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Abstract

We present a data-driven method based on long short-term memory (LSTM) neural networks to analyze spectral
time series of Type Ia supernovae (SNe Ia). The data set includes 3091 spectra from 361 individual SNe la. The
method allows for accurate reconstruction of the spectral sequence of an SN Ia based on a single observed
spectrum around maximum light. The precision of the spectral reconstruction increases with more spectral time
coverages, but the significant benefit of multiple epoch data at around optical maximum is only evident for
observations separated by more than a week. The method shows great power in extracting the spectral information
of SNe Ia and suggests that the most critical information of an SN Ia can be derived from a single spectrum around
the optical maximum. The algorithm we have developed is important for the planning of spectroscopic follow-up
observations of future SN surveys with the LSST/Rubin and WFIRST /Roman telescopes.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Type Ia supernovae (1728)

Supporting material: machine-readable table

1. Introduction

Type Ia supernovae (SNe la) are among the most luminous
phenomena in the transient universe that empower accurate
measurements of the history of the expansion of the universe. It
is believed that SNela result from the thermonuclear explo-
sions of carbon/oxygen (C/O) white dwarfs (WDs; Hoyle &
Fowler 1960) in binary systems. They are used as standardiz-
able distance candles to probe the expansion history of the
universe (Riess et al. 1998; Perlmutter et al. 1999; Riess 2019)
and constrain the properties of the dark energy content of the
universe (Knop et al. 2003; Kowalski et al. 2008; Amanullah
et al. 2010; Suzuki et al. 2012; Betoule et al. 2014; Scolnic
et al. 2018; Abbott et al. 2019).

Although the underlying progenitor systems and the physical
pathways toward the explosions remain elusive, the diverse
spectroscopic observations seem to epitomize, to a certain
extent, intrinsic diversities among SNela (e.g., Branch &
Wheeler 2017). The ignition processes and explosion geome-
tries may imprint their signatures on the observed optical
spectra (Wang & Wheeler 2008; Cikota et al. 2019; Chen et al.
2020; Yang et al. 2020). The intrinsic brightness of SNe Ia and
their magnitude dispersion on the Hubble diagram seem to be
correlated to the environment they explode (Wang et al. 1997;
Uddin et al. 2020). The viewing angle effect of asymmetric
explosions has been proposed to be likely responsible for the
diversity of the ejecta velocities measured from spectral lines
such as the Sill A6355 absorption line (Maeda et al. 2010;
Maund et al. 2010). The intrinsic diversity of SN Ia phenomena
implies that each individual SN Ia bears discrete observational
signatures, but the observational data set can be analyzed
through data-driven approaches.
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Normal SNe Ia can be divided into two subclasses in terms of
their expansion velocities at around peak brightness (Benetti
et al. 2004; Wang et al. 2009b). Correlations between the Sill
velocity and the host galaxy properties were identified in several
studies (Wang et al. 2013; Li et al. 2021). A subset of SNe la
showed excess emission in the first few days after explosion
(Cao et al. 2015; Marion et al. 2016; Hosseinzadeh et al. 2017,
Jiang et al. 2017; Wee et al. 2018; Dimitriadis et al. 2019; Li
et al. 2019; Shappee et al. 2019; Wang et al. 2020; Jiang et al.
2021; Li et al. 2022). An ultraviolet pulse was detected within 4
days of the explosion of iPTF 14atg (Cao et al. 2015), in line
with the theoretical predictions by models (Kasen 2010)
involving ejecta—companion interaction in a single-degenerate
scenario (see Kromer et al. 2016, for a different view). The
thermal radiation from the ejecta—companion star interaction can
account for the early blackbody-dominated spectrum without
prominent absorption features. Another example is MUSSES
1604D, which was modeled in the context of the explosion of a
WD triggered by a helium detonation (Jiang et al. 2017).
MUSSES 1604D showed early excess in the red, which
contradicts the ejecta—companion star interaction but is con-
sistent with the radiation due to surface radioactivity in a helium
detonation scenario. The prominent titanium absorption trough
around maximum light of MUSSES 1604D also corroborates the
existence of radioactive species synthesized by helium detona-
tion. However, these diverse observational characteristics are
usually compromised by the lack of extensive spectral and time
coverage. New statistical tools need to be developed to
accomplish comprehensive quantification of the observed
features.

Optical spectra play an important role in SN cosmology
(e.g., Saunders et al. 2018). The classic standardization method
is to describe the peak luminosity as a function of the light-
curve width and the color at maximum light (Phillips 1993;
Perlmutter et al. 1997, 1999; Riess et al. 1996; Tripp 1998;
Wang et al. 2003; Guy et al. 2005; Jha et al. 2007; Taylor et al.
2021). The intrinsic diversities among SN Ia properties beyond
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the stretch and color correction can introduce systematic errors
to the measurement of cosmological parameters. It motivates
additional terms to be included to better control potential
systematic errors. For example, the mass of SN host galaxies
has been recognized to be correlated to the Hubble residuals
(Kelly et al. 2010; Sullivan et al. 2010). Several studies have
been devoted to the quantification of spectral features with
applications to the standardization of SNela for distance
calibrations (e.g., Wagers et al. 2010; Bailey et al. 2009; Wang
et al. 2009b; Foley & Kasen 2011; Chotard et al. 2011;
Fakhouri et al. 2015; Zheng et al. 2018; Léget et al. 2020). The
ejecta velocity can be used as an additional parameter to reduce
the scatter of the Hubble residuals (Wang et al. 2009b, 2013;
Zheng et al. 2018). Fakhouri et al. (2015) developed an
interesting approach to measure distances using spectroscopic
twins of SNela. A data-driven approach to SNIa spectral
analysis may also enable identifications of observational
features that are most sensitive to the intrinsic luminosity of
SNela and identify potential systematic errors in the
cosmological applications of SNe Ia.

Optical spectra are needed to perform k-corrections to derive
the standardized magnitudes for cosmology. The k-corrections
rely on the spectral energy distributions (SEDs) of the SNe Ia
with well-calibrated photometric and spectroscopic observa-
tions, which should cover a broad range of subtypes of SNe Ia.
Currently, empirical spectral models with low degrees of
freedom (Nugent et al. 2002; Guy et al. 2007; Hsiao et al. 2007;
Jha et al. 2007; Burns et al. 2011) are employed for k-
corrections, although more accurate models with more free
parameters have been constructed (Saunders et al. 2018). A
data-driven approach to SN Ia observations will naturally lead
to spectral libraries that can be used for k-corrections of SN Ia
spectra.

The next-generation SN surveys with LSST (LSST Science
Collaboration et al. 2009) can discover a vast number of SNe,
which makes the acquirement of spectral time series for these
SNe extremely challenging. It is neither realistic nor cost-
effective to trigger high-cadence spectroscopic follow-ups for
the SNe discovered by the LSST. For the subset of a posteriori
SN Ia discoveries identified from photometric light curves,
taking spectral data at multiple phases may become impossible
for the majority of the SNe. However, in light of the rapidly
growing spectroscopic data set of nearby SNe, it is promising
that a generative data-driven model for spectral inference via
machine-learning techniques can be derived to mitigate these
difficulties.

There are some existing studies applying machine learning to
transient studies. For example, the spectral types of the SNe can
be classified based on their light-curve data (Moller et al. 2016;
Muthukrishna et al. 2019a; Takahashi et al. 2020; Villar et al.
2020), and transients can be identified from the astronomical
survey images (Goldstein et al. 2015; Mahabal et al. 2019;
Gomez et al. 2020). The light curves of SNela can be well
modeled by functional principal component analysis (FPCA;
He et al. 2018), where it was shown remarkably that a set of
FPCA eigenvectors that are independent of the photometric
filters can be derived from the observed light curves of SNe Ia.
There are a few studies of the application of deep learning
neural networks to the spectral data of SNe. For example,
Muthukrishna et al. (2019b) used a convolutional neural
network (CNN) for automated SN type classification based on
SN spectra. Several other works (Chen et al. 2020; Vogl et al.
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2020; Kerzendorf et al. 2021) applied a Gaussian process,
principal component analysis (PCA), and deep learning neural
networks to radiative transfer models of SNe. Sasdelli et al.
(2016) used unsupervised learning algorithms to investigate the
subtypes of SNela. Stahl et al. (2020) developed neural
networks to predict the photometric properties of SNe Ia (phase
and Am,s) based on spectroscopic data. Saunders et al. (2018)
used PCA to find low dimensional representations of the
spectral sequences of 140 well-observed SNe Ia. Chen et al.
(2020), in particular, built an artificial intelligence assisted
inversion (AIAI) of radiative transfer models and used that to
link the observed SN spectra with theoretical models. The AIAI
is able to retrieve the elemental abundances and density and
temperature profiles from observed SN spectra. The AIAI
approach has the potential for quantitatively coupling complex
theoretical models with the ever-increasing amount of high-
quality observational data.

This paper aims to build a data-driven model of the spectral
time evolution of SNela using long short-term memory
(LSTM) neural networks (Hochreiter & Schmidhuber 1997).
Section 2 presents the data sample. Section 3 shows the
preprocessing of the data to bring the data set to a uniform
standard for further processing using FPCA (Section 4). The
neural network architecture and the assignment of statistical
weights of the data are shown in Section 5. Section 6 shows
the application of the neural network to the construction of
spectral time sequences of SNela. Section 7 presents the
application of the neural network based on spectral data taken
at a single epoch around optical maximum to the analyses of
normal and high velocities (Section 7.1) and the different
subtypes of SNela (Section 7.2) and the application of the
neural network based on spectral data taken at two epochs
around optical maximum (Section 7.3). Moreover, we explore
the potential application of our method in predicting spectral
phases in Section 7.4. Section 8 gives the discussions and
conclusions.

A Python implementation of the method proposed in this
paper is available on Github.* The software allows users to
apply the LSTM neural networks to their own observations and
provide open access to the data sample presented in Section 2
and the spectral templates of 361 SNela constructed in
Section 6.

