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1 Introduction

Compactifications of String Theory to four dimensions come with a very large number
of moduli — massless scalar fields that must be given a mass if the resulting theory is
to have anything to do with the real world. Thus, the stabilization of moduli and its
interplay with supersymmetry-breaking is perhaps the most important open problem of
String Phenomenology.

String compactification moduli come in different flavors, which change as one moves
to different duality frames. In particular, Type IIB compactifications on Calabi-Yau
manifolds have complex structure and Kähler moduli, that correspond to deformations
of the compactification manifold, as well as D3, D5 and D7 moduli that correspond to
deformations of the branes that are wrapped on this manifold. If one describes this
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compactification in the language of F-theory, both the complex structure moduli and the
D7 moduli appear as complex structure moduli of the F-theory four-fold, despite their
seemingly different IIB origin.

Stabilizing moduli comes at a cost. Type IIB complex structure moduli are stabilized
by turning on fluxes on the compactification manifold, which give a non-trivial contribution
to the D3-brane tadpole. Similarly, D7-brane moduli are stabilized by turning on certain
holomorphic worldvolume fluxes, which again contribute to the D3-brane tadpole. On the
other hand, Kähler moduli are stabilized by non-perturbative effects: instantons or D7-brane
gaugino condensation [2], which can only be treated at the level of effective field theory.

In [1, 3], J. Blåbäck, S. Lüst and two of the authors have argued that both complex
structure moduli stabilization and D7 moduli stabilization are plagued by the Tadpole
Problem: the fluxes that stabilize the moduli source a positive D3 charge QD3 whose
minimal value is conjectured to grow linearly with the number of moduli

Qstab
D3 ≥ αnmoduli .

Furthermore, based on known examples, they have conjectured that in the large nmoduli
limit, the linearity coefficient, α, is larger than 1/3, which is above the upper bound allowed
by tadpole cancelation.

Proving the Tadpole Conjecture would rule out all String Theory compactifications
with large numbers of stabilized D7 or complex structure moduli, and also rule out de Sitter
vacua obtained by uplifting anti de Sitter compactifications using antibranes in warped
throats [2], since one needs a large QD3 to avoid instabilities [4]. The purpose of this paper
is to offer the next best thing to a proof: a calculation of the charge induced by the fluxes
needed to stabilize the D7 moduli in a huge family of compactifications, which spectacularly
confirms the linear growth of the D3 charge with the number of moduli that are stabilized.

We consider F-theory compactifications1 on CY four-folds that are elliptic fibrations
over a three-fold base, B3. The stabilization of D7 moduli by worldvolume flux for B3 ∼= P3

was analyzed in ref. [7]. To preserve supersymmetry, the flux should be a holomorphic
and anti-self-dual (and hence a primitive) (1,1) form on the four-dimensional compact
cycle wrapped by the D7-branes. The key ingredient in stabilizing D7 moduli is to realize
that there exist special loci in the configuration space of these divisors where new (1,1)
forms, dual to holomorphic curves, appear on the divisor; by turning on worldvolume flux
components along these new directions, the D7-brane ends up being supersymmetric only
when wrapping these special divisors, and supersymmetry is broken when the D7-brane
moves away. This stabilizes the D7-brane to the special loci where the new (1,1) forms
appear. By calculating the D3 charge tadpole sourced by these (1,1) fluxes, [7] found that
D7 moduli cannot be stabilized within the tadpole bound. From their calculation we can
furthermore conclude that the induced D3 charge grows linearly with the number of moduli,
and the ratio between them is larger than 1/3, thus verifying the Tadpole Conjecture.

1We note that analyses of moduli stabilization in heterotic string theory may be related to the present
analysis through heterotic/F-theory duality as discussed in refs. [5, 6].
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One straightforward generalization of the methods in ref. [7] is to base spaces which are
toric and weak Fano. In this case the flux needed to stabilize D7 moduli can be computed
using the help of toric geometry methods, and we find again a linear relation between
number of D7 moduli and the charges induced by the fluxes needed to stabilize these moduli.

In this paper we attack the more complicated problem of base spaces that are weak
Fano, but not necessarily toric. Additionally, while in ref. [7] the (1,1) flux was restricted to
be dual to a curve of genus zero to allow an explicit description of the flux curve embedding,
we consider the case of arbitrary genus. We compute the positive D3 charge contribution
of the (1,1) flux that stabilizes the D7 moduli for a given degree and genus of the curve
describing this flux, and show that the D3 charge has a lower bound that grows linearly
with the degree associated to this curve. Next we relate the number of moduli stabilized
by the flux to the degree of the curve dual to the flux, and argue that this number has an
upper bound, which also grows linearly with the degree of this curve! As one can see in
appendix B and appendix C where these calculations are fleshed out in detail, there are
several steps of the computation that involve quantities that are not generic and that are
hard to calculate without specific knowledge of the details of the base space and the flux
curve embedding. However, one can show that these hard-to-compute terms always have a
definite sign, and make the D3 charge larger than our bound.

On the one hand, our results spectacularly confirm the linear growth of the D3 charge
sourced by D7 fluxes with the number of moduli these fluxes stabilize. Indeed, if one fixes
the genus of the curve dual to the D7 worldvolume flux, both the tadpole and the number
of stabilized moduli grow linearly with the degree of the curve. This proves the tadpole
conjecture in this context for D7 stabilization by flux curves of constant genus and growing
degree. Furthermore, we find that the tadpole conjecture proportionality constant, α, is
equal to 7

16 = 0.4375, a value that is very close to the values found in the four examples
discussed in ref. [1].

On the other hand, one can also attempt to stabilize D7 moduli by curves whose degree
and genus grow together. Since the genus of the curve lowers our bounds on the induced
D3 charge without affecting the number of moduli stabilized, our calculation does not rule
out the possibility that, for a sufficiently large genus, one could stabilize all the D7 moduli
and evade the Tadpole Conjecture. The region which is not ruled out by our calculation
is a narrow sliver in the degree-genus plane, depicted in figure 1. We argue however that
D7-brane fluxes in this sliver have such large genera that it is likely that their curvature
can only be below string-scale when the size of the compactification manifold is very large.
We discuss this in detail in section 4.1.

The paper is organized as follows: in section 2 we discuss the problem of D7 moduli
stabilization by worldvolume flux. In section 3 we review the example in ref. [7], where it
was shown that the D7 moduli cannot be stabilized within the tadpole bound. In section 4
we analyze moduli stabilization for F-theory compactifications with a weak Fano base.
Appendices A, B, and C contain the details of the calculation for general weak Fano bases,
while appendix D.1 presents a more explicit calculation of the tadpole when the base is toric.
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2 Stabilizing D7-brane moduli

2.1 D7-branes in Type IIB orientifolds

In this section we briefly recall the relation between F-theory and Type IIB orientifolds,
which will be heavily used in the following sections.

In the F-theory framework, the background geometry is a four-fold Z4, which in
particular is an elliptic fibration: a torus-fibration with a section, over a three-fold base, B3.
We assume the four-fold is smooth and has strict SU(4) holonomy.2 The elliptic curve over
each point of the base B3 can be described as a hypersurface inside the weighted projective
space P2

231[u : v : w], as
v2 = u3 + fuw4 + gw6, (2.1)

where the coefficients f and g control the geometry of the elliptic curve. The variation of
the coefficients f and g over the base B3 fixes the geometry of the four-fold Z4 for a given
base space.

We will illustrate all the concepts in the simple example when the base space is the
complex projective space P3(x), so that f(x) and g(x) vary over B3 ∼= P3(x) as homogeneous
polynomials in x of degrees 16 and 24 respectively.3

From the Type IIB perspective, the above data define a compactification of perturbative
IIB string theory on the base three-fold B3 with D7-branes and O7-planes. The complex
structure of the elliptic curve in Z4, which varies over B3, plays the role of the axio-dilaton
field τ = C + ie−φ.

