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ABSTRACT: Modern high-throughput experimentation (HTE) has enabled the rapid exploration of large expanses of chemical
reaction space to accelerate the development of key synthetic steps in pharmaceutical processes. However, the dimensionality of
reaction parameters, the desire to use minimal starting material, and the need to thoroughly analyze reaction outcomes still require
the judicious selection of which experiments to perform in which order. Therefore, the development of a capability to quantify
reagent diversity and analyze reaction outcomes in HTE holistically is paramount. A method to address this goal would combine
computational featurization of key reaction components with the use of multivariate linear regression modeling to correlate the
reaction performance outputs. In this context, we describe a process of establishing a computational featurization platform for
monodentate phosphine ligands and considerations for its implementation at GSK. We demonstrate that the choice of
computational method has an impact on phosphine descriptor values, ligand selection for experiments, and the development of
linear regression models of reaction outcomes.
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Many perspectives have been published1 on approaches to
HTE design that showcase diverse strategies that

pharmaceutical companies use to optimize reaction conditions
in a plate-based format. In our experience, most experimental
designs originate from variations of literature-precedented
reaction conditions, application of chemists’ intuition and
expert knowledge, and best-guess approaches to exploring
chemical space. Based on demands for an acceleration of API
delivery and the prospect of minimal material in early-phase
small-molecule development, we were compelled to examine
and redesign our platform for Pd-catalyzed cross-coupling
reactions. Specifically, we envisioned a data science-informed
method to efficiently explore chemical space to maximize the
information obtained, with the goal of conducting fewer, more
information-rich experiments to optimize a particular reaction.
Toward this goal, we were inspired by recent work on

phosphine featurization,2 as this ligand class is commonly used
within our HTE platform in various cross-coupling reactions.
We were specifically interested in exploring the chemical space
of our internal phosphine library by quantifying steric and
electronic differences between ligands and the application of this
technology to reaction development. Therefore, we initiated an
academic−industrial collaboration between our groups at GSK
and the University of Utah to probe how to integrate phosphine
featurization and linear regression modeling with HTE reaction
outcomes to maximize the information gained from GSK Pd-
catalyzed cross-coupling experiments. A key goal of our
collaboration was to determine how the choice of computational
featurization method impacts experimental design and analysis.
Based on our related recent work on comprehensive phosphine
featurization3a and selection,3b,c we also wanted to develop
interactive resources to enable GSK chemists to customize their
experimental designs while exploring phosphine space in a more

quantitative manner. Herein, we describe our process to
featurize phosphines and utilize these features for experimental
design at GSK with a specific focus on how the choice of
computational method may impact experimental design and
analysis. To begin our investigation, we computed monodentate
phosphine features for our internal ligand library using two
methods recently reported by the Sigman group: featurization of
the ligands as phosphine oxides2c and as phosphines.2d

Bidentate phosphines were excluded from this endeavor as
methods for their featurization have not yet been established to
the level achieved for monodentate phosphines. In the first step,
we conducted a molecular mechanics-based conformational
search of each molecule (Figure 1). While rigid structures
produced 10 or fewer conformers, more flexible ligands that
resulted in greater than 10 conformers were assessed by
clustering structures with similar conformations into groups
based on root-mean-square deviation (RMSD), a common
metric for analyzing conformer similarity.4 One conformer from
each cluster was then selected for further calculation, resulting in
a collection of 10 diverse conformers for each ligand. Steric and
electronic features were then computed and extracted via
quantum mechanical (QM) optimization of molecular geo-
metries obtained from our conformational search, computation
of the steric and electronic features of each geometry, and rapid
feature extraction with a scripted workflow. For certain features
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describing electron density at phosphorus, the oxygen atom was
removed from the phosphine oxide prior to descriptor
calculation (see the Supporting Information for further details).
After completing the extraction and curation of descriptors,

