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Abstract

GoodVibes is an open-source Python toolkit for processing the results of
quantum chemical calculations. Thermochemical data are not simply
parsed, but evaluated by evaluation of translational, rotational, vibrational
and electronic partition functions. Changes in concentration, pressure, and
temperature can be applied, and deficiencies in the rigid rotor harmonic
oscillator treatment can be corrected. Vibrational scaling factors can also
be applied by automatic detection of the level of theory and basis set.
Absolute and relative thermochemical values are output to text and
graphical plots in seconds. GoodVibes provides a transparent and
reproducible way to process raw computational data into publication-quality
tables and figures without the use of spreadsheets.
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Introduction

Quantum chemistry software packages implement various levels of theory and basis sets, so-called model
chemistries, that can be used to optimize molecular geometries and compute ground state vibrational modes. Statistical
mechanical expressions using these vibrational frequencies, along with other contributing terms to the partition func-
tion, are used to obtain the enthalpy, entropy and Gibbs energy values required to understand, validate or predict
experimental observations. GoodVibes was developed to address several challenges faced by practitioners of
computational thermochemistry.

Firstly, the rigid-rotor harmonic oscillator (RRHO) model is routinely used to obtain vibrational entropic
contributions and is the default for most electronic structure packages. However, the harmonic approximation fails
to accurately describe low frequency modes and alternative models may be more appropriate'~’. Corrections to the
RRHO model may be theoretically desirable, but the absence of practical and accessible tools to implement
such corrections has limited their widespread adoption. Here we present and detail the use of the program
GoodVibes*, a Python-based project used for obtaining thermochemical values while applying corrections using
quasi-harmonic approximations, alongside other corrections relevant to the overestimation of the zero-point
energy, multi-conformer ensembles, and standard concentrations.

Secondly, computational chemistry projects often combine results from different software. For example,
geometries may be optimized with one program and the energies evaluated with another. Complex spreadsheets are
frequently used to process these results and to prepare figures and manuscripts. However, errors in spreadsheets are
commonplace and may be hard to detect. For this reason, GoodVibes allows the combination of data from mul-
tiple program outputs as part of the same project. Our group has utilized this program in informatics and organic
mechanistic studies’, however, GoodVibes is not limited to a specific area of chemistry and has been used in
published studies by more than 30 different research groups. As an example, previous studies in organic catalysis
and mechanism, photocatalysis, and inorganic structure characterization have made use of this program pack-
age to process and make corrections to thermochemical data®. Figure 1 details an overview of the GoodVibes
workflow from input data to the various outputs. Input options supplied via the command line enable chem-
ists with basic experience with Python to process a large number of computational output files and to generate
publication-ready data. These data (e.g. figures, tables) can be quickly reproduced by any other user with access
to the raw data and the GoodVibes code. With recent and coming changes to standards of supplying full compu-
tational outputs through open repositories (such as Zenodo and ioChem-BD’) alongside publications, GoodVibes
allows for complete transparency in how reported thermochemical values were obtained.

Methods

By recomputing translational, rotational, vibrational and electronic partition functions from the data generated
by quantum chemistry programs (such as vibrational frequencies, molecular mass, etc.), thermochemistry can
be calculated in GoodVibes at any specified temperature or concentration/pressure. By default, these are set
to 298.15 K and 1 atmosphere. A notable automated correction to the RRHO model is applied to low frequency
vibrational modes. These low frequency modes (typically less than 100 cm™) are not well approximated as
harmonic and their entropy contributions tend to be overestimated. Methods to avoid this include nontrivial hindered-
rotor calculations and computationally expensive anharmonic calculations, both of which become more infeasible
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Figure 1. The GoodVibes workflow. Computational chemistry output data files are parsed, and thermochemistry data
is generated based on a series of user-defined physical assumptions and reaction conditions. The program outputs
absolute and relative values to text and reaction profiles as plots. The execution time is seconds.
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with higher atom counts'. Both Cramer/Truhlar* and Grimme® have proposed simple, more widely adopted correc-
tions, so-called quasi-harmonic approximations, formulated specifically to obtain vibrational entropies for these
low frequency modes. GoodVibes will also automatically apply empirical scaling factors to computed frequencies.
These corrections arise from the tendency of electronic structure calculations (e.g. with density functional
theory) to overestimate vibrational frequencies relative to experiment, and hence zero-point energies. Linear
scaling factors have been collated for a number of functional and basis set combinations for sets of small organic
molecules. GoodVibes accesses the scaling factors compiled by the Truhlar group across several studies®, automatically
detects the level of theory and basis set and scales the frequencies if there is a match.