2. Sample Selection

We use the publicly available SN spectra from WISeREP
(Yaron & Gal-Yam 2012), Kaepora (Siebert et al. 2019), and a
data set of high-quality Very Large Telescope (VLT)
observations of SNela from the SN polarimetry program
(Wang & Wheeler 2008; Cikota et al. 2019; Yang et al. 2020).
The SNe are selected with the following criteria.

1. The redshift of the host galaxy and the B-band maximum
are accurately measured.

2. The SN is classified as one of the following five subtypes:
la-norm, [a-91T, [a-91bg, 1a-99aa, and Iax.

3. The spectrum of the SN is between —15 and 33 days
relative to the B-band maximum, and the wavelength
covers 3800-7200 A in the rest frame.

4. The SN has more than two distinct spectra.

4 https://github.com/thomasvrussell /snail


https://github.com/thomasvrussell/snail

THE ASTROPHYSICAL JOURNAL, 930:70 (30pp), 2022 May 1

The above distilling criteria lead to 3091 spectra from 361
SNe Ia. Moreover, we collected the published B and V light
curves of these SNe for spectrophotometric recalibration of the
spectral data. In Table 1, we show the details of the selected
SNe used in this study.

The characteristics of the SNe included in this work are
shown in Figure 1. The vast majority of them reached
maximum light during 1995 and 2015, with 95% of them
originating from z < 0.05, and nearly half of the SNe have
<five observations. About a quarter of the sample have
temporal sampling with >10 observations. A few nearby SNe,
such as SN 2011fe, have >50 spectroscopic measurements.

The distribution of the source of the spectra in this
compilation and the phase from B-band maximum are shown in
Figure 2. The sample consists of observations from four SN
programs: the program from the Harvard-Smithsonian Center
for Astrophysics (Blondin et al. 2012), the Berkeley Super-
Nova Ia Program (Silverman et al. 2012), the Carnegie
Supernova Program (Folatelli et al. 2013), and the Supernova
Polarimetry Program (Wang & Wheeler 2008; Cikota et al.
2019; Yang et al. 2020), thereby yielding >70% spectra
observed by the FLWO 1.5m, Lick 3m, and LCO duPont
telescopes. The VLT and Keck also provide a substantial
portion of spectroscopic data, mostly with high signal-to-noise
ratios (S/Ns). One can also see in Figure 2 that spectroscopic
time coverage peaks around maximum light, and there is a
deficiency of SNe observed at the infancy stages (<—10 days).

In addition to the above data set for the construction of a
data-driven predictive model, we have also generated an
auxiliary data set with the following criteria:

1. The redshift of the host galaxy is accurately measured.

2. The SN is classified as an SN Ia. .

3. The spectral wavelength covers 3800-7200 A in the rest
frame.

These less restrictive criteria yield 8501 spectra from 3536
SNe Ia. Throughout this paper, we will refer to the smaller data
set as “the data set” and use the term “the extended data set” to
denote the larger data set.

3. Preprocessing of the Data

The sources of the spectral data are heterogeneous and often
not well calibrated photometrically. We evaluated the noise
levels of the spectral data (Section 3.1), which were used to
assign statistical weightings to each spectrum. Moreover, the
spectral data were processed through the following four steps to
ensure the self-consistency and uniformity of the data set:
deredshifting (Section 3.2), smoothing and resampling
(Section 3.3), removal of telluric lines (Section 3.4), and
recalibration of spectral flux levels (Section 3.5).

3.1. Estimation of the Spectral Noise

The data are of diverse S/N, and their statistical weights
need to be approximately accounted for in our studies. An
approximate error spectrum for each original spectrum in the
extended data set is constructed following the method
introduced in the Kaepora database (Siebert et al. 2019). We
further calculate the S /N of each spectrum in the wavelength
range 4800-6200 A and use this as a measure of the quality of
each spectrum (see Section 5 for more details on the
assignments of statistical weights).
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3.2. Deredshifting

The original spectra in the extended data set were
deredshifted from the observer frame to the rest frame using
the host galaxy redshifts. In some cases, a correction had
already been applied to the data we have downloaded. To avoid
double correction, we visually inspected each spectrum to
ensure that the wavelengths of the telluric absorption lines at
6867-6884 and 7594-7621 A were consistent with the values
expected in the observer’s frame before deredshifting. We also
compared the spectra with other spectra of the same SN at
similar phases to confirm that the spectra had not been
deredshifted in their source database. We found 185 spectra in
our data set showing conspicuous redshift inconsistencies, and
they were included in our analyses after removing the
inconsistencies.

3.3. Smooth and Rebinning

The next step was to apply a two-order Savitzky—Golay filter
(Savitzky & Golay 1964) to suppress the ubiquitous random
noise in the SN spectra. Here we adopted a smoothing width of
1000 km s~!, which is broader than the high-frequency noise
but significantly smaller than the typical spectral absorption
features. Each deredshifted spectrum from the extended data set
was resampled to a wavelength grid with a bin size of 2 A from
3800 and 7200 A by linear interpolation and normalized by
dividing its average flux. For clarity, these processed spectra
are hereafter referred to as the homogenized spectral data
set (HSD), which contains a total of 8501 spectra.
Each homogenized spectrum is a 1700 dimensional array with
unit mean.

3.4. Removal of Telluric Features and Galaxy Emission Lines

We removed the telluric absorptions at 7605 and 6869 A and
all of the conspicuous hydrogen Balmer lines originating from
the host galaxies at 6565 and 4861 A for each homogenized
spectrum. The wavelength regions affected by the absorption
and emission lines were filled with values from second-order
B-spline interpolations. Note that the interpolation was not
directly performed on the homogenized spectra but rather on
the homogenized spectra already smoothed by an inverse-
variance Gaussian smooth algorithm (Blondin et al. 2006;
Siebert et al. 2019) to ensure numerical stability.

3.5. Spectral Flux Recalibration

Both the continuum and spectral line components are
important in our study, since our goal is to develop a model
that enables predictions of both the spectral features and the
overall spectral energy density distribution. However, the
spectral fluxes and colors integrated from SN spectra are
usually inconsistent with those derived from broadband
photometries. Such inconsistency is mainly due to the technical
difficulties in spectrophotometry and can be conspicuous in
many spectra observed at the same phases by different
telescopes.

The flux scales of the preprocessed homogenized spectra
were recalibrated to eliminate the flux scale inconsistency by
enforcing the B —V colors integrated from the spectra to
agree with their corresponding photometric observations.
For this to work, we must have a sample of SNela with
excellent multicolor light-curve coverage. We went through a



Table 1
Table of SNe in the Spectral Data Set

SN Name SN Subtype Redshift Number of Spectra First Epoch Last Epoch Spectrum Source Redshift Reference MID,.« Reference Photometry Reference
SN 2012fr Ta-norm 0.005457 74 —13.99 +30.45 WISeREP 1 2 2
SN 2005cf Ta-norm 0.006461 73 —12.40 +29.29 WISeREP, Kaepora, VLT 1 3 4
SN 2011fe JTa-norm 0.000804 68 —14.82 +27.51 WISeREP, Kaepora 1 5 6,7
SN 2002bo Ja-norm 0.004240 44 —13.58 +29.36 WISeREP, Kaepora 1 3 8
SN 2006X JTa-norm 0.005240 40 —10.68 +32.07 WISeREP, Kaepora, VLT 1 3 9
SN 1994D Ta-norm 0.002058 38 —12.47 +29.44 Kaepora 1 3 10, 11
SN 20071e Ta-norm 0.006721 36 —10.63 +23.33 WISeREP, Kaepora 1 3 9
SN 2003du Ta-norm 0.006384 35 —12.70 +32.98 Kaepora 1 3 12
SN 2004dt Ja-norm 0.019730 32 —9.44 +32.72 WISeREP, Kaepora, VLT 1 3 8
SN 2003cg Ta-norm 0.004130 32 —7.48 +26.67 Kaepora 1 3 8
SN 2001V Ta-norm 0.015018 27 —13.20 +27.97 WISeREP, Kaepora 1 3 13
SN 2007af Ta-norm 0.005464 27 —5.60 +32.07 WISeREP, Kaepora 1 3 9
SN 2002er Ta-norm 0.008569 26 —-9.94 +32.66 WISeREP, Kaepora 1 3 8

Note. References: (1) Siebert et al. (2019); (2) Contreras et al. (2018); (3) Blondin et al. (2012); (4) Wang et al. (2009a); (5) Parrent et al. (2012); (6) Stahl et al. (2019); (7) Tsvetkov et al. (2013); (8) Ganeshalingam et al.
(2013); (9) Stritzinger et al. (2011); (10) Gomez et al. (1996); (11) Richmond et al. (1995); (12) Stanishev et al. (2007); (13) Hicken et al. (2009); (14) Pan et al. (2015); (15) Jha et al. (2006); (16) Gall et al. (2018); (17)
Yaron & Gal-Yam (2012); (18) Maguire et al. (2013); (19) Walker et al. (2015); (20) Brown (2014); (21) Cikota & Pauldrach (2018); (22) Brown et al. (2014); (23) Krisciunas et al. (2017b); (24) Stritzinger et al. (2014);
(25) Folatelli et al. (2013); (26) Srivastav et al. (2016); (27) Amanullah et al. (2015); (28) Yamanaka et al. (2015); (29) Hicken et al. (2012); (30) Silverman et al. (2012); (31) Stritzinger et al. (2002); (32) Hachinger et al.
(2013); (33) Srivastav et al. (2017); (34) Li et al. (2018); (35) Shappee et al. (2016); (36) Smitka et al. (2016); (37) Krisciunas et al. (2017a); (38) Weyant et al. (2018); (39) Sandage et al. (1995); (40) Ardeberg & de
Groot (1973); (41) van Genderen (1975); (42) Lira et al. (1998); (43) Krisciunas et al. (2006); (44) Smitka et al. (2015); (45) Leibundgut et al. (1993); (46) Cikota et al. (2019); (47) Krisciunas et al. (2003); (48)
Friedman et al. (2015); (49) Krisciunas et al. (2004); (50) Graham et al. (2017); (51) Riess et al. (2009); (52) Maguire et al. (2011); (53) Danziger et al. (1998); (54) Marion et al. (2016); (55) Yamanaka et al. (2014); (56)
Firth et al. (2015); (57) Wee et al. (2018); (58) Cartier et al. (2017).

