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Abstract: We discuss implications of the latest BICEP/Keck data release for inflationary

models, with special emphasis on the cosmological attractors which can describe all presently

available inflation-related observational data. These models are compatible with any value of

the tensor to scalar ratio r, all the way down to r = 0. Some of the string theory motivated

models of this class predict 10�3  r  10�2. The upper part of this range can be explored by

the ongoing BICEP/Keck observations.
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1 Introduction

The new data release from BICEP/Keck considerably strengthened bounds on the tensor to

scalar ratio r [1]: r0.05 = 0.014+0.010
�0.011 (r0.05 < 0.036 at 95% confidence). The main results

are illustrated in [1] by a figure describing combined constraints on ns and r, which we

reproduce here in Fig. 1. These new results have important implications for the development

of inflationary cosmology. In particular, the standard version of natural inflation [2], as well

as the full class of monomial potentials V ⇠ �n, are now strongly disfavored.

Figure 1: BICEP/Keck results for ns and r [1]. The 1� and 2� areas are represented by dark blue and light

blue colors. The purple region shows natural inflation, and the orange band corresponds to inflation driven by

scalar field with canonical kinetic terms and monomial potentials.
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Additional information can be obtained for the hilltop models. The simplest models

V = V0(1 � �4/m4) represented by the green band in Fig. 8 of the Planck2018 data release [3]

lead to a universal prediction ns = 1�3/Ne for all sub-Planckian values of the mass parameter

m . 1. This prediction is strongly disfavored by the Planck2018 data for the number of

e-foldings Ne ⇠ 50 � 60. These models could provide a good match to the Planck data for

m & 10. However, in that case they predict post-inflationary collapse of the universe, which

cannot be avoided without a substantial modification of such models, strongly modifying their

predictions [4].

More complicated versions of the hilltop models, such as the new inflation model with the

Coleman-Weinberg potential V ⇠ 1 + �4

m4 (2 log �2

m2 � 1), are marginally compatible with the

Planck2018 data [4], though only for m � 1. Now they are strongly disfavored by the results

of the recent BICEP/Keck data release, as we show in Fig. 2.

New Inflation
(Coleman-Weinberg 
potential)

Figure 2: Models of the type of new inflation [5, 6] based on the Coleman-Weinberg hilltop potential are

marginally compatible with Planck2018 data, but strongly disfavored by the BICEP/Keck data [1].

However, one can recover these losses by making a relatively simple generalization of

the kinetic term of the scalar field. After this generalization, most of the improved models,

which we called “cosmological attractors,” become compatible with all presently available

inflation-related observational data, almost independently of the choice of the scalar potential

prior to the generalization.

2 ↵-attractors

2.1 T-models

We will begin with describing ↵-attractors [7–13]. The simplest example is given by the theory

Lp
�g

=
R

2
� (@µ�)2

2
�
1 � �2

6↵

�2 � V (�) . (2.1)
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Here �(x) is the scalar field, the inflaton. In the limit ↵ ! 1 the kinetic term becomes

the standard canonical term � (@µ�)2

2 . The new kinetic term has a singularity at |�| =
p

6↵.

However, one can get rid of the singularity and recover the canonical normalization by solving

the equation @�

1��2

6↵

= @', which yields � =
p

6↵ tanh 'p
6↵

. The full theory, in terms of the

canonical variables, becomes a theory with a plateau potential

Lp
�g

=
R

2
� (@µ')2

2
� V

�p
6↵ tanh

'p
6↵

�
. (2.2)

We called such models T-models due to their dependence on the tanh 'p
6↵

. Asymptotic value

of the potential at the plateau at large ' > 0 is given by

V (') = V0 � 2
p

6↵ V 0
0 e

�
q

2
3↵'

. (2.3)

Here V0 = V (�)|�=p
6↵ is the height of the plateau potential, and V 0

0 = @�V |�=p
6↵. The

coe�cient 2
p

6↵ V 0
0 in front of the exponent can be absorbed into a redefinition (shift) of the

field '. Therefore all inflationary predictions of this theory in the regime with e
�
q

2
3↵' ⌧ 1

are determined only by two parameters, V0 and ↵, i.e. they do not depend on any other

features of the potential V (�). That is why they are called attractors.

Figure 3: The figure illustrating the main results of the BICEP/Keck [1] superimposed with the predictions

of ↵-attractor T-models with the potential tanh2n 'p
6↵

[9, 11]. Each of these models starts at some �2n (at

↵ ! 1) and is forced to go down with decreasing ↵ [9] into the area favored by the BICEP/Keck.