we sought to create maps of phosphine space to qualitatively
analyze differences between the two computational featurization
methods and to build a tool that our chemists would use to
design their experiments. In creating this tool, we considered the
plot types that were available in software we typically use in GSK
Chemical Development (e.g., JMP, Spotfire5) as well as
feedback from our colleagues about the tool’s ease of use and
consistency of ligand arrangement with their chemical intuition.
We then chose to develop dendrograms from the first three
principal components of each set of features (Figure 2).6 The
dendrogram enables chemists to explore phosphine space by
selecting ligands from different branches or exploit phosphine
space by focusing experiments on ligands from a smaller branch.
We immediately observed that ligands were arranged

differently across the two dendrograms created via the same
statistical methods and that this ligand arrangement could
impact chemists’ phosphine selection for experiments. Consid-
ering that the values of steric and electronic features were likely
responsible for this shift in ligand arrangement, we analyzed two
key features for an array of ligands across the dendrograms,
percent buried volume (%Vbur)

7,8 and the minimum electro-
static potential in the phosphorus lone pair region (Vmin).

9 In
this context, buried volume was especially relevant as it has
recently been shown to correlate with reactivity and ligand
speciation.10 To facilitate comparison, we analyzed the
Boltzmann-weighted average of the %Vbur and Vmin of our
computed phosphine to phosphine oxide structures and
included feature values of crystal structures to represent a
ligand geometry on a Pd complex.11 This analysis revealed that
though most ligands exhibit buried volume similar to that of
their reference crystal structure, there is a subset of ligands that
do not follow this trend (Figure 3).
Most notably, a series of biaryl ligands including RuPhos,

XPhos, SPhos, and CyvBRIDP exhibited crystal structure-
derived buried volumes far lower than both our phosphine and
phosphine oxide computed Boltzmann-weighted averages. To

better understand the observed differences in this ligand series,
the QM minimum energy structures for the phosphines and
phosphine oxides were compared to their corresponding
minimum energy reference crystal structures. We determined
that while both the reference crystal structure and biaryl
phosphines in this series exhibited a flipped geometry (Figure
3B), our phosphine oxide ensembles did not include these
flipped geometries. In this case, the oxide moiety presumably
serves as a steric blocking group (see the Supporting
Information for further information). Our initial interest in
phosphine oxide featurization originated from the assumption
that an oxide could substitute for a Pd atom to enable efficient
calculation of ligand features while producing geometries
assumed to be relevant to catalysis.2c Theoretical and
experimental work conducted by Buchwald12 and Espinet,13

however, demonstrates the relevance of flipped biaryl ligand
geometries in potential mechanisms for phosphine oxidation
and catalyst deactivation. Our recent work with collaborators3a

captures these biaryl ligand geometries at the initial stages of a
related computational workflow by intentionally selecting
conformations that represent the extremes of steric descriptors.
Work is ongoing to understand how to appropriately sample the
complex conformational landscape to address different chem-
istry challenges.
To further understand the origin of variations in ligand

arrangement in Figure 2, we anticipated that Vmin would be
influential. However, the comparison between phosphines,
phosphine oxides, and the corresponding reference crystal
structures did not result in a clear trend (see the Supporting
Information for comparison figure). While a thorough analysis
of all feature values is out of scope of this work, we conclude
based on our initial analysis that the computational method can
impact feature values, leading to clear changes in ligand
arrangement. We reasoned that any method that provides a
realistic feature space could serve equally well for exploratory
purposes. Nevertheless, we sought to further understand the
impact of computational method on experimental design and
models of reaction outcomes (vide infra).
To qualitatively assess how phosphine selection from across

the dendrograms could be impacted by changes in arrangement,

Figure 1. Workflow for featurization and mapping of phosphines and phosphine oxide space.
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we first performed k-means clustering to identify up to 24
diverse ligands from each dendrogram. This phosphine set size is
relevant to performing experiments in 96-well HTE plates; a set
of 24 ligands can accompany two bases and two solvents to

survey Pd-catalyzed cross-coupling reactions. When we used the

first three principal components of each feature set to conduct k-

means clustering for the phosphines and phosphine oxides

Figure 2. (A) Dendrogram using phosphine oxide features. (B) Dendrogram using phosphine features.
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separately,14 we found six ligands closest to the cluster centroids
in common (Figure 4).

