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Superresolution in interferometric imaging of strong thermal sources
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Imaging using interferometer arrays based on the Van Cittert–Zernike theorem has been widely used in
astronomical observation. Recently it was shown that superresolution can be achieved in this system for imaging
two weak thermal point sources. Using quantum estimation theory, we consider the fundamental quantum
limit of resolving the transverse separation of two strong thermal point sources using interferometer arrays,
and show that the resolution is not limited by the longest baseline. We propose measurement techniques using
linear beam splitters and photon-number-resolving detection to achieve our bound. Our results demonstrate that
superresolution for resolving two thermal point sources of any strength can be achieved in interferometer arrays.
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I. INTRODUCTION

Rayleigh’s limit, which says that with a single lens imaging
system we cannot resolve sources with separation less than
the diffraction-limited spot size of the point spread func-
tion, has been widely used to quantify imaging resolution
[1]. Rayleigh’s limit was revisited from the perspective of
quantum metrology by Tsang et al. [2,3], who showed that
Rayleigh’s limit for estimating the separation of two weak
incoherent point sources using a single lens can be over-
come with more carefully designed measurement strategies.
From the quantum metrology perspective, Rayleigh’s limit
is a consequence of an improperly chosen measurement that
both restricts access to information and destroys information
by collapsing the state. A quantum-mechanical description of
imaging allows us to design a measurement to access infor-
mation about the states through use of prior information about
the source, such as the assumption of point sources of equal
intensity [2].

Since this ground-breaking result was announced, stud-
ies have shown that measurements constructed to avoid
Rayleigh’s limit for estimating the separation of two weak
thermal point sources of equal strength using a finite-sized
single lens are not unique. Strategies include the original
proposal based on projection onto the Hermite-Gaussian spa-
tial modes [2] and others based on using an image-inversion
interferometer [4], adding a phase plate before half of the
image [5], using an array of homodyne detectors [6], and
exploiting Hong-Ou-Mandel interference using two copies of
the incoming photonic state [7]. Experimentally, the quantum
theory of superresolution has been verified [5,8]. Toward more
realistic applications, there are several practical issues that
must be addressed. The constructed optimal measurement can
rely on prior information on the source, such as the centroid
of the two point sources [2]. Overhead photons can be used
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to obtain this prior information, and more carefully designed
adaptive measurements can still provide an advantage over
conventional imaging [9]. If there exists other noise besides
the photon shot noise, the sensitivity of the measurement will
be degraded, as discussed in Refs. [10,11].

It is of interest to expand the quantum-mechanical descrip-
tion of imaging to cover more types of sources and imaging
modalities. Work on other sources in the case of single lens
imaging includes studying point sources of stronger strength
[12,13] and unequal strength [14,15], estimating point source
locations in two and three dimensions [16–19], and finding the
sensitivity limit of imaging a more general extended source
[20–25]. As a first step to study imaging systems other than
a single lens, Ref. [22] discusses the resolution limit for
measuring the positions of weak point sources using an in-
terferometric imaging system. Our paper extends this effort:
we consider the resolution limit for measuring the positions
of point sources of arbitrary strength using an interferometric
imaging system.

As a widely used conventional imaging method beyond
single lens imaging, interferometric imaging enables an ar-
ray of lenses to provide enhanced resolution compared to
a single lens. Interferometric imaging is based on the Van
Cittert–Zernike theorem [26], which roughly speaking uses
interference between signals arriving at different positions in
the image plane to reconstruct the intensity distribution in
the source plane. This method has led to the thriving de-
velopment of interferometric telescope arrays, especially in
the radio wavelength [27,28]. The high angular resolution
provided by the Event Horizon Telescope, a radio interfer-
ometer array, made it possible to obtain the first image of
a supermassive black hole at the center of the Messier 87
Galaxy [29]. Recently, methods to improve interferometric
imaging systems using quantum information techniques have
been proposed, which show transmission loss between two
nodes in an optical interferometric array can be circumvented
by quantum networks [30,31]. The precision with which the
mutual coherence can be measured has also been explored
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both theoretically and experimentally using quantum estima-
tion theory [32,33]. It is well known that the ability to resolve
two point sources using interferometric telescope arrays based
on the Van Cittert–Zernike theorem is limited by the longest
baseline (we provide a detailed introduction to the resolution
limit of interferometer arrays in Appendix A).

This resolution limit also holds even for the methods that
improve the sensitivity of estimating the coherence function
in Refs. [30–33]. The reason behind this resolution limit is the
incomplete sampling of the image plane, which is similar to
Rayleigh’s limit with finite aperture size. Given these facts,
it is then very tempting to ask whether one can achieve su-
perresolution for interferometric imaging systems. The recent
work of Ref. [22] gives an affirmative answer to this ques-
tion. They consider an arbitrary number of weak incoherent
thermal point sources observed by a system of collectors and
determine the fundamental limit of sensing the parameters
related to the position of the sources. Their result shows that
in the ideal case, there is no resolution limit for estimating the
separation between two weak point sources using interfero-
metric telescope arrays.

Superresolution in interferometric imaging for the case of
arbitrary intensity remains to be studied. Arbitrary intensity
is important to consider because multiphoton coincidences
and photon bunching, which have been ignored [22], have
significant effects in some situations [34]. For the single lens
case, these effects were pointed out and superresolution was
shown to be achieved for two incoherent sources of arbitrary
strength [12,13], and a general extended source has been
considered [23]. It should similarly be rigorously confirmed
that superresolution is achievable for strong thermal sources
using interferometric imaging. In addition, outside the topic
of superresolution, it has been pointed out for interferomet-
ric imaging that the accuracy of estimating the coherence
function using heterodyne detection exhibits very different
behavior for strong versus weak thermal sources [35]. This
is because the vacuum state dominates, which is a problem
if the measurement cannot distinguish a vacuum state and a
single-photon state. This discussion on the estimation of the
coherence function motivates us to ask the question whether
superresolution of strong thermal sources also exhibits differ-
ent behavior compared to weak thermal sources. In this paper,
we show using quantum estimation theory that superresolu-
tion can be achieved in interferometric imaging for thermal
sources of arbitrary strength. Our results include the weak
thermal source limit as a special case. The proposed measure-
ment to achieve superresolution uses a linear beam splitter,
which is the same as in the weak thermal source case, but here
the measurement requires photon-number detection to resolve
the vacuum and single-photon state. We also determine the
effect of misalignment on the performance.

