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ABSTRACT: We discuss implications of the latest BICEP /Keck data release for inflationary
models, with special emphasis on the cosmological attractors which can describe all presently
available inflation-related observational data. These models are compatible with any value of
the tensor to scalar ratio r, all the way down to r = 0. Some of the string theory motivated
models of this class predict 1073 < r < 1072. The upper part of this range can be explored by
the ongoing BICEP /Keck observations.
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1 Introduction

The new data release from BICEP /Keck considerably strengthened bounds on the tensor to
scalar ratio r [1]: roos = 0.014f8:8i(1) (ro.05 < 0.036 at 95% confidence). The main results
are illustrated in [1] by a figure describing combined constraints on ns and r, which we
reproduce here in Fig. 1. These new results have important implications for the development
of inflationary cosmology. In particular, the standard version of natural inflation [2], as well
as the full class of monomial potentials V' ~ ¢", are now strongly disfavored.
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Figure 1: BICEP/Keck results for ns and r [1]. The 1o and 20 areas are represented by dark blue and light
blue colors. The purple region shows natural inflation, and the orange band corresponds to inflation driven by
scalar field with canonical kinetic terms and monomial potentials.



Additional information can be obtained for the hilltop models. The simplest models
V = V(1 — ¢*/m*) represented by the green band in Fig. 8 of the Planck2018 data release [3]
lead to a universal prediction ng = 1 —3/N, for all sub-Planckian values of the mass parameter
m < 1. This prediction is strongly disfavored by the Planck2018 data for the number of
e-foldings N, ~ 50 — 60. These models could provide a good match to the Planck data for
m 2 10. However, in that case they predict post-inflationary collapse of the universe, which
cannot be avoided without a substantial modification of such models, strongly modifying their
predictions [4].

More complicated versions of the hilltop models, such as the new inflation model with the
Coleman-Weinberg potential V ~ 1 + %(2 log %22 — 1), are marginally compatible with the
Planck2018 data [4], though only for m > 1. Now they are strongly disfavored by the results
of the recent BICEP /Keck data release, as we show in Fig. 2.
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Figure 2: Models of the type of new inflation [5, 6] based on the Coleman-Weinberg hilltop potential are

marginally compatible with Planck2018 data, but strongly disfavored by the BICEP /Keck data [1].

However, one can recover these losses by making a relatively simple generalization of
the kinetic term of the scalar field. After this generalization, most of the improved models,
which we called “cosmological attractors,” become compatible with all presently available
inflation-related observational data, almost independently of the choice of the scalar potential
prior to the generalization.

2 o-attractors

2.1 T-models

We will begin with describing a-attractors [7-13]. The simplest example is given by the theory

L _R (0
Ve V(9). (2.1)



Here ¢(x) is the scalar field, the inflaton. In the limit @ — oo the kinetic term becomes

2
—%. The new kinetic term has a singularity at |¢| = v/6a.
However, one can get rid of the singularity and recover the canonical normalization by solving

the equation 18‘22 = Oy, which yields ¢ = v/6a tanh \/%. The full theory, in terms of the

6
canonical variables, becomes a theory with a plateau potential

the standard canonical term

L R (au@)2 P
——=— - —— —V(V6ba tanh —) . 2.2
We called such models T-models due to their dependence on the tanh \/%. Asymptotic value
of the potential at the plateau at large ¢ > 0 is given by

Vip) =V —2V6aVy e 5a¥ (2.3)

Here Vo = V(¢)|,—, /65 is the height of the plateau potential, and Vj = 03V|,_, 55- The

coefficient 2v/6a V{ in front of the exponent can be absorbed into a redefinition (shift) of the
2

field . Therefore all inflationary predictions of this theory in the regime with e V3” <« 1

are determined only by two parameters, Vj and «, i.e. they do not depend on any other
features of the potential V(¢). That is why they are called attractors.

0.25 4 Planck TT,TE,EE+lowE+lensing
+BK18+BAO

A - 2
0.20 4 T-models for ¢

0.95
Ns
Figure 3: The figure illustrating the main results of the BICEP /Keck [1] superimposed with the predictions
of a-attractor T-models with the potential tanh®" \/% [9, 11]. Each of these models starts at some ¢>" (at
a — 00) and is forced to go down with decreasing « [9] into the area favored by the BICEP /Keck.

To illustrate advantages of this class of models, we show in Fig. 3 predictions of the
models with monomial potentials ¢?" after the modification of the kinetic term shown in (2.1).
At large «, predictions of all of these models coincide with the predictions shown in Fig. 1,
and these models are ruled out, but at smaller o they all run towards the dark blue area
favored by the latest BICEP /Keck data release. Fig. 3 illustrates the main advantage of the



cosmological attractors: At large INV., their predictions for A, ngs and r coincide in the small
a limit, nearly independently of the detailed choice of the potential V(¢):
VW N? 2 _ 12a

- —1- = ——
*T 18120’ ¢ N T N2

(2.4)

These models are compatible with the presently available observational data for sufficiently
small a.