For general choices of f and g, the profile of τ gives rise to large string couplings (and
hence no perturbative Type IIB description) over much of B3. However, for any given
f and g there exists a limiting deformation, the Sen limit [8], which gives a Type IIB
weakly-coupled description of all of B3 except over a lower dimensional subset. In particular,
parameterizing the functions f and g without loss of generality as

f = −3h2 + εη , g = −2h3 + εhη − 1
12ε

2χ , (2.2)

where ε is a constant, and where it follows that h, η, and χ vary over the base B3 as
homogeneous polynomials4 of degree 8, 16, and 24 respectively, one finds that in the limit
ε→ 0 the string coupling goes to zero almost everywhere, except at codimension-one loci,
where a monodromy analysis reveals the presence of D7-branes and O7-planes, specifically
where the following equations are satisfied

O7 : h(x) = 0 , D7 : η2(x) = h(x)χ(x) . (2.3)
2If the holonomy group were a subgroup of SU(4), the background would have more supersymmetry and

the moduli stabilization mechanism would work in a slightly different way.
3More generally, f and g are sections f ∈ Γ

(
(K∗B3 )⊗4) and g ∈ Γ

(
(K∗B3 )⊗6) of powers of the anti-canonical

bundle K∗B3 of the base B3. We also note that the coordinates on the P2
231 are sections u ∈ Γ

(
(K∗B3)⊗2),

v ∈ Γ
(
(K∗B3 )⊗3), and w ∈ Γ

(
(K∗B3 )⊗1).

4For a more general base B3 � P3, these are sections h ∈ Γ
(
(K∗B3)⊗2), η ∈ Γ

(
(K∗B3)⊗4), and

χ ∈ Γ
(
(K∗B3 )⊗6).
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The fact that the O7-plane locus is at h(x) = 0 means that the double-cover of the orientifold
Xo
∼= B3 can be described as5

X : ξ2 = h(x) , (2.4)

which introduces an additional complex coordinate, ξ, to describe X as a hypersurface
inside an ambient space, A. When the base space is B3 ∼= P3[x], this ambient space, A, is
the weighted projective space P4[ξ : x], where the coordinates ξ and xi (i = 0 to 3) satisfy
the equivalence [ξ : x] ∼ [λ4ξ : λx] for λ ∈ C∗. Note that identifying points on X under the
orbifold action σ : ξ → −ξ gives back B3.

The above descriptions of the CY and the D7-brane content allow for a straightforward
computation of the number of D7-brane deformation moduli. The D7-brane locus is given by
the intersection {ξ2 = h(x)}∩{η2(x) = h(x)χ(x)} inside the ambient space A. Furthermore,
the function h(x) is fixed by the specification of the CY, and the configuration of the D7-
brane is specified by the functions η(x) and χ(x). However, the equation for the D7-brane
is invariant under the simultaneous shifts

η → η + hψ , χ→ χ+ 2ηψ + hψ2 , (2.5)

where ψ is arbitrary, and this redundancy must be subtracted. Additionally, since the
D7-brane is specified only by the zero locus of the equation, there is also one irrelevant
overall scaling.

In the simple example of a base B3 ∼= P3[x], the functions η, χ, and ψ are homogeneous
polynomials of degree 16, 24, and 8 in the coordinates xi, and the number of D7-brane
deformation moduli is given by

nD7(P3) =
(

16 + 3
3

)
+
(

24 + 3
3

)
−
(

8 + 3
3

)
− 1 = 3728 . (2.6)

For a general base space, the parameters in η, χ, and ψ are counted by the dimensions
of the spaces of sections of the relevant bundles and the number of D7-brane deformation
moduli is

nD7 = h0(B3, (K∗B3)⊗4)+ h0(B3, (K∗B3)⊗6)− h0(B3, (K∗B3)⊗2)− 1 . (2.7)

We note that when the base, B3, is weak Fano (which is a condition we will return to in
section 4) one can reduce this sum to the compact expression

nD7 = 16 + 58
∫
B3
c1(B3)3 , (2.8)

so that the number of D7-brane deformation moduli is written purely in terms of a Chern
number of the base space, B3. We give the details of this computation in appendix A.

5Generically, if the D7-branes are not on top of the O7-planes, the variation of the axio-dilaton is such
that the supersymmetric solution requires the metric on X to be non-Ricci flat [9]. Nevertheless, since
the double-cover of the orientifold admits a Ricci-flat metric, we will refer to it as a CY manifold, or
CY orientifold.
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The F-theory description also provides a simple way to compute the D3 tadpole. In
particular, all of the negative-charge contributions to the tadpole coming from O7-planes
and D7-branes are captured in the topology of the four-fold Z4, specifically by its Euler
number, χ(Z4), via

Qneg. = −χ(Z4)
24 . (2.9)

This topological quantity gives an upper bound on the positive-charge contributions, which
come from 3-form flux, D7-brane worldvolume flux, and mobile D3-branes.

In the simple example of a base B3 ∼= P3[x], this D3 charge bound is given by χ(Z4)
24 =

23328
24 = 972. For a generic base space one can show that (see appendix A)

χ(Z4)
24 = 12 + 15

∫
B3
c1(B3)3 . (2.10)

Again this expression involves a single (and the same) Chern number as in equation (2.8).
From equations (2.8) and (2.10) we can see that the ratio between the number of D7

moduli and the negative D3 tadpole contribution of the D7-branes in the limit of a large
number of moduli is

|Qneg.| ∼
15
58 nD7 . (2.11)

The proportionality constant 15/58 = 0.259 is slightly greater than 1/4, the value found in
ref. [1] by examining general F-theory compactifications.6 Hence, if the charge sourced by
the fluxes needed to stabilize the nD7 moduli is larger than 15

58 nD7, it will be impossible to
stabilize all the D7 moduli within the tadpole bound.

2.2 Stabilizing D7-brane moduli with worldvolume flux

A D7-brane carries a worldvolume flux, which is specified by a two-form, F . For simplicity
we consider throughout a single irreducible D7-brane, for which the worldvolume flux is
that of a U(1) gauge theory.

For the worldvolume flux to preserve supersymmetry, the two-form F must be anti-self-
dual, F = − ∗ F , where ∗ is the Hodge star on the D7-brane. This condition turns out to
be equivalent to imposing the two constraints [10]

F 0,2 = F 2,0 = 0 , F ∧ J = 0 , (2.12)

where J is the Kähler form of the orientifold pulled back to the D7-brane, and the first
condition means that F is a form of type (1,1) with respect to the complex structure on
the D7-brane.

Since the complex structure on the D7-brane is inherited from that of the CY orientifold,
Xo, in which it is embedded, deformations of the D7-brane alter its complex structure. A
particularly important consequence is that for a subset of configurations, there may appear
new holomorphic (1,1)-forms on the D7-brane worldvolume, which are hence new candidates
for the flux F .

6This discrepancy likely arises because the limit of large h3,1 [1] is not the same as the large c3
1 limit.
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By tuning the D7-brane to be in such a special locus in the moduli space and by
turning on flux corresponding to a newly appearing (1,1)-form, the D7-brane configuration
is energetically fixed within this locus, since deformations away from this locus necessarily
render the flux non-supersymmetric. Hence, this worldvolume flux stabilizes the D7-brane
deformation moduli.

Since F is a form of type (1,1), it is dual to a linear combination of holomorphic curves.
From this point of view, stabilization with worldvolume flux is possible when there are
holomorphic curves in the CY which are not generically contained in the D7-brane, but
which are contained by particular configurations of the D7-brane. We note that since the
expected dimension of the space of available deformations of a curve in a CY three-fold
is zero,7 one can in general expect the existence of many isolated curves, which are useful
candidates for this stabilization mechanism.

In addition to the anti-self-dual condition, the flux configuration must be consistent
with the orientifold projection. This requires that F = −σ∗F , where σ is the orbifold action
induced on the D7-brane. In the geometric picture of the flux, oddness under the orbifold
action means that the flux must be described by a sum of curves of the form

F ∼ γ − γ′ , (2.13)

where γ′ = σγ is the image of the curve γ under the orbifold map.
We note that this combination of fluxes automatically satisfies the second condition

F ∧ J = 0 in equation (2.12) at the level of the cohomology classes, since the Kähler form,
J , is even under the orbifold action while the above flux (class) F is odd. However, this is
not sufficient to impose the condition at the level of the forms.8

Indeed at the level of our analysis, which is based on topology and which avoids detailed
calculations of the geometry, we are not aware of a straightforward way to impose the
genuine vanishing of F ∧ J . Hence, in the analysis of sections 3 and 4, we will content
ourselves with imposing only this weaker condition on the classes. Notably, this means that
there may exist a significant strengthening of the constraints we derive in section 4 on the
set of possible stabilizing flux configurations.

A worldvolume flux on the D7-brane contributes to the D3 tadpole:

QF = −1
4

∫
F ∧ F . (2.14)

7In particular, the Euler characteristic χ(NC\X) = h0(C,NC\X) − h1(C,NC\X) of the normal bundle
of the curve is zero. This follows from the defining exact sequence 0 → TC → TX |C → NC\X → 0 of the
normal bundle, and the fact that χ(TX |C) = 3 − 3g and χ(TC) = 3 − 3g. The deformations of C, which
correspond to H0(C,NC\X), are then generically totally obstructed by H1(C,NC\X).