II. THEORETICAL MODEL

We model the quantum state received from two strong
thermal point sources of equal intensity by a linear interfer-
ometer with two telescopes in the paraxial regime. We assume
the two point sources are incoherent, which is reasonable
for astronomical observation because radiating particles from
distant astronomical objects should not have any correlation

FIG. 1. Schematic of the setup for estimating the position of
two strong thermal point sources c1 and c2 at positions X1 and X2,
respectively. The light from the two sources is collected with a
two-mode interferometer. States received by the two interferome-
ter modes differ by the phases φ1 and φ2 due to the difference in
path length.

[36]. We assume the positions of the two point sources can be
described in one dimension as X1 and X2, as shown in Fig. 1.
The two point sources are assumed to be monochromatic and
can be described by the canonical annihilation and creation
operators c1, c†

1 and c2, c†
2. The two modes a1, a†

1 and a2, a†
2

of the interferometer in the image plane receive the state from
the sources with phases φ1 and φ2 due to the difference in light
path length, which contains information on the position of the
sources. We explicitly derive the relation between φ1, φ2 and
the parameters of the settings (detailed in Appendix B) as

φi = kB
Xi

s0
, i = 1, 2, (1)

where B is the length of the baseline, k is the wave vector
of the light, and s0 is the longitudinal distance to the source
plane.

Similar to the derivation in Ref. [12], the states received in
the interferometer modes a1 and a2 are an attenuated version
of the source modes c1 and c2:

ci → √
ηa1 + √

ηeiφi a2 +
√

1 − 2η vi, i = 1, 2, (2)

where vi are auxiliary environmental modes and η is the
attenuation ratio. Starting from the thermal states of the source
c1 and c2, we derive the states received by the interferometer
(detailed in Appendix C) as

ρ = 1

(πηN̄ )2

∫
C2

d2α1d
2α2 exp

(
−|α1|2 + |α2|2

ηN̄

)
× [|α1 + α2〉〈α1 + α2|a1

× ⊗|α1e
−iφ1 + α2e

−iφ2〉〈α1e
−iφ1 + α2e

−iφ2 |a2 ], (3)

where N̄ represents the strength of each source and |α1 +
α2〉 and |α1e−iφ1 + α2e−iφ2〉 are the coherent states of the
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two interferometer modes a1 and a2. We confirm the
derived state is still a Gaussian state in Appendix C.
Gaussian states are completely characterized by their
mean displacement λμ = Tr[ρaμ], where a = [a1, a

†
1, a2, a

†
2],

and covariance matrix �μν = 1
2 Tr[ρ(ãμãν + ãν ãμ)], with

ãμ = aμ − λμ [37,38]. The mean displacement λμ and covari-
ance matrix � of ρ are given by

λμ = 0, for ∀μ,

� =

⎡⎢⎣0 p 0 q
p 0 q∗ 0
0 q∗ 0 p
q 0 p 0

⎤⎥⎦,
(4)

where p = 2ηN̄ + 1
2 and q = (eiφ1 + eiφ2 )ηN̄ .

III. FUNDAMENTAL SENSITIVITY LIMIT

We now consider the fundamental limit of resolving
two point sources with two telescopes. For two point
sources, the resolution is reflected in the sensitivity of
measuring the centroid θ1 = 1

2 (X1 + X2) and the separation
between the two sources θ2 = X1 − X2. The sensitivity of
estimating θ1 and θ2 is bounded by the quantum Fisher
information (QFI) F : �	θ � F−1, with its (μ, ν) element
[�	θ ]μν = E[(θμ − θ̌μ)(θν − θ̌ν )], where θ̌μ is the unbiased
estimator of the μth unknown parameter. This sensitivity limit
given by the QFI is the quantum Cramér-Rao bound (QCRB)
[39]. The matrix element Fi j of the QFI of a Gaussian state
has been derived as a closed-form expression in terms of λμ

and � in Refs. [40,41]:

Fi j = 1

2
M−1

αβ,μν∂ j�αβ∂i�μν + �−1
μν ∂ jλμ∂iλν, (5)

where M = � ⊗ � + 1
4
 ⊗ 
, with 
 = ⊕n

k=1 iσy where σy

is the Pauli y matrix, ∂ j is the derivative over the jth unknown
parameter, and repeated indices imply summation.

The quantum Fisher information for the separation θ2 is
then given by

F22 = −k2B2

s2
0

ηN̄[1 + 3ηN̄ + ηN̄ cos(φ1 − φ2)]

−1 − 2ηN̄ (2 + ηN ) + 2η2N̄2 cos(φ1 − φ2)

θ2→0



 k2B2

s2
0

ηN̄ . (6)

We emphasize that when the separation between the two point
sources tends to zero, i.e., θ2 → 0, the quantum Fisher infor-
mation tends to a constant. This implies that there is actually
no resolution limit for resolving two strong thermal point
sources. Notice the QFI here is proportional to B2, where B
is the baseline of an interferometer. Compared with a single
lens, where the QFI is proportional to D2 [2], where D is the
diameter of a single lens, an interferometer has much larger
QFI since B � D. The quantum Fisher information F11 for
estimating the centroid, θ1, also tends to a constant as the
separation θ2 → 0, as detailed in Appendix D; we discuss this
result after analyzing the QFI for the separation. We plot the
values of F22 as a function of the separation θ2 for different

FIG. 2. The quantum Fisher information F22 for estimating the
separation, in units of ηN̄k2B2/s2

0, as a function of the separation θ2,
for different source strengths N̄ .

source strengths N̄ in Fig. 2. The QFI shows periodicity over
θ2 with period 2πs0/(kB), which is roughly the conventional
resolution limit of interferometry. The periodicity is due to the
fact that the position information of the sources is encoded
in the phase eiφ j . Adding 2π to φ j does not affect the state
described in Eq. (3) and hence cannot be distinguished by any
measurement. The setup considered in our model can only
distinguish φ1 − φ2 ∝ X1 − X2 up to an integer number of 2π .
We can solve this problem by having detectors at more than
two positions. This is different from direct imaging, where
varying the positions of the sources will always affect the
received states and hence there is no periodicity in the QFI
[12,13]. We observe that for the intermediate values of θ2

within a period, the QFI decreases with increasing source
strength N̄ ; this is in contrast to the limit of a weak thermal
source, in which the QFI is a constant versus separation θ2

[22]. As pointed out by Ref. [13] in the single lens case,
this is a net result of multiphoton events. Note that Fig. 2
is a plot of the QFI per photon, which decreases for some
values of θ2 as source strength increases, but a stronger source
still has a larger total QFI of estimating θ2 given its larger
photon number. We have verified this and found ∂F22/∂ (ηN̄ )
is always positive for all possible parameters.

