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ABSTRACT: The design of molecular catalysts typically involves
reconciling multiple conflicting property requirements, largely
relying on human intuition and local structural searches. However,
the vast number of potential catalysts requires pruning of the
candidate space by efficient property prediction with quantitative
structure−property relationships. Data-driven workflows embedded
in a library of potential catalysts can be used to build predictive
models for catalyst performance and serve as a blueprint for novel
catalyst designs. Herein we introduce kraken, a discovery platform
covering monodentate organophosphorus(III) ligands providing
comprehensive physicochemical descriptors based on representative
conformer ensembles. Using quantum-mechanical methods, we
calculated descriptors for 1558 ligands, including commercially
available examples, and trained machine learning models to predict properties of over 300000 new ligands. We demonstrate the
application of kraken to systematically explore the property space of organophosphorus ligands and how existing data sets in catalysis
can be used to accelerate ligand selection during reaction optimization.

■ INTRODUCTION

Ligand engineering on the basis of mechanistic hypotheses has
been a primary driver of reaction discovery and optimization in
catalysis. An emerging and complementary approach applies
data-driven methods to molecular design by capturing
multidimensional property relationships that directly influence
performance.1−3 The success of such data-driven approaches
relies on the availability of powerful molecular representa-
tions4−6 that can be used in a wide range of machine learning
(ML) methods.7−12 Organophosphorous(III) ligands are
among the most widely used ligands in homogeneous catalysis.
In this study, we establish a comprehensive workflow to study
these ubiquitous compounds that can be further extended to
other ligand classes. The platform that we developed can be
employed for inverse design of novel homogeneous catalysts
inspired by past work in the context of both molecular and
materials discovery. For example, the Materials Project,13

OQMD,14 and AFLOW15 are tools for exploring the inorganic
compound space that include databases, computer scripts for
feature extraction, and ML toolkits. Additionally, the Harvard
Clean Energy Project16 has similar goals in the space of organic
photovoltaics. Moreover, in the case of heterogeneous
catalysis, the Catalysis-Hub17 contains computed heteroge-
neous reaction energies with the associated barriers, and the
Open Catalyst Project18 provides density functional theory

(DFT) geometry relaxations for material surfaces with
adsorbates. These illustrative examples provide the foundation
for how our teams approached the development of a workflow
for the chemical space of organophosphorus ligands.
In this context, Tolman introduced experimentally measured

descriptors now termed the Tolman electronic parameter
(TEP)19 and the Tolman cone angle20 to quantify and
rationalize phosphorus ligand properties over 50 years ago.21

These molecular descriptors allowed mapping of the
phosphine property space and provided a tool to understand
systematic trends in reactivity and stability by using linear free
energy relationships and substituent additivity approaches.22,23

With the emergence of quantum-chemical methods, interest in
computed properties of phosphines arose.24−26 Building on
this, the ligand knowledge bases (LKB) developed by Fey and
co-workers27−30 marked an impressive milestone in the
mapping of ligand spaces. The LKB-P consists of computed
properties of 366 monodentate organophosphorus ligands in
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typical coordination environments.29 The profound impact of
ligand conformations on properties31−34 and catalytic
activities35,36 has been recognized frequently; however, the
systematic quantification of ligand flexibility is still under-
developed. Thus, inspired by the previous approaches to the
mapping of ligand space, we aimed at devising a workflow that
encompasses a wide range of steric and electronic properties of
catalytically relevant ligands including descriptors for their
flexibility to enhance the capabilities of data-driven catalyst
design.37

Herein we present kraken, an extensive virtual open-access
library covering monodentate organophosphorus(III) ligands
targeted at facilitating the design and optimization of catalytic
processes (Figure 1). To account for conformational flexibility,

a general-purpose physicochemical descriptor set is derived
from representative conformer ensembles of both the
uncoordinated ligands and a model complex, which we
hypothesized provides access to the essential features
describing the multitude of intermolecular interactions
involved in catalytically relevant steps. Additionally, we
demonstrate the application of kraken to explore the property
space of organophosphorus(III) ligands at a massive scale
using increasingly sophisticated models for property estimation
of arbitrary organophosphorus(III) compounds. Finally, we
showcase the use of kraken for inverse catalyst design by
constructing multiple linear free energy relationships and other
regression models based on experimental data and using it to
predict the performance of the entire ligand database,
providing the best candidates to be tested in subsequent
experiments.