(This table is available in its entirety in machine-readable form.)

1 AN 720z ‘(ddog) 0L:0€6 “TYNINO[ TVOISAHIOWLSY AH],

Suep 2 ‘uoy) ‘nH



THE ASTROPHYSICAL JOURNAL, 930:70 (30pp), 2022 May 1

Hu, Chen, & Wang

50f 190%
40} g
-~ o
EP {60% &
(3 20 :
130% &
10f
Cumulative
0 30%  60%  90%
0.10p N =2-5[175]
o N=6-10 [96]
0.08f @ N=11-25][77 o °
@ N =26-50][10] e
N =51 - 80 [3]
& 0.06 e
=
3 °
Q
/2 0.04
o
o
0.02} ©
o
o o 68
0.001 © @

19‘75 1980 1585 1590 1995

2005 2010 2015 0 10 20 30 40 50

Date of Maximum Light Count

Figure 1. The SN redshifts versus their times of B-band maximum for all SNe Ia in our data set. These objects are divided into five subgroups according to the number
of spectroscopic observations, where each subgroup is assigned a specific color and marker size, as shown in the upper left corner. The letter N in the legend stands for
the number of spectra, and the numbers in the square brackets refer to the total counts of the subgroups. The attached panels at the top and right are the histograms of
the times of maximum and host galaxy redshifts, respectively, with black curves showing their cumulative distributions.

FLWO-1.5m / FAST

Maximum

———[oEns|

—| Keckl / LRIS

—[VLT-UT1 / FORS1 & FORS?]|

LCO-duPont / WFCCD

Lick-3m / KAST

Figure 2. Outer: contributions of each major instrument to the total number of spectra in the data set. Inner: histogram of the number of individual SN spectra at each

epoch in the data set.

comprehensive literature search for the photometry of all of
these SNe and collected published light curves of all of them,
together with the specific filter bands at which they were
observed. The sources of the light curves are shown in Table 1.
For the data that are published in the natural system, the
spectral flux level corrections were made with the appropriate
transmission curves downloaded from the sources of the
original data.

Fortunately, in general, the SNe with more spectral coverage
also had more complete photometric coverage. Over 80% of
the SNe with more than four optical spectra were found to have
excellent light-curve coverage to allow for detailed template fits
(He et al. 2018) or interpolations to their light curves. We used
the Gaussian process with a radial-basis function kernel
(scikit-1learn; Pedregosa et al. 2011), a model-indepen-
dent interpolation method, to fit the B and V light curves and
hence derive the B — V colors at the epochs of the spectro-
scopic observations. Subsequently, we should adjust the
original spectrum so that its synthetic B — V color can be in

line with the derived photometric B — V color, as the flux levels
of the available spectra are usually poorly calibrated. One
straightforward approach is to multiply each original spectrum
by a monotonic flux scaling function with low degrees of
freedom such that the adjusted spectrum will have a B—V
color that is consistent with the corresponding photometric
measurement at the same epoch. The specific choice of the
function can be somewhat arbitrary. In our work, we adopt the
functional form of the CCM89 extinction law (Cardelli et al.
1989) to perform the flux scaling, with the parameter Ry fixed
to 3.1 but leaving E(B — V) as the only fitting parameter. All of
the adjusted spectra thus have B — V colors that are identical to
the values on their corresponding photometric color curves.
The homogenized spectra, starting from 3800 A in the rest
frame, do not fully cover the entire effective wavelength range
of the B band. The missing data in the homogenized spectra
were set to zero first when calculating the B-band magnitudes.
This introduces a systematic error to each B —V color
integrated from a spectrum that was corrected by employing
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a spectral template of SNe Ia (Hsiao et al. 2007) at the nearest
phase. In doing so, the spectra of Hsiao et al. (2007) were
truncated by setting the fluxes outside of 3800-7200 A to zero.
The B—V colors of both the Hsiao template (covering
1000-25,000 A) and its truncates were calculated, and the
differences were taken as their approximate systematic offsets.
Note that this offset is not merely a function of the phase but
also a function of the redshift of the SN and the specific
transmission curves used for the corresponding photo-
metric data.

The fit has zero degrees of freedom and results in a precise
match of B — V color between a color-calibrated spectrum and
its corresponding photometric data. Such a treatment of the
data may introduce systematic uncertainties that are difficult to
quantify. We defined a quantity [Ap_y|, which is the absolute
value of the difference between the B — V color measured on an
uncalibrated spectrum and its corresponding observed photo-
metric color to account for the amount of the color correction.
Presumably, larger values of |Ap_y| imply higher levels of
uncertainties. We used this quantity to set the statistical
weightings of each spectrum in training the neural networks
(see Section 5).

There are 801 spectra (~1/4) in the data set for which the
above B — V calibration cannot be applied due to the lack of
sufficient photometric coverage. This could be either due to
unavailable photometric data or because the phases of the
spectra are beyond the limited photometric data coverage. No
photometric corrections were applied to these spectra, but their
weightings are lowered in the training of the neural network
(see Section 5 for details).

Each spectrum was then renormalized by its average flux
across the wavelength range of 3800-7200 A. This forms a new
spectral data set, which we hereafter refer to as the corrected
spectral data set (CSD). There are a total of 3091 corrected
spectra in the CSD out of a total of 8501 spectra of the
extended spectral data set.

4. FPCA Parameterization

The FPCA (Hall et al. 2006) was utilized to reduce the
spectral dimensionality of the spectral data. It was applied to
construct light-curve templates of SNela and build Hubble
diagrams using nearby, well-observed SNe (He et al. 2018),
and it was adopted by Kou et al. (2020) to parameterize the
spectra of SNe Ia. Here we follow a similar approach and use
the fpca package in the R language (Peng & Paul 2009) to
solve for the optimal set of FPCA solutions.

The FPCA algorithm uses a series of orthogonal functions as
the principal components and a linear combination of these
principal components to reconstruct the input data set. The
function () for the reconstruction can be written as

N
UiN) = N + Y X, (N, (H
n=1
where p()\) is the average function, ¢,()\) is the nth-order
component in the form of a function, and x;,, is the nth-order
FPCA score for the ith spectrum. To find the best FPCA score
series x;,, the mean squared error (MSE) between the input
data Y« \) and the fitting function () is minimized,

Al
MmFL(m»—wm%x )
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where )y and A; are the lower and upper limits of the

wavelength range. The principal components ¢,()\) and the

average function u(\) are solved for a given spectral data set of
size N. The average function is
| N

p(A) = NZ Y, (N, 3)

n=1

and the principal components are solved by maximizing the
variance of FPCA scores over the input spectral data set,

@;(X) = argmax (Var(x;)), @

where Var(x;) is the variance of all of the ith FPCA scores of
the input data, x; ;, x;2, ..., X;y. The solutions to the principal
components are subject to two additional conditions. First, the
principal components are orthogonal:

Al
[ avgnan = s, )

Second, the variances are ordered with the order of principal
components by

V i, Var(x;) > Var(x; ). (6)

The solutions to the FPCA were derived from the more
diverse extended data set to achieve maximum generalizability.
Given the high computational cost (mostly RAM limitations) of
fpca, 500 homogenized spectra were randomly drawn from
the HSD to solve for the FPCA principal components, and each
corrected spectrum in the CSD was decomposed into the
resulting basis functions. The spectral data were divided into
two sections: a blue section covering the wavelength range
3800-5500 A and a red _section covenng 55007200 A. At a
spectral resolution of 2Ap1xel , each spectral section has a
total of 850 pixels. Each spectral section was then subtracted by
its own average flux and subsequently divided by its standard
deviation. We used 90 FPCA principal components for each
spectral section. As a result, the full spectrum with two sections
(1700 pixels) could be reconstructed by 180 FPCA scores and
four additional factors accounting for the average fluxes and
standard deviations of the two spectral sections. We denote the
combined array that concatenates 180 FPCA scores and the
four additional parameters as [Vgpcal (hereafter the FPCA-
encoded array). The FPCA parameterization for each spectral
section was performed separately. This could introduce some
artifacts at the wavelength boundary around 5500 A, but the
effect was not significant enough to affect the analyses in this
paper. Applying FPCA on the full range (5500-7200 A) of
spectra without division over wavelength can eliminate these
artifacts at the boundary. However, the corresponding RAM
demand for solving FPCA with a satisfactory reconstruction
accuracy exceeds the affordable level of our current computa-
tion platform.

The mean absolute percentage error (MAPE) is used to
evaluate the difference between a corrected spectrum and its
FPCA reconstruction. As shown in Figure 3, where the
statistics are drawn from the reconstruction of the CSD, the
errors are considerably smaller when more principal compo-
nents are used. A closer look at the trend (see the lower panel of
Figure 3) shows that the improvement of reconstruction
accuracy decelerates as the number of components increases.
The decrease of the median MAPE is larger than 1% from 5 to
10 components but falls to less than 0.01% from 85 to 90
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Figure 3. Accuracy of applying FPCA to the corrected spectra in the data set.
The upper panel gives the MAPE of FPCA reconstruction as a function of the
number of used FPCA components. The box plot shows the distribution of
MARPE for all of the corrected spectra. Note that the box is drawn from the first
quartile (Q1) to the third quartile (Q3), with a horizontal yellow line to denote
the median; in addition, the lower (upper) whisker is at the lowest (highest)
datum above Q1 — 1.5 x IQR (below Q3 + 1.5 x IQR), where IQR = Q3 —
Q1. The dashed gray curve indicates a monotonically decreasing trend of the
median MAPE as more FPCA components are employed. The lower panel
shows the decrease of the median-level MAPE (i.e., overall accuracy
improvement) for every five additional FPCA components used.

components. The median MAPE of the FPCA reconstruction
over the CSD can reach ~1.1% using 90 components. Note
that MAPE is a pixel-by-pixel measurement without taking into
account the fluctuations due to observational noise. Thus, a
spectrum with low S/N is more likely to have a larger MAPE.
This trend is partially responsible for the broad and skewed
distribution of MAPE, shown in the box plot of Figure 3.
Figure 4 demonstrates the performance of FPCA reconstruction
by six representative examples selected from the CSD. These
examples show excellent agreement across the prominent
spectral features of SNe Ia.