Single point energy calculations performed at more expensive levels of theory and with larger basis sets are
commonly used in combination with the thermal corrections obtained from separate calculations, often using differ-
ent software packages’. A multitude of output files from different program packages along with correction applied by
GoodVibes can be combined to construct a potential energy surface by using an easily interpretable YAML file
that defines the elementary steps of the reaction, file definitions and formatting options.

Implementation

GoodVibes is a module implemented in Python, currently supported by 2.6-7 and all 3.x versions. The module
requires the NumPy library (version 1.14.2 or greater), with optional importing of Matplotlib (version 2.2.4
or greater) to graph potential energy surfaces. To test the accuracy and upkeep of this coding package, a series of
tests have been implemented in TravisCI, checking functionality and accuracy of the code when the master branch
is updated on GitHub against target Python versions on Linux, macOS and Windows operating systems.

Operation

GoodVibes is compatible with Windows 10, Linux and macOS operating systems. This software is appropri-
ate for use with output files produced by a wide range of calculation types, including density functional theory,
wave function theory, molecular mechanics, COSMO-RS solvation calculations, and semi-empirical methods.
Current supported programs include Gaussian 09'’, Gaussian 16'', ORCA 4 single point energy calculation files, and
COSMOtherm'® COSMO-RS solvation free energy output files. GoodVibes provides an output file with tabu-
lated thermochemical data, optionally exported as a CSV file. Cartesian coordinates of processed files can also
optionally be exported in an XYZ file. Plots of energy profiles are optionally generated.

Use case

In this section we show how GoodVibes can be used with a variety of input options and files to transform heteroge-
neous computational chemistry data into human-readable tabulated values and figures. In this example, 50 calcula-
tion output files (25 Gaussian geometry optimizations and vibrational frequency calculations with 25 corresponding
ORCA single point calculations) are used to create the data in Table 1 and graphed in Figure 2. All raw data was
taken from a 2018 study'’, and is freely accessible through a Zenodo repository"”. Each point in Figure 2 repre-
sents a unique conformer’s Gibbs energy. The Boltzmann-weighted values are shown as dashes connected by the
curved profiles. Optimizations were done with ®B97X-D/6-31+G(d)'® implemented in Gaussian using an “ultrafine”
pruned (99,590) integration grid. Considering solvent effects of the reaction, calculations were run with the
SMD solvation model'’ using ethanol, and the concentration of each substance was set to 1.0 M for further ther-
mochemical calculation. GoodVibes allows for solvent media corrections to entropy based on select solvent
standard state concentration'®, which was applied to ethanol in this case.

Thermochemistry is evaluated at a temperature of 80°C (353.15 K) in accordance with experimental conditions
(the temperature assumed in the original calculations does not influence the results from GoodVibes). These val-
ues are corrected using the quasi-harmonic approximation proposed by Grimme. One conformer of intermediate
II in the ‘Py’ pathway has a small imaginary frequency of 2.9 cm’, which was “inverted” to a real value
2.9 cm!, as done in previous works to small imaginary frequencies, typically under >i50 cm™!*".

Separate single point energies are extracted from ORCA calculations performed at a coupled cluster level of
theory with a (DZ/TZ) basis set extrapolation (DLPNO-CCSD(T), cc-pVDZ/cc-pVTZ)*, then used for calculations
and added to the GoodVibes output for comparison. A potential energy surface is constructed by using Boltzmann
weighted averaging of all conformers at each step in the pathway. A multi-structural correction is then applied
to the resulting Gibbs free energy based on the number and energy of distinguishable conformers present
for each species’’. The Gibbs energy profile is constructed from options specified in the YAML file containing the
reaction pathway steps, file definitions and plot formatting options. All of the output files, correction and formatting
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Table 1. Tabulated relative Boltzmann weighted
thermochemical values (shown in kcal-mol') from the
“Ph” and “Py” pathways. Including: single point calculations
(AE_SPC), energy (AE), zero-point energy (AZPE), Gibbs free
energy (AG) and quasi-harmonic corrected Gibbs free energy
(gh-AG).