We now consider what the proper measurement strategy
is to actually achieve this limit. The positive operator-valued
measure (POVM) that can saturate the QCRB is given
by the eigenbasis of the symmetric logarithmic derivative
(SLD) [42,43]. For a Gaussian state, the SLD has been de-
rived in terms of its mean displacement λμ and covariance
matrix � [40,41]:

Li = 1

2
M−1

γ κ,αβ (∂i�αβ )(aγ aκ − �γκ ), (7)

where ai is the mode operator and we sum over repeated
indices. The SLD for estimating the separation θ2 is

Lθ2 = 2l1a
†
1a1 + 2l1a

†
2a2 + 2l2a1a

†
2 + 2l∗2a

†
1a2 +Cθ2 , (8)
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where

Cθ2 = −ηN̄[8l1 + 2l2(eiφ1 + eiφ2 ) + 2l∗2 (e−iφ1 + e−iφ2 )],

l1 = kB

s0

(1 + 4ηN̄ ) cot φ1−φ2

2

−4[1 + 2ηN̄ (2 + ηN̄ )] + 8η2N̄2 cos(φ1 − φ2)
,

l2 = −kB

s0

× e− 1
2 i(φ1+φ2 )[1 + 3ηN̄ + ηN̄ cos(φ1 − φ2)] csc φ1−φ2

2

4[−1 − 2ηN̄ (2 + ηN̄ ) + 2η2N̄2 cos(φ1 − φ2)]
.

(9)

To find the eigenbasis of the SLD, we diagonalize
Lθ2 . Assuming d1 = 1√

2
(a1 + eiδa2), d2 = 1√

2
(a1 − eiδa2) and

dropping the constant terms, we have

Lθ2 = (2l1 + l2e
iδ + l∗2 e

−iδ )d†
1d1

+ (2l1 − l2e
iδ − l∗2 e

−iδ )d†
2d2

+ (l2e
iδ − l∗2 e

−iδ )d†
1d2 − (l2e

iδ − l∗2 e
−iδ )d†

2d1. (10)

We can choose l2eiδ − l∗2 e
−iδ = 0 or equivalently

δ = 1
2 (φ1 + φ2), which means the SLD has the Fock

basis of d1, d2 as its eigenbasis. Thus, the optimal
POVM for estimating θ2 is {|m, n〉d〈m, n|d}{m,n}, with
d†

1d1|m, n〉d = m|m, n〉d and d†
2d2|m, n〉d = n|m, n〉d .

As shown in Fig. 1, we can implement the above POVM by
combining the states of the two modes of the two telescopes
on a beam splitter, adding a fixed phase delay δ correspond-
ing to the optimal delay found above to one of the arms,
and performing photon-number-resolved detection in both of
the two output ports. This setup is the same as found in
Ref. [22], except for the photon-number-resolved detection.
More specifically, for the weak thermal source discussed in
Ref. [22] and in Appendix E, the quantum state ρ received
by the two telescopes in modes a1 and a2 is in a Hilbert
space spanned by the Fock state basis {|m, n〉} with constraint
m + n � 1—no such constraint is present for the case of a
strong thermal source. In order to implement the POVM found
above, the state is measured for each temporal mode and
projected onto one of the Fock bases |m, n〉d of d1,2 modes.
Data are accumulated to find the probability P(m, n) of getting
each outcome. The probability distribution is then fit with its
corresponding theoretical prediction to obtain the unknown
centroid or separation. The theoretical prediction for the first
few P(m, n) is given in Fig. 3. The probability distribution
P(m, n) is symmetric with respect to φ2 − φ1 = 2π as a func-
tion of φ2 − φ1, so for some separations there exists ambiguity
in the estimation—this is resolved through measurement of
the centroid θ1 ∝ φ1 + φ2, discussed below. In practice, the
detectors may be able to distinguish only the first few Fock
states of low photon number. As shown in Fig. 4, even if only
Fock states |m, n〉d with m � M, n � N can be distinguished,
the FI still maintains a reasonable amount of the QFI, which
implies that we can achieve a large part of the sensitivity
predicted in the ideal case. In particular, we emphasize that
even if we only distinguish the presence or absence of the
photon, i.e., M = N = 1, superresolution is still achieved, as

FIG. 3. The probability P(m, n) of projecting the state onto
|m, n〉d with ηN̄ = 0.1 as a function of φ2 − φ1.

is indicated by the finite FI in this case when the separation θ2

goes to zero.
We estimate the improvement our method provides com-

pared to the conventional imaging method based on the
Van Cittert–Zernike theorem using parameters similar to real
present-day interferometer arrays in Appendix F. We con-
sider the case where the observation is made with wavelength
λ = 5 mm and longest baseline B = 10 km. The resolution of
the conventional method is then λ/B = 5 × 10−7 rad ≈ 0.1′′.
When the angular separation of the two point sources is
θ2/s0 = 0.01′′ and ηN̄ = 0.01, the Fisher information of our
optimal measurement is larger than the conventional method
by a factor of roughly 30. If we assume the mean square
error of estimating the angular separation θ2/s0 scales with
the number of samples n as �(θ2/s0)2 ∝ 1/n, this implies that
our optimal measurement can shorten the observation time by
a factor of 30 to achieve the same sensitivity.