To illustrate advantages of this class of models, we show in Fig. 3 predictions of the

models with monomial potentials �2n after the modification of the kinetic term shown in (2.1).

At large ↵, predictions of all of these models coincide with the predictions shown in Fig. 1,

and these models are ruled out, but at smaller ↵ they all run towards the dark blue area

favored by the latest BICEP/Keck data release. Fig. 3 illustrates the main advantage of the
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cosmological attractors: At large Ne, their predictions for As, ns and r coincide in the small

↵ limit, nearly independently of the detailed choice of the potential V (�):

As =
V0 N2

e

18⇡2↵
, ns = 1 � 2

Ne
, r =

12↵

N2
e

. (2.4)

These models are compatible with the presently available observational data for su�ciently

small ↵.

Importantly, these results depend on the height of the inflationary plateau, which is given

by V0 = V (�)|�=p
6↵, but they do not depend on any other details of behavior of the potential

V (�) in (2.1). This explains, in particular, stability of the predictions of these models with

respect to quantum corrections [14].

The amplitude of inflationary perturbations in these models matches the Planck normal-

ization As ⇡ 2.01 ⇥ 10�9 for V0
↵ ⇠ 10�10, Ne = 60, or for V0

↵ ⇠ 1.5 ⇥ 10�10, Ne = 50. For the

simplest model V = m2

2 �2 one finds

V = 3m2↵ tanh2 'p
6↵

. (2.5)

This simplest model is shown by the prominent vertical yellow band in Fig. 8 of the paper on

inflation in the Planck2018 data release [3]. In this model, the condition V0
↵ ⇠ 10�10 reads

m ⇠ 0.6 ⇥ 10�5. The small magnitude of this parameter accounts for the small amplitude of

perturbations As ⇡ 2.01 ⇥ 10�9. No other parameters are required to describe all presently

available inflation-related data in this model. If the inflationary gravitational waves are

discovered, their amplitude can be accounted for by the choice of the parameter ↵ in (2.4).

2.2 E-models

The second family of ↵-attractors called E-models is given by

Lp
�g

=
R

2
� 3↵

4

(@⇢)2

⇢2
� V (⇢) . (2.6)

As before, one can go to canonical variables, ⇢ = e
�
q

2
3↵'

, which yields

Lp
�g

=
R

2
� 1

2
(@')2 � V (e

�
q

2
3↵'

). (2.7)

We consider V (⇢) not singular at ⇢ = 0, e.g. V (⇢) = V0(1 � ⇢)2. In canonical variables it gives

V = V0

⇣
1 � e

�
q

2
3↵'

⌘2
. (2.8)

For the particular case ↵ = 1 this potential coincides with the potential of the Starobinsky

model [15]. In the small ↵ limit the predictions of the E-models coincide with the predictions

of the T-models (2.4).
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Fig. 4 shows a combination of predictions of the simplest T-model (2.5) and the simplest

E-model (2.8). Predictions of both of these models at large ↵ coincide with the predictions

of the model �2, and then go down into the blue area with decreasing ↵. T-model band

goes straight, E-model band first slightly bends to the right, to larger values of ns, but later

reaches the same attractor value as in the T-model. Their predictions are consistent with the

Planck/BICEP/Keck bound r < 0.036 for ↵ . 7. Note that both models can describe any

value of r ⌧ 1, all the way down to the ultimate attractor point r = 0.

a-attractors T-models
a-attractors E-models

Figure 4: The BICEP/Keck [1] figure superimposed with the predictions of the simplest ↵-attractor T-model

with the potential tanh2 'p
6↵

and E-models (yellow lines for Ne = 50, 60) with the potential
�
1 � e�

p
2
3↵ '

�2

(red lines for Ne = 50, 60).

3 Other examples of cosmological attractors

3.1 Pole inflation, D-brane inflation

↵-attractors represent a special version of a more general class of attractors, the so-called pole

inflation models [10]. It is obtained by slightly generalizing equation (2.6):

Lp
�g

=
R

2
� aq

2

(@⇢)2

⇢q
� V (⇢) . (3.1)

Here the pole of order q is at ⇢ = 0 and the residue at the pole is aq. For q = 2, a2 = 3↵
2 , this

equation describes E-models of ↵-attractors, but here we consider general values of q. For

q 6= 2 one can always rescale ⇢ to make aq = 1. Just as in the theory of ↵-attractors, one can

make a transformation to the canonical variables ' and find that the asymptotic behavior

of the potential V (') during inflation is determined only by V (0) and the first derivative
dV (⇢)
d⇢ |⇢=0 . The value of ns for this family of attractors is given by

ns = 1 � �

Ne
, � =

q

q � 1
. (3.2)
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We will discuss here the models with q > 2, � < 2, which provide spectral index ns slightly

greater than the ↵-attractors result ns = 1 � 2
Ne

.