Since the majority of these shared ligands are not among the
most commercially available options on a scale required by
pharmaceutical process chemists, we manually substituted many
of them when selecting the larger set by choosing alternatives
from the same dendrogram branch when possible (Figure 5).
For example, we replaced JackiePhos OiPr with JackiePhos. In
our manual selection from across each dendrogram, we also
considered the perceived prevalence of the ligands in literature
reports.
Overall, 70% of our independent selections from the

phosphine oxide and phosphine dendrograms were in common,

demonstrating that the two computational methods that we
examined produced comparable representations of ligand space
when used to identify sterically and electronically diverse
ligands. Although exploring ligand space from each dendrogram
can produce similar selections, focusing on smaller dendrogram
branches reveals distinct differences between our maps of ligand
space. These local changes in arrangement could impact a
chemist’s experimental design when seeking to exploit steric and
electronic features that previously led to a successful reaction.
An analogous comparison using a dendrogram created from the
“kraken” features3a resulted in the independent selection of a
ligand set similar to those chosen in Figure 5 (see the Supporting
Information for further details). While a quantitative assessment
of the impact of ligand arrangement on experimental design is
out of the scope of this work, this qualitative analysis enables us
to guide our colleagues when designing and analyzing cross-
coupling experiments.

■ APPLICATION OF FEATURES TO HTE DATA:
CHEMOSELECTIVE MIYAURA BORYLATION

While global trends in our maps of ligand space led to the
selection of similar ligands, we also wanted to understand how
models of HTE reaction outcomes might be influenced by
different computational featurization methods. We envisioned
using such models to help our chemists understand how ligand
features influenced reactivity and selectivity to better inform
their design of subsequent experiments. A chemoselective
Miyaura borylation previously developed by our colleagues15

proved to be an apt case study for proof of concept; HTE
outcomes revealed that the yield of the product (Scheme 1)
significantly varied as a function of the phosphine ligand identity.
To determine the potential impact of ligand descriptors on the

reaction outcome, we first compared the desired product yield to
each of our computed features. Similar to recent work exploring
the implications of single-node decision trees to %Vbur (and
other phosphine descriptors) within the context of nickel and
palladium catalysis,10 a plot of product yield vs %Vbur revealed a
distinct reactivity cliff between ligands over or under
approximately 36% Vbur (Figure 6A). This cliff was observed

Figure 3. (A) Differences in Boltzmann-averaged %Vbur across phosphine oxides, phosphines, and metal−ligand crystal structures. (B) Flipped vs
expected conformations of phosphine ligands.

Figure 4. Ligands identified from separate k-means clustering of
phosphines and phosphine oxides that are shared between the two k-
means cluster sets.
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in plots with either the phosphine oxide or the phosphine
features. This result led us to consider the possible role of Pd
speciation in the formation of the borylation product.
To gain more insight into key phosphine features beyond this

steric-driven reactivity classification, we first initiated statistical
modeling to determine whether the yield is related to multiple
computed molecular descriptors.17 However, preliminary
modeling efforts to account for all available data points were
unsuccessful. Consequently, examples wherein the palladium
complex did not complete one turnover were removed, as this
poor activity could be attributed to either on- or off-cycle failure.
Additionally, the classification process wherein six of these seven
removed data points were above the defined reactivity threshold
of 36% Vbur supported this curation step. Ultimately, two
statistical models were developed for the yield using the
phosphine oxide descriptors. A bivariate model (Figure 6B,
validation R2 = 0.77, Q2 = 0.76, k-fold = 0.74) incorporates the
Boltzmann average of the Fukui nucleophilicity index (Boltz f−P)