FIG. 4. Fisher information for photon number detection that only
distinguishes the Fock state |m, n〉 for m � M, n � N . Events with
greater photon number are ignored.
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FIG. 5. (a) Approximate Fisher information as a function of the integration range [0, b]. Other parameters are chosen as N̄ = 0.01;
m, n � 3; c = 10−6; and θ2 = 10−3. (b) Approximate Fisher information as a function of separation θ2 for fixed misalignment c = 10−3. Other
parameters are chosen as N̄ = 0.01 and m, n � 3. (c) Approximate Fisher information as a function of misalignment c for fixed separation
θ2 = 10−3. Other parameters are chosen as N̄ = 0.01 and m, n � 3.

The phase delay δ depends on the centroid θ1 of the two
point sources, since θ1 ∝ φ1 + φ2, and thus the scheme re-
quires accurate measurement of the centroid. The derivation
for the estimation of the centroid is detailed in Appendix D;
there it can been seen that a similar measurement strategy
that also depends on the centroid is optimal. This recursive
relationship can be overcome, as in conventional imaging
there is no fundamental limitation on the accuracy of esti-
mating the centroid; thus, other imaging methods can be used
or suboptimal strategies can be constructed to determine the
centroid, such as using a random phase scheme. Nevertheless,
misalignment of the centroid must be taken into account. We
now show how the superresolution predicted by the QFI is
affected by a deviation of δ from 1

2 (φ1 + φ2). We write the
deviation as c = 1

2 (φ1 + φ2) − δ. We write the state |m, n〉d
using the Fock basis of modes a1, a2:

|m, n〉d = (d†
1 )m(d†

2 )n|0〉
= 2− m+n

2 (a†
1 + e−iδa†

2)m(a†
1 − e−iδa†

2)n|0〉
= 2− m+n

2

∑
j,k

C j
mC

k
n (−1)ke−i( j+k)δ

× (a†
1)m+n− j−k (a†

2) j+k|0〉, (11)

where C j
m = m!

j!(m− j)! . We then evaluate

f (m, n, α1, α2) = 〈m, n|d (|α1+α2〉 ⊗ |α1e
−iφ1 + α2e

−iφ2〉)

= 2− m+n
2

∑
j,k

C j
mC

k
n (−1)kei( j+k)δ

× e− 1
2 |α1+α2|2− 1

2 |α1e−iφ1 +α2e−iφ2 |2

× (α1 + α2)m+n− j−k (α1e
−iφ1+α2e

−iφ2 ) j+k .

(12)

The probability of getting outcome |m, n〉d〈m, n|d is given by

Pd (m, n) = 1

(πN̄ )2

∫
C2

d2α1d
2α2

× exp

(
−|α1|2 + |α2|2

N̄

)
| f (m, n, α1, α2)|2.

(13)

The Fisher information of estimating the separation is calcu-
lated as

FI =
∞∑

m,n=0

[∂Pd (m, n)/∂θ2]2

Pd (m, n)
. (14)

This calculation is intractable both analytically and numeri-
cally. We instead make the following approximation. First, we
only keep the contribution of |m, n〉d〈m, n|d with m � 3, n �
3. As pointed out above, keeping only the first few elements
of the POVM can still achieve superresolution; i.e., the Fisher
information tends to a constant when the separation θ2 → 0.
Secondly, we do the integration for the phase and amplitude
of α1, α2 separately and define a cutoff for the integration of
the amplitude:

Pd (m, n) ≈ 1

(πN̄ )2

∫ b

0
d|α1|

∫ b

0
d|α2||α1||α2|

× exp

(
−|α1|2 + |α2|2

N̄

)
g(m, n, |α1|, |α2|),

(15)

g(m, n, |α1|, |α2|) =
∫ 2π

0
dβ1

∫ 2π

0
dβ2

× | f (m, n, |α1|eiβ1 , |α2|eiβ2 )|2, (16)

where α1 = |α1|eiβ1 , α2 = |α2|eiβ2 , and b is a finite number
to introduce a cutoff for the integral for convenience in the
numerical calculation. For a fixed value of N̄ , the FI tends to
a constant value as b increases, as shown in Fig. 5(a), which
validates the cutoff.

We plot the FI as a function of separation θ2 with fixed
misalignment c in Fig. 5(b). It is clear that, with a nonzero
misalignment, when the separation tends to zero the FI
vanishes and superresolution cannot be achieved. We also
plot the FI as a function of the misalignment c with fixed
separation θ2 in Fig. 5(c). We observe that increasing the
misalignment significantly degrades the FI. The threshold is
roughly c ≈ θ2 from the figure.

We emphasize that even though the FI is no longer constant
as θ2 → 0 in the presence of misalignment, it is still possible
to get some benefit from our measurement if the misalignment
c is small enough compared to the separation θ2. For example,
when c = 10−3 and θ2/(s0/kB) = 10−1, the FI of our mea-
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surement approaches ηN̄k2B2/s2
0 [from Fig. 5(b)], while for

the conventional method, the FI is 2 × 10−3 times smaller
(from Fig. 7). Thus, when working below the resolution limit
of the conventional method (θ2 < s0/kB), our method can still
significantly outperform the conventional one if the misalign-
ment is not too large. This behavior is similar to what was
found for a single lens in the presence of misalignment [2]: as
long as the misalignment is small enough, the FI of estimating
the separation is better than the direct imaging method.