For ↵-attractors the plateau of the potential is reached exponentially. For q > 2 the

approach to the plateau is controlled by negative powers of '. Some of these models described

in [12, 13, 16] have interpretation in terms of Dp-brane inflation [17, 18]. The Dp � Dp brane

inflation plateau potentials are

VDp�D̄p ⇠ |'|k

mk + |'|k =
⇣
1 +

mk

|'|k
⌘�1

, k = 7 � p =
2

2 � q
. (3.3)

Their attractor formula for the ns is given in (3.2), whereas the formula for r depends on the

parameter m in the potential. For D3 � D3 inflation for small m one has

V = V0
'4

m4 + '4
, ns = 1 � 5

3Ne
, r =

4m
4
3

(3Ne)
5
3

. (3.4)

For D5 � D5 brane inflation one has

V = V0
'2

m2 + '2
, ns = 1 � 3

2Ne
, r =

p
2 m

N
3
2
e

. (3.5)

In Fig. (5) we give a combined plot of the predictions of the simplest ↵-attractor models

and Dp-brane inflation for ns and log10 r, for Ne = 50 and 60. [13]. In the small m limit,

the predicted values of r for Dp-brane inflation, and for pole inflation in general, can take

extremely small values, all the way down to r ! 0.

Figure 5: A combined plot of the predictions of the simplest ↵-attractor models and Dp-brane inflation for

Ne = 50 and 60 [13]. From left to right, we show predictions of T-models and E-models (yellow and red lines)

and of Dp � Dp brane inflation with p = 3, 4, 5, 6 (purple, green, orange and blue lines) for potentials in eq.

(3.3) with k = 4, 3, 2, 1. The blue data background corresponds to Planck 2018 results including BAO.

The potentials which appear in the pole inflation scenario may have an alternative

interpretation, not related to Dp-branes. For example, a quadratic model V ⇠ '2

m2+'2 was
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proposed in [19] as an example of a flattening mechanism for the '2 potential due to the

inflaton interactions with heavy scalar fields. Similar potentials with flattening may also

appear in axion theories in the strong coupling regime [20].

Independently of their interpretation, the pole inflation models may serve as a powerful

tool for parametrization of all observational data since all data for ns and r can be sorted

out using vertical � stripes with ns = 1 � �
Ne

[12, 13]. As illustrated by Fig. (5), just a

few of such stripes may completely cover all possible values of ns and r compatible with the

observational data. This parametrization works especially well in the small r limit, which

is the top priority for parametrizing the results of the ongoing and planned search for the

inflationary gravitational waves.

3.2 ⇠-atttractors

Cosmological attractors may also appear in the theories describing non-minimal coupling of

scalar fields to gravity [21] of the form

LJp
�g

=
1

2

�
1 + ⇠f(�)

�
R � 1

2
(@�)2 � �2f2(�) . (3.6)

where f(�) is an arbitrary function. In the particular case V (�) = �2f2(�) = �2�4, these

models coincide with the Higgs inflation model [22, 23]. Examples of these inflationary models

with V (�) ⇠ �8, �6, �4, �2, �, �2/3 were studied in [21] and the ns � r plots were given, see Fig.

6. The plots start at ⇠ = 0, were there is no non-minimal coupling, and then all models are

pushed to smaller r with increasing positive ⇠. At ⇠ ! 1 all models reach the attractor point

where r ⇡ 3 ⇥ 10�3, as in the Starobinsky model.
3

� and ⇠, which can always be satisfied by suitable choice
of �. For the specific case of the �4 theory this was dis-
cussed in detail in [5].

Supergravity embedding. The non-minimal coupling
can be embedded in supergravity. We follow the set-
up of [13], which introduces two chiral multiplets with
scalar fields � and S. The former will contain the inflaton
while the latter is responsible for SUSY breaking. We
thus take the sGoldstini to be orthogonal to the inflaton,
allowing for an arbitrary scalar potential and avoiding
the restrictions of [14]. While the original proposal has a
specific Kähler potential and an arbitrary function in the
superpotential, we take the Kähler potential to depend
on ⌦(

p
2�) which will be related to the scalar potential.