■ RESULTS AND DISCUSSION
Library Scope. A central goal was to comprehensively map

the chemical space of monodentate organophosphorus(III)
ligands, focusing in particular on structures relevant to
applications in catalysis and its use for data-driven ligand
optimization campaigns. We initially selected phosphines that
were commercially available and prevalent in the organo-
(transition)metal chemistry literature. In anticipation of the
ML property prediction goals, we surveyed the scientific
literature and systematically added ligands with less prevalent
substituents based on the core structures found. This was
followed by a curation step to avoid structures with additional
N-, P-, or S-containing donor sites or acidic moieties in an
orientation that might result in additional coordination modes
to a metal (e.g., bidentate ligands). Overall, the library contains
ligands with various phosphorus−element bonds encompass-
ing H, B, C, N, O, F, Si, and S next to phosphorus in arbitrary
combinations. Thus, besides phosphines, other important
ligand classes such as phosphoramidites, phosphites, and
phosphinamines are also included. In its current state, the
library (cf. Figure 1) is constructed on full DFT calculations
for 1558 compounds and their conformers, at least 400 of
which are commercially available, and it includes the 200 most-
cited phosphorus ligands in the literature (virtual library level 1
= VL1). The library also includes 194 compounds with
phosphorus in a cyclic structure with the remaining noncyclic
structures containing a total of 576 unique substituents. Several
representative structures can be found in Figures 4E, 8, and 9,
and the full library can be accessed via an interactive web
application at https://kraken.cs.toronto.edu.

Conformer Ensembles. One key challenge when defining
the kraken computational workflow is the representation of the
conformational space of each ligand, the conformer energies,
and the corresponding contribution to the ligand properties.
This is particularly relevant for steric properties that vary
significantly with conformation, whereas electronic properties
are generally less sensitive.38 While no individual model system
(i.e., free ligand or specific reference complexes) can fully
reflect the conformational space accessible to a ligand in any
given complex, there are certain limits for attainable geometries
and properties. Importantly, investigating these ranges and
limits was used to probe the behavior of ligands in catalytic
systems and predict their catalytic performance. For example,
the buried volume, i.e., the fraction of the volume of a sphere,
which is placed at the metal center, occupied by ligand
atoms,39 of a trialkylphosphine could be very large if all chains

Figure 1. kraken: a comprehensive database of organophosphorus
ligands. (A) A set of 1558 organophosphorus compounds is gathered,
including literature and commercial sources. (B) Virtual libraries
(VL) are built from the substituents of the initial P(III) set. The first
level (Virtual Library 1, VL1) contains the initial set; VL2 results from
a combinatorial approach with either all substituents equal or two
different substituents per ligand (576 total unique fragments),
yielding 331776 compounds; VL3 is a virtual library where all
combinations are possible, i.e., all three substituents can be different,
with over 191 million entries. (C) Conformer ensembles are
generated for each of the P(III) molecules in VL1, at the GFN2-
xTB level of theory. Each conformer is reoptimized by using DFT,
with a total of 21437 conformers evaluated (average of 13.8
conformers per ligand). (D) 78 physical−organic properties are
captured for every calculated conformer; Boltzmann averages, min−
max steric extrema, and other representative conformers are curated
for a total of 190 descriptors per ligand. (E) Chemical property spaces
are defined and visualized by using dimensionality reduction
techniques. (F) ML models are built to simulate a virtual property
library for 331776 compounds in VL2. VL3 is deployed by querying
the ML models on demand.
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are folded toward the phosphorus lone pair, but it could never
be smaller than when all chains are folded away. Thus, the
smallest and largest attainable property values within the
thermally accessible conformers of each ligand is defined as the

representative range, irrespective of the exact complex
environment. Notably, the correct range can only be derived
from a (sufficiently) complete conformer ensemble. To allow
the workflow to operate at large scale and reasonable cost, we

Figure 2. Computational workflows used to build kraken. Free and Ni(CO)3-complexed ligands from VL1 are subjected to a conformer search with
CREST at the GFN2-xTB level. Ligand conformer ensembles are subjected to a conformer selection. DFT is used for geometry optimization and
single points of the selected conformers as free ligands. Pn and P−[Ni]n refer to individual conformers obtained from the conformer search of the
free ligand and the LNi(CO)3 complex, respectively.