8In ref. [7], below equation (3.59), it is said that this choice of flux class ensures the existence of
representatives that satisfy the full condition F ∧ J = 0. However in general it is not true that any exact
piece in F ∧ J can be cancelled by exact additions to F and J . In ref. [7] the statement is based on the
claim that F ∧ J is harmonic if F is harmonic, but this is not true in general. We are not aware of any
other argument for the existence of appropriate representatives, and indeed in section 4, we will need to rule
out by hand some fluxes with classes of the form (2.13) which give a negative contribution to the tadpole
and hence cannot satisfy F ∧ J = 0.
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This contribution is manifestly positive after imposing F = − ∗ F . The computation of this
quantity is subtle when the D7-brane surface S is singular, but can be performed by utilizing
a resolved version S of the D7-brane. This will be discussed in detail in appendix B. In the
geometric picture of a curve dual to the flux, the integral that gives the D3 charge sourced
by the flux (2.14) becomes a curve intersection, and for the σ-odd form in equation (2.13)
it is

Qγ = −1
4(γ − γ′) · (γ − γ′) = 1

2
(
− γ2 + γ · γ′

)
, (2.15)

where γ is the lift of the curve γ to the resolved version, S, of the D7-brane surface, and
where the curve intersections are computed on S. Below we will be interested in how the
size of this contribution grows as the flux becomes sufficient to completely stabilize the
D7-brane deformation moduli.9

3 Review: a no-go example

In ref. [7], the authors showed that when the F-theory base space, B3, is the complex
projective space P3[x], one cannot stabilize all D7-brane moduli using worldvolume flux.
Here we review their argument, before turning to generalizations in section 4.

The compactification space and the D7-brane worldvolume flux considered in ref. [7]
are taken to be possibly the simplest available choices: the F-theory four-fold is taken to be
a smooth elliptic fibration over the projective space P3, and the stabilizing flux discussed in
section 2.2 is restricted to be dual to a curve of genus zero (a sphere P1).

Because both the base space, B3 = P3[x], and the embedded curve, γ = P1[u], are
simply parameterized by coordinates x0, x1, x2, x3 and u0, u1, it is possible to describe
the embedding γ ↪−→ X of the curve into the CY three-fold with a polynomial map. This
has the notable benefit of allowing for a straightforward computation of the number of
D7-brane moduli stabilized by this flux.

As the base B3 of the F-theory four-fold is P3, the ambient space, A, of the double-cover
of the Type IIB orientifold is also simply parameterized by coordinates ξ, x0, x1, x2, x3,
and hence we can specify the embedding [u0 : u1]→ [ξ : x] of the curve γ into the ambient
space A as

γ : ξ = Ξ[u0, u1] , xi = Xi[u0, u1] , (3.1)

where Ξ and Xi are respectively degree 4d and degree d homogeneous polynomials in u0
and u1. Here the factor of 4 is required for compatibility with the projective identification
on A, namely [ξ : x] ∼ [λ4ξ : λx] for λ ∈ C∗.

For this polynomial map to embed the curve into the upstairs CY, X, the image of the
embedding, must satisfy the defining equation of the CY for every point on the curve,

Ξ2(u0, u1)− h
(
X(u0, u1)

) != 0 ∀ [u0 : u1] . (3.2)

9It is important to note that because of the Freed-Witten anomaly the flux is not generically an element
of H2(S,Z) but rather an element of the shifted lattice H2(S,Z) + 1

2 c1(S,Z). Since we are mostly interested
the large c1(B3)3 limit, we expect that this is a small effect, which we hence neglect.
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This equation is of degree 8d in u0 and u1, and hence contains 8d+ 1 coefficients, which
must all be zero for the polynomial to vanish identically. But the number of free parameters
in the embedding map is (4d+ 1) + 4(d+ 1)− 4 = 8d+ 1, where the two bracketed terms
count the coefficients in Ξ and the Xi while the term −4 comes from subtracting the GL2
reparameterizations of the P1[u]. Hence, for any degree d, there are polynomial embeddings
as in (3.1) which indeed determine a curve inside the CY, and these curves do not form
a continuous family but are instead isolated. These are hence rigid curves which provide
ideal candidates to stabilize the D7-brane moduli, as described in section 2.2.

To use the above curves for stabilization, we demand that they be contained inside the
D7-brane. Hence the image of the embedding must satisfy the equation for the D7-brane:

η2(X(u0, u1)
)

= Ξ2(u0, u1)χ
(
X(u0, u1)

)
∀ [u0 : u1] . (3.3)

Since the curves are rigid, this equation directly provides constraints on the D7-brane
configuration. In particular, this equation is of degree 32d, and hence provides 32d + 1
constraints. In order to completely stabilize the D7-brane, this number of constraints must
exceed the number of independent deformations of the D7-brane. In the example we discuss,
we have shown in section 2.1 that the number of independent deformations is 3728. Hence,
comparing to 32d+ 1, we see that the complete stabilization of the D7-brane requires that
the degree of the curve satisfies

32d+ 1 ≥ 3728 ⇒ d ≥ 117 . (3.4)

The flux dual to a curve of such a high degree will have a large contribution to the D3
tadpole. This contribution can be written in terms of curve intersections as (cf. eq. (2.15)),

Qγ = 1
2
(
− γ2 + γ · γ′

)
, (3.5)

where γ is the lift of the curve γ to the resolved version, S, of the D7-brane, and γ′ is its
image under the orbifold map, and where the curve intersections are computed on S. The
first term can be rewritten using the relation

− γ2 = χ(γ)− γ · c1(TS) . (3.6)

Since γ is genus zero, the Euler characteristic is simply χ(γ) = 2− 2g = 2. Computing the
term γ · c1(TS) requires knowledge of the geometry of the resolved D7-brane, S, which we
relegate to appendix B. We find, as in ref. [7], that for a curve γ of degree d,

− γ2 = 2 + 28d . (3.7)

Since the second term γ · γ′ in Qγ is an intersection between distinct irreducible curves, it
is non-negative by definition,10 and hence the above term provides a lower bound,

Qγ ≥ 1 + 14d . (3.8)
10In fact one can argue that this intersection is generically zero, but it is sufficient for our purposes that it

is always non-negative.
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Hence, for a curve γ of degree d ≥ 117, the contribution to the D3 tadpole is at least

Qγ ≥ 1638 . (3.9)

Notably, this is significantly larger than the allowed maximum value given in equation (2.9),
which for the present four-fold, with a P3[x] base, is

|Qneg.| = 972 . (3.10)

Hence, the authors of ref. [7] were able to conclude that in this compactification it is not
possible to stabilize all D7-brane moduli with worldvolume flux without overshooting the
D3 tadpole bounds.

4 A general compactification with a weak Fano base

The moduli stabilization scenario worked out in ref. [7] utilized perhaps the simplest F-theory
base space, P3, and a stabilizing D7 worldvolume flux dual only to a holomorphic curve
of genus zero. The main question we want to answer in this paper is whether the relation
between the number of stabilized moduli and the D3 tadpole, and the impossibility to
stabilize moduli within the tadpole bound, are artifacts of the simplicity of the construction
in ref. [7], or rather are generic features of D7 moduli stabilization.

There are several possible ways to enlarge the families of compactifications. One
particularly straightforward construction is to take the F-theory base space to be any
smooth toric weak Fano three-fold. Here toric geometry methods allow us to describe the
stabilization of the D7-brane very explicitly, making the count of the number of stabilized
moduli straightforward. The details of these calculations are given in appendix D.1.11 We
note that this result already applies to a very large class of compactifications, as the number
of toric weak Fano three-folds is estimated to be O(1015) [11].

However, one can do even more. First, we can allow the stabilizing worldvolume flux
to be dual to a holomorphic curve of arbitrary genus, rather than only genus-zero curves.
Second, we can take the F-theory base space to be any smooth weak Fano three-fold (not
necessarily toric). Amazingly, despite the very general nature of the D7-branes and of their
stabilizing fluxes, one can still constrain the relation between flux-stabilized moduli and
flux-induced tadpole, as we will see below.

The primary difficulty in attacking this very general problem is to compute the number
of stabilized D7-brane moduli. Following section 2.2, we recall that the mechanism to
stabilize the D7-brane consists of tuning the brane to contain a particular holomorphic
curve, γ, of arbitrary genus gγ , and turning on worldvolume flux dual to γ. The extra
difficulty in the case of arbitrary genus is that the embedding of the curve γ can no longer
be specified explicitly, so that one requires more abstract tools from algebraic geometry.