5. Network Architecture and Sample Weights

The proposed model is built upon a multilayer LSTM
(Hochreiter & Schmidhuber 1997) neural network, a widely
used subclass of recurrent neural network (RNN). Previous
works like Stahl et al. (2020) and Chen et al. (2020) adopted
CNNs to analyze the spectral data of SNela, where one-
dimensional convolution processes are applied to the wave-
length axis. In contrast, the LSTM architecture in our work is
not convolutional. The spectral data have been compressed into
isolated FPCA-encoded arrays, and additional dimensions are
needed to store the phase information required for training the
neural network. Therefore, the input data cannot maintain a
structure with a concept of spatial correlation as in the original
spectra, thus becoming incompatible with the CNN approach.

Like all other subtypes of RNN, LSTM has a chain-like
structure with a repeating module that allows the algorithm to
learn from spectral time sequences. Figure 5 shows the
repeating module in our LSTM architecture. We will always
use the subscript “#’ to denote the index of a spectral time
sequence but the subscript “tar” to indicate an attribute of the
target spectrum. The LSTM is characterized by four gates: an
input gate (i), a forget gate (f), an output gate (o), and an input
modulation gate (g). These gates conduct the following
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Figure 4. The FPCA reconstruction of six representative spectra of the CSD.
The FPCA reconstructions of the corrected spectra (solid black curves) are
plotted as colored solid lines. The six spectra are selected from three
observational epochs: ~1 week before maximum, maximum light, and ~2
weeks past maximum. Note that a relatively noisy spectrum is presented with a
spectrum of very high S/N for each epoch. The spectra are arbitrarily shifted in
the vertical direction for clarity of display.

operations:

i =sigm(h; U + x; W),

f=sigm(h,_\Ur + x;Wy),

o = sigm(h;_ U, + x, W,),

g = tanh(h,_U; + x; Wp), (N
and

¢ = foci_1 + iog h; = ootanh(cy), (8)
where sigm (tanh) is the sigmoid (hyperbolic tangent)
activation function and the circle symbol refers to an
element-wise product. Here x; is the input data delivered into
the module, and the internal state ¢, (h,) is known as the cell
(hidden) state at time step 7. The weight matricesw = {W,, U,
W U W,, U, W, U, } are repeatedly used by each time step.

Our study aims to predict the spectrum at a specific target
phase p,, by feeding a spectral sequence with arbitrary time
sampling. However, for typical discrete-time dynamic systems,
such as in text classification (Dai & Le 2015) and stock price
prediction (Eapen et al. 2019), LSTM was applied to ordered
data without time labels or with constant time-sampling rates.
Observations of SNeIa are usually irregularly time-sampled.
Consequently, the proposed predictive model needs to include
the specific phases of the spectra as part of the input
parameters, yet LSTM does not contain a channel in its
structure to incorporate the spectral phases. A variant LSTM
known as phased LSTM, which is proposed to handle unevenly
sampled time series by adding a new time gate (Neil et al.
2016), is a likely choice. Unfortunately, the target phase p,, of
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Figure 5. Repeating module in LSTM that contains four interacting layers. The
definitions of the nodes in the module are shown at the bottom of the figure.
The detailed calculations in the four LSTM gates are given in Equation (7). The
element-wise operations are described in Equation (8).

the predicted spectrum is also a variable in our framework,
making it infeasible to apply phased LSTM directly.

Our solution to this problem is a straightforward integration
of the phase information into the input spectral data. Recall that
each corrected spectrum has been compressed and encoded into
a much shorter array denoted as [Vrpcal- We concatenated the
phase of each input spectrum and the target phase for spectral
prediction at the beginning of the FPCA-encoded array,
namely, the input data of the first LSTM layer at the rth time
step X; = (Pyr» Pr» [Vepcalr). As aresult, the LSTM acquires an
input layer with 186 neural processing units.

Figure 6 shows the architecture of the proposed LSTM
implemented using the Python module keras (Chollet et al.
2015). For each SN, the input spectra are a given number of K
spectra from a total of L spectra, allowing repetitions but with
the phases only in nondecreasing order. The neural network
contains three bidirectional LSTM layers (Schuster & Pali-
wal 1997) and a fully connected output layer. The bidirectional
LSTM allows the neural network to learn from the time-
sequence data in reverse order and strengthens the robustness
of the neural network. Note that the last layer is time-
distributed (keras.TimeDistributed), thereby yielding
an output for each time step. The difference between the output
of each time step and the FPCA-encoded array of the target
spectrum contributes equally to the loss function during the
training process. The Nadam algorithm (keras.Nadam) is
used to optimize the network, with the loss function being the
MSE weighted by the data quality (see Equations (9)—(11) and
discussions below for details). The last box shown in Figure 6
reconstructs the spectrum at the target phase during the
predicting process; the outputs from different time steps were
averaged to generate the predicted spectrum via FPCA
reconstruction, followed by a final flux normalization.

To alleviate overfitting in the training process, we adopted
the commonly used dropout method (Hinton et al. 2012;
Zaremba et al. 2014). The efficient regularization technique
suppresses the coadaptations among the neurons by stochas-
tically dropping rows of weight matrices. The dropout can also
be activated in the testing step (aka Monte Carlo dropout) to
make the network probabilistic (Gal & Ghahramani 2015, 2016).
With Monte Carlo dropout, the model is thereby no longer
deterministic after the training process. A forward pass can
generate a different result by feeding the same input, which is
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now determined by the applied dropout mask as a realization of
a Bernoulli process. In this scenario, one can estimate the
model uncertainty through the variance of predictions from
multiple forward passes. In our study, we set the kernel dropout
rate (namely, for W matrices in Equation (7)) to 0.14 and the
recurrent dropout rate (namely, for U matrices in Equation (7))
to 0.16, respectively. The only exception is that we disabled the
kernel dropout for the first LSTM layer, and no dropout is
performed on the final fully connected layer.

Conceptually, a dynamic number of time sequence K is
allowed for RNNSs; this is also our initial motivation to adopt
LSTM to handle spectral sequences with arbitrary time
coverages. However, the complexity of training the neural
network increases drastically with K due to the vast amount of
spectral combinations for large K. Our current model only
supports K = 2, i.e., a spectral pair (with nondecreasing phases)
as input. In particular, the structure also allows predictions
from a single spectrum through one-time duplication. More-
over, following the selection limit on the phases of the SNe in
our data set, the target phase is restricted to be in the range from
—15 to +33 days.

To mitigate the effect of the heterogeneity of the spectral
data, each spectrum in the CSD was assigned an approximate
statistical weight w,.. based on the S/N of that spectrum
defined in Section 3.1 and a formula that is a function of
|Ap_y| defined in Section 3.5. The weight wy,. is expected to
be positively correlated with the S/N, which approximately
measures the pixel-to-pixel fluctuations due to shot noise, and
negatively correlated to |Ap_y/|. In the practical implementation
of the neutral networks, the weight wg,. for each spectrum in
the CSD is given as follows:

Wspec = WS/N*Wcolor

ws/Nn = 0.7 + 0.3*min{S/N/100, 1}

Weolor = 0.7 + 0.3

x *(10/7 — min{max{|Ag_v|/ocp, 3}, 10} /7),
©)

where ogp denotes the photometric error of the color B —V,
which is given by 1/(0123 + a%,), with o and oy being the
photometric errors of the B and V bands, respectively. About
three-fourths of the spectra in the CSD had been calibrated by
their corresponding photometric colors for which the
|Ap_v|/oGp values could be computed. For the rest of the
spectra, the ratio |Ap_y|/ogp was set to 5 artificially. Notice
that wg/n and weior Were restricted to values in the range from
0.7 to 1.0 such that their weightings do not differ drastically for
data with very different S/N and |Ag_y].

Finally, the statistical weight for a training sample containing
a total of K+ 1 spectra from the CSD, i.e., K input spectra
together with the output spectrum, was constructed by multi-
plying the K + 1 spectral weights,

Wsample = ¢ * H Wspecs (10)

where the factor a was introduced as a penalty factor to
account for the heterogeneous instrumental sources of the
K + 1 spectra, which was set to 1 if all of the K 4 1 spectra are
observed by the same instrument (i.e., no penalty), 0.6 if two
instruments are involved, and 0.4 if more than two instruments
are used. Similar to the weights used for individual spectra, the
penalty factors used herein avoid making extreme sample
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Figure 6. Architecture of the proposed LSTM model. The input data (shown by
the boxes at the top) are one or more one-dimensional arrays describing the
target phase for which the neural network will make spectral predictions (pa),
the phase of the input spectral data (p,), and the FPCA-encoded array of the rth
spectral data ((Vepcals). The three boxes labeled with LSTM refer to the
repeating module described in Figure 5, where each layer in the module
comprises 256 neurons. Note that the dashed lines indicate bidirectional
operations that make the proposed architecture symmetric to the sequence
inversion of the input data. A fully connected layer (FCL) follows the last
LSTM module and converts the 256 neural processing units back to the 180
FPCA scores and the four scaling parameters. The last step is a reconstruction
of the spectroscopic data for the phase #, during the predicting process. Note
that the architecture itself can accommodate any variable-length spectral time
series as input, but our model used herein currently supports a fixed length of 2.

weights. The loss function of the neural networks is computed as

L = Wample * (¥} — [Vipcal)?, (1

it

where Y, is the neural network output at time step #, and
[VEpcaliar 18 the FPCA-encoded array of the target spectrum.
The superscript i denotes the dimension index.

6. LSTM Applied to the Construction Spectral Templates

In this section, we apply the proposed neural networks to
construct the spectral template for each of the 361 SNe Ia in our
data set. Here a spectral template is defined as a spectral time
sequence from —15 to +33 days with a constant cadence of 3
hr. The goal of the neural networks is to enable accurate
predictions of the time evolution of spectral features based on
spectral observations of limited spectral time coverage. In this
section, the accuracy of the template construction using LSTM
is evaluated using a test spectral set. Its performance is also
compared with other published spectral templates of SNe Ia.
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6.1. Training the Neural Networks for Spectral Template
Constructions

We split the CSD into a training set of 90% (2782) spectra
and a testing set of 10% (309) spectra, where the testing set was
randomly drawn from the CSD with the following restrictions.