Importantly, these results depend on the height of the inflationary plateau, which is given
by Vo = V(9)| $=/6a>» but they do not depend on any other details of behavior of the potential
V(¢) in (2.1). This explains, in particular, stability of the predictions of these models with
respect to quantum corrections [14].

The amplitude of inflationary perturbations in these models matches the Planck normal-
ization A, ~ 2.01 x 1072 for 2 ~ 1071%, N, = 60, or for 2 ~ 1.5 x 1071°, N, = 50. For the
simplest model V' = m72¢2 one finds

2 2 ¥

V = 3m“atanh Toa (2.5)
This simplest model is shown by the prominent vertical yellow band in Fig. 8 of the paper on
inflation in the Planck2018 data release [3]. In this model, the condition % ~ 10710 reads
m ~ 0.6 x 107°. The small magnitude of this parameter accounts for the small amplitude of
perturbations A, &~ 2.01 x 107°. No other parameters are required to describe all presently
available inflation-related data in this model. If the inflationary gravitational waves are
discovered, their amplitude can be accounted for by the choice of the parameter « in (2.4).

2.2 E-models
The second family of a-attractors called E-models is given by

a 2
Lzﬁ_i@_v(p). (2.6)

2
As before, one can go to canonical variables, p = e~ V3¢¥_ which yields
L R 1 _./2
= Tg = 5 — 5(8(,0)2 — V(e 30‘90). (27)

We consider V(p) not singular at p = 0, e.g. V(p) = Vo(1 — p)?. In canonical variables it gives

V= Vo(l —e %W)z. (2.8)

For the particular case o = 1 this potential coincides with the potential of the Starobinsky
model [15]. In the small o limit the predictions of the E-models coincide with the predictions
of the T-models (2.4).



Fig. 4 shows a combination of predictions of the simplest T-model (2.5) and the simplest
E-model (2.8). Predictions of both of these models at large a coincide with the predictions
of the model ¢?, and then go down into the blue area with decreasing . T-model band
goes straight, E-model band first slightly bends to the right, to larger values of ng, but later
reaches the same attractor value as in the T-model. Their predictions are consistent with the
Planck/BICEP /Keck bound r < 0.036 for a@ < 7. Note that both models can describe any
value of r < 1, all the way down to the ultimate attractor point r» = 0.
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Figure 4: The BICEP/Keck [1] figure superimposed with the predictions of the simplest a-attractor T-model

with the potential tanh? \/% and E-models (yellow lines for N, = 50, 60) with the potential (1 —e” %‘PY

(red lines for N, = 50, 60).

3 Other examples of cosmological attractors

3.1 Pole inflation, D-brane inflation

a-attractors represent a special version of a more general class of attractors, the so-called pole
inflation models [10]. It is obtained by slightly generalizing equation (2.6):

L R _ag(0p)? _
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Here the pole of order ¢ is at p = 0 and the residue at the pole is a4. For ¢ =2, as = 370‘, this

Vi) - (3.1)

equation describes E-models of a-attractors, but here we consider general values of gq. For
g # 2 one can always rescale p to make a, = 1. Just as in the theory of a-attractors, one can
make a transformation to the canonical variables ¢ and find that the asymptotic behavior

of the potential V(¢) during inflation is determined only by V(0) and the first derivative

av(p)

b |p=0 . The value of n, for this family of attractors is given by

g=—1_. (3.2)

ng=1—



We will discuss here the models with ¢ > 2, § < 2, which provide spectral index ng slightly
greater than the a-attractors result ny, =1 — N% .

For a-attractors the plateau of the potential is reached exponentially. For ¢ > 2 the
approach to the plateau is controlled by negative powers of ¢. Some of these models described
in [12, 13, 16] have interpretation in terms of Dp-brane inflation [17, 18]. The Dp — Dp brane
inflation plateau potentials are

k
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Their attractor formula for the ng is given in (3.2), whereas the formula for » depends on the
parameter m in the potential. For D3 — D3 inflation for small m one has
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In Fig. (5) we give a combined plot of the predictions of the simplest a-attractor models
and Dp-brane inflation for ng and log;,r, for N = 50 and 60. [13]. In the small m limit,
the predicted values of r for Dp-brane inflation, and for pole inflation in general, can take
extremely small values, all the way down to r — 0.

<

-1

-5t T - T

0.955 0.960 0.965 0.970 0.975 0.980
Ng

.....