The D3 charge contribution, Qγ , of the worldvolume flux dual to a curve γ can be
computed by resolving the singular D7-brane (as discussed in section 2.2) and computing

11The results we obtain for toric weak Fano bases are in line with those we obtain for general weak Fano
bases, which we discuss in this section. The no-go theorem we deduce in appendix D.1 is a special example
of the more general no-go theorem we present here.
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the flux curve intersection in equation (2.15) of the resolved D7-brane. We relegate the
details of this computation to appendix B. As for the genus-zero flux curve in section 3, the
term γ · γ′ can generically be expected to be zero. However, if present, it can only increase
the D3 tadpole. One thus finds a lower bound for the D3 tadpole contribution, Qγ , of the
flux dual to a curve with genus gγ :

Qγ ≥ (1− gγ) + 7
2dγ , (4.1)

where we have defined the canonical degree, dγ , of the curve γ, which is an integer given by
the intersection

dγ := −DKB3
· γ , (4.2)

where we abuse notation by writing DKB3
for the pull-back to A of the canonical divisor

on B3 by the projection map from A to B3.
We note that equation (4.1) reduces for gγ = 0 to the result in equation (3.8) for the

simplest example (for which the anti-canonical divisor of the base B3 is equal to 4H where
H is the hyperplane class of P3, so that the expressions are related by d = 4d) and also
reduces to the equation (D.19) that we derive for toric weak Fano bases in appendix D.1.

When the genus of the flux curve γ is zero and the F-theory base is simply a P3, the
embedding of the curve can be specified by polynomial maps, making the computation of
the number of stabilized moduli straightforward. However, for more generic configurations
the embedding map is not polynomial and is not given explicitly. In appendix C we regale
the interested reader with all the details of this computation. The conclusion is that there
is the following upper bound for the number of stabilized moduli,

nstab.
D7,γ ≤ 8dγ + 1 . (4.3)

We would like to note that obtaining this very general result was made possible by a rather
unexpected stroke of luck: there are a number of terms in the computation which appear
particularly difficult to evaluate for generic base spaces. However, we were able to show
that, if present, these terms would only decrease the number of stabilized moduli. This
allowed us to derive the bound above without explicitly evaluating these terms.12

We can see that equation (4.3) reduces to the simpler expressions obtained for less
generic base spaces: equation (3.4) for P3 and equation (D.12) for generic toric bases.

It is notable that, unlike the expression for the D3 charge contribution Qγ , the bound
on the number of stabilized moduli nstab.

D7,γ , does not have a dependence on the genus gγ .

4.1 The window of worldvolume fluxes that are not excluded

Having obtained the bound on the D3 charge sourced by the D7 worldvolume fluxes and
the bound on the total number of stabilized D7 moduli, we can now compare these to the
values of the total D3 tadpole and the total number of D7-brane moduli. The conditions

12If any of these terms had the opposite sign, it would have been impossible to derive a general result for
all compactifications with a weak Fano base.
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Figure 1. Orange: the degrees dγ and genera gγ of flux curves γ that our calculations rule out
as leaving unfixed D7 moduli or as incompatible with tadpole cancelation. Red: fluxes that our
calculation does not rule out but which give a negative tadpole contribution and are hence unphysical.
White: fluxes that we cannot rule out using our calculation.

that this flux is smaller than the tadpole bound and completely stabilizes the D7-brane
moduli are

Tadpole cancelation : (1− gγ) + 7
2dγ ≤ Qneg. = 12 + 15C3

1 ,

Stabilization : 8dγ + 1 ≥ nD7 = 16 + 58C3
1 .

(4.4)

where we have recalled the computations of the D3 charge tadpole Qneg. and of the number
of D7-brane moduli nD7 from equations (2.10) and (2.8), and where we have used the
shorthand C3

1 ≡
∫
B3
c1(B3)3.

We plot these two constraints in orange in figure 1, in which the white and red regions
correspond to the curves that are not ruled out by our calculations.13 The gradients of
the two constraint lines are fixed, and are independent of the choice of F-theory base
space, while the tip of the triangular region that we do not rule out, whose coordinates are(
gmin.
γ , dmin.

γ

)
, moves up and to the right as one increases the value of C3

1 (which increases
the number of moduli):(

gmin.
γ , dmin.

γ

)
=
(

1
16(166C3

1 − 71) , 1
8(58C3

1 + 15)
)
. (4.5)

Note that our calculations can only be used to rule out flux vacua, but this does not
imply that the flux vacua that we do not rule out are physical. Indeed, the triangular
region allowed by our two constraints includes flux configurations that would give a negative

13One may wonder if there exist purely mathematical relations between the canonical degree, C ·DKS , and
the genus, gC , of a curve on a surface S. Such a direct relation exists for S = P2, but for more general surfaces
there is only an inequality. Specifically, using gC = 1

2 (C2+C ·DKS +2) one can see that the genus is maximized

when C ∝ DKS , so that in particular C = C·DKS

D2
KS

and hence gmax
C = 1

2

(
(C·DKS

)2

D2
KS

+ C ·DKS + 2
)
. However

this inequality lies below the white region in figure 1, and so does not provide an additional constraint.
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contribution to the flux tadpole, and we have shown these configurations in red. These have
not been explicitly forbidden in our analysis because we have only imposed a necessary but
not sufficient condition for anti-self-duality of the flux, as we discussed below equation (2.13).
It is clear that such configurations are not allowed: anti-self-dual fluxes must give a positive
contribution to the D3 tadpole everywhere in the geometry, which cannot integrate to a
negative value. Hence, configurations with a total tadpole contribution that is negative
are incompatible with a metric that makes the fluxes anti-self-dual. It is quite likely that
enforcing the positivity of the tadpole contribution of the fluxes locally on the D7-brane,
and also imposing the primitivity condition at the level of the actual forms and not only at
the level of cohomology classes, will lead to even stronger bounds. We leave this exploration
for later work.

For a given fixed F-theory base space, the above bounds give a no-go theorem for D7
moduli stabilization across the vast swathe of worldvolume fluxes dual to curves outside of
the white region in figure 1.

What values can the vertex (gmin.
γ , dmin.

γ ) of the non-excluded region take? Since the
F-theory base, B3, is assumed to be weak Fano, C3

1 ≡
∫
B3
c1(B3)3 is a positive integer.

Hence, from the expressions in equation (4.5), we see that gmin.
γ and dmin.

γ are always greater
than zero. Notably, this observation extends to all possible weak Fano base spaces the
no-go theorem for genus-zero flux curves derived for a P3 base space in ref. [7] and reviewed
in section 3.

Further, the value of C3
1 is always even for a weak Fano three-fold, as can be seen for

example from the expression in equation (A.4). Hence the lowest possible value is C3
1 = 2.

This value is in fact realised, for example by the hypersurface of degree 6 in the weighted
projective space P4

1,1,1,1,3. For such a three-fold base, with C3
1 = 2, one has

(
gmin.
γ , dmin.

γ

)
≥ (17, 17) . (4.6)

Hence, for any weak Fano base space, it is not possible to stabilize the D7 brane moduli
with flux dual to a curve with genus less than 17.

Finally, for the particular choice B3 = P3 treated in ref. [7], one has C3
1 = 64, which gives

(
gmin.
γ , dmin.

γ

)
≥
(
660 , 466) . (4.7)

Thus, our calculation rules out stabilization within the tadpole across a much wider range
of fluxes than the genus-zero no-go theorem of ref. [7].

4.2 Fluxes dual to curves of high degree and high genus

It is interesting to understand the physics of the flux curves in the white sliver that is not
ruled out by our calculation. For compactifications with a small value of C3

1 ≡
∫
B3
c1(B3)3,

some of the fluxes that are not excluded have small degree and genus, and hence do not
appear pathological. Hence, our calculation leaves open the possibility that small numbers
of D7-brane moduli can be stabilized within the tadpole bounds.
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However, in the spirit of the Tadpole Conjecture, we are interested in the opposite
limit, when the number of D7 moduli becomes very large. In that limit, our arguments do
not rule out certain families of curves of high degree and high genus that, if physical, could
stabilize a growing number of moduli within the tadpole bounds, and hence violate the
Tadpole Conjecture. However, while the calculations of the present paper do not exclude
such configurations, there is reason to believe that these configurations may be problematic
in their own right.