IV. CONCLUSION

In summary, we have used quantum estimation theory
to determine the fundamental limit of resolving two identi-
cal thermal point sources of any strength. The results show
that, unlike the conventional imaging method based on the
Van Cittert–Zernike theorem, a more properly designed mea-
surement scheme can achieve a resolution not limited by the
longest baseline. We find a measurement scheme using a beam
splitter and photon-number-resolving detection can achieve
the resolution given by the quantum Cramér-Rao bound. This
paper can be extended to several other cases, such as resolv-
ing two point sources of unequal strength [14,15], estimating
separation in three dimensions similarly to Refs. [19,22], and
imaging a general extended source similarly to Refs. [23,24].
Although we are unable to find an analytical solution for the
case of multiple sources and detectors, it is at least possible to
numerically calculate the QFI and SLD following a similar
procedure to that briefly discussed in Appendix G. As in
single lens imaging with noisy detectors [10,11], we expect
the signal-to-noise ratio to limit the resolution. We hope our
result inspires more discussion along these lines.
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APPENDIX A: RESOLUTION LIMIT OF THE
CONVENTIONAL METHOD

Here we briefly review the resolution limit of the con-
ventional imaging method based on the Van Cittert–Zernike
theorem. We refer the reader to Refs. [27,28] for more details.
The Van Cittert–Zernike theorem relies on the fact that the
mutual coherence function of the signal V (u, v) between two
points on the image plane is the Fourier transformation of the
intensity distribution I (l,m) in the source plane:

V (u, v) =
∫∫

I (l,m) exp[2π i(lu + mv)]dldm, (A1)

where (u, v) are the coordinates of the baseline between the
two observation points in the image plane, and (l,m) are the
coordinates of one point in the source plane. Of course, if we
could measure all the Fourier components, we could com-
pletely reconstruct the intensity distribution, i.e., the image,
with no resolution limit. But this requires us to measure the

entire function V (u, v), with each point of this function ob-
tained by a measurement with particular baseline 	B = (u, v),
which is practically impossible.

We now determine the resolution for a finite number of
samples of the image plane. We first introduce a sampling
function S(u, v) that takes value S(u, v) = 1 at the points we
measure and takes value S(u, v) = 0 where we do not mea-
sure, for simplicity. We then define its Fourier transformation
B(l,m) = FT{S(u, v)}, where FT{·} means Fourier transfor-
mation; this is similar to the point spread function (PSF) in
the single lens imaging method, usually called the dirty beam.
Performing an inverse Fourier transformation on the measured
coherence function gives ID(l,m) = FT{V (u, v)S(u, v)} =
I ′(l,m) ∗ B(l,m), where ∗ means convolution and I ′(l,m) =
FT{V (u, v)} is the actual intensity distribution; ID(l,m) is
usually called the dirty image. Mathematically, it is not pos-
sible to take the inverse of the convolution. In astronomical
observation, a deconvolution method is carefully designed
to gain some information from the dirty image, but as the
convolution is not invertible, these empirical methods rely on
some assumptions and provide limited resolution that depends
on the length of the baseline. We could say the resolution is
limited by the dirty beam B(l,m) in this method, which is very
similar to the resolution limit of conventional imaging systems
with a single lens, where the PSF causes the limitation due to
the finite size of the aperture. So, we might intuitively regard
B(l,m) as an effective PSF. Looking at it another way, for the
single lens case, the state before the light passes through the
lens corresponds to the Fourier component of the image, so
we can roughly say that a Fourier transformation is done to the
state by passing through the lens, which introduces the PSF. If
the lens is infinitely large, we get all the Fourier components
and hence the resolution is infinitely good.

As a simple example, consider the sampling function
S(u, v) = 1 if −d � u � d and −d � v � d and S(u, v) = 0
everywhere else, which means the longest baseline is d . Then
the dirty beam is B(l,m) = FT{S(u, v)} = 4

π2
sin ld
l

sinmd
m , and

the width of it in each direction is π/d . From this we see the
resolution of the interferometer array is roughly determined
by its longest baseline. Of course, a real sampling function
does not have this simple form; the dirty beam has structure
rather than looking like a point. A deconvolution is thus
usually necessary to remove the structure introduced by the
dirty beam.

We emphasize that whenever imaging is based on the Van
Cittert–Zernike theorem, the resolution is limited by the effect
of finite sampling. In this sense, all the discussions on improv-
ing the estimation of the coherence function in Refs. [30–33]
have this resolution limit.

APPENDIX B: RELATION BETWEEN PHASE AND THE
POSITION OF THE SOURCE

Here we derive the relation between the phases φ1 and
φ2 and the positions of the sources. As shown in Fig. 6,
we assume the telescopes are pointing at a point 	s0 on the
source plane. The relative positions of the two point sources
are 	σ1 = (X1, 0) and 	σ2 = (X2, 0) and thus the positions of the
point sources are 	s1 = 	s0 + 	σ1 and 	s2 = 	s0 + 	σ2. The phase
differences φ1 and φ2 between the light arriving from point
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FIG. 6. Diagram defining the position of the sources relative to
the telescopes. (a) 	B is a vector representing the baseline and θ is the
angle of the image plane relative to the source plane. 	s0 is a vector
connecting the observation point to the point on the source plane at
which the telescope is pointing. (b) 	s is a point on the source and
	σ = 	s − 	s0. The phase (time) delay of signals received on the two
telescopes encodes information on position.

sources X1 and X2 at the telescopes are then

φ1 = k
	B · 	s1

|	s1| = (kBs0 sin θ + kBX1 cos θ )/|	s1|

= kB sin θ + kB cos θ
X1

s0
+ o

(X1

s0

)
, (B1)

φ2 = k
	B · 	s2

|	s2| = (kBs0 sin θ + kBX2 cos θ )/|	s2|

= kB sin θ + kB cos θ
X2

s0
+ o

(X2

s0

)
,

(B2)

where we have assumed X1,X2 � s0 and expanded the phase
as a series in Xi

s0
; the little o notation o(·) means the remaining

terms are of order smaller than the terms in parentheses. In the
main text, we assume the image plane is parallel to the source
plane for simplicity; i.e., θ = 0, because a nonvanishing θ

shows no effect on the conclusion.