Figure 5: A combined plot of the predictions of the simplest a-attractor models and Dp-brane inflation for
N. =50 and 60 [13]. From left to right, we show predictions of T-models and E-models (yellow and red lines)
and of Dp — Dp brane inflation with p = 3,4, 5,6 (purple, green, orange and blue lines) for potentials in eq.
(3.3) with k = 4,3,2,1. The blue data background corresponds to Planck 2018 results including BAO.

The potentials which appear in the pole inflation scenario may have an alternative

interpretation, not related to Dp-branes. For example, a quadratic model V ~ mg‘piipg was



proposed in [19] as an example of a flattening mechanism for the ¢? potential due to the
inflaton interactions with heavy scalar fields. Similar potentials with flattening may also
appear in axion theories in the strong coupling regime [20].

Independently of their interpretation, the pole inflation models may serve as a powerful
tool for parametrization of all observational data since all data for ng and r can be sorted
out using vertical [ stripes with ng = 1 — N% [12, 13]. As illustrated by Fig. (5), just a
few of such stripes may completely cover all possible values of ng and r compatible with the
observational data. This parametrization works especially well in the small r limit, which
is the top priority for parametrizing the results of the ongoing and planned search for the

inflationary gravitational waves.

3.2 (-atttractors
Cosmological attractors may also appear in the theories describing non-minimal coupling of
scalar fields to gravity [21] of the form
Ly 1
V=9 2
where f(¢) is an arbitrary function. In the particular case V(¢) = A2f2(¢) = \2¢?, these
models coincide with the Higgs inflation model [22, 23]. Examples of these inflationary models

with V(@) ~ ¢%, 0%, %, ¢2, ¢, */3 were studied in [21] and the ng — 7 plots were given, see Fig.
6. The plots start at & = 0, were there is no non-minimal coupling, and then all models are

(1 +EF(@) R~ 5(00)° ~ M 1*(0) (3.6)

pushed to smaller r with increasing positive £. At £ — oo all models reach the attractor point
where 7 ~ 3 x 1073, as in the Starobinsky model.
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Figure 6: Attractor trajectories for monomial models V(¢) ~ ¢%, ¢%, ¢, 2, ¢, /3 for N, = 60. In the left
panel, the results of [21] are superimposed with the BICEP /Keck results represented by Fig. 1. The right panel
shows the same attractor trajectories, but with the vertical axis corresponding to log,,r. This more clearly
shows the behavior of these trajectories near the attractor point at large £ and small r. The points on the
trajectories shown at the right panel correspond to log§ = —1,0, 1, from top down.



A comparison between Fig. 6 for £-attractors and the closely related Fig. 3 for the a-attractors
reveals important similarities and differences. In both cases, the attractor mechanism “saves”
the monomial models, making them compatible with the data. But this happens differently
for the a-attractors and the -attractors.

The £-attractor trajectories in the left panel first go down as straight lines parallel to each
other, but then they move to the attractor point almost horizontally, spanning large range of
values of ng from 0.96 to 0.98 for » < 0.01. This makes such models more robust with respect
to future precision data on ng.

On the other hand, the values of r for -attractors do not go much below 3 x 1073, which
corresponds to the attractor point for r in the limit & — oo. This is a crucial difference as
compared to a-attractors, which can describe small 7 all the way down to r = 0, corresponding
to the attractor point in the limit o — 0.

Thus, if gravitational waves with 7 > 3 x 10~ are not found, it would disfavor &-attractors,
but such result would be quite compatible with a-attractors. This particular limitation of
&-attractors disappears if one considers a more general class of models with nonminimal
coupling of scalars to gravity

L= LO()R — 5K(0)(06)° ~ Vi(0). (37)

J

One can show that for certain relations between Q(¢), K;(¢) and Vi(¢) this theory in the
Einstein frame becomes equivalent to the theory of a-attractors [10]. Therefore in this more
general context one can describe any small values of r.

4 Special cases

So far we presented T- and E-models with a continuous value of o, which at small « reach the
attractor point with cosmological predictions depending on the number of e-foldings and « as
shown in (2.4). One can implement these models in the minimal N' = 1 supergravity, where
the parameter 3« is given by 3a = %]RK| Here |R| is the curvature of Kahler geometry
[8]. In the context of the Poincaré hyperbolic disk geometry, representing an Escher disk,
RZ ., = 3a defines the size of the disk [11].

The most interesting B-mode targets in this class of cosmological attractor models are
the ones with the discrete values of 3o = 7,6,5,4,3,2,1 [24-27]. These models of Poincaré
disks are inspired by string theory, M-theory and maximal supergravity. They are known in
cosmology community, see Fig. 7, which shows the plot of R. Flauger presented in his talk at
CMB-54 collaboration meeting in 2021.
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Figure 7: This figure (courtesy of R. Flauger) shows the 7 Poincaré disks of the T-model of a-attractors as
green lines, as well as Higgs inflation, R? inflation and fibre inflation [28]. The predictions are for 47 < N. < 57.