1. The S/N of the spectral data is higher than 15.

2. The phase difference between the selected spectrum and
the nearest spectral observation of the same SN in the
CSD is larger than two-thirds of aday. This avoids the
selection of multiple spectra of the same SN taken on
almost the same night.

3. The testing set does not contain all of the observed
spectra of any SN in the CSD, as is required by the
algorithm of spectral template construction shown in
Algorithm 1.

The remaining spectra of the CSD after the selection of the
test data set were employed to train an LSTM model for the
spectral template constructions using the framework shown in
Figure 6. Due to the simplicity of the proposed LSTM
architecture (Figure 6) and the limited sample size, no
validation set is created to fine-tune the hyperparameters of
the LSTM neural networks.

In the algorithm, a training sample consists of K + 1 training
spectra of a particular SN with their corresponding phases. The
first K spectra form a time sequence with phases in
nondecreasing order as neural network input, and the last
spectrum is the target spectrum for the neural network
prediction. Repetitions in the K+ 1 spectra are allowed. The
training samples are generated by exhausting all possible
permutations with repetition of the K+ 1 spectra over the
training set.

6.2. Construct the Spectral Templates

The construction of the spectral templates follows the
procedures given in Algorithm 1. The LSTM model obtained
over the training spectra was used as the input model. A
spectral template for each SN in the CSD was constructed by
feeding the training spectra of the SN into the trained LSTM
model. Throughout this study, K is set to 2, allowing spectral
sequences at given target phases to be constructed using two
spectra. It also allows for the special cases that the two spectra
are identical; i.e., the predictions can be triggered by only one
spectrum. The restriction on K makes it infeasible to apply the
trained LSTM model directly when an SN has more than two
training spectra. Nevertheless, Algorithm 1 provides a general
strategy to construct spectral templates for all SNe in the CSD.

Algorithm 1. Spectral Template Construction

input: The trained LSTM model

input: The spectral training set: X

1 define the set of ordered spectral pairs for one SN Iy all (x;, X,,) with
Py, < Dy,,» Where X, X, € X

2 if the size of set Iy < 128 then

JletI =1,

4 end

5 if the size of set Iy > 128 then

6 for (x;, x,,), € Iy do

7  initialize 8« 1;

8 initialize v « 1;

9 if x; and x,, were taken by different instruments then
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(Continued)
10 8—03:;
11 end
12 if p,, — py < 3/2 then
13 702,
14 end
15 assign selection probability ¢, = 5%y *Wypeclx, *Wepeclxns
16 end

17 randomly select I C Iy of size 128 with selection weights ¢,;

18 end

19 for (x;, x,,); € I do

20 fork €1, 2,.., 24] do

21 feed (x;, X,,); to LSTM model to predict spectral time sequence
Yix (A, p), where p € [—15, —14.875,..., + 29.875, +33]

22 end

23 compute predictive mean: (1;(A, p) = MEAN(Y, |, ;2 5+ i.24)

24 compute predictive uncertainty: o;(A, p) = STD( Vil Yi2 sees Yi2a)s

25 end

26 compute the final spectral template: T'(\, p) = >; a,-’z(/\, Y (N p);

27 renormalize the final spectral template: (A, p) < T(\, p) />, T (A, p)

For SNe with large numbers of observed spectra such as
SN 2011fe, which has a total of 65 training spectra, the total
number of possible combinations (the size of I,) is as large as
2145, which makes it very time-consuming to exhaustively
calculate all possible input spectral combinations. To construct
the input spectral pairs I, a subset of possible combinations is
sufficient, as the information from such well-observed SNe is
also likely redundant. A weighted selection scheme is adopted
by assigning a selection probability for each possible spectral
pair (see line 15 of Algorithm 1). A spectral pair with higher
spectral weights wp.. has a higher probability of being selected
in predicting the spectral sequence. We also introduced two
penalty factors, 5 and -y, which preferably select spectral pairs
taken by the same instrument and disfavor the spectral pairs
observed on almost the same night, respectively.

Each spectral pair in this selection was fed to the neural
networks for the spectral sequence prediction that covers
spectral phases between —15 to 433 days (see line21 of
Algorithm 1). The activation of dropout can make the
predictions probabilistic (see Section 5) and allows for
estimates of the uncertainties of the predictions. For every
input spectral pair, the prediction process is repeated 24 times
with a new stochastic dropout mask applied each time. The
final target spectrum prediction is given by the average of these
predictions weighted by their predictive uncertainties (see
line 26 of Algorithm 1). At last, each spectrum of the spectral
template was renormalized by dividing its average flux (see
line 27 of Algorithm 1).

As examples, Figure 7 shows the predicted spectral
templates of two SNe with no more than five training spectra.
Of the two SNe, SN 2004ey is a normal-velocity (NV; Zhao
et al. 2015) and SN 1998ec is a high-velocity (HV) object
(Blondin et al. 2012). Figure 7 offers a glimpse of SNla
diversities in their spectral evolution. Around the B-band
maximum, for instance, SN 1998ec has distinctly broader
(relative to SN 2004ey) and stronger Si A\6355, Fe I A4404, and
Mg 11 M\4481 lines, in line with typical broad-line (BL) SNe Ia
(Wang et al. 2013; Parrent et al. 2011) in Branch classes
(Branch et al. 2006). As the objects evolve from —10 to +5
days, SN 1998ec shows a steeper velocity gradient across the
Sill features than SN 2004ey. Object SN 1998ec was classified

10
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as a high-velocity gradient object (Parrent et al. 2011). The
rapid line profile evolution is well captured by the neural
network predictions. Moreover, the predicted spectral templates
reconstruct the smooth spectral evolution without any unex-
pected discontinuities over the phase dimension. The LSTM
neural networks also demonstrate excellent consistency at the
boundaries of the blue and red sections at 5500 A.

6.3. Test the Spectral Template Constructions

The test set was used to evaluate the performance of the
neural networks. The observed spectra in the testing set were
compared with the spectral template constructed from the
neural network for the same SN at the same phase. To precisely
match the phases of the testing spectra (hereafter testing
phases) to those of the spectral template, the spectral template
used for comparison was constructed at the phases that exactly
match the phases of observation of an SN instead of the fixed
time grid, as shown in line 21 of Algorithm 1. Examples of the
spectral comparisons are shown in Figures 8 and 9 for normal
SNe (NV and HV) and some peculiar SNe, respectively.

Figure 10 demonstrates the results of the spectral comparison
by measuring the MAPE between the testing spectra and the
corresponding neural network constructions. We found that
80% of the testing spectra show an MAPE smaller than 7.1%,
and the overall median MAPE is 4.4%. The MAPE does not
show any significant dependence on the phases of the SNe,
which means the performance of the neural network is not
statistically biased at any particular phases. We noticed that the
MAPEs over the testing spectra without normalizing to the
observed photometric colors are systematically larger than the
MAPE:s over those spectra with photometric color calibrations;
35 of 94 unnormalized testing spectra have an MAPE larger
than 7.1%. By contrast, the ratio is 27 out of 215 for the color-
calibrated testing spectra. We surmise that the MAPEs for
testing spectra without color calibrations are more likely to be
dominated by the inaccuracy of the observational colors of the
spectra. Alternatively, we note that the median S/Ns over the
test spectra without and with color calibrations are 31.9 and
46.7, respectively. The uncalibrated testing spectra generally
have lower S/Ns, which could also contribute to their larger
MAPE:s.

The reliability of the prediction may also depend on the
number of available spectra in the training set. Figure 11 shows
the MAPEs between the observed spectra in the test set and the
neural network—predicted spectra for SNe with different
numbers of spectra in the training set. The figure confirms
the general trend that the errors decrease as the number of
spectra used in the training set increases.

6.4. Comparisons with Other Models

To showcase the fidelity improvement of our method, we
compared the spectral templates constructed by LSTM with
those generated by two empirical models of SNela, i.e., the
template of Hsiao et al. (2007) and the SALT3 model
(Kenworthy et al. 2021).

The spectral template built by Hsiao et al. (2007; hereafter
the Hsiao template) is a phase-dependent SED model based on
a compilation of ~100 SNe Ia with ~600 spectra. This uniform
template H(p, )), as a function of rest-frame wavelength A and
phase p, was obtained by averaging the observed spectra at
different epochs after correcting their spectral colors to align
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Figure 7. Predicted spectral templates of SN 2004ey (left) and SN 1998ec (right) using LSTM neural networks. The training spectra (yellow curves) of SN 2004ey
(SN 1998ec) are fed into the LSTM model to construct a spectral template (the heat map). To improve the readability of the two-dimensional image, a selected spectral
sequence (black curves) that constitutes certain discrete slices of the template spectral surface is overplotted to demonstrate the spectral features of certain phases as
shown by the arrows on the left. Some typical absorption features of SNe Ia are marked by short vertical lines, including the SiII lines (at 6355 and 5972 A; green
lines), the W-shaped S 1I lines (at 5400 and 5600 A; purple lines), Si Il A4130 (left red line), Fe I \M4404 and Mg 11 M\4481 (middle red line), and Si Il M560 (right red
line). Moreover, in the case of SN 1998ec, the persistent interstellar absorption Na I D line (blue line) is also reproduced by the spectral template. Note that there are
two spectra of SN 1998ec observed at the same epoch (411.7 days) by two different instruments. The vertical gray lines indicate the positions of the blueshifted Si II

A6355 at different velocities (the velocity unit is 1000 km s7h.

with a typical normal SN Ia with a “stretch” value of 1 (Hsiao
et al. 2007; Knop et al. 2003). SALT2 (Guy et al. 2007) typifies
the SN Ia spectral templates that are portrayed by a few free
parameters. The spectral flux of the SALT2 model is given by

F(p, N) = xo[Mo(p, N) + xiMi(p, )] - explc - CL(V)],
12)

where My and M, as principal components are flux surfaces
derived from a training spectral sample, and CL()\) represents
the average color correction law. A SALT2 template is
determined by three parameters: x, (the overall flux normal-
ization), x; (linked to the light-curve stretch), and ¢ (a color-law
coefficient). Beyond giving an average spectral evolution of
SNe Ia, SALT?2 also models the variations from SN stretch and
includes a modulation term encoding the time-invariant color
component. SALT3 (Kenworthy et al. 2021) is an improved
version of SALT2 using the same framework but has better
uncertainty estimation and better disentanglement of color and
SN stretch. The SALT3 baseline model used in our work is the
one presented in Kenworthy et al. (2021), which was trained on
a data set of 1207 spectra from 1083 SNe. Throughout the
paper, we used the Python implementation of the Hsiao
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template and SALT3 model in the sncosmo library (Barbary
et al. 2016) for the baseline comparisons.