Our final expressions are:

K = � 3 log[ 12 (⌦(
p

2�) + ⌦(
p

2�̄)) � 1
3SS̄ + 1

6 (� � �̄)2

+ �
(SS̄)2

⌦(
p

2�) + ⌦(
p

2�̄)
] , W = �Sf(

p
2�) , (19)

where ⌦(
p

2�) = 1 + ⇠f(
p

2�) and f(
p

2�) is a real
holomorphic function. This leads exactly to the bosonic
model discussed above upon identifying � = �/

p
2 while

S = 0. It can easily be seen that this is a consistent
truncation.

The superconformal version of this model explains the
simplicity of the Jordan frame potential in these models:
in a gauge where the conformon is fixed, the supercon-
formal potential is given by W = �Sf(

p
2 �) (in the

notation of [15, 16]). This implies that the Jordan frame
potential at S = 0, � = �/

p
2, is given by

VJ = �2
���
@W
@S

���
2

= �2f2(�) . (20)

This model generalizes the supersymmetric embedding
of the �4 theory considered in [16] to arbitrary scalar
potentials. In that specific case, one could interpolate
between a canonical Kähler potential depending on ��̄
and a shift-symmetric one depending on (� � �̄)2 by
means of ⇠, but this is not possible in the general case.

Regarding the stability of the truncation to the infla-
tionary trajectory, where three scalars are truncated out,
the masses of the four fields are given by m2

Re � = �V ,
m2

Im � = (4/3 + 2� � �)V , m2
S = (�2/3 + 6� + �)V . Up

to slow-roll corrections, one can thus stabilize all three
truncated fields with the choice � > 1/9.

This supergravity embedding goes some way towards
an understanding of the symmetries underlying the at-
tractor behavior. In particular, for ⇠ = 0 there is sym-
metry enhancement in the Kähler potential: it has a shift
symmetry in the real part of � and hence does not de-
pend on the inflaton. The same holds for any value of
⇠ when choosing the function f(

p
2�) to be a constant.

Any deviations from this will introduce a spontaneous
breaking of this symmetry.

Chaotic inflation. In this section we illustrate the
universal attractor behavior for chaotic inflation [3], with

�
2
3

�

�2

�3

�4

0.955 0.960 0.965 0.970 0.975 0.980

-3.0
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0.0

FIG. 1. The ⇠-dependence of (ns, r) on a linear and a
logarithmic scale for di�erent chaotic models with n =
(2/3, 1, 2, 3, 4, 6, 8), from right to left, for 60 e-foldings. The
points on the logarithmic scale (lower panel) correspond to
log(⇠) = (�1, . . . , 1), from top down. The convergence to the
attractor point occurs almost instantly for n � 4.

the scalar potential

VJ(�) = �2M4�n
Pl �n . (21)

Without non-minimal couplings, these have the following
cosmological observables:

nsJ = 1 � 2 + n

2N
, rJ =

4n

N
, (22)

at large N . These are specific cases of the most gen-
eral 1/N -dependence derived in [17]. The attractor be-
havior for this class is depicted in Figure 1. The cross-
over behavior between the two regimes spans a number of
decades of the non-minimal coupling ⇠, and in addition is
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FIG. 1. The ⇠-dependence of (ns, r) on a linear and a
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the scalar potential

VJ(�) = �2M4�n
Pl �n . (21)

Without non-minimal couplings, these have the following
cosmological observables:

nsJ = 1 � 2 + n

2N
, rJ =

4n
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, (22)

at large N . These are specific cases of the most gen-
eral 1/N -dependence derived in [17]. The attractor be-
havior for this class is depicted in Figure 1. The cross-
over behavior between the two regimes spans a number of
decades of the non-minimal coupling ⇠, and in addition is

Figure 6: Attractor trajectories for monomial models V (�) ⇠ �8, �6, �4, �2, �, �2/3, for Ne = 60. In the left

panel, the results of [21] are superimposed with the BICEP/Keck results represented by Fig. 1. The right panel

shows the same attractor trajectories, but with the vertical axis corresponding to log10 r. This more clearly

shows the behavior of these trajectories near the attractor point at large ⇠ and small r. The points on the

trajectories shown at the right panel correspond to log ⇠ = �1, 0, 1, from top down.
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A comparison between Fig. 6 for ⇠-attractors and the closely related Fig. 3 for the ↵-attractors

reveals important similarities and di↵erences. In both cases, the attractor mechanism “saves”

the monomial models, making them compatible with the data. But this happens di↵erently

for the ↵-attractors and the ⇠-attractors.