and CM5 partial charge on phosphorus (Boltz P CM5) from the
phosphine oxide.18,19 Both the f−P function and CM5 represent
phosphine σ-donor capacity, and the signs of both terms indicate
that phosphines with moderate σ-donor capacity are optimal.
Larger positive f−P values coupled with a negative coefficient
(−0.31) reflect that excellent σ-donor ligands result in
diminished reaction performance. In contrast, a large
phosphorus CM5 charge coupled with a negative coefficient
(−0.26) indicates the importance of good σ-donors; a high CM5
value is indicative of less electron-rich phosphines. Our
colleagues’ analysis, however, also suggested that the aryl
bromide bond is sterically encumbered compared to the
adjacent aryl chloride bond, necessitating a relatively un-
hindered Pd(0) species to promote oxidative addition. Indeed,
similar statistics and improved interpretability can be obtained
with the inclusion of a third term (validation R2 = 0.80, Q2 =
0.74, k-fold = 0.71), the maximum value of %Vbur (minimum
quadrant) (see Supporting Information Figure S2). This term

Figure 5. (A) Ligand set selected from phosphine oxide dendrogram. (B) Ligand set selected from phosphine dendrogram.
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reflects the ability of a ligand to provide at least one free quadrant
in the coordination sphere to accommodate additional ligands at
the metal. This inclusion and the cutoff observed in the
threshold analysis emphasize the potential importance of
complex speciation in this particular Miyaura borylation; a

mono- or bis-ligated Pd species may be required to facilitate
different steps in the catalytic cycle. The best multivariate linear
regression model identified when employing features from the
phosphine ligands, however, is less robust than the ones
identified from the phosphine oxide structures. The three

Scheme 1. Miyaura Borylation Reaction Conditions and General Mechanism16

Figure 6. (A) Univariate relationship of phosphine and phosphine oxide %Vbur to the yield of the desired product. (B) Multivariate relationship
between the yield and ligand features using phosphine and phosphine oxide feature sets.
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parameters included in our model generated from phosphine
features are the Boltzmann-weighted average of the 31P chemical
shift anisotropy (11 eigenvalues at phosphorus (Boltz aniso.
Eigen. XX)), the minimum value of the smallest eigenvalue of
the electric field gradient (EFG) tensor (min. EFG XX), and the
buried volume range (max. %Vbur range).

20 Compared to both
models generated from phosphine oxide features (Figures 6B
and S2), this model contains slightly inferior statistics for each
measure (validation R2 = 0.59, Q2 = 0.67, k-fold = 0.63).
Moreover, although the inclusion of a buried volume term again
highlights speciation, it is less clear what phosphorus chemical
shift anisotropy and EFG tensor value may imply. The
magnitude and sign of the EFG tensor, as it describes the local
electric fields at a given nucleus, has previously been rationalized
by comparison to computed atomic orbitals.21 Similarly,
Cope  ret and co-workers have shown through natural chemical
shift analysis that chemical shift tensors can be linked to frontier
molecular orbitals in the context of metathesis.22 Together,
these terms are more challenging to relate to key characteristics
of the phosphine ligands that promote high product yield. While
models with interpretable features may be intellectually
satisfying, models with less interpretable features may still be
useful to predict the performance of additional phosphines. We
believe that both performance prediction and interpretability
have distinct advantages; predictive models may enable virtual
ligand screening to save time and material, while interpretability
may provide insight into mechanistic factors driving reactivity or
selectivity. At this point, these models do not fully answer
whether employing phosphine- or phosphine oxide-derived
molecular features is more beneficial in a global sense.
Nevertheless, the differences in these model terms show that
there is a potential impact on experimental prioritization; one
model may lead a scientist to choose different ligands (e.g., more
expensive, less available on a large scale) for subsequent
experiments than another, leading to different experimental
outcomes.23