APPENDIX C: STATES RECEIVED IN MODES a1 AND a2

We assume the states emitted by the two point sources are
thermal states ρ th with mean photon number N̄ . The thermal
states of two modes c1 and c2 corresponding to the two point
sources are described in Ref. [38] as

ρ = ρ th(N̄ ) ⊗ ρ th(N̄ ) = 1

(πN̄ )2

∫
C2

d2α1d
2α2 exp

(
−|α1|2 + |α2|2

N̄

)
|α1〉〈α1|c1 ⊗ |α2〉〈α2|c2 , (C1)

where |α1〉 and |α2〉 are the coherent states of c1, c2. Using the transformation from c1, c2 to the modes of telescopes [12],

c1 → √
ηa1 + √

ηeiφ1a2 +
√

1 − 2η v1,

c2 → √
ηa1 + √

ηeiφ2a2 +
√

1 − 2η v2.
(C2)

We can regard the lossy process as an unbalanced multiport beam splitter. Assuming only the sources c1,2 are radiating photons,
the transformation of other input modes is irrelevant to our model. For example, if source c1 generates a photon, described
as c†

1|0〉, and the photon passes through an unbalanced multiport beam splitter, we obtain a coherent superposition of the
three output ports

√
ηa†

1|0〉 + √
ηe−iφ1a†

2|0〉 + √
1 − 2ηv

†
1 |0〉. We derive the state of a1,2 analogously below, where c1,2 are

thermal states:

|α1〉c1 ⊗ |α2〉c2 = D(α1)D(α2)|0〉 ⊗ |0〉, (C3)

D(α1)D(α2) = exp(α1c
†
1 − α∗

1c1) exp(α2c
†
2 − α∗

2c2)

= exp

(
1

2
ηα1α

∗
2 − 1

2
ηα∗

1α2

)
exp

(
1

2
ηα1α

∗
2e

i(φ2−φ1 ) − 1

2
ηα∗

1α2e
i(φ1−φ2 )

)
× exp[

√
η(α1 + α2)a†

1 − √
η(α∗

1 + α∗
2 )a1] exp[

√
η(α1e

−iφ1 + α2e
−iφ2 )a†

2 − √
η(α∗

1e
iφ1 + α∗

2e
iφ2 )a2]

× exp[
√

1 − 2ηα1v
†
1 −

√
1 − 2ηα∗

1v1] exp[
√

1 − 2ηα2v
†
2 −

√
1 − 2ηα∗

2v2]. (C4)

Hence, the state evolves to be

|α1〉c1 ⊗ |α2〉c2 → C|√η(α1 + α2)〉a1 ⊗ |√η(α1e
−φ1 + α2e

−iφ2 )〉a2 ⊗ |
√

1 − 2ηα1〉v1 ⊗ |
√

1 − 2ηα2〉v2 ,

C = exp

(
1

2
ηα1α

∗
2 − 1

2
ηα∗

1α2

)
exp

(
1

2
ηα1α

∗
2e

i(φ2−φ1 ) − 1

2
ηα∗

1α2e
i(φ1−φ2 )

)
. (C5)

We then find the state received by the two modes of the two telescopes a1, a2 as

ρ → 1

(πηN̄ )2

∫
C2

d2α1d
2α2 exp

(
−|α1|2 + |α2|2

ηN̄

)
|α1 + α2〉〈α1 + α2|a1 ⊗ |α1e

−iφ1 + α2e
−iφ2〉〈α1e

−iφ1 + α2e
−iφ2 |a2

⊗ |
√

1/η − 2α1〉〈
√

1/η − 2 − α1|v1 ⊗ |
√

1/η − 2α2〉〈
√

1/η − 2 − α2|v2 . (C6)
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We can trace out the states of the environmental modes v1 and v2, which we do not have access to in the measurement. We will
then get

ρ → 1

(πηN̄ )2

∫
C2

d2α1d
2α2 exp

(
−|α1|2 + |α2|2

ηN̄

)
|α1 + α2〉〈α1 + α2|a1 ⊗ |α1e

−iφ1 + α2e
−iφ2〉〈α1e

−iφ1 + α2e
−iφ2 |a2 . (C7)

We now verify the derived state of a1, a2 above is a Gaussian state. By definition, Gaussian states written in the Wigner
representation should be Gaussian, which requires the Wigner-Weyl operator to be

χ (ξ ) := trρe−	aT 
	ξ = exp[
1

2
	ξT (
T�
)	ξ + 	ξ
	λ], (C8)

where 	ξ = {ξ1, ξ
∗
1 , ξ2, ξ

∗
2 } and 
 = −σy ⊗ σy with σy being the Pauli y matrix.

Inserting a state of the form of Eq. (3) into the left-hand side of Eq. (C8), we have

Trρe−	aT 
	ξ = 1

(πN̄ )2

∫
C2

d2α1d
2α2 exp

(
−|α1|2 + |α2|2

N̄

)
exp

(
−|ξ1|2

2

)
exp {−√

η[(α∗
1 + α∗

2 )ξ1 − (α1 + α2)ξ ∗
1 ]}

× exp

(
−|ξ2|2

2

)
exp

{−√
η[(α∗

1e
iφ1 + α∗

2r
iφ2 )ξ1 − (α1e

−iφ1 + α
−iφ2
2 )ξ ∗

2 ]
}

= exp[
1

2
	ξT (
T�
)	ξ + 	ξ
	λ], (C9)

with � given exactly as in Eq. (4).

APPENDIX D: ESTIMATION OF THE CENTROID

The QFI for the estimation of the centroid is given by

F11 = −2k2B2

s2
0

ηN̄[1 + cos(φ1 − φ2)]

−1 − ηN̄ + ηN̄ cos(φ1 − φ2)

θ2→0



 4
k2B2

s2
0

ηN̄ .

(D1)

We have checked that the off-diagonal elements of the QFI
vanish; i.e., F12 = F21 = 0. The compatibility of optimally
measuring several parameters is highly nontrivial [44,45]. It
is hard to saturate the QCRB of estimating the centroid and
the separation at the same time. We will see in the following
that the optimal measurements for estimating the centroid and
separation are different. To find the optimal POVM that can
achieve the accuracy predicted by the QCRB, we calculate the
SLD for estimating the centroid θ1 as

Lθ1 = 2l3a1a
†
2 + 2l∗3a

†
1a2 +Cθ1 , (D2)

where

Cθ1 = −ηN̄[2l3(eiφ1 + eiφ2 ) + 2l∗3 (e−iφ1 + e−iφ2 )],

l3 = i
kB

s0

e−iφ1 + e−iφ2

−4 − 4ηN̄ + 4ηN̄ cos(φ1 − φ2)
.