The ⇠-attractor trajectories in the left panel first go down as straight lines parallel to each

other, but then they move to the attractor point almost horizontally, spanning large range of

values of ns from 0.96 to 0.98 for r . 0.01. This makes such models more robust with respect

to future precision data on ns.

On the other hand, the values of r for ⇠-attractors do not go much below 3 ⇥ 10�3, which

corresponds to the attractor point for r in the limit ⇠ ! 1. This is a crucial di↵erence as

compared to ↵-attractors, which can describe small r all the way down to r = 0, corresponding

to the attractor point in the limit ↵ ! 0.

Thus, if gravitational waves with r & 3⇥10�3 are not found, it would disfavor ⇠-attractors,

but such result would be quite compatible with ↵-attractors. This particular limitation of

⇠-attractors disappears if one considers a more general class of models with nonminimal

coupling of scalars to gravity

LJp
�g

=
1

2
⌦(�)R � 1

2
KJ(�)(@�)2 � VJ(�) . (3.7)

One can show that for certain relations between ⌦(�), KJ(�) and VJ(�) this theory in the

Einstein frame becomes equivalent to the theory of ↵-attractors [10]. Therefore in this more

general context one can describe any small values of r.

4 Special cases

So far we presented T- and E-models with a continuous value of ↵, which at small ↵ reach the

attractor point with cosmological predictions depending on the number of e-foldings and ↵ as

shown in (2.4). One can implement these models in the minimal N = 1 supergravity, where

the parameter 3↵ is given by 3↵ = 1
2 |RK |. Here |RK | is the curvature of Kähler geometry

[8]. In the context of the Poincaré hyperbolic disk geometry, representing an Escher disk,

R2
Esher = 3↵ defines the size of the disk [11].

The most interesting B-mode targets in this class of cosmological attractor models are

the ones with the discrete values of 3↵ = 7, 6, 5, 4, 3, 2, 1 [24–27]. These models of Poincaré

disks are inspired by string theory, M-theory and maximal supergravity. They are known in

cosmology community, see Fig. 7, which shows the plot of R. Flauger presented in his talk at

CMB-S4 collaboration meeting in 2021.
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Figure 7: This figure (courtesy of R. Flauger) shows the 7 Poincaré disks of the T-model of ↵-attractors as

green lines, as well as Higgs inflation, R2 inflation and fibre inflation [28]. The predictions are for 47 < Ne < 57.

Fig. 8 shows more detailed plots for the 7 disk predictions for T- and E-models [13].

These predictions correspond to the most interesting range 10�2 . r . 10�3.
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<latexit sha1_base64="fhU2agvCoNeyHG1PPJREc4f0e+4=">AAAB6nicdVBNS8NAEJ34WetX1aOXxSJ4CkkabHsrePFY0X5AG8pmu2mXbjZhdyOU0p/gxYMiXv1F3vw3btoKKvpg4PHeDDPzwpQzpR3nw1pb39jc2i7sFHf39g8OS0fHbZVkktAWSXgiuyFWlDNBW5ppTruppDgOOe2Ek6vc79xTqVgi7vQ0pUGMR4JFjGBtpFsxUINS2bF91/PrVZSTWrXu56RyWfM85NrOAmVYoTkovfeHCcliKjThWKme66Q6mGGpGeF0XuxniqaYTPCI9gwVOKYqmC1OnaNzowxRlEhTQqOF+n1ihmOlpnFoOmOsx+q3l4t/eb1MR7VgxkSaaSrIclGUcaQTlP+NhkxSovnUEEwkM7ciMsYSE23SKZoQvj5F/5O2Z7sV27vxy43OKo4CnMIZXIALVWjANTShBQRG8ABP8Gxx69F6sV6XrWvWauYEfsB6+wTjF45G</latexit>

Figure 8: ↵-attractor benchmarks for T-models (left panel) and E-models (right panel) show the discrete

values of 3↵ = 7, 6, 5, 4, 3, 2, 1 from the top going down [13]. Dark pink area corresponds to ns and r favored by

Planck2018 after taking into account all CMB-related data. The predictions are for 50 < Ne < 60.