To see this, recall from the calculation above that as the number of D7 moduli grows,
the flux required to stabilize the D7-brane is dual to a curve of ever-increasing genus. But
as the genus increases, the variation of the profile of the flux becomes more and more
non-trivial. Hence, one can expect that at some point the scale of variation of the flux
will dip below the string scale, at which point the supergravity description breaks down.
Said differently, to accommodate fluxes with such a rapidly varying profile, the volume of
the compactification would need to be very large, eventually taking on phenomenologically
excluded values.

Hence, in the limit of many D7 moduli, one can expect phenomenological problems to
arise with the flux required to stabilize the D7-brane. We plan to return to this argument
in future work, to flesh out and quantify the details.

5 Conclusions

We have examined the stabilization of D7-brane moduli by turning on worldvolume fluxes,
dual to a curve γ. We have derived a lower bound on the D3 charge induced by these
fluxes and an upper bound on the number of D7 moduli they stabilize, for F-theory
compactifications with a weak Fano base. For fluxes dual to genus-zero curves, which is
the only case previously considered in the literature in this context, our bounds imply that
for a large number of moduli, the ratio between the charge sourced by the fluxes and the
number of moduli these fluxes stabilize is

α ≡ Qγ

nstab.
D7,γ

≥ 7
16 = 0.4375.

This result applies both to compactifications over any of the O(1015) toric weak Fano
bases [11] and also to more general compactifications whose weak Fano base is not necessarily
toric,14 and spectacularly confirms the Tadpole Conjecture [1], both by the linear growth
of the tadpole sourced by the fluxes with the number of moduli they stabilize,15 and also
by the fact that the proportionality coefficient, α, is larger than 1/3. Since this is larger
than 0.259, the ratio allowed by the tadpole cancelation condition (see (2.11)), D7 moduli
cannot be stabilized by fluxes dual to a curve of genus zero, within the tadpole bound.

14The number of such bases can be expected to be much larger, but to our knowledge has not been
estimated.

15For more recent work on the linear relation between the tadpole sourced by the fluxes that stabilize
moduli and the number of moduli see refs. [12, 13] in the context of a stabilization proposal put forth in
ref. [14].
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We have also considered flux curves whose genera are large, and we have found that
increasing the genus while keeping the degree fixed weakens our bounds on the minimum
tadpole contribution of the fluxes, as one can see in equation (4.4). Thus, if one considers the
general degree-genus plane, depicted in figure 1, our bounds do not exclude the possibility
that moduli stabilization within the tadpole bound may be possible in a certain region of
high-degree high-genus curves. Nevertheless, this does not imply that all the flux curves
we do not rule out are physical; in fact, it is easy to immediately see that a large part of
these fluxes (depicted in red in figure 1) give rise to negative D3-brane charge, and hence
are unphysical. The reason why our calculation does not rule them out is likely because we
only imposed the primitivity of the fluxes at the level of cohomology, so many of the flux
configurations that escape our bounds are in fact non-supersymmetric.

The inability to exclude fluxes that give a negative tadpole contribution is an illustration
of the fact that our calculation is only concerned with topology and fluxes, but does not
address the harder question whether there exists a metric sourced by the fluxes that is
physical. Ruling out fluxes whose overall tadpole contribution is negative is a clear first
step of including the metric in our considerations: if there existed a metric for which the
fluxes are anti-self-dual (as required by supersymmetry) their tadpole contribution would be
positive, and hence could not integrate to a negative number; hence no such metric exists
and the flux curves in the red region of figure 1, which give a negative tadpole contribution,
must be excluded. Furthermore, it is not clear whether similar considerations would not
rule out the rest of the flux curves in the white sliver of figure 1.

Hence, despite the suggestiveness of the coherence of the no-go theorem for small genus
with the Tadpole Conjecture, our calculations do not rule out the possibility of stabilizing
large numbers of D7 moduli within the tadpole bound, nor do they give us a proof of the
Tadpole Conjecture everywhere in the degree-genus plane. As we explained above, such a
proof might require more detailed considerations of the metric sourced by the fluxes, and
we believe that, ultimately, it may be possible to argue that the sliver of configurations that
our calculation does not exclude, is still problematic.

We have also argued that for a very large number of D7 moduli, the flux required
to stabilize the D7-brane can be expected to have a scale of variation eventually dipping
below the string scale, unless the volume of the compactification manifold is larger than
values compatible with the real world. Hence, in the limit of a very large number of
moduli, we believe it is impossible to stabilize the D7-brane moduli while keeping the
curvature sub-stringy — a result that agrees with the Tadpole Conjecture, albeit not in the
string-scale-independent way it was formulated in ref. [1].
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A The geometry and the D7-branes

Here we compute some properties of the background geometry and D7-brane configuration
of section 2.1 which we stated there without proof. We note that some of the quantities
below have also been computed from a slightly different viewpoint in section 5 of ref. [7].

As discussed in section 2.1, we restrict to compactifications where the F-theory four-fold
Z4 is smooth and of strict SU(4) holonomy. Moreover, we take the four-fold to be given
by a Weierstrass model with a single section over a base B3 which is weak Fano.16 The
condition that the base be weak Fano is closely related to smoothness of the four-fold, but
there are subtleties in both directions, as discussed in section 3.5.1 of ref. [15].

We first compute the D3 tadpole. When Z4 is smooth, the Euler characteristic of the
four-fold Z4 is simply related to quantitites on the base via [16]

1
24χ(Z4) =

∫
B3

(
15c1(B3)3 + 1

2c1(B3)c2(B3)
)
. (A.1)

When the holonomy of Z4 is SU(4), the Hodge numbers, hi,0(Z4), vanish for i = 1, 2, 3.
But if the base had non-zero Hodge numbers hi,0(B3), these forms would pull-back to Z4.
Hence, the same vanishings must hold on the base B3. Since hi,0(B3) ≡ hi(B3,OB3), this
implies that ind

(
OB3

)
= 1. But on any three-fold, ind

(
OB3

)
= 1

24
∫
B3
c1(B3)c2(B3). Hence,∫

B3
c1(B3)c2(B3) = 24. This simplifies the expression of χ(Z4) and of the corresponding

negative contribution to the D3 tadpole:

Qneg = −χ(Z4)
24 = −

(
12 + 15

∫
B3
c1(B3)3

)
. (A.2)

Next we compute the number of deformation moduli of the D7-brane. We recall from
equation (2.7) that for a general base space these are counted by

nD7 = h0(B3, (K∗B3)4)+ h0(B3, (K∗B3)6)− h0(B3, (K∗B3)2)− 1 . (A.3)

Since K∗B3
is nef and big, its higher cohomologies (and those of its positive powers, (K∗B3

)⊗α

for α ≥ 0) vanish by the Kawamata-Viehweg vanishing theorem (see for example chap-
ter 9.1.C of ref. [17]). Hence, the above zeroth cohomologies can be computed with the
index, h0((K∗B3

)⊗α
)

= ind
(
(K∗B3

)⊗α
)
. Additionally, the latter is easily computed using the

Atiyah-Singer index theorem,

ind
(
(K∗B3)⊗α

)
=
∫
B3

ch
(
(K∗B3)⊗α

)
∧ Td(TB3)

=
∫
B3

(1 + αc1 + 1
2α

2c2
1 + 1

6α
3C3

1 ) ∧
(
1 + 1

2c1 + 1
12(c2

1 + c2) + 1
24c1c2

)
= α

12(1 + α)(1 + 2α)
∫
B3
c1(B3)3 + 1

24(1 + 2α)
∫
B3
c1(B3)c2(B3)

= (1 + 2α) + α
12(1 + α)(1 + 2α)

∫
B3
c1(B3)3 ,

(A.4)

16A manifold is weak Fano if the anti-canonical bundle K∗B3 is nef and big. In terms of the anti-canonical
divisor −DKB3

, this means that (−DKB3
) ·C ≥ 0 for any curve C and (−DKB3

)n > 0, with n the dimension
of the manifold.
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where in the first term of the final line we have again used the fact that
∫
B3
c1(B3)c2(B3) = 24.

Plugging in the values α = 4, 6, 2, we hence find that

nD7 = 16 + 58
∫
B3
c1(B3)3 . (A.5)

We also note that, since the base B3 is weak Fano, the anti-canonical bundle is big, so∫
B3
c1(B3)3 is a positive integer. Moreover this integer is an even integer, as is clear from

the relation in equation (A.4) for e.g. α = 1.