(D3)

To find the eigenbasis of the SLD, we diagonalize Lθ1 . Assum-
ing d1 = 1√

2
(a1 + eiδa2), d2 = 1√

2
(a1 − eiδa2) and dropping

the constant terms, we have

Lθ1 = (l3e
iδ + l∗3 e

−iδ )d†
1d1 − (l3e

iδ + l∗3 e
−iδ )d†

2d2

+ (l3e
iδ − l∗3 e

−iδ )d†
1d2 − (l3e

iδ − l∗3 e
−iδ )d†

2d1. (D4)

We can choose l3eiδ − l∗3 e
−iδ = 0 or equivalently δ = 1

2 (φ1 +
φ2) − π

2 , which then means the SLD has the Fock basis of d1,
d2 as its eigenbasis. Thus the optimal POVM for estimating
θ1 is {|m, n〉〈m, n|d}{m,n}, with d†

1d1|m, n〉d = m|m, n〉d and
d†

2d2|m, n〉d = n|m, n〉d .

Notice the optimal POVM constructed above for the esti-
mation of the centroid also depends on the centroid itself, so a
different method would be used to measure the centroid. For
example, just choosing the phase delay to be δ = 0, π/2 can
be a method to find the centroid. Although this method is not
optimal, unlike the separation, there is no fundamental limit
to prevent us from improving the accuracy of estimating the
centroid.

APPENDIX E: COMPARISON WITH SUPERRESOLUTION
FOR RESOLVING AWEAK THERMAL SOURCE

We discuss superresolution for a weak thermal source in
this section, which partially overlaps with the discussion in
Ref. [22]. We show that the results in the main text can be
reduced to the results for weak thermal sources in the weak
source limit. Similar to Ref. [35], we write down the received
state from the source as

ρ = (1 − ε)|00〉〈00| + ε

2
[|01〉〈01| + |10〉〈10|

+ g∗|01〉〈10| + g|10〉〈01|] + O(ε2)

= (1 − ε)ρ0 + ερ1 + O(ε2), (E1)

where g = 1
2 (eiφ1 + eiφ2 ), which encodes the information

about the positions of the two sources. For a weak thermal
source, ε � 1 and thus the higher-order terms can be ignored;
then the quantum state and the measurement POVM are on a
space spanned by |m, n〉 with m + n � 1.

We then diagonalize the density matrix ρ1 as

ρ1 = D1|e1〉〈e1| + D2|e2〉〈e2|, (E2)

D1,2 = 1

2
± 1

4
e−i(φ1+φ2 )/2(eiφ1 + eiφ2 ), (E3)

|e1,2〉 = ± 1√
2
ei(φ1+φ2 )/2|01〉 + 1√

2
|10〉. (E4)
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The SLDs for both parameters θ1 and θ2 are then calculated as

Lθ1 = −i
kB

s0
cos

φ1−φ2

2
|e1〉〈e2|+i

kB

s0
cos

φ1 − φ2

2
|e2〉〈e1|,

(E5)

Lθ2 = − kB

4D1s0
sin

φ1 − φ2

2
|e1〉〈e1|

+ kB

4D2s0
sin

φ1 − φ2

2
|e2〉〈e2|. (E6)

We then calculate the QFI as

F = k2B2

s2
0

[
cos2 φ1−φ2

2 0
0 1

4

]
, (E7)

where Fi j = Tr(LθiLθ jρ). It is clear that when the separation
vanishes, θ2 → 0, and the QFI F22 for estimating the sepa-
ration θ2 also remains a constant. This shows we can avoid
Rayleigh’s limit for observation of weak thermal sources
using interferometer arrays. The POVM to achieve the super-
resolution predicted by the quantum Cramer-Rao bound can
be found from the eigenbasis of Lθ2 , which is the projective
measurement {|e1〉〈e1|, |e2〉〈e2|}.

Note the implementation of the optimal POVM
{|e1〉〈e1|, |e2〉〈e2|} requires us to know information
about (φ1 + φ2)/2, which means we need to know the
centroid of the two point sources. If the accuracy of
estimating the centroid is not infinite, the sensitivity of
estimating the separation is degraded; we now consider
the dependence of the FI on misalignment of the
centroid. Using the POVM {|̃e1〉〈̃e1|, |̃e2〉〈̃e2|}, where
|̃e1,2〉 = ± 1√

2
ei(φ1+φ2 )/2+ξ |01〉 + 1√

2
|10〉 and ξ quantifies

the deviation of aligning the measurement due to the finite
accuracy of knowing the centroid, the FI is degraded to be

I22 = cos2 ξ sin2 φ1−φ2

2

1 − cos2 ξ cos2 φ1−φ2

2

k2B2

4s2
0

. (E8)

If ξ is nonvanishing, when the separation θ2 goes to zero and
hence φ1 − φ2 → 0, we find I22 → 0. So just as the case for
a single lens [2], the superresolution in this limit relies on
the assumption that we know the centroid perfectly and align
the measurement device with perfect accuracy. However, the
sensitivity of estimating the separation with a limited length
of baseline can be achieved by improving the estimation of
the centroid and accuracy of aligning the measurement device.
There is no longer a fundamental reason, such as Rayleigh’s
limit, that prevents us from improving the sensitivity of esti-
mating the separation.

We now discuss the estimation of the centroid. The
eigenbasis of Lθ1 is |g1,2〉 = (±ei(φ1+φ2+π )/2|01〉 + |10〉)/

√
2,

which suggests the optimal measurement is the projection
onto state |g1,2〉〈g1,2|. If we again consider the deviation
ξ in the measurement, i.e., |g1,2〉 = (±ei(φ1+φ2+π )/2+iξ |01〉 +
|10〉)/

√
2, the FI of estimating the centroid is

I11 = cos2 ξ cos2 φ1−φ2

2

1 − sin2 ξ cos2 φ1−φ2

2

k2B2

s2
0

= k2B2

s2
0

[
1 − 1 − cos2 φ1−φ2

2

1 − sin2 ξ cos2 φ1−φ2

2

]
. (E9)

When the deviation ξ �= 0, the FI decreases, which degrades
the sensitivity. But unlike the estimation of the separation, the
FI of the centroid estimation is always a finite value even if the
separation goes to zero (φ1 − φ2 → 0). Hence it is possible to
have the variance of estimating the centroid to be at least as
small as s2

0/(k2B2), which does not depend on the separation.
Since the phase delay used to estimate the centroid actually
requires information about the centroid, we might want to use
an adaptive method that allows the phase delay to gradually
approach the optimal value. This method would enhance the
sensitivity compared to using a fixed, nonoptimal phase delay
that is arbitrarily chosen.