Ph pathway AE_SPC AE AZPE AG qh-AG

Ph-Int-l 0.00 0.00 0.00  0.00 0.00
Ph-TS-I 23.56 2354 -155 2129 2231
Ph-Int-ll -12.29 -1414 -057 -13.49 -12.86
Ph-TS-II -8.13 1207 | -1:34 1 -9.97 | -9.35
Ph-Int-1ll -33.59 -37.61 -0.57 -36.61 -35.11

Py pathway AE_SPC AE AZPE AG qh-AG

Py-Int-I 0.00 0.00 0.00 0.00 0.00

Py-TS-I 15.08 16.52 -1.20 1427 1429
Py-Int-II -17.45 SI8SI9N-0I558 =20 19711912
Py-TS-II -9.59 -13.17 -097 -10.96 -10.39
Py-Int-lll -29.39 -33.24 -0.70 -33.04 -31.35

Potential Energy Surface
i 25 output files
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1 nt_|_Fn_c.log =
& |nt_|_Ph_c_DLPNO.out !‘ | Pyl 8
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£ / -30
Input for GoodVibes (included in a YAML file)
———#PES Ph-;nt-ll F’h-'YI'S-II Ph-int-l\l

Ph: [Ph-Int-l, Ph-TS-I, Ph-Int-Il, Ph-TS-II, Ph ... Py-Int-II Py-Ts-I Py-Int-Il

Py: [Py-Int-l, Py-TS-I, Py-Int-Il, Py-TS-Il, Py ...

———#SPECIES =

Ph-Int-I s Int_|_Ph* & Allin one command line !
Ph-TS-I :TS__I:Ph* / i ® Fast process (13 seconds) |
Ph-Int-Il s Int_II_Ph* i & No human manipulation i
Ph-TS-Il  : TS_II_Ph* ® Customizable graphics

Figure 2. A reaction Gibbs energy profile is produced directly from the command above and saved to PNG file.

Here, two reaction pathways, “Ph” and “Py”, are displayed.

Page 5 of 13



F1000Research 2020, 9(Chem Inf Sci):291 Last updated: 26 MAY 2020

options are supplied to GoodVibes to output tabulated data and a graph of the reaction pathway from a single
command:

python -m goodvibes *.log --spc DLPNO --pes science.yaml --graph
science.yaml -t 353.15 --imag --invertifreq -5 --media ethanol -c 1

Additional usage examples are described at GoodVibes GitHub repository, where several features have been
added in response to requests from the community of users.

Conclusion

GoodVibes is a Python-based tool that calculates thermochemical data from quantum mechanical calculations in
a transparent and reproducible way. GoodVibes may be employed with any type of chemical structure, including
organic and inorganic molecules of varying sizes as well as with single point calculations performed by differing
programs. Additionally, GoodVibes contains many additional automated features that are designed to save time
for researchers, allowing for the calculation of thermochemical data at any temperature or concentration, incorporating
valuable and overlooked corrections to the RRHO model through quasi-harmonic and vibrational scaling
factor corrections and construction of potential energy surfaces with applied corrections accounting for the
accessibility of multiple conformations. For projects involving the analysis of a large number of computational
chemistry output files, GoodVibes helps to prevent human errors associated with spreadsheets, and can
be used to reproduce any table or figure from the raw data.

Data availability

Zenodo: Data Supporting GoodVibes: Automating and applying thermodynamic corrections to harmonic
frequency calculations, https://doi.org/10.5281/zenodo.3662845".

This project contains data referenced in the use case.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
Software availability

This code has been made accessible for chemists of various levels of computational experience and is easily
installed. The most recent version of our open-sourced Python package GoodVibes v3.0.1 is freely available on
GitHub at https://github.com/bobbypaton/GoodVibes. GoodVibes may be installed as a Python module from the

command line using either PyPI (https:/pypi.org/project/goodvibes/) or Conda (https://anaconda.org/patonlab/
goodvibes) using the commands:

pip install goodvibes
or:
conda install -c patonlab goodvibes

or, by downloading the repository from GitHub and running the following command from the extracted directory:

python setup.py install
Archived source code at the time of publication: https://doi.org/10.528 1/zenodo.595246%