B The D3 charge sourced by the D7 fluxes

In the main text we have used the expression of the contribution of the D7 worldvolume
flux, F to the D3-brane tadpole

QF = −1
4

∫
S
F ∧ F . (B.1)

Evaluating this integral is complicated by the fact that the surface S wrapped by the
D7-brane is singular, generically having double-point intersections [7, 18]. To proceed, one
can blow-up along the singularities to give a smooth resolved surface, S, lifting also the
flux to a (1,1)-form F on S, and there compute the integral QF = −1

4
∫
S F ∧ F .

We first recall the construction of the resolved D7-brane surface, S, following ref. [7],
and then turn to the computation of the integral

∫
S F ∧ F for fluxes of the form considered

in the main text: F ∼ γ − γ′ where γ is a holomorphic curve that the D7-brane has been
tuned to contain, and γ′ its orbifold image.

B.1 The resolved D7-brane

At the intersection between the D7-brane and the O7-plane, whose geometries have been
discussed in section 2.1, the D7-brane intersects itself, so that the wrapped surface, S, is
singular. In the notation of section 2.1, this intersection occurs where η = ξ = 0, which
describes a curve inside the double-cover CY.

By blowing up along this curve, the two branches of the D7-brane are separated,
removing the singularities and giving rise to a smooth surface, S. Practically, this resolution
may be performed by blowing up the ambient space, A, of the double-cover CY described
by equation (2.4) to give a new ambient space, A, and taking the proper transform S of
the D7-brane surface.

In ref. [7] the authors construct explicitly the resolved D7-brane surface S for the simple
F-theory compactification discussed in section 3, and also determine a number of properties
of general compactifications. In particular, it is straightforward to show that the (object
that restricts from A to S to give the) first Chern class of S is given by

c
(
A, TS

)
= 1 +

(
[O]− [D]

)
+ . . . , (B.2)

where [O] and [D] are respectively the classes of the O7-plane and the D7-brane, lifted
to the new ambient space A. Recalling from section 2.1 that the O7-plane and D7-brane
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respectively correspond to sections of (K∗B3
)⊗1 and (K∗B3

)⊗8, we see that

c
(
A, TS

)
= 1− 7[−DKB3

] + . . . , (B.3)

where we have written DKB3
for the pull-back to A of the canonical divisor of B3 through

the composition of the projection map from A to B3 and the blow-down map from A to A.

B.2 The tadpole contribution

We would like to calculate the D3-brane charge sourced by worldvolume fluxes of the form
F ∼ γ − γ′, with γ an irreducible curve inside the tuned D7-brane, S, and γ′ its orbifold
image. These naturally lift in the resolution of S to curves γ and γ′ on the smooth surface
S. Moreover, the D3 tadpole contribution of the worldvolume flux F can be computed as

Qγ = −1
4(γ − γ′) · (γ − γ′) = 1

2
(
− γ2 + γ · γ′

)
. (B.4)

Since γ and γ′ are curves inside the CY three-fold X related by the orbifold action, we
expect intersections only at the orbifold fixed locus, which are generically separated by the
resolution of the D7-brane, and we hence expect that γ · γ′ = 0. If this intersection happens
to be non-zero, then, since it is an intersection between distinct irreducible curves, it must
be positive. Hence equation (B.4) certainly gives a lower bound: Qγ ≥ −γ2.

Noting that this first term can be rewritten using the relation

− γ2 = χ(γ)− c1(S, TS) · γ , (B.5)

using the above expression for c1(A, TS) and writing gγ for the genus of γ, we see that

Qγ ≥ −
1
2 γ

2 = (1− gγ) + 7
2(−DKB3

) · γ , (B.6)

where the intersection in the second term is taken on A. It is clear that −DKB3
· γ =

−DKB3
· γ, where in the second expression the intersection is taken on the original ambient

space A (and we have abused notation by writing DKB3
for the pull-back to A of the

canonical divisor on B3 by the projection map from A to B3). Hence we have finally

Qγ = (1− gγ) + 7
2dγ , (B.7)

where we have defined the canonical degree dγ ≡ −DKB3
· γ.

C Counting the stabilized moduli

Here we consider the problem of counting the number of constraints on the D7-brane moduli
space that result from demanding that the D7-brane contain a particular irreducible curve.

We recall from section 2.1 that the D7-brane locus is determined by the intersection
between the CY hypersurface ξ2 = h(x) and the D7-brane equation η(x)2 = h(x)ξ(x).
The D7-brane equation is a section of17 the bundle OA(−8DKB3

), but its form is not the
17Here and in the following we abuse notation by writing DKB3

for the pull-back to A of the canonical
divisor on B3 by the projection map from A to B3.
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most general one, so the possible configurations of the D7-brane correspond to a particular
subspace of the space of sections Γ

(
OA(−8DKB3

)
)
. In demanding that the D7-brane contain

some curve γ, we are imposing a second constraint which will cut this subspace down further.
In general, there may be a non-trivial interplay between these two constraints on the space
of sections. However, such an interplay can only result in a smaller number of coefficients
being constrained. Hence, if we assume the best-case scenario for stabilization, we can
consider the two constraints independently, and simply sum the number of coefficients
being constrained by each. And, since the number of coefficients constrained by demanding
a form η(x)2 = h(x)ξ(x) has already been taken into account in the original counting of
D7-brane deformations in equation (2.7), it remains only to determine the dimension of
the subspace of elements in Γ

(
OA(−8DKB3

)
)
which contain the curve γ. Hence, an upper

bound on the number of constraints nstab.
D7,γ on the D7-brane from demanding the inclusion

of the curve γ is given by

nstab.
D7,γ ≤ dim

(
Γ
(
OA(−8DKB3

)
))
− dim

{
s ∈ Γ

(
OA(−8DKB3

)
)
| s

!
⊃ γ

}
. (C.1)

It is in general difficult to compute a quantity like the second term, which is the
dimension of the subspace of sections which contain a particular locus in the manifold. One
way to proceed is to note that, if we blow up along the specified sublocus γ to give an
exceptional divisor, Eγ , on the blown-up manifold Ã, the sections of the bundle OÃ(D−Eγ)
are in one-to-one correspondence with the sections of OA(D) which vanish along γ. This
follows from the fact that O(D) can be seen as the sheaf of functions whose divisor is
greater or equal to D. Writing D̃KB3

for the pull-back to Ã of the canonical divisor of B3
through the composition of the projection map from A to B3 and the blow-down map from
Ã to A, we can hence rewrite the above upper bound as

nstab.
D7,γ ≤ h0

(
OÃ

(
− 8D̃KB3

))
− h0

(
OÃ

(
− 8D̃KB3

− Eγ
))
, (C.2)

where we have also chosen to replace the first term using the equality between
h0
(
OA

(
− 8DKB3

))
and h0

(
OÃ

(
− 8D̃KB3

))
.

The expression for the upper bound is now a difference of cohomologies on the same
variety Ã. To compute this, we first note that on a variety Y , given a divisor D, there is
the exact sequence of sheaves

0→ OY (−D)→ OY → OY |D → 0 . (C.3)

To make use of this sequence we set Y = Ã and take D = Eγ , so that we have

0→ OÃ(−Eγ)→ OÃ → OÃ|Eγ → 0 , (C.4)

and then tensor the sequence with OÃ
(
− 8D̃KB3

)
, to give

0→ OÃ
(
− 8D̃KB3

− Eγ
)
→ OÃ

(
− 8D̃KB3

)
→ OÃ

(
− 8D̃KB3

)∣∣
Eγ
→ 0 . (C.5)
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To make the connection between this sequence of sheaves and the required cohomologies,
we first take the associated long exact sequence in cohomology, which reads

0→H0
(
OÃ

(
−8D̃KB3

−Eγ
))
→H0

(
OÃ

(
−8D̃KB3

))
→H0

(
OÃ

(
−8D̃KB3

)∣∣
Eγ

)
→H1

(
OÃ

(
−8D̃KB3

−Eγ
))
→H1

(
OÃ

(
−8D̃KB3

))
→H1

(
OÃ

(
−8D̃KB3

)∣∣
Eγ

)
→ . . .

(C.6)

Recalling the discussion in appendix A, we note that the higher cohomologies of K∗B3
(and

its positive tensor powers) vanish, and hence the long exact sequence terminates after only
four terms. Hence, the alternating sum of the dimensions of these four terms must vanish,
or rearranging,

h0
(
OÃ

(
− 8D̃KB3

))
− h0

(
OÃ

(
− 8D̃KB3

− Eγ
))

= h0
(
OÃ

(
− 8D̃KB3

)∣∣
Eγ

)
− h1

(
OÃ

(
− 8D̃KB3

− Eγ
))
.