In this section, we applied the two Hsiao et al. (2007) and
SALT3 models in the CSD. The reddenings by interstellar dust
are needed for these models. For SALT3, photometric light
curves are required. Only 118 SNe out of the 361 SNe in the
CSD have photometric coverages and published host galaxy
reddenings that are appropriate for such comparisons. The
Milky Way (MW) foreground extinction of each SN is derived
using the Schlafly & Finkbeiner (2011) reddening map. For
108 of the 118 SNe, we directly adopted the values of host
extinction provided by the Kaepora database (Siebert et al.
2019), which lists Ay derived from MLCS2k2 (Jha et al. 2007)
assuming Ry =2.5. The host extinctions for the remaining 10
SNe are not available in the Kaepora database and are adopted
from the following publications: SN 2011iv (Ashall et al.
2018), LSQ 12gdj (Scalzo et al. 2014), SN 2010ae (Stritzinger
et al. 2014), SN 2014J (Ashall et al. 2014), SN 2012cu (Huang
et al. 2017), SN 2012Z (Stritzinger et al. 2015), SN 2010jn
(Hachinger et al. 2013), SN 2014ek (Li et al. 2018), ASASSN-
141p (Shappee et al. 2016), and SN 2011 hr (Zhang et al. 2016).

A model by the Hsiao template is uniquely determined by
the assumed dust extinctions from the MW and the host galaxy.
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Figure 8. Comparisons of the LSTM-predicted template spectra (black curves) with the observed spectra in the test set (green curves) for 16 NV objects and 16 HV
objects. The flux ratios of the predictions to the observations are shown in the lower attached frame for each panel. The number at the top left of each panel shows the
phase from B-band maximum. The number in square brackets in the top left corner of each panel indicates the number of training spectra of the SN. The MAPEs
between the predicted template spectra and the observed testing spectra are shown in the top right corner of each panel.

We generated the model Hsiao templates for the 118 SNe after
corrections for both the MW and the host reddening, assuming
the Cardelli, Clayton & Mathis (CCM) extinction law (Cardelli
et al. 1989). Unlike the Hsiao template, the SALT3 model
requires the observed spectra as the input data to fit the
parameterized spectral time sequence. The SALT3 template of

12

each SN is derived by fitting the LSTM training spectra
corrected by their photometric B — V color.

The spectra in the CSD are all flux normalized by their
average flux (see Section 3.5), whereas the SALT3 model
requires the spectra being fitted to preserve the time evolution
of the flux. Therefore, the flux levels of the input spectra are
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Figure 9. Comparison of the predicted template spectra (black curves) with the observed testing spectra (green curves) for (a) 1a-91T, (b) Ia-99aa, (c) [a-91bg, and (d)
Tax. The panel format is the same as in Figure 8.
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Figure 11. The MAPEs between the observed spectra in the test set and the predicted template spectra versus the number of training spectra for the SN. The symbols
are the same as in Figure 10. The data points are arbitrarily shifted with small displacements in the horizontal direction for clarity of display. A box plot is overplotted

onto each group of data points (see the definition of a box plot in Figure 3).

renormalized to their corresponding V-band magnitudes before
SALTS3 fitting. The SALT3 model allows for fitting spectra
with given spectral uncertainties. Here the uncertainty spectra
are deduced from the approximate error spectra described in
Section 3.1 by taking into account the flux scaling factors.
Figure 12 shows examples of the template spectra at testing
epochs generated by the LSTM, Hsiao et al. (2007), and
SALT3 models. The SNe of distinct spectral properties at
different phases are shown. In all cases, the LSTM method
generally offers a considerable improvement over the other two
models in reconstructing the spectral features. The Hsiao
templates are unable to capture the diversity of the spectral

profiles of most of the SNe. The SALT3 model only shows
moderate improvement over the Hsiao template in most cases.
The advantages of LSTM become even more obvious for the
peculiar SNe, such as Ia-91T, [a-91bg, and lax. For these
peculiar events, not only are the spectral features poorly fit, but
the continuum levels are missed by the Hsiao and SALT3
templates. These models also have severe difficulties matching
the spectral features of HV SNe.

Figure 13 shows the MAPEs between the testing spectra
from the 118 SNe and their corresponding template spectra
versus the template generation methods. The statistics also
confirms that the LSTM templates with a median MAPE of
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Figure 12. Comparisons of the template spectra generated by different methods (black curves for LSTM; yellow curves for SALT3; blue curves for the Hsiao
template) with the observed spectra in the test set (green curves). Each row shows three cases at different phases for a specific subtype, from top to bottom, NV, HV,
1a-91T, Ia-99aa, Ia-91bg, and Iax. The panel format is the same as in Figure 8, but additional comparisons for the baseline models are also presented. In each panel, the
template spectra have been arbitrarily shifted in the vertical direction for display clarity, and the same shifts are applied to the observed spectra (green curves). The
MAPESs between the template spectra and the observed testing spectra are given in the top right corner of each panel; from left to right, the numbers are for LSTM,
SALTS3, and the Hsiao template.

4.0% outperform the two other models. The median MAPEs
are 8.3% and 10.4% for the SALT3 and Hsiao templates,
respectively.

network—based algorithm can predict the spectral sequence of
an SN based only on one or two spectra. Such a prediction is
also a direct assessment of the critical information contained in
any individual spectrum that can be employed to derive the

7. LSTM Applied to the Analyses of SN Ia Spectra intrinsic properties of an SN Ia.

Given the deficiency of spectroscopic resources, it is A more detailed quantitative study of SN properties based on
challenging for future transient surveys to acquire multiepoch the neural networks constructed here will be presented in an
spectroscopy. It is interesting to see how well a neural upcoming paper. Here we only show examples of the neural
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network predictions to demonstrate their potential in SN Ia
spectral studies.

Algorithm 2. Spectral Sequence Construction from One or Two
Spectra

input: The trained LSTM model

input: A spectral pair (X, X,,) with Px; < Dy, (x; = Xx,, is allowed)

1forke|l,2,.., 64] do

2 feed (x;, X,,) to LSTM model to predict spectral time sequence y, (A, p),
where p € [—15, —14.875,..., + 29.875, +33]

3 end

4 compute predictive mean: jt(A, p) = MEAN(Y}, Y5 5. Vga)

5 compute predictive uncertainty: o (A, p) = STD(Y, Y5 »--» You)

7.1. The SNe with NV and HV

Two representative examples of NV and HV SNe Ia are
SN 2011fe (Zhao et al. 2015) and SN 2002bo (Blondin et al.
2012). Both SNe are well observed, with extensive multiphase
spectroscopic coverage. In this section, we introduce a fictitious
scenario: an SN similar to SN 2011fe or SN 2002bo is newly
discovered with only one available spectrum around its
maximum light. We are interested in inferring the entire
spectral sequence of them using the neural network trained on
the data of all of the SNela, excluding these well-
observed SNe.

Two separate LSTM models were constructed specifically
for these two SNe. The training sets of these two different
models are different in that for each SN, the training set
contains all of the spectra in the CSD except the SN being
modeled. The training samples for both cases are also
generated by exhausting all possible permutations as in
Section 6.1.

The spectral sequence is constructed with the procedures
described in Section 6.2 but following Algorithm 2. This
process is a simplified version of Algorithm 1. In Algorithm 1,
there is more than one element in set I (see line 19 in
Algorithm 1). However, here we only have one or two spectra;
thus, the input spectral pair is uniquely determined, and the
combination process (see lines 26 and 27 in Algorithm 1) is no
longer necessary. Unlike Section 6.2, the process bears a much
lower computational cost, so we adjust the repeating times
from 24 to 64 (see line20 in Algorithm 1 and linel in
Algorithm 2).

Figure 14 shows the resulting mean spectral sequences of
SN 2011fe and SN 2002bo derived from the neural networks
using a single spectrum at maximum light following
Algorithm 2. The Sill A6355 at the maximum of SN 2002bo
(HV object) is obviously broader and stronger than that of
SN 2011fe (NV object). Figure 15 presents the comparisons of
the predictive mean sequences shown in Figure 14 with their
corresponding uncertainties. The uncertainties seem to have
footprints broadly consistent with the mean templates, making
them reminiscent of the observational noise dominated by
photon shot noise. The uncertainties at the earliest phases are
relatively large due to the scarcity of spectroscopic data of
young SNe Ia in the training data set. Overall, the uncertainties
are slightly lower for SN 2011fe than for SN 2002bo.

Figure 16 shows the spectral comparisons for SN 201 1fe and
SN 2002bo. The predictions of NV object SN 2011fe at phases
>—8 days are in excellent agreement with observations. For
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Figure 13. The MAPEs between the testing spectra from the 118 SNe and the
template spectra versus the template generation methods. The data points are
arbitrarily shifted with small displacements in the horizontal direction for
clarity of display. A box plot is overplotted onto each group of data points (see
the definition of a box plot in Figure 3).