Figure 3. (A) Illustrations of some properties computed for each conformer. (B) Ensembling conformer properties to generate ligand descriptors.
Note that absolute buried volume in Å3 is used in this library instead of the more common percent buried volume % Vbur (%Vbur = Vbur/1.8) to
retain comparability with the total volume.
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Figure 4. Property space visualizations of monodentate organophosphorus(III) ligands using UMAP and PCA. (A) Dimensionality reduction of
the descriptor space with UMAP to two dimensions. (B) Dimensionality reduction of the descriptor space with PCA and projection of the
corresponding results onto the two largest principal components, PC1 and PC2. The inset describes the types of descriptors with the highest
loadings for each of the first four principal components along with the respective relative explained variance. (C) PC1−PC2 projection color-coded
by Boltzmann-averaged Vbur. (D) PC1−PC2 projection color-coded by Boltzmann-averaged Vmin. (E) Representative compounds that are
highlighted in panels A and B (black numbers). The numbering scheme also used on the web app is shown in blue.
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applied GFN2-xTB,40,41 a semiempirical tight-binding method
developed to deliver excellent molecular geometries at the
fraction of the cost of DFT, together with the workflows
implemented in CREST to generate conformer ensembles
(Figure 2).42,43 Because of the sensitivity of steric properties to
structural changes, we used these ensembles to select the
structures with extreme values for at least one steric descriptor
to be evaluated using DFT. Importantly, the conformational
space of each ligand was assessed in two reference states: free
ligand and coordinated to Ni(CO)3. Generally, conformations
in the free ligand tend to occupy more space around the
phosphorus lone pair and, hence, free ligands appear more
sterically demanding than complexed ones. Both situations are
important for describing catalytic processes including potential
unwanted side reactions like ligand dissociation. For consistent
results, the ligand conformations from both reference states are
then optimized as free ligands using DFT. To distinguish
between a ligand and its individual conformers, we ascribe
properties to the individual conformers of a ligand and
descriptors to a ligand. A total of 78 properties are evaluated
for each conformer at the DFT level (for representative
examples, see Figure 3A). Figure 3B illustrates the five
descriptor variants (Boltzmann-weighted average, min, max,

delta, properties of conformer with smallest Vbur) that are
derived from those properties. All five descriptor variants are
then used for properties that were found to vary strongly across
conformers (mostly steric properties) whereas only the
Boltzmann-weighted average is used for those properties that
are less sensitive to conformation (mostly electronic proper-
ties) to avoid overly redundant descriptors, resulting in a total
of 190 descriptors at the DFT level. For complete details, see
section 2 of the Supporting Information.

Chemical Space Analysis. With this data set, we set out
to map the associated property space, understand the
corresponding property limits, and unveil uncharted regions
potentially inspiring forays toward new unique ligand classes.
The traditional analysis of phosphine properties uses Tolman’s
steric and electronic map, with the TEP on the abscissa and the
Tolman cone angle on the ordinate.21 This simple yet powerful
visualization technique has helped chemists to survey available
ligands rapidly and select structures with appropriate steric and
electronic properties for specific applications. A more
sophisticated version of Tolman’s map has been introduced
by Fey and co-workers using LKB27,29 (see above) by reducing
multiple descriptors to fewer dimensions via principal
component analysis (PCA). Inspired by this work, we applied