(C.7)

The first line is precisely the quantity we want to compute. In the second line, the second
term will only reduce the number of stabilized moduli, and hence we have the inequality

nstab.
D7,γ ≤ h0

(
OÃ

(
− 8D̃KB3

)∣∣
Eγ

)
. (C.8)

It remains to compute this final quantity, which is the zeroth cohomology of a line
bundle on the complex surface Eγ . To compute this, we note that Eγ is a fiber-bundle of
P1 over the base curve γ. Notably, the line bundle on Eγ is clearly a pull-back to Eγ of a
line bundle on the base γ with degree −8DKB3

· γ. Furthermore, the zeroth cohomology of
the pull-back bundle on Eγ is simply given by the zeroth cohomology of the bundle on γ.
Hence, it remains only to compute the zeroth cohomology of a line bundle on the curve γ.

When the genus gγ of the curve γ is non-zero, the zeroth cohomology of a line bundle
on γ is not determined uniquely by the degree. It is however bounded from above by the
degree plus one (see for example Theorem 9.6 (i) of ref. [19]). Hence

h0
(
OÃ

(
− 8D̃KB3

)∣∣
Eγ

)
≤ −8DKB3

· γ + 1 . (C.9)

This gives finally an upper bound on the number of constraints on the D7-brane that result
from requiring the inclusion of a particular complex curve γ,

nstab.
D7,γ ≤ −8DKB3

· γ + 1 ≡ 8dγ + 1 , (C.10)

where we have defined the canonical degree dγ ≡ −DKB3
· γ.

D Toric base space and genus-zero flux

In section 3 we reviewed the no-go theorem of ref. [7], which applies only when the F-theory
base is a P3 and the stabilizing worldvolume flux is dual to a curve of genus zero. In this
appendix we extend this no-go theorem to the situation where the F-theory base is any
toric weak Fano three-fold, keeping the flux dual to a curve of genus zero. In section 4 we
have treated a much more general scenario, loosening both the toric restriction and the
genus-zero restriction. However while the geometries we consider in this appendix are less
generic, they are amenable to computations which are more explicit and illustrative.
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D.1 Toric geometry

When the F-theory base, B3, is a toric variety, it is specified by a weight system, which we
can write in general as

B3 ∼

x0 . . . xn

q0
1 · · · qn1
... . . . ...
q0
m · · · qnm

, (D.1)

as well as a Stanley-Reisner ideal, which we do not write explicitly. We note that the
anti-canonical bundle K∗B3

of B3 is the line bundle with charge
∑n
j=1 q

j
i under the ith row

of the charge matrix. For example, if B3 = P3, then the weight system is

B3 ∼
x0 x1 x2 x3
1 1 1 1

, (D.2)

and K∗B3
is the line bundle with charge 4 (i.e. whose sections correspond to degree 4

polynomials) under the projective scaling xi → λxi where λ ∈ C∗.
The double-cover of the orientifold in the Type IIB perspective is then described by

the hypersurface in equation (2.4) inside a toric ambient space A with weight system

A ∼

x0 . . . xn ξ

q0
1 · · · qn1

∑
j q

j
1

... . . . ...
...

q0
m · · · qnm

∑
j q

j
m

, (D.3)

in which the charges for ξ have been chosen to make equation (2.4) consistent. We note
that A is singular, but also that the singularities generically miss the hypersurface, so that
for many computations it is not necessary to resolve the singularities of A.

We define a basis of divisor classes on A by associating a class, Hi, to the unit charge
in each row of the weight system. For example, when B3 = P3

AP3 ∼
x0 x1 x2 x3 ξ

1 1 1 1 4
, (D.4)

and the basis of divisors is given by a single element, H ∼ [x0] ∼ . . . ∼ [x3], which is the
hyperplane class of the weighted projective space AP3 = P4

1,1,1,1,4.

D.2 Fluxes and moduli stabilization

We stabilize the D7-brane moduli following the procedure outlined in section 2.2. Here we
assume, as in the simple example treated in section 3, that the flux curve γ has genus zero.
This has the distinct advantage that both the embedding space A and the curve itself are
covered by homogeneous coordinates, which we can use to parameterize the embedding, to
hence easily count how many D7-brane moduli are stabilized.
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Since the flux curve γ is a P1, we may parameterize it with homogeneous coordinates
[u : v], and embed the curve γ into the ambient space A of the upstairs double-cover X
with polynomial maps:

xi = Xi(u, v) , ξ = Ξ(u, v) , (D.5)

where Xi(u, v) and Ξ(u, v) are homogeneous polynomials in [u : v]. In order for this map to
be consistent (not one-to-many), the degrees of these polynomials must be consistent with
the allowed projective scalings of the coordinates xi and ξ, as specified by the toric weight
system of A. One can check that this requires that

deg(Xi) =
∑
j

qijdj , deg(Ξ) =
∑
i,j

qijdj , (D.6)

where di are arbitrary integers we associate to each row of the weight system of A, and
the qij are the entries in this weight system. Importantly, the choice of the integers di
corresponds to the curve class of γ having the intersection properties

γ ·Hi = di . (D.7)

The combination
∑
i,j q

i
jdj will reoccur frequently below, so it will be useful to define

dγ ≡
∑
i,j

qijdj . (D.8)

The embedding map is specified by the coefficients in the polynomials Xi and Ξ.
However, some maps are equivalent. First, there are the n−2 projective scaling identifications
on the coordinates of A, as specified by the weight system in equation (D.1), which identify
naively distinct embedding maps, reducing the true number of parameters by n− 2. Second,
the P1 admits a family of GL2 reparametrizations, which is a 4-dimensional group of
transformations. However, one of the latter corresponds to an overall scaling identification,
which overlaps with the scaling identifications on the toric target space. Hence, the true
number of parameters of the embedding map is

n∑
i=0

(
deg(Xi) + 1

)
+
(
deg(Ξ) + 1

)
− (n− 2)− 3 = 2dγ + 1 . (D.9)

The curve γ lies in the ambient space A. In order for it to lie on the double-cover X of
the orientifold Xo, the embedding map must satisfy

Ξ2(u, v) = h
(
X(u, v)

)
, (D.10)

for all [u : v]. This is a degree 2dγ equation in [u : v], and so gives 2dγ + 1 constraints on
the parameters of the embedding map. This is precisely the number of parameters for the
embedding, so the embedded curves are rigid.

For a given curve γ, we wish to count the number of constraints placed on the D7-
brane equation upon demanding that the D7-brane contain this curve. Demanding that
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the D7-brane inside X contain a specific curve, γ, corresponds to imposing the equation
η(x)2 = ξ2χ(x) of the D7-brane for the entire image of the curve embedding,

η
(
X(u, v))2 − Ξ2(u, v)χ

(
X(u, v)

)
= 0 . (D.11)

As a degree 8dγ equation in [u : v], this gives 8dγ + 1 constraints on the coefficients in the
polynomials η(x) and χ(x). Hence, the number of constraints on the D7-brane is

nstab.
D7,γ = 8dγ + 1 . (D.12)

We note that this result agrees with the general computation in equation (4.3), when that
expression is restricted to a genus-zero curve (gγ = 0), and that it also agrees with the
calculation for a P3 base in equation (3.4).

D.3 Resolving the D7-brane and computing the tadpole contribution

In appendix B we have computed the D3 charge of the stabilizing D7 worldvolume flux for
a general compactification. This computation requires one to resolve the D7-brane, and the
argumentation we used was rather abstract. Here we give a more explicit description of the
resolution of the D7-brane when the base is toric.

The resolution is performed by blowing-up the ambient space A of the double-cover X
along the singular locus of the D7-brane, S, giving rise to a new auxiliary ambient space A
which contains a smooth surface S which is the resolved D7-brane.

We construct the auxiliary ambient space as follows. The singular locus of the D7-
brane S occurs at ξ = η(x) = 0. We blow up this locus by introducing the homogeneous
coordinates [s : t] of a P1, and introducing an additional equation

tξ = sη(x) . (D.13)

This gives rise to a (singular) toric variety A with weight system

A ∼

x0 . . . xn ξ s t

q0
1 · · · qn1

∑
j q

j
1 0 3

∑
j q

j
1

... . . . ...
...