LSTM

earlier phases, an obvious discrepancy across the Sill A\6355
feature emerges as the model shows a broader absorption.
Meanwhile, the model performs poorly at the blue end with
A < 5200A, where the spectra are dominated by absorption
features of Si, Fe, ando Mg. Nevertheless, the prominent S 1I
lines at around 4800 A seem to be well predicted. For HV
object SN 2002bo, the model can properly predict the broad
and strong Sill A6355 line and the prominent ST lines.
However, the performance is less satisfactory between 4500
and 5000 A.

We also generated the spectral models for SN 2011fe and
SN 2002bo using the Hsiao et al. (2007) and SALT3 models
for comparison. The Hsiao templates of both SNe are generated
as in Section 6.4. For the SALT3 model, we followed the same
procedures as described in Section 6.4 to make the spectral
predictions, except that the spectral data are fitted only for the
spectrum at the maximum light. These models yield less
accurate predictions for both SNe, as shown in Figure 17.
Although the same prior knowledge (the single spectrum at
maximum light) is used in the fits for the LSTM neural
networks and the SALT3 model, the LSTM neural networks
show significantly better performance.

The diversity among normal SNela can be examined by
their photospheric velocities. The expansion of the photosphere
may evolve quite differently for different SNe. It is interesting
to investigate how the neural networks can learn and capture
the spectral evolution of different spectral types of SNe Ila.
Figure 18 shows the velocity of the absorption dip of Sill
A6355 A for SN 2011fe and SN 2002bo. The errors of the
neural network predictions are generally less than 200 km s~
from day —10 to 30 for SN 2011fe. The errors for SN 2002bo
are slightly larger but typically less than 500 km s~ ' from day
—10 to about day 30. For both SNe, the overall trend of line
velocity evolution from about a week before maximum to 4
weeks past maximum is well captured by the neural networks
using only a single spectrum around optical maximum as input.
In contrast, the line velocity evolutions measured on the
predicted spectra from the other two models have much
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Figure 14. Predictive mean sequences of SN 201 1fe (left) and SN 2002bo (right) derived from a single observed spectrum at maximum light using LSTM neural
networks. For each SN, the spectrum (yellow curve) observed at maximum light is fed into the LSTM model (trained on the data excluding this SN), then the
predictive mean sequence (heat map) is obtained by averaging all results from multiple forward passes. The overplotted discrete spectra (black curves) are drawn from

the full sequence. The panel format is the same as in Figure 7.

stronger bias, as shown in Figure 18. The Hsiao template is
insensitive to the spectral diversity of SNe Ia. Though SALT3
allows for higher flexibility to model spectral features than the
Hsiao template, it still fails to capture the evolution of spectral
velocities of any individual SN Ia.

Accurately predicting the underlying continuum component
of the spectra is also a goal of the neural networks we have
constructed. Figure 19 shows the comparisons of the integrated
spectral B — V colors measured on predictions and observations
for SN 2011fe and SN 2002bo. The B and V magnitudes were
directly integrated over the spectra with standard (Bessell) B
and V transmission curves in the rest frame. The missing data
are padded by zero before calculating the B-band magnitudes.
Recall that no extinction corrections were applied on the
spectra of the training set. The B — V colors are not the intrinsic
color but a metric to quantify the colors of the predicted
spectral sequence. The effect of photometric color calibration
during preprocessing (see Section 3.5) is also assessed. The
spectral B —V colors of the homogenized spectra are also
shown in Figure 19.

In general, we find that the B —V color residuals for
SN 201 1fe and SN 2002bo are typically less than 0.03 mag in
both cases, and the overall trend of the color evolution is very
well reproduced by LSTM neural networks. Yet both the Hsiao
et al. (2007) and SALT3 models show less satisfactory
performance in predicting the color evolution, especially for
the HV object SN 2002bo. The color evolution of the Hsiao
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template is determined by the uniform average trend of its own
training set. It does not accommodate any intrinsic color
diversity. Its performance for modeling the color evolution
appears to be better than that of SALT3. This indicates that
using a single spectrum around maximum, the SALT3 model,
although it offers more flexibility, is not well constrained to
derive a full spectral sequence of SNe Ia, especially the HV
SNe Ia.

One may notice in Figure 19 that the predicted B — V colors
from LSTM neural networks are slightly more consistent with
those of the homogenized spectra, which are not calibrated to
the observed photometric colors, than with the corrected
spectra. This could be an indication that a small portion of
original spectral data, e.g., those from SNIFS, may have
already achieved excellent flux calibration, and the color
calibration we adopted is based on photometric observations
from heterogeneous sources, which may, in fact, be less
accurate. The oversimplified color calibration process is
essential in constructing a uniform data set but may also
inherit the errors of the input photometric data. The SN 2002bo
data shown in Figure 19 illustrate a more common situation:
original spectra can exhibit wrong colors and appear as outliers
on the B — V evolution curve. Overall, Figure 19 demonstrates
that the color evolution of an SN Ia can be reliably predicted
using only one spectrum taken around optical maximum using
LSTM neural networks.
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Figure 15. Comparison of the predictive mean sequences with their corresponding uncertainty sequences of SN 2011fe (top) and SN 2002bo (bottom) derived from a
single observed spectrum at maximum light. The left heat maps are identical to those shown in Figure 14 with adjusted sizes. The right panels show the lo

uncertainties amplified by a factor of 50.

The success in predicting the color evolution of an SN Ia
based on spectral data of one or two epochs is a remarkable
achievement that may lead to new observational strategies for
future SN cosmology.

7.2. The Diverse SN la Spectral Family

A wide range of spectral diversities are demonstrated by
SNeIa. A critical question is whether the neural networks can
capture such diversities. In this section, we use four
representative SNe (LSQ 12gdj, SN 2008Z, SN 2005ke, and
SN 20127) to examine the performance of the neural networks
on the diverse subtypes of SNe la. For each representative SN,
a separate LSTM model is trained over the samples generated
from all of the SNeIa excluding the representative SN under
study, as in Section 7.1. The spectral sequence is constructed
similarly following Algorithm 2.

Figure 20(a) shows the spectral sequence predicted from one
spectrum at maximum light for LSQ 12gdj (Gonzilez-Gaitan
et al. 2014), which is a [a-91T SN (Filippenko et al. 1992;
Phillips et al. 1992) with a very shallow Si I 6355 A line before
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optical maximum. The spectral sequences constructed by using
a spectrum taken at +0.7 days after B maximum are shown
together with the observed spectra. At the time of optical
maximum, the Sill 6355 A line is well developed. The spectral
features match well throughout the period covered by the
observations. In particular, the neural network is able to
reproduce the extremely shallow Si 6355 A feature at epochs
around 1 week before maximum. This suggests that the spectra
around the optical maximum carry enough information to
define a Ia-91T event. Identifying [a-91T events from normal
SNe Ia is important for SN cosmology, as it is shown by recent
studies that Ia-91T SNe are potential sources of systematic
errors of SN cosmology (Jiawen Yang et al., in preparation).
Object SN 1999aa represents another subtype of peculiar
SN Ia, which is similar to [a-91T SNe but with the subtle
differences of having weak signatures of Call H and K and Si Il
absorption prior to maximum light (Garavini et al. 2004).
Figure 20(b) shows the model sequence calculated with a
single spectrum +0.3 days from maximum together with the
observations for SN 20087 (Silverman et al. 2012), which is a
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Figure 16. Spectral sequence predicted from one spectrum at maximum light for SN 2011fe (left) and SN 2002bo (right) using LSTM neural networks. The solid
black lines show the predictive mean spectra, and the gray shaded areas indicate 20 standard deviations, representing 95% confidence. The corresponding observations
(photometric color-corrected) are plotted as green curves, except for the input spectrum around the peak highlighted in red. All of these spectra have been arbitrarily
shifted in the vertical direction for clarity of display. They are labeled with phase and instrumental source, where the asterisk is a placeholder for the cases without
corresponding spectroscopic observations. The flux ratios of predictions to observations for the spectral sequence are shown in the lower panel, where the lighter
colors represent 95% confidence caused by the predictive uncertainty. In the case of SN 2002bo, the spectrum contributed by WHT at +5.2 days is a homogenized
spectrum from the extended data set, and notice that the segment from 5700 to 6000 A of this WHT spectrum is not available.

Ia-99aa SN. In this case, the Sill feature is stronger a week
before maximum than Ia-91T and again well reproduced by the
neural network. This demonstrates that the neural network can
effectively distinguish Ia-91T and Ia-99aa SNe based on
spectroscopy around optical maximum.

Object SN 2005ke (Krisciunas et al. 2017b) is a Ia-91bg
(Filippenko 1997) subluminous SN. The SN shows rapid
spectral evolution and much redder overall spectral color.
Figure 20(c) shows the spectral sequence computed from a
spectrum of SN 2005ke at +0.3 days from optical maximum
and the observed spectra. The rapid evolution of the spectral
features is well produced from more than a week before
maximum to about a month after maximum.

Object SN 2012Z (Stahl et al. 2019) belongs to the peculiar
type Iax (Foley et al. 2013) SNe. The spectral data of this
subtype are sparse, but nonetheless, the neural network
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captures all of the major spectral features of the observations,
as shown in Figure 20(d).

Like in Section 6.4, we compared the results of the LSTM
neural networks with the other two template models, as shown
in Figures 21 and 22. We found again that the Hsiao et al.
(2007) and SALT3 models using only one spectrum around
maximum cannot accurately reconstruct the spectral evolution
of any of these objects. The LSTM models can robustly
reproduce the spectral sequences of these SNe from the date of
explosion to about a month past optical maximum, except for
the Tax SN 20127, which shows increasing deviations at around
2 weeks past maximum.