License: MIT

Acknowledgements
Yanfei Guan (MIT), Jaime Rodriguez-Guerra (Charité Universitidtsmedizin Berlin Institut fiir Physiologie).
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Kjell Jorner
Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK

Paton and co-workers describe an open source Python program, GoodVibes, for the calculation of
thermochemistry from quantum-chemical calculations. The program automates a lot of the tedious work
needed to process the output files and to add correction terms. Importantly, it presents a reproducible
workflow for extracting and visualizing energies of reaction paths. GoodVibes is now in its third version
and has over the last few years become a standard tool for computational chemists both in academia and
industry. Additional functionality in the latest version includes, for example, automated calculation of
diastereo- and enantioselectivity, potential energy surface plotting, and including separate single point
energies.

This software tool article is, therefore, most welcome not only as a reference for the program but by
providing more detail and references to the underlying theory as well as examples of how to use the
program. In particular, the program implements many elements of good scientific software practice, such
as using a Git repository with version control, a version release system, and continuous integration
testing. The program is also easy to install via pip or conda.

It would be good if the authors could be more explicit regarding the “multi-structural correction” that is
“applied based on the number and energy of distinguishable conformers present for each species”. Is this
on by default, and what is the basis for distinguishing between unique conformers? Also, could you be
more explicit regarding the symmetry detection and correction (“ssym” argument)? How does it detect the
internal symmetries of the molecule? And why is it off by default, when it seems that most standard
quantum chemistry codes (e.g. Gaussian) include at least external symmetry by default? Also, the use of
“solvent media corrections” in conjunction with an implicit solvent method is strongly discouraged in ref 18
(Harvey, Himo, Maseras), and it would be good to add a note on this caveat with the inexperienced user
in mind.

| think the program is very useful as is, but here are some suggested improvements:
® Make the program work as an importable Python module and not only as a standalone script. This
is especially helpful when integrating it into automated (Python-based) workflows.
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® Storing internal data in separate files (e.g. csv) rather than in the Python source code may be more
maintainable.

® Separate documentation on, e.g., Read the Docs may be more accessible.
® Document Python code with docstrings in NumPy or Google style.
®  Qutput of SVG or other vector graphics files for lossless figures.

® A quick way to support more quantum chemistry codes (at least on Linux or Mac) would be to
support output from the UniMoVib program (https://github.com/zorkzou/UniMoVib).
Minor correction:
® “Gibbs energy” -> “Gibbs free energy” (page 3/9 and other examples)

® “a Python-based project” -> “a Python-based program/tool” (page 3/9)

® “standard concentrations” -> “standard state concentrations” (page 3/9)
Addition: After reading the review by Dr. Pollice, | agree with him that the handling of the moment of inertia
for Grimme's method is not correct. There is a reference implementation of his method which can be
found in the xtb Github repository: https://github.com/grimme-lab/xtb. The "subroutine axis2" handles the
calculation of the average moment of inertia. After correcting for this in the code, | think the authors should
do an analysis of how large the error is for using the erroneous moment of inertia, e.g., as a function of
molecular size as Dr. Pollice points out.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: physical organic chemistry, reaction modelling, machine learning
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I confirm that | have read this submission and believe that | have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however | have significant
reservations, as outlined above.
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? Robert Pollice
University of Toronto, Toronto, ON, Canada

The paper “GoodVibes: automated thermochemistry for heterogeneous computational chemistry data” by
Paton et al. describes GoodVibes, an open-source program to compute thermochemical parameters from
the output of popular computational chemistry software accounting for multiple well-established
thermodynamic corrections developed and used for chemistry in the gas phase and in solutions. The aim
is to provide a general tool to apply these corrections straightforwardly without much effort saving time for
practitioners and making the corresponding results more reproducible for the entire scientific community.

Overall, the paper is clear, well-written, and explains the rationale for developing the program. All the
theoretical models implemented are described and cited appropriately. | believe that this program is a
very important contribution to the field as it simplifies the process of applying thermochemical corrections
greatly, which otherwise can be quite time-consuming and is, as the authors point out appropriately,
error-prone due to the considerable number of calculation steps that need to be carried out. | have tested
the current version of the program and both installation and usage are well-documented and
straightforward for anyone with minimal python experience.