Figure 5. Defining and expanding the kraken chemical space with machine learning strategies. (A) Construction of the virtual libraries VL2 and
VL3, respectively, from virtual library VL1, which comprises 1558 unique ligands. aThe number of unique ligands excludes ligands in which the
phosphorus atom is within a ring. (B) Illustration of the “Bag of Substituents” model to predict ligand descriptors based on substituent increments.
d: descriptor; cd: constant; wi,d: substituent weight per descriptor; i in the sum: total number of occurrences for a given substituent in a ligand.
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the recently developed Uniform Manifold Approximation and
Projection44 (UMAP, Figure 4A) as well as PCA (Figure 4B)
to our entire database of DFT-computed ligands with all
computed descriptors. These dimensionality reduction repre-
sentations are available to interrogate on the interactive web
application (https://kraken.cs.toronto.edu).
Nonlinear dimensionality reduction techniques can be

employed to cluster compounds with a similar distribution of
properties and for segregating distinct ligand classes from each
other. For this purpose, we applied the UMAP technique as it
preserves both local and global structure in the data and is
computationally efficient.44 The corresponding result is shown
in Figure 4A by using the elements bonded directly to
phosphorus for color-coding to illustrate the major phosphorus
ligand classes. It is immediately obvious that the various ligand
classes are well separated, demonstrating the superior ability
for data classification of UMAP. This suggested that our
descriptor set contains relevant information to differentiate
chemically distinct ligand types. Notably, UMAP essentially
segregates the database into two important ligand superclasses,
i.e., phosphorus bound to relatively electropositive elements
like carbon and silicon and phosphorus bound to at least one
relatively electronegative element like oxygen or nitrogen, with
some overlaps between these two. Importantly, this aligns well
with the binding affinities of these ligands as the atom type
bound to phosphorus affects this property most severely.
The principal components obtained from PCA define a

linearly uncorrelated descriptor set condensing the information

contained in the database to as few dimensions as possible,
while approximately preserving distance information in the
descriptor space. This preservation of distances allows us to
interpolate linearly between points in the descriptor space and,
hence, understand the properties of unexplored regions as well.
Accordingly, the resulting first two principal components (PC)
were used to visualize the property space as depicted in Figure
4B; illustrations with PC1−4 are found in section 3 of the
Supporting Information. Again, by coloring the data points
with respect to the corresponding elements attached to the
phosphorus atom, we can explore the relationships between
common ligand classes, such as a smooth transition from
phosphines (red) to phosphites (blue) via the intermediate
phosphinites and phosphonites (purple) in the lower left of the
chemical space.
Furthermore, not only can various ligand classes be

distinguished, but the resulting principal components can be
analyzed with respect to the properties they are encoding by
investigating the most important descriptor loadings. PC1
generally represents total volume and PC2 pyramidalization.
Evaluating the next most heavily weighted principal
components, PC3 is mainly determined by flexibility
descriptors related to the inclusion of conformer ensemble
property information and PC4 contains general orbital
descriptors (a more detailed analysis can be found in section
3 of the Supporting Information). Importantly, the added
information from the computationally derived properties
incorporates both depth and precision to compound

Figure 6. Regression performance of machine learning models. Illustrative performance of all seven types of ML models from this study for the
prediction of Vmin (Boltz). BoS = Bag of Substituents; FP = fingerprint representation: circular fingerprints, radius = 2, folded to 1024 dimensions;
red FP = reduced fingerprints representation: 100 most important fingerprint dimensions based on the feature importance of the GBR FP model.
For additional details on the ML models see the Supporting Information.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c09718
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

F

https://kraken.cs.toronto.edu
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c09718/suppl_file/ja1c09718_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c09718/suppl_file/ja1c09718_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c09718?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c09718?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c09718?fig=fig6&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c09718/suppl_file/ja1c09718_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c09718?fig=fig6&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c09718?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


representation as compared to Tolman’s mapping. Never-
theless, since the PCs combine various descriptors simulta-
neously, they represent a more integrated representation of the
ligand space. To provide a more intuitive illustration of the
PCA property mapping, the individual data points on the PCA
plots were colored with respect to the buried volume39 (Vbur,
Figure 4C) and the minimum molecular electrostatic potential
(MESP) in the phosphorus lone pair region,45 which is
correlated to the experimentally determined TEP (Vmin, Figure
4D). Notably, these plots demonstrate that PC1 generally
trends with Vbur and PC2 trends with Vmin, even though it is
not strongly collinear.
It is envisioned that these property maps can be used

intuitively by chemists that may not be experts in data science.
Specifically, when the basic requirements in terms of sterics
and electronics are known from previous experiments, the
rational selection of the best ligand types that meet various
process needs such as cost, environmental, and/or perform-
ance goals should be straightforward, similar to how the

