string theory. Smaller ↵

are possible in N = 1 supergravity but the ones like 3↵ = 1, 2, 3, 4, 5, 6, 7 originate from string

theory and maximal N = 8 supergravity.

It would be also interesting if the models with smaller values of µ can be investigated,

so that the system gets closer to the attractor regime and maybe works for smaller Kähler

curvature.

4 Discussion

All presently existing inflation-related data can be described by simple single-field inflationary

models with one parameter [5, 6]. Moreover, the simple ↵-attractor models with 3↵ =

7, 6, 5, 4, 3, 2, 1 form the set of discrete B-mode targets, see Fig. 2 in [35], where these 7

Poincaré disks are shown as some of the main targets for LiteBIRD. We present the predictions

of the single stage inflationary ↵-attractors in Fig. 1.

Exponential ↵-attractors make the nearly universal predictions ns = 1 � 2/Ne and

r = 12↵/N2
e . Using these expressions one can derive a useful expression for the curvature of

the Kähler geometry RK = � 2

3↵ :

RK = �2(1 � ns)2

r
. (4.1)

Thus by measuring ns and r one can find the curvature RK .

For polynomial attractors [5] this simple relation is no longer valid. Nevertheless, in this

paper we argued that one can obtain interesting information about the curvature of the Kähler

geometry RK by investigation of formation of PBHs and small-scale GWs.

For single field exponential ↵-attractors with an inflection point, this possibility was

studied in [17, 19, 21]. The current conclusion is that the PBHs produced in such models are

light, MPBH < 108 g, due to the fact that the e↵ective number of e-folds in such models is

smaller than the one in models without the inflection point, and ns cannot be smaller than

the lowest value established by Planck [19]. The peak of the GW signal is constrained to be

at very high frequencies.

In this paper we studied the models developed in [1] and replaced there the exponential

↵-attractor part of these modes by a polynomial quadratic ↵-attractor, which predicts a

greater value of ns = 1 � 3

2Ne
[5]. If there is a second stage of inflation driven by the axion

field, it makes Ne in the attractor equation for ns smaller. The value of ns decreases, but if

the second stage of inflation is not too long, ns decreases from its greater value ns = 1 � 3

2Ne

but still remains within the Planck bounds on ns. This tends to remove the upper bound on

the mass of PBHs of the type MPBH < 108 g which was found in [19].

One of the most interesting and phenomenologically successful models of the PBHs produc-

tion was proposed in [2], but its fundamental interpretation was not clear. We implemented this
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model in the context of polynomial ↵-attractors, and developed its supergravity version. This

embedding suggests a microscopic origin of the parameters used in this model. In particular,

the parameter b1 in the axion kinetic term e2b1�(@�)2 of [2] depends on the curvature of the

Kähler geometry, b2

1
= �RK = 2

3↵ .

The predictions of this model following from its polynomial attractor properties are: ns

and r are ↵-independent, whereas r depends on the mass parameter µ defining the approach

of the inflationary potential to the plateau. We confirmed that the CMB predictions of

this model are consistent with the attractor formula (3.1) for the polynomial ↵-attractor

model. We also explained a significant dependence of the PBH masses and GW frequencies

on hyperbolic geometry curvature: the e↵ective tachyonic mass of isocurvature perturbations

depends linearly on RK at the point of transition from the dilaton to axion stage of inflation,

as shown in eq. (3.4).

This suggests that by finding the spectrum of masses of PBHs and the frequencies of the

GWs, in combination with measuring ns, r one may find information about the curvature of

the Kähler geometry RK in this class of models.
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A From half-plane to Poincaré disk coordinates

To describe two-stage inflationary models based on hyperbolic geometry it is important to make

a choice of geometric variables which are most convenient for understanding the cosmological

evolution. In this paper we used the half-plane coordinates T + T̄ > 0 with the complex field

T defining the dilaton-axion pair (', a)

T (x) = e
�
q

2
3↵'(x)

+ i

r
2

3↵
a(x) . (A.1)

Alternatively, one could use the Poincaré disk coordinates Z = rei✓ = T�1

T+1
.

The map between the polar coordinates of the disk (r, ✓) and planar coordinates of the

hyperbolic field space (', a) is presented in [19] with ' = u, a = v.

'(r, ✓) =

r
3↵

2
ln

h1 + r2 + 2r cos ✓

1 � r2

i
, a(r, ✓) = 2

r
3↵

2

h r sin ✓

1 + r2 + 2r cos ✓

i
(A.2)
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The relevant kinetic term in (r, ✓) variables is

� 3↵

(1 � r2)2
[(@r)2 + r2(@✓)2] = �1

2
(@�)2 � 3↵

4
sinh2

⇣r
2

3↵
�
⌘
(@✓)2 (A.3)

The dilaton-axion potential which we use is given in eq. (2.3). We have shown it in Fig.

5 together with the inflationary trajectory. To find the expression for this potential in polar

coordinates, one should put expressions for '(r, ✓) and a(r, ✓) in (A.2) into the potential (2.3),

and then replace the geometric variable r by the canonically normalized field � such that

r = tanh
q

2

3↵�, 0  � < 1.

We present the plot of the potential V (�, ✓) for ↵ = O(1) in Fig. 11.

Figure 11: The potential V (�, ✓). For the purpose of visualization we use ↵ = 1 case in this plot. For much

smaller values of ↵ the ridges become very narrow. The red area at the lower part of the potentials corresponds

to ' ⇡ 0.

With some e↵ort, one can figure out the behavior of the inflationary trajectory in (�, ✓)

coordinates in Fig. 11. In particular, the straight chaotic inflation valley at ' ⇡ 0 shown as a

red area in Fig. 5 corresponds to the strongly curved red valleys in Fig. 11. This bending

makes the description of the last stage of inflation slightly more complicated. For smaller

values of ↵, such as ↵ ⇠ 10�2 used in [2], it is hard to draw and interpret figures like Fig. 11,

because the ridges and the red valleys shown in these figures become extremely thin.

The potential is singular at r ! 1, ✓ ! ⇡ [19]. The reason is that the axion field (A.2)

becomes infinitely large in this limit, and the chaotic inflation potential 1

2
m2

aa
2 diverges in

this limit a ! 1. This is the standard feature of monomial chaotic inflation potentials. This

singularity disappears if one replaces 1

2
m2

aa
2 by a periodic axion potential as in [1, 12].
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Thus, it is possible to change coordinates in the moduli space by a Cayley transform,

T = 1+Z
1�Z , Z = T�1

T+1
, as shown in Figs. 2, 5, 11. It is amazing that we can map the behavior of

the axion potential in the infinite range �1 < a < +1 to the vicinity of the disc boundary.

However, the cosmological two-stage inflation models, which we study in this paper, look

much simpler in the dilaton-axion form (2.10), (2.17) and in Fig. 5.
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