7.3. Spectral Sequences from Two Spectra

One important question in scheduling spectroscopic obser-
vations of SNela is what the optimal time gaps between
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Figure 17. Comparison of the predicted spectra generated by different methods (black curves for LSTM; yellow curves for SALT3; blue curves for the Hsiao
template) with the observed spectra (green curves) for SN 2011fe (top) and SN 2002bo (bottom). For each SN, the predicted spectra from LSTM and SALT3 are
obtained by fitting on the single spectrum at maximum light, while the Hsiao template is the one already constructed in Section 6.4. Each panel shows a comparison at
a different epoch, and the panel format is the same as in Figure 12, but the SN name is replaced by the instrument source in the top left corner of each panel. The
underlined text in the central panel of each SN highlights the epoch of the spectra employed in the fits.

observations would be if multiple observations could be
acquired. With the neural networks, such a question is related
to the spectral sequence prediction using multiple spectra as
input data. Figures 23(a)-(d) show the predictions with two
spectra of SN 2011fe separated by ~2, 4, 8, and 16 days in
spectral phase, each at [-0.5, +0.4], [-2.4, 1.4], [-4.5, +3.4],
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and [—8.5, +7.4] days, respectively. The corresponding
measurements of Sill A6355 velocity and spectral B —V
colors are given by Figures 24(a)—(d) and 25(a)—(d). The
overall spectral fits at early phases improve significantly, as a
spectrum at phases well before maximum is used as the input.
The fits to the data around optical maximum do not show any
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Figure 18. The Si I1 A\6355 velocity measured on the spectral sequence predicted from a single spectrum at maximum light using LSTM neural networks (black) and
the corresponding observed spectra (green) for SN 2011fe (left) and SN 2002bo (right). The LSTM-predicted spectra and the observed spectra are the same as those
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we also present its Si A6355 velocity measurement in the figure.
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Figure 19. Synthetic B — V color measured from the spectral sequence predicted from a single spectrum at maximum light using LSTM neural networks (black
circles) and the corresponding observational data (green circles and blue squares) for (a) SN 201 1fe and (b) SN 2002bo. The LSTM-predicted spectra and the observed
spectra are those already shown in Figure 16, and the measurements from the input observed spectra at maximum light have been highlighted in red. The error bars are
1o uncertainties of the measurements over the LSTM-predicted spectra from different forward passes. To analyze the effect of photometric color calibration of the
spectra, the measurements on both the homogenized (blue squares, labeled as uncorrected) and corrected (green circles) spectra are shown in the figure. For
comparison, the synthetic B — V colors measured on the SALT3-predicted spectra (yellow crosses) and Hsiao template spectra (blue hexagons) at the epochs of LSTM
predictions are also plotted. Note that the spectral B — V color is not measured on the broken WHT spectrum of SN 2002bo. Moreover, the last two corrected spectra
of SN 2011fe and the first corrected spectrum of SN 2002bo did not go through any color calibration due to the deficiency of photometric coverage. Hence, the

measurements from the homogenized and corrected spectra are consistent for them.

obvious deterioration, even when both input spectra are more
than 1 week from optical maximum. The same is true for HV
SN 2002bo, as shown in Figures 24(e)—(h) and 25(e)—(h).

Based on these neural network predictions, we may conclude
that spectral data separated by more than 8§-16 days around
optical maximum can provide the maximum constraining
power on the intrinsic properties of an SN Ia.

7.4. When the Spectral Phase Is Unknown

In our framework, the spectral phase is set as prior
knowledge, whereas the time of maximum light may not
always be available, especially when a newly discovered SN
is still being actively monitored. A CNN can be used to
provide a phase estimate based on an SN spectrum
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deepSIP (Stahl et al. 2020)). The success of the LSTM
neural networks allows for an alternative approach to derive
the phase of an SN spectrum without light-curve data. The
basic concept is that a wrong spectral phase fed into the
LSTM neural networks is likely to degrade the resulting
predictions; that is to say, the correct spectral phase
stands the highest chance of maximizing the predictive
performance.

We tested this concept with six representative SNe la
(SN 2011fe, SN 2002bo, LSQ 12gdj, SN 2008Z, SN 2005ke,
and SN 2012Z). Their spectra are shown in Figures 16 and 20
(except the WHT spectrum of SN 2002bo with data missing).
Each spectrum is assigned a sequence of phases from —15 to
+33 days and fed into the LSTM model (trained without the
same SN). The predictive MAPEs at the time of the input
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Figure 20. Same as Figure 16 but for the spectral sequence predicted from one spectrum at maximum light using LSTM neural networks for (a) 1a-91T object LSQ
12gdj, (b) Ia-99aa object SN 2008Z, (c) Ia-91bg object SN2005ke, and (d) Iax object SN 2012Z. The absorption features at Si Il A6355 are highlighted by a gray
dashed box for 1a-91T object LSQ 12gdj and Ia-99aa object SN 2008Z.

spectrum are used as the loss function to estimate the optimal the true phases. Figure 27 compares the predicted and observed
phase. As shown in Figure 26, for these six SNe, the MAPEs phases. The root mean squared error (RMSE) of this method is
are at their minimum only when the input phases are close to ~1.6 days for normal SNe Ia and ~2.4 days for other subtypes.
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Figure 21. Comparison of the predicted spectra generated by different methods (black curves for LSTM; yellow curves for SALT3; blue curves for the Hsiao
template) with the observed spectra (green curves) for (a) Ia-91T object LSQ 12gdj and (b) Ia-99aa object SN 2008Z. The predicted spectra from LSTM (black) and
SALT3 (yellow) were obtained by fitting on the single spectrum at maximum light. The Hsiao template (blue) for LSQ 12gdj is constructed as described in

Section 6.4. The panel format is the same as in Figure 17.

In addition, our publicly available software also accepts two
spectra with unknown phases as input.

8. Discussions and Conclusions

We constructed a neural network—based algorithm to predict
the spectral time series of SNe Ia from sparsely time-sampled
spectroscopy. In order to train and test the models, we have
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compiled a spectral database of 3091 optical spectra from 361
SNe Ia. Given the heterogeneous nature of the spectroscopic
observations, we homogenized the spectra to obtain uniform
wavelength sampling, then performed flux recalibration
through photometric observations. The spectral data were
reprojected into a lower-dimensional space by FPCA para-
meterization. At the heart of the proposed method is the
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Figure 22. Same as Figure 21 but for (a) Ia-91bg object SN 2005ke and (b) Iax object SN 2012Z.

multilayer LSTM network. It allows predictions of spectra at which was not involved in the template construction, has
any specific phase by using a sequence of observed spectra of confirmed that our model can reliably build spectral sequences
an SN as input. The model thus enables the construction of up to a median MAPE of 4.4%. No obvious bias appears in the
spectral sequences from observations with limited time distribution of the reconstruction accuracy over the evolution
coverage. stages of the SNe. Although normal SNela dominate the
With this method, we have constructed 361 spectral spectral data set, the neural network seems to be able to show
templates for the 361 SNela in our data set, where each reasonable performance on other less represented subtypes,
template is a spectral time series from —135 to 33 days relative such as [a-91T, Ia-91bg, 1a-99aa, and Iax.
to maximum light covering 3800- 7200 A in the rest frame. We further verified that the method can work well when only
Running the testing procedures of the method with the test set, one observed spectrum is available. We used SN 2011fe and
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Figure 23. Spectral sequence predicted from two spectra with phase difference AP using LSTM neural networks for SN 201 1fe (top row) and SN 2002bo (bottom

row). The format of each panel is the same as in Figure 16.

SN 2002bo as the representative cases of NV and HV objects,
respectively, and found that their spectral sequences can be
accurately predicted by using a single spectrum around
maximum light. We also confirmed the model accuracy by
measuring the Sill \6355 velocity and spectral B — V colors.
The difficulties in acquiring spectroscopic data have been
the biggest challenge in SN studies and for future time-
domain surveys. In SN cosmology, spectroscopy of SNe Ia is
normally only attempted for a single epoch around the optical
maximum. In the upcoming era of LSST/Rubin and the
WFIRST/Roman survey, a large number of transients will be
discovered whereas detailed spectroscopy will be impossible
for the majority of the transients. The spectral follow-ups of
the transients will need to be built with knowledge of the
existing data set. The trend motivated us to develop this data-
driven method for spectral inference. This is more than an
interpolation tool. It allows reconstruction of complete
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spectral time series from limited available observations, as
has been applied to the analyses of the Kepler-observed
SN 2018agk in a recent study (Wang et al. 2021).

Our method can be used to investigate the spectral
properties and reveal the intrinsic diversities among SNe Ia.
Therefore, it may give new insight into the error budget of
cosmological parameters. The direct applications of the
proposed method in SN cosmology also include k-correction
and searching for spectroscopic twin SNe. With spectroscopy
from a single epoch, one may reconstruct the entire spectral
time sequence to derive more reliable k-corrections. The
method may also project SN observations from different
epochs to the same epoch for direct comparisons to search for
spectral twins (Fakhouri et al. 2015). For SN surveys, our
method might be useful to optimize the spectroscopic follow-
up strategies. The LSTM neural network allows for the
phases of SNe to be estimated during an observing campaign
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Figure 24. The Si I1 A6355 velocity measured on the spectral sequence predicted from two spectra with phase difference AP using LSTM neural networks (black) and
the corresponding observed spectra (green) for SN 2011fe (left column) and SN 2002bo (right column). The format of each panel is the same as in Figure 18.

and spectral follow-ups to be compared with LSTM
predictions in real time.

For future work, the number of input spectra K, which is
fixed to 2 in this paper, may be increased to allow for direct

spectral reconstruction with more input spectra. Our choice of
wavelength coverage from 3800 to 7200 A, which was chosen
to include as many spectra as possible, may be extended when
more data become available. The loss function MSE is a
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Figure 25. Synthetic B — V color measured from the spectral sequence predicted from two spectra with phase difference AP using LSTM (black circles) and the
corresponding observational data (green circles and blue squares) for SN 2011fe (left column) and SN 2002bo (right column). The format of each panel is the same as

in Figure 19.

generic metric and prone to spectra with incorrect colors. We
may develop more sophisticated loss functions that weigh more
heavily on specific spectral features. The neural network
uncertainties used in this work are still oversimplified. We
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certainly need to better understand the predictive uncertainty.
This may include dividing it into epistemic uncertainty and
aleatoric uncertainty (Kiureghian & Ditlevsen 2009; Gal 2016;
Hortda et al. 2020). The epistemic uncertainty is reducible by
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increasing the number of observations, as the limited training
set can be insufficient for the entire feature space, while the
aleatoric uncertainty captures the noise of intrinsic randomness
(such as photon noise) and cannot be reduced by collecting
more data.
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