Solvent Selection Tool is applied by process chemists to locate
the best solvent for a given reaction.46

Expanding the Space with Machine Learning. While
we achieved a substantial coverage of the organophosphorus
ligand space using quantum-chemical simulations, 1558
compounds merely constitute a fraction of the conceivable
space of this ligand class. Our computational workflow is too
resource-intensive to probe all possible compounds of interest
and explore the sparsely covered territory more comprehen-
sively (see Figures 4 and 5A). Hence, to complement the
simulations described above, we investigated several comple-
mentary ML methods to expand the compound space in our
library significantly and provide descriptor estimates for
>300000 molecules.
Inspired by the Benson group-increment theory23,47 in

thermochemistry and the demonstration of substituent
additivity for the TEP by Tolman,19 we tested if descriptors
can be expressed as the sum of constant contributions from
each substituent at phosphorus. To accomplish this, we
represented each ligand as a matrix of all unique substituents

Figure 7. Machine learning modeling results. (A) Stacked linear ridge regression of the seven models was used to create a metamodel for each
descriptor, shown with Vmin(Boltz) as an example. The model contributions shown in the middle are averages from all 190 metamodels. (B)
Comparison of the mean absolute errors (MAEs) of the seven initial model classes and the metamodels across all descriptors. (C) Distribution of
the MAEs of the metamodels across all descriptors (same data as the gray boxplot in part B). (D) Expansion of the descriptor space from VL1 to
VL2 with the metamodels as illustrated by PCA with VL2 being projected onto the first two principal components obtained from VL1.
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bound to the central phosphorus atom containing the number
of each substituent present in a particular compound (Figure
5B), which we term “Bag of Substituents” (BoS). For instance,
PMe2tBu would be encoded by the features “Me” and “tBu”,
with a value of 2 in the former column, a value of 1 in the
latter, and zeros in all other feature columns (576 in total).
Linear regression of each descriptor individually was used with
the BoS encoding to assess the additivity hypothesis. The
coefficients of determination are a measure of how well the
additivity assumptions hold for a descriptor and the trained
weights correspond to the group increments. It should be
noted that this model is inherently incapable of extrapolating
to unseen substituents. As a consequence, all substituents
needed to be included at least once in the training data, and
when possible, we enforced it to contain at least two
occurrences. Apart from this constraint, we used a random
60:20:20 train-validation-test split. Good prediction quality
was observed for a number of descriptors (58 properties with
R2

test ≥ 0.80). As expected, Vmin
(Boltz) (R2 = 0.97, cf. Figure 6)

and Vbur
(Boltz) (R2 = 0.95) are well predicted. Interestingly,

several descriptors that may not be expected a priori to be
“additive” are also predicted with good accuracy, such as the
Boltzmann-averaged NBO partial charge at the phosphorus
atom (R2

test > 0.99).
While the BoS encoding strategy is relatively effective, some

descriptors are not well predicted (45 properties with R2 <
0.50) as is expected when substituent interactions or
conformational effects are present that this simple model
cannot incorporate. Thus, we used molecular fingerprints and
graphs as more generalizable features to expand our predictive
capacities. With those representations, we also applied other
model types such as random forest (RF),7 gradient boosting
regressions (GBR),48,49 Gaussian processes (GP),49,50 and
graph convolutional neural networks51 (GCN; see Figure 6 for