We now consider the off-diagonal elements of the FI.
If we use the projective measurement onto state |h1,2〉 =
(±eiδ|01〉 + |10〉)/

√
2, the off-diagonal elements of the FI are

I12 = I21 = k2B2

8s2
0

sin(φ1 − φ2) sin(φ1 + φ2 − 2δ)

1 − cos2 φ1−φ2

2 cos2( φ1+φ2

2 − δ)
. (E10)

We can see (only) in the case δ = (φ1 + φ2)/2 do we have
I12 = I21 = 0, which means there are no statistical correlations
between the separation and the centroid [44]. But as pointed
out above, to choose δ = (φ1 + φ2)/2, we need perfect knowl-
edge of the centroid and any error in our knowledge of the
centroid will still degrade the estimation of the separation.
For any other δ, the error of estimating the separation or
the centroid deteriorates the precision of estimating the other
parameter due to their statistical correlation. Since the calcu-
lation here can be regarded as a limiting case of the thermal
source of arbitrary strength discussed in the main text, we
might expect a similar result for the thermal source of arbi-
trary strength, namely, that the estimation of the separation
will be degraded by the error of estimating the centroid, and
vice versa.

APPENDIX F: COMPARISON WITH THE
CONVENTIONAL METHOD

To compare the conventional method with our method, we
assume the centroid is 1

2 (φ1 + φ2) = 2π/3 and choose the
phase delay δ = 0, π

2 , which is conventionally used to extract
information about the coherence function. We calculate the FI
for the POVM with phase delay δ = 0, π

2 , corresponding to
c = 2π/3,−π/3. The FI and QFI are shown in Fig. 7 as a
function of separation. It is clear that when the separation θ2

tends to zero, the FI vanishes, which implies the resolution
limit, but the QFI remains a constant. This shows that a better
POVM, such as the POVM we construct, can help avoid
this limit.

We can read from Fig. 7 that the conventional method
requires the separation to be comparable to s0/kB to get
reasonable sensitivity. This is consistent with the fact that
the angular resolution of an interferometric array is approx-
imately λ/B, where λ is the wavelength of the received state.
As a practical example, we consider the case where the ob-
servation is made with wavelength λ = 5 mm and longest
baseline B = 10 km. Then the resolution of the conventional
method is λ/B = 5 × 10−7 rad ≈ 0.1′′. For this case, when
the angular separation of the two point sources is θ2/s0 =
0.05′′ and ηN̄ = 0.01, the Fisher information of our optimal
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FIG. 7. Approximate Fisher information (blue dashed curve) and
the quantum Fisher information (solid orange curve) as a function
of separation θ2. Other parameters are chosen as N̄ = 0.01 and
m, n � 3.

measurement is larger than the conventional method by a
factor of roughly 4. If we assume the mean square error
of estimating the angular separation θ2/s0 scales with the
number of samples n as �(θ2/s0)2 ∝ 1/n, this implies that
our optimal measurement can shorten the observation time
by a factor of 4 to achieve the same sensitivity. When the
angular separation of the two point sources is θ2/s0 = 0.01′′,
the Fisher information of our optimal measurement is larger
than the conventional method by a factor of roughly 30,
which shortens the observation time by a factor of 30. Fi-
nally, when the angular separation of the two point sources
is 0.005′′, the Fisher information of our optimal measure-
ment is larger than the conventional method by a factor
of roughly 100, which shortens the observation time by a
factor of 100.

APPENDIX G: MULTIPLE SOURCES AND DETECTORS

Here we discuss extending our results to multiple
sources and detectors. We assume the states emitted by
the sth point source are thermal states ρ th with mean
photon number N̄s, s = 1, 2, . . . ,M. The thermal states of
modes {cs} corresponding to all point sources are described

in Ref. [38] as

ρ =
⊗
s

ρ th(N̄s) =
∏
s

1

πN̄s

∫
C2

∏
s

d2αs exp

(
−|αs|2

N̄s

)
×

⊗
s

|αs〉〈αs|c, (G1)

where |αs〉 is the coherent state of cs. We use the transforma-
tion from cs to the detector modes aj , j = 1, 2, . . . , n:

cs →
n∑
j=1

√
ηs je

iφs j a j +
√

1 − ηsvs, (G2)

where ηs = ∑
j ηs j is the total loss from the source to the

detector, ηs j quantifies the loss from source s to detector j,
and φs j is the phase accumulated in propagation from source
s to detector j. In the far-field limit, φs j = k(u jxs + v jys)/s0

for source cs with two-dimensional (2D) coordinate (xs, ys) on
the source plane and detector aj with 2D coordinate (uj, v j )
on the detection plane as derived in Ref. [22]. The mean
displacement λμ is still zero for all μ. The covariance matrix
of this state can be similarly derived as

� =

⎡⎢⎢⎢⎣
P1 Q12 Q13 · · · Q1n

Q21 P2 Q23 · · · Q2n

Q31 Q32 P3 · · · Q3n

· · · · · · · · · · · · · · ·
Qn1 Qn2 Qn3 · · · Pn

⎤⎥⎥⎥⎦, (G3)

where Pl and Qlm are 2 × 2 matrices:

Pl =
[

0 1
2 + ∑

s ηslNs
1
2 + ∑

s ηslNs 0

]
,

Qlm =
[

0
∑

s
√

ηslηsmNseiφsm−iφsl∑
s
√

ηslηsmNse−iφsm+iφsl 0

]
.

(G4)

The QFI and SLD can be found using Eqs. (5) and (7), but
we are unable to simplify the equations and give general
analytical results because the inverse of the covariance matrix
is hard to determine. But in principle one can use the same
calculation to find the QFI and SLD at least numerically for
the estimation of any position information.
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