The upper B-mode target with 3↵ = 7, r ⇠ 0.01 is very close to the range that can be

explored by BICEP/Keck, if not now, then within the next five years, when the authors of [1]

hope to reach accuracy �(r) ⇠ 0.003. To illustrate what this might entail, we add to Fig. 4

two dashed lines, which show predictions for 3↵ = 7 for the simplest T-models (yellow dashed

line) and E-model (red dashed line) [27]. As one can see, these predictions are positioned right

at the center of the dark blue ellipse in Fig. 9.
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Figure 9: BICEP/Keck results and the predictions for the simplest T-model (yellow dashed line) and

E-model (red dashed line) for 3↵ = 7. These dashed lines go through the center of the dark blue area favored

by the combination of the Planck, BICEP and Keck results.

5 Discussion

The new BICEP/Keck constraints on the tensor to scalar ratio r strongly disfavor several

popular inflationary models, such as natural inflation, the models with monomial potentials,

and the Coleman-Weinberg potentials. However, some of these models have powerful theoretical

motivation and can have interesting generalizations. For example, the authors of natural

inflation proposed the natural chain inflation scenario [29] which may be compatible with the

data. The simplest models of axion monodromy scenario [30, 31] lead to monomial potentials,

but allow for various modifications changing the predicted values of ns and r, see e.g. [32, 33].

A particularly interesting inflationary model, which fit the Planck/BICEP/Keck data, is

the fibre inflation model based on string theory [28] with the prediction r ⇠ 0.007 indicated

by a purple line in Fig. 7. Other examples of inflationary models which can be compatible

with the current and future data can be found, in particular, in [34–36].

It is most interesting that some models proposed many decades ago and based on entirely

di↵erent ideas, such as the Starobinsky model [15], the Higgs inflation model [22, 23], and the

GL model [37, 38], require just a single parameter to successfully account for all presently

available data. In this paper we described a broad class of cosmological attractors [7–13],

which generalized the three models mentioned above.

As discussed in Section 2, ↵-attractors, such as T-models (2.2) and E-models (2.7), provide

a good fit to the Planck and BICEP/Keck data and have ample flexibility to describe any

value of r below the BICEP/Keck bound 0.036. A broad class of pole inflation models (3.1),

D-brane models (3.3), and models describing general non-minimal coupling of scalar fields to

gravity (3.7) also can describe inflation at very small r, all the way down to r = 0.
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On the other hand, some string theory inspired versions of ↵-attractors described in

Section 4 predict a discrete spectrum of 7 di↵erent values of r in the range from 10�2 to 10�3.

The upper one of these predictions is shown in Fig. 9 by the dashed lines going through the

center of the dark blue area favored by the combination of the Planck, BICEP and Keck

results.

At present, the error bars of the BICEP/Keck estimate r = 0.014 ± 0.01 are large,

�(r) ⇠ 0.009. However, the authors of [1] expect that within the next few years they may

improve the accuracy up to �(r) ⇠ 0.003. This suggests that the model describing the first

discrete target r ⇡ 10�2 for ↵-attractors with 3↵ = 7 may be either confirmed or ruled out. It

will take much more time and probably a satellite mission to reach r ⇡ 10�3, corresponding

to the last Poincaré disk in Figs. 7, 8 with 3↵ = 1.

Addendum: After this paper was submitted, a new set of constraints on r and ns was

given in [39] after a somewhat di↵erent analysis of Planck data. The main results of [39] are

very similar to those reported in [1]. According to [39], the 2� upper bound on r changes

from r < 0.036 [1] to r < 0.032. The 1� bound on ns presented in [39] is shifted to smaller

values of ns by �ns ⇠ �0.003. This does not a↵ect conclusions of our paper. If anything, the

new constraints given in [39] make the match between the observations and the predictions of

cosmological attractors even better. One can see it by comparing Fig. 9 with Fig. 10, which

shows the results of [39] and the predictions of the simplest T- and E-models of ↵-attractors.

0.96 0.97

0.05

0.00

a-attractors T-models
a-attractors E-models
T-model  a=7/3
E-model  a=7/3

Figure 10: Results of [39] and the predictions for the simplest T-model (yellow dashed line) and E-model

(red dashed line) for 3↵ = 7. These dashed lines go through the center of the dark blue area favored by the

combination of the Planck, BICEP and Keck results according to [39].
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