■ CONSIDERATIONS FOR THE IMPLEMENTATIONOF
PHOSPHINE FEATURES IN EXPERIMENTAL DESIGN
AND ANALYSIS

Recent work on phosphine featurization2,3,10,24 offers industrial
chemists the opportunity to both streamline experimental
design and maximize information gained from each experiment.
As we have shown, integration of any reported tools necessitates
thoughtful consideration of experimental goals and the potential
impact of the computational method on scientific choices
(Figure 7). Based on a chemist’s goal, we recommend using
ligand features to accomplish any or all of the following:

(i) design of an HTE plate that incorporates ligands that
occupy diverse regions of chemical space or a specific
region based on prior experimental knowledge

and
(ii) development of regression models that inform mecha-

nism-driven hypotheses and/or predict ligand perform-
ance through analysis of the descriptors contained in the
top model.

As we have demonstrated, the choice of computational
method has an impact on ligand conformation, ligand feature
values, and the makeup of ligand clusters in maps. By
incorporating computed features into a hierarchical map of
chemical space and highlighting a set of diverse ligands for
general purpose screening in the absence of prior knowledge, we
have enabled the incorporation of two discrete strategies into
process development. First, an experienced process chemist can
supplement prior knowledge of likely ligand performance with
monophosphine ligands that occupy different regions of
chemical space using the dendrogram. Mapping the afore-
mentioned Miyaura borylation ligands to the dendrograms
(Figure 2 ligands with asterisks, vide supra) reveals that the
ligands in our colleagues’ study primarily occupy one region in
the dendrogram. If a high-performing ligand had not been
identified from that HTE plate, these dendrograms would
enable a chemist to quickly and strategically target new regions
of chemical space by exploring alternate branches. Next, by
choosing diverse ligands, further statistical modeling is feasible.
The adoption of one or both of these strategies canmaximize the
information derived from a single plate through the selection of
key monophosphine ligands (supplementing other experimental
variables such as solvent, base, or precatalyst), leading to a faster
decision to pursue or abandon a synthetic strategy.

■ CONCLUSIONS AND OUTLOOK
Although statistical modeling tools have helped to accelerate
reaction optimization and enhance mechanistic understanding,
the specific demands of process development warranted closer
analysis of the holistic workflow first reported by the academic
community. While developing this workflow to guide exper-
imental design in process development, we have shown that the
choice of which molecule to compute and the subsequent
featurization influences chemical space, redefining which
phosphine ligands are neighbors. This direct comparison of
the maps of chemical space and the selection of linear regression
models warrants further exploration to understand the practical
implications of seemingly modest computational choices. To
democratize a computationally driven workflow, it is necessary
to design a system that can be adapted to include expert
knowledge. By computing phosphine ligand descriptors and
developing a map of this feature space, we have implemented a
strategy to transform the optimization of Pd-catalyzed cross-
coupling reactions in our labs. Although this is a start, a broader
comparison of models obtained from HTE data is necessary to
conclude if any set of ligand features leads to superior models by

Figure 7. Process for implementing a computationally informed workflow for reaction optimization.
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a variety of statistical measures. Based on our own subjective
criteria, the phosphine oxide descriptors provided a more
interpretable linear regressionmodel. However, different criteria
could be reasonably employed throughout this workflow,
wherein the phosphine representation could be preferred.
Future decisions to employ a specific feature set in HTE design
efforts and/or modeling of reaction outcomes may depend on
reaction context. Since the identification of an optimal ligand
feature set requires one to obtain reaction outcomes and
regression models, any set that provides a realistic feature space
serves equally well for exploratory experimental design.
Regardless of which descriptor set is more effective for a
particular reaction, building a platform amenable to chemists
with diverse experience requires evaluating choices within the
workflow that could have consequences for reaction develop-
ment decisions. The specific constraints of process chemistry
(e.g., scalability and availability of raw materials) offer an
exciting opportunity to develop creative and innovative
approaches using data science-derived tools. The flexibility of
our approach suggests that computation can be harnessed for
data-rich experimentation, facilitating experimental design and
the identification of key connections between data.
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