the performance on one representative descriptor; more details
on the ML models are in the Supporting Information). Each of
the models was found to be accurately predictive for a subset
of descriptors. However, as none of the approaches were
consistently the best for all the descriptors considered, we
generated one metamodel for each descriptor. This was
accomplished by ensembling all the models linearly to
maximize the overall prediction quality. The performance of
the metamodel predictors is illustrated in Figure 7A with Vmin
as an example and in Figure 7B,C for all targets. We then
applied the metamodels to the >300000 compounds arising
from unary and binary combinations (i.e., general structures
PA3 and PA2B) of all unique substituents present in our
original library (VL1) to create an extensive virtual library
(VL2) with estimated descriptor values. This chemical space
can be visualized in a new PCA plot revealing the virtual space
now available (see Figure 7D). Compared to the PCA plot of
VL1 (cf. Figure 4B), the plot of VL2 appears more continuous
in the descriptor ranges covered and extrapolates considerably
into underexplored chemical space, thereby encompassing
many new structures that one might want to explore in future
applications in a single lookup table. Intriguingly, this concept
can readily be applied to all ternary substituent combinations
of type PABC to obtain an even larger virtual library (VL3)
with ca. 191 million entries that holds additional potential for
processes involving P-chiral compounds. However, we only
envision on-demand queries at this stage because hosting the
entire data set is impractical due to its size, especially
considering the lower practical utility associated with the
much more difficult synthesis required of phosphorus
compounds bearing three instead of two distinct substituents.
While the metamodels generally perform well, the predictions
should still only be treated as estimates with limited accuracy,
especially in the extrapolated parts of the chemical space. The

Figure 8. Phosphines in enantiospecific Pd-catalyzed sp3−sp2 cross-coupling reactions of alkylboronic acids and aryl halides as an application case
study. aConditions Biscoe et al.: [B] = BF3K (R), R = Ph, X−Ar = 1-Cl-4-CO2Et-C6H4, [PdL] = G3 Buchwald precatalyst (10 mol %), base =
K2CO3 (3 equiv), solvent = toluene:H2O (2:1), T = 100 °C, t = 24 h.53 Conditions Burke et al.: [B] = B(OH)2 (S), R = H, X−Ar = 1-Br-4-Ph-
C6H4, [PdL] = Pd2dba3 (5 mol %) + 10 mol % L, base = Ag2O (3 equiv), solvent = dioxane, T = 85 °C, t = 24 h.54
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estimates could for example suffice to obtain ligand suggestions
from the desired location in chemical space, which can then be
subjected to the computational workflow and obtain the actual
DFT-level descriptors.
Inverse Ligand Design. Finally, we aimed to demonstrate

the immediate practical applicability of kraken to a typical
problem common in reaction development and ligand

design.52 Specifically, we wanted to utilize the ML-predicted
database to identify viable alternative ligands for a selective
catalytic reaction. To do this, we revisited two independent
studies by Biscoe and Burke, respectively,53,54 that reported
enantiospecific Pd-catalyzed sp3−sp2 cross-coupling reactions
of stereodefined alkylboronic acid derivatives with aryl halides.
The two studies identified unique ligands that successfully

Figure 9. Using kraken for virtual ligand optimizations in asymmetric catalysis by using the data shown in Figure 8. (A) General workflow for the
case study. (B) Statistical modeling of experimental results to predict how data from one reported reaction could inform ligand choice in the other
through a virtual screen of VL1 for ligands that are predicted to result in high selectivity for the stereoretentive cross-coupling. (C) Combining the
statistical models for both reactions to evaluate the entirety of VL2 for new selective ligands. (D) Exploring the PCA descriptor space to determine
ligands with novel structures in the high-selectivity regime.
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achieve high levels of stereoretention (Figure 8). In the Biscoe
study, the ligand discovery was guided by using predictions
from statistical modeling that electron-poor Buchwald-type55,56

biaryl phosphine ligands were the best performers. The Burke
study also discovered that electron-poor ligands were required,
but a different core structure, one based on o-tolyl phosphines,
was found to be required for highly selectivity in this reaction.
Intuitively, the best ligands from either study are structurally
unique, and a practicing organic chemist would not necessarily
think to substitute one with the other. In addition, the reaction
conditions, while distinct, are similar enough to expect
qualitatively comparable selectivity of the ligands under each
condition.
On the basis of these findings, we hypothesized that kraken’s

descriptors applied to an original data set could be used to
predict similar ligand structures found to be optimal in the
complementary reaction (Figure 9A). As a first step, several
statistical models of each data set were constructed (details in
the Supporting Information) by correlating experimental
results to the ligand descriptors, which were included in VL1
(Figure 9B). Unique models were averaged to provide robust
predictions of which ligands would provide high selectivity.57