Fig. 8 shows more detailed plots for the 7 disk predictions for T- and E-models [13].

These predictions correspond to the most interesting range 1072 < r < 1073,
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Figure 8: a-attractor benchmarks for T-models (left panel) and E-models (right panel) show the discrete
values of 3a = 7,6,5,4,3,2,1 from the top going down [13]. Dark pink area corresponds to ns and r favored by
Planck2018 after taking into account all CMB-related data. The predictions are for 50 < N, < 60.

The upper B-mode target with 3a =7, r ~ 0.01 is very close to the range that can be
explored by BICEP /Keck, if not now, then within the next five years, when the authors of [1]
hope to reach accuracy o(r) ~ 0.003. To illustrate what this might entail, we add to Fig. 4
two dashed lines, which show predictions for 3aw = 7 for the simplest T-models (yellow dashed
line) and E-model (red dashed line) [27]. As one can see, these predictions are positioned right

at the center of the dark blue ellipse in Fig. 9.
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Figure 9: BICEP/Keck results and the predictions for the simplest T-model (yellow dashed line) and
E-model (red dashed line) for 3a = 7. These dashed lines go through the center of the dark blue area favored
by the combination of the Planck, BICEP and Keck results.

5 Discussion

The new BICEP /Keck constraints on the tensor to scalar ratio r strongly disfavor several
popular inflationary models, such as natural inflation, the models with monomial potentials,
and the Coleman-Weinberg potentials. However, some of these models have powerful theoretical
motivation and can have interesting generalizations. For example, the authors of natural
inflation proposed the natural chain inflation scenario [29] which may be compatible with the
data. The simplest models of axion monodromy scenario [30, 31] lead to monomial potentials,
but allow for various modifications changing the predicted values of ns and r, see e.g. [32, 33].

A particularly interesting inflationary model, which fit the Planck/BICEP /Keck data, is
the fibre inflation model based on string theory [28] with the prediction 7 ~ 0.007 indicated
by a purple line in Fig. 7. Other examples of inflationary models which can be compatible
with the current and future data can be found, in particular, in [34-36].

It is most interesting that some models proposed many decades ago and based on entirely
different ideas, such as the Starobinsky model [15], the Higgs inflation model [22, 23], and the
GL model [37, 38], require just a single parameter to successfully account for all presently
available data. In this paper we described a broad class of cosmological attractors [7-13],
which generalized the three models mentioned above.

As discussed in Section 2, a-attractors, such as T-models (2.2) and E-models (2.7), provide
a good fit to the Planck and BICEP /Keck data and have ample flexibility to describe any
value of r below the BICEP /Keck bound 0.036. A broad class of pole inflation models (3.1),
D-brane models (3.3), and models describing general non-minimal coupling of scalar fields to
gravity (3.7) also can describe inflation at very small r, all the way down to r = 0.

— 10 —



On the other hand, some string theory inspired versions of a-attractors described in
Section 4 predict a discrete spectrum of 7 different values of r in the range from 1072 to 1073,
The upper one of these predictions is shown in Fig. 9 by the dashed lines going through the
center of the dark blue area favored by the combination of the Planck, BICEP and Keck
results.

At present, the error bars of the BICEP/Keck estimate r = 0.014 £ 0.01 are large,
o(r) ~ 0.009. However, the authors of [1] expect that within the next few years they may
improve the accuracy up to o(r) ~ 0.003. This suggests that the model describing the first
discrete target r ~ 1072 for a-attractors with 3 = 7 may be either confirmed or ruled out. It
will take much more time and probably a satellite mission to reach r ~ 1073, corresponding
to the last Poincaré disk in Figs. 7, 8 with 3a = 1.

Addendum: After this paper was submitted, a new set of constraints on r and ng was
given in [39] after a somewhat different analysis of Planck data. The main results of [39] are
very similar to those reported in [1]. According to [39], the 20 upper bound on r changes
from r < 0.036 [1] to r < 0.032. The 1o bound on ng presented in [39] is shifted to smaller
values of ng by Ang ~ —0.003. This does not affect conclusions of our paper. If anything, the
new constraints given in [39] make the match between the observations and the predictions of
cosmological attractors even better. One can see it by comparing Fig. 9 with Fig. 10, which
shows the results of [39] and the predictions of the simplest T- and E-models of a-attractors.
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Figure 10: Results of [39] and the predictions for the simplest T-model (yellow dashed line) and E-model
(red dashed line) for 3a = 7. These dashed lines go through the center of the dark blue area favored by the
combination of the Planck, BICEP and Keck results according to [39].
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