However, having inspected the source code of the current version, | am concerned about the
implementation, or lack thereof, of a few important thermochemical corrections as | will outline in the
section “Major Issues” in more detail. Moreover, | believe that there are a few minor issues that require
correction and | will outline them in the section “Minor Issues.”

Major issues:

1. My main concern with the current version of GoodVibes is that | believe that Grimme’s
quasi-harmonic correction is not implemented correctly. In line 1922 of GoodVibes.py, the authors
define the average moment of inertia as 10 - 10"*4 kg m? and use this value as a global parameter
for every molecule. However, | believe that this is a misinterpretation of the method by Grimme as
described in reference 3 of the paper. In that paper, Grimme uses this specific value in Figure 2
merely as an illustration of a typical example to show how the mathematical shape of this
correction looks. It is never stated that this value is to be used as a global parameter for all
molecules. In fact, the average moments of inertia need to be calculated for every molecule at
hand from the respective Cartesian coordinates of the conformer used and the masses of all the
atoms. In my opinion, this issue needs to be addressed properly by implementing the calculation of
the average moment of inertia of a conformer based on its Cartesian coordinates in GoodVibes.
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This is particularly important for large molecules with hundreds of atoms because their average
moment of inertia will deviate significantly from the used global parameter.

2. After close inspection of the code, | believe that, currently, GoodVibes applies the solvent
correction as obtained from the output of COSMOtherm as is without any adjustments. However, it
has been pointed out recently that this is (unfortunately) a common mistake as COSMOtherm uses
the mole fraction reference state for pure solvent rather than the concentration reference state.
Consequently, this leads to inconsistencies in the standard states used and to a systematic offset
in predicted Gibbs free energies of solvation. The details of this problem and how to correct for it
are described in the literature.’

3. Moreover, | inspected the code of GoodVibes in order to find out whether a correction for the
entropy of mixing of multiple species is applied. | could not find such a correction. | believe that this
is an important correction, especially for reactions with changing molecularity. This correction is
outlined in reference 21 of the paper, in particular in the Sl of reference 21.

Minor issues:

1. Page 4, first paragraph: The authors mention that electronic structure calculations have a tendency
to overestimate vibrational frequencies relative to experiment. In my opinion, this is misleading as
the tendency to overestimate vibrational frequencies is not inherent to the electronic structure
methods applied but rather inherent to the harmonic approximation of the vibrational potential
energy surface. Hence, | suggest that the authors mention that specifically, possibly with an
appropriate citation. For that purpose, citation 8 of the paper could be used as it addresses this
issue properly.

2. Page 4, “Operation” paragraph: In my opinion, appropriate citations should be added for the
COSMO-RS method.

3. Page 4, “Use case” first paragraph: The authors mention that in the output plots, “dashes [are]
connected by the curved profiles.” In my opinion, the authors should mention explicitly what
interpolation method is used to generate these curved profiles.

4. Page 4, “Use case” second paragraph: The authors state that “in previous works” small imaginary
frequencies “typically under >i50 cm™1” were inverted. From a mathematical point of view, | believe
this to be imprecise notation. Natural linear ordering on the sets of neither complex nor imaginary
numbers is possible. Hence, the notation “>i50 cm™”, even though it has been used in Chemistry,
should be avoided. To resolve this issue, it should be stated that the absolute of the imaginary
frequency should be below 50 cm™1. In addition, the imaginary units should be added to the “small
imaginary frequency of 2.9 cm-!” in the same sentence.

5. This is just a suggestion rather than an issue: It would be great to have the option to save the plots
generated by GoodVibes in a number of formats including, in particular, formats supporting vector
graphics like PDF as this would make it easier to use the graphics directly for generating
high-resolution illustrations.

References
1. Assaf K, Florea M, Antony J, Henriksen N, et al.: HYDROPHOBE Challenge: A Joint Experimental and

Page 12 of 13



FIOOOResearch F1000Research 2020, 9(Chem Inf Sci):291 Last updated: 26 MAY 2020

Computational Study on the Host-Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit
Evaluation of Guest Hydration Free-Energy Contributions. The Journal of Physical Chemistry B. 2017;
121 (49): 11144-11162 Publisher Full Text

Is the rationale for developing the new software tool clearly explained?
Yes
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