Gratifyingly, trained on the results reported by the Burke
group, our predictions identify the exact ligands reported by
the Biscoe group as most selective. Similarly, regressing the
Biscoe data set and virtually screening VL1 revealed untested
electron-poor triaryl phosphines, in particular, Buchwald and o-
tolyl derivatives, as most selective. This suggests that these two
reactions likely proceed via similar mechanistic pathways in the
stereo-determining events.
After this successful validation of the interconnectivity of the

two reactions, we combined the two data sets to enhance the
robustness of the predictions while exploring the entire virtual
search space of VL2. This is visualized in the PCA plot
depicted in Figure 9C wherein the black-framed points
represent the experimental data from the two studies, atop
the ML library in gray. We were then interested in comparing
two distinct approaches to suggest novel ligands in a large
search space. First, we applied the averaged regression models
that were trained on the experimental results to the entire VL2
to obtain selectivity predictions and robustness estimates. The
ligand predictions were then curated by filtering structures
through descriptor limits reported for this process (small
ligands)53 and ligands that presumably would not form a metal
complex (very large ligands). As a result, we obtained ∼100
ligands that are predicted to provide selective stereoretentive
cross-coupling. Many of these are bulky and electron-poor
Buchwald-type ligands, represented by the two structures in
Figure 9D. Notably, ligand D1 merges structural elements into
a hybrid of both the Biscoe and Burke ligand designs.
While this approach likely provides relatively safe predictions

with structural similarity to the best experimental ligands, we
envisioned an explorative strategy providing more structural
diversity by analyzing the relative positions of ligands in the
descriptor space. We classified the “more selective” and “less
selective” regions in this space by proximity to the nearest
experimental data point in the first four principal components
and ranked the resulting >30000 structures by minimizing the
distance to the most selective experimental ligands. This
explorative classification method suggests unexplored ligands
that upon inspection have some structural familiarity to both
Burke’s and Biscoe’s ligand designs, which is highly
encouraging. This strategy would be especially effective when

a researcher has relatively sparse data early in an optimization
campaign as the local neighborhoods of the active space could
be rapidly explored. We also envision this process will be
valuable in iterative ligand searches, especially when
commercial ligands only provide modest performance.

■ CONCLUSIONS AND OUTLOOK

We have developed kraken, which covers 300000 monodentate
organophosphorus(III) ligands with 190 property descriptors
including an extensive description of their conformer depend-
ence, mapping essentially the complete space of conceivable
structures that could be used in organo(transition)metal
reactions. We demonstrate its application in visualizing the
associated property space, predicting properties of molecules
not subjected to our full quantum-chemical workflow, and
applying the corresponding results to inverse catalyst design.
Kraken is accessible as a web application (https://kraken.cs.

toronto.edu). Computed data are available at the semi-
empirical QM, DFT, and ML levels of theory. For 1558
organophosphorus compounds, there are both semiempirical
QM and DFT data comprising 190 computed descriptors and
properties as well as the coordinates information for the
associated conformers. The ML data consist of 331776 entries
obtained by generating all organophosphorus ligands with up
to two distinct substituents combinatorially and training the
models on the DFT data set (see above). Lastly, around 191
million distinct organophosphorus compounds can be queried
to generate the ML property predictions on the fly.
Overall, we believe that the property maps generated by

common dimensionality reduction techniques included in the
kraken platform can be a valuable aid in the understanding of
the space of organophosphorus ligands. We envision that it will
enable synthetic chemists to perform computer-assisted
interactive ligand exploration and provide new insights into
relevant properties to solve a given problem. The kraken tool
may enable informed catalyst design based on organo-
phosphorus ligands, facilitate the optimization of reaction
process parameters, inspire new ligand choices, and promote
the synthesis of new organophosphorus compounds. The
database and tools reported herein are currently being applied
to enhance reaction optimization58−61 and mechanistic
workflows.62 The open-source nature of our codes, as well as
the open database, is designed to be extended by others, and
we welcome further contributions by the community.
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