...
...

q0
m · · · qnm

∑
j q

j
m 0 3

∑
j q

j
m

0 · · · 0 0 1 1

. (D.14)

Associated to each row of the weight system is a divisor class, which we write as
{H1 , . . . , Hm , [s]}. We also define [−DKB3

] ≡
∑
iH i, which is the lift to A of the anti-

canonical divisor −DKB3
of the F-theory base, B3. We note for later use the divisor class

equivalence [t] ∼ [s] + 3[−DKB3
], and the intersection property [t] · [s] = 0, or equivalently

[s] ·
(
[s] + 3[−DKB3

]
)

= 0 . (D.15)

In the blow-up, the surface S wrapped by the D7-brane is lifted to a non-singular
surface, S, inside A, which is given by the complete intersection

S : ξt = η(x)s ∩ t2 = χ(x)s2 ∩ ξ2 = h(x) , (D.16)
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and which is hence described by the divisor class intersection

[S] =
(
4[−DKB3

] + [s]
)
·
(
6[−DKB3

] + 2[s]
)
·
(
2[−DKB3

]
)
. (D.17)

We can also compute the (object that restricts from A to S to give the) Chern class of the
S by the adjunction formula:

c
(
A, TS

)
=

c
(
A, TA

)
c
(
A,NS\A

) =
1 +

(
5[−DKB3

] + 2[s]
)

+ . . .

1 +
(
12[−DKB3

] + 3[s]
)

+ . . .
= 1 +

(
− 7[−DKB3

] + [s]
)

+ . . . ,

(D.18)
where we have only written out the first Chern classes in each term.

Finally, one can hence compute a lower bound for the contribution to the D3 tadpole
of the stabilizing worldvolume flux:

Qγ = −1
4(γ − γ′)2 ≥ −1

2 γ
2 = 1

2
(
χ(γ)− c1(TS) · γ

)
= (1− gγ) + 7

2(−DKB3
) · γ ≡ (1− gγ) + 7

2dγ ,
(D.19)

where the intersection in the last line is taken on A, and where we have again defined
the canonical degree dγ ≡ −DKB3

· γ = −DKB3
· γ. This agrees with the general result in

equation (B.7).
Hence, the explicit calculations of the number of stabilized moduli and of the tadpole

induced by fluxes in a compactification with a toric base reproduce the results in section 4
for a more general compactification with a weak Fano base. The examples worked out in
this appendix correspond to the vertical gγ = 0 line in figure 1.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] I. Bena, J. Blåbäck, M. Graña and S. Lüst, The tadpole problem, JHEP 11 (2021) 223
[arXiv:2010.10519] [INSPIRE].

[2] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys.
Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

[3] I. Bena, J. Blåbäck, M. Graña and S. Lüst, Algorithmically Solving the Tadpole Problem, Adv.
Appl. Clifford Algebras 32 (2022) 7 [arXiv:2103.03250] [INSPIRE].

[4] I. Bena, E. Dudas, M. Graña and S. Lüst, Uplifting Runaways, Fortsch. Phys. 67 (2019)
1800100 [arXiv:1809.06861] [INSPIRE].

[5] L.B. Anderson, X. Gao and M. Karkheiran, Extending the Geometry of Heterotic Spectral
Cover Constructions, Nucl. Phys. B 956 (2020) 115003 [arXiv:1912.00971] [INSPIRE].

[6] W. Cui and M. Karkheiran, Heterotic Complex Structure Moduli Stabilization for Elliptically
Fibered Calabi-Yau Manifolds, JHEP 03 (2021) 281 [arXiv:2011.14304] [INSPIRE].

– 24 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP11(2021)223
https://arxiv.org/abs/2010.10519
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.10519
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://arxiv.org/abs/hep-th/0301240
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0301240
https://doi.org/10.1007/s00006-021-01189-6
https://doi.org/10.1007/s00006-021-01189-6
https://arxiv.org/abs/2103.03250
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.03250
https://doi.org/10.1002/prop.201800100
https://doi.org/10.1002/prop.201800100
https://arxiv.org/abs/1809.06861
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.06861
https://doi.org/10.1016/j.nuclphysb.2020.115003
https://arxiv.org/abs/1912.00971
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB956%2C115003%22
https://doi.org/10.1007/JHEP03(2021)281
https://arxiv.org/abs/2011.14304
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.14304


J
H
E
P
0
1
(
2
0
2
2
)
1
3
8

[7] A. Collinucci, F. Denef and M. Esole, D-brane Deconstructions in IIB Orientifolds, JHEP 02
(2009) 005 [arXiv:0805.1573] [INSPIRE].

[8] A. Sen, Orientifold limit of F-theory vacua, Phys. Rev. D 55 (1997) R7345 [hep-th/9702165]
[INSPIRE].

[9] M. Graña and J. Polchinski, Gauge/gravity duals with holomorphic dilaton, Phys. Rev. D 65
(2002) 126005 [hep-th/0106014] [INSPIRE].

[10] M. Mariño, R. Minasian, G.W. Moore and A. Strominger, Nonlinear instantons from
supersymmetric p-branes, JHEP 01 (2000) 005 [hep-th/9911206] [INSPIRE].

[11] J. Halverson and J. Tian, Cost of seven-brane gauge symmetry in a quadrillion F-theory
compactifications, Phys. Rev. D 95 (2017) 026005 [arXiv:1610.08864] [INSPIRE].

[12] E. Plauschinn, The tadpole conjecture at large complex-structure, arXiv:2109.00029
[INSPIRE].

[13] S. Lüst, Large complex structure flux vacua of IIB and the Tadpole Conjecture,
arXiv:2109.05033 [INSPIRE].

[14] F. Marchesano, D. Prieto and M. Wiesner, F-theory flux vacua at large complex structure,
JHEP 08 (2021) 077 [arXiv:2105.09326] [INSPIRE].

[15] J. Halverson and W. Taylor, P1-bundle bases and the prevalence of non-Higgsable structure in
4D F-theory models, JHEP 09 (2015) 086 [arXiv:1506.03204] [INSPIRE].

[16] S. Sethi, C. Vafa and E. Witten, Constraints on low dimensional string compactifications,
Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [INSPIRE].

[17] R. Lazarsfeld, Positivity in Algebraic Geometry II: Positivity for Vector Bundles, and
Multiplier Ideals, in Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of
Modern Surveys in Mathematics, Springer (2004).

[18] A.P. Braun, A. Hebecker and H. Triendl, D7-Brane Motion from M-theory Cycles and
Obstructions in the Weak Coupling Limit, Nucl. Phys. B 800 (2008) 298 [arXiv:0801.2163]
[INSPIRE].

[19] F. Bogomolov, Algebraic curves and one-dimensional fields, Courant Institute of Mathematical
Sciences/American Mathematical Society, New York, NY (2002).

– 25 –

https://doi.org/10.1088/1126-6708/2009/02/005
https://doi.org/10.1088/1126-6708/2009/02/005
https://arxiv.org/abs/0805.1573
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.1573
https://doi.org/10.1103/PhysRevD.55.R7345
https://arxiv.org/abs/hep-th/9702165
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9702165
https://doi.org/10.1103/PhysRevD.65.126005
https://doi.org/10.1103/PhysRevD.65.126005
https://arxiv.org/abs/hep-th/0106014
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0106014
https://doi.org/10.1088/1126-6708/2000/01/005
https://arxiv.org/abs/hep-th/9911206
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9911206
https://doi.org/10.1103/PhysRevD.95.026005
https://arxiv.org/abs/1610.08864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.08864
https://arxiv.org/abs/2109.00029
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.00029
https://arxiv.org/abs/2109.05033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.05033
https://doi.org/10.1007/JHEP08(2021)077
https://arxiv.org/abs/2105.09326
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.09326
https://doi.org/10.1007/JHEP09(2015)086
https://arxiv.org/abs/1506.03204
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.03204
https://doi.org/10.1016/S0550-3213(96)00483-X
https://arxiv.org/abs/hep-th/9606122
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9606122
https://doi.org/10.1016/j.nuclphysb.2008.03.021
https://arxiv.org/abs/0801.2163
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB800%2C298%22

	Introduction
	Stabilizing D7-brane moduli
	D7-branes in Type IIB orientifolds
	Stabilizing D7-brane moduli with worldvolume flux

	Review: a no-go example
	A general compactification with a weak Fano base
	The window of worldvolume fluxes that are not excluded
	Fluxes dual to curves of high degree and high genus

	Conclusions
	The geometry and the D7-branes
	The D3 charge sourced by the D7 fluxes
	The resolved D7-brane
	The tadpole contribution

	Counting the stabilized moduli
	Toric base space and genus-zero flux
	Toric geometry
	Fluxes and moduli stabilization
	Resolving the D7-brane and computing the tadpole contribution


