
https://doi.org/10.1007/s12237-021-01027-9

A Conterminous USA-Scale Map of Relative Tidal Marsh Elevation

James R. Holmquist1  · Lisamarie Windham-Myers2

Received: 28 October 2020 / Revised: 26 October 2021 / Accepted: 8 November 2021 
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2022

Abstract
Tidal wetlands provide myriad ecosystem services across local to global scales. With their uncertain vulnerability or resil-
ience to rising sea levels, there is a need for mapping flooding drivers and vulnerability proxies for these ecosystems at a 
national scale. However, tidal wetlands in the conterminous USA are diverse with differing elevation gradients, and tidal 
amplitudes, making broad geographic comparisons difficult. To address this, a national-scale map of relative tidal elevation 
(Z*MHW), a physical metric that normalizes elevation to tidal amplitude at mean high water (MHW), was constructed for 
the first time at 30 × 30-m resolution spanning the conterminous USA. Contrary to two study hypotheses, watershed-level 
median Z*MHW and its variability generally increased from north to south as a function of tidal amplitude and relative sea-
level rise. These trends were also observed in a reanalysis of ground elevation data from the Pacific Coast by Janousek et al. 
(Estuaries and Coasts 42 (1): 85–98, 2019). Supporting a third hypothesis, propagated uncertainty in Z*MHW increased from 
north to south as light detection and ranging (LiDAR) errors had an outsized effect under narrowing tidal amplitudes. The 
drivers of Z*MHW and its variability are difficult to determine because several potential causal variables are correlated with 
latitude, but future studies could investigate highest astronomical tide and diurnal high tide inequality as drivers of median 
Z*MHW and Z*MHW variability, respectively. Watersheds of the Gulf Coast often had propagated Z*MHW uncertainty greater 
than the tidal amplitude itself emphasizing the diminished practicality of applying Z*MHW as a flooding proxy to microtidal 
wetlands. Future studies could focus on validating and improving these physical map products and using them for synoptic 
modeling of tidal wetland carbon dynamics and sea-level rise vulnerability analyses.
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Introduction

Tidal wetlands have the capacity to maintain an adaptive 
resilience to sea-level rise. As sea level increases, inunda-
tion drives elevation change by stimulating belowground 
biomass input and increasing the availability of sediment 
which can be trapped and deposited (Morris et al. 2002; 
Kirwan et al. 2013; Kirwan et al. 2016). Coastal wetlands 
of all land cover classes — saline to fresh, and woody, 
emergent, or submerged vegetation — accrete via these 

vegetative and inorganic soil formation pathways. How-
ever, resilience to sea-level rise is not assured or infinite 
because biological productivity and preservation are limited 
theoretically by plants’ abilities to fix carbon, and practi-
cally by ecological and physical constraints (Morris et al. 
2016). Suspended sediment concentration can vary spatially 
because of a watershed slope, erodibility, size, and precipi-
tation (Weston 2014), and temporally because of storms and 
upstream damming. Local rates of relative sea-level rise 
(RSLR), which take into account both eustatic and isostatic 
sea-level change, can vary greatly (Jankowski et al. 2017; 
Horton et al. 2018).

The conterminous USA (CONUS; Table 1) exhibits a 
range of physical conditions across its three coasts with 
tidal amplitude generally increasing from south to north, 
and being more muted in bays than in open water. RSLR, 
as measured over decades to centuries by long-term tide 
gauges, follows a similar pattern but is influenced by local 
drivers, and generally increases from north to south. Many 
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studies have focused on drivers and processes controlling 
resiliency on local scales and regional scales (e.g., Thorne 
et al. 2018). However, there is a need for simple top-down 
metrics that can be used as resiliency proxies to aid in 
national-scale planning.

A fundamental aspect of assessing wetland structure 
and vulnerability is its relative elevation. Ganju et al. 
(2019) showed that in several well-studied sites across 
the USA, relative tidal elevation, especially elevation 
relative to mean high water, correlates with a different 
top-down marsh vulnerability metric, the unvegetated to 
vegetated area ratio. Marshes that are relatively low in the 
tidal frame may be in some stage of collapse and vegeta-
tion loss. The marsh resilience to sea-level rise index (also 
known as MARS index; Raposa et al. 2016) incorporates 

elevation as well as tidal range into its ranking, with lower 
indices of resilience for microtidal marshes and marshes 
lower in the tidal frame, and higher indices for macrot-
idal marshes and marshes higher in the tidal range. Eleva-
tion normalized to tidal amplitude (Z*) has been shown 
to correlate with carbon stocks in the Pacific Northwest 
(Peck et al. 2020). Despite increasing recognition by the 
coastal wetland community of the need to report relative 
elevations as metadata for observations, hydrologic set-
tings are most commonly reported qualitatively as either 
“high” or “low” marsh environments, or by using indica-
tive vegetation communities (e.g., short and tall Spartina 
alterniflora).

Z* is a dimensionless and functionally important variable 
used in models of marsh resiliency to sea-level rise. For 

Table 1  A glossary of 
abbreviations used in this text Term Abbreviation

Aikake’s information criterion for small sample sizes AICc
Coastal Change Analysis Program C-CAP
Coastal Carbon Research Coordination Network CCRCN
Coastal Elevation National Database CoNED
Coastwide Reference Monitoring System CRMS
Conterminous USA CONUS
Digital elevation model DEM
Diurnal high tide inequality DHQ
Diurnal high tide inequality normalized by tidal amplitude at MHW DHQ*MHW
Elevation Z
Elevation normalized to tidal amplitude Z*
Elevation normalized to tidal amplitude at mean high water Z*MHW
Highest astronomical tide HAT
Highest astronomical tide normalized to tidal amplitude at mean high water HAT*MHW
Highest observed tide HOT
Highest observed tide normalized to tidal amplitude at mean high water HOT*MHW
Hydrologic unit code level-8 HUC8
Light detection and ranging LiDAR
Marsh Equilibrium Model MEM
Marsh Resilience to Sea-Level Rise MARS
Mean high water MHW
Mean higher high water MHHW
Mean higher gigh water for spring tides MHHWS
Mean sea level MSL
Million hectares M ha
NASA Carbon Monitoring System NASA CMS
National Oceanic and Atmospheric Association NOAA
National Wetlands Inventory NWI
North American vertical datum of 1988 NAVD88
Relative sea-level rise RSLR
Shuttle radar topography mission SRTM
US Department of Agriculture-Natural Resources Conservation Service USDA-NRCS
US Geological Survey USGS
Wetland Accretion Rate Model of Ecosystem Resilience WARMER
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example, both the marsh equilibrium model (MEM; Morris 
et al. 2002) and the Wetland Accretion Rate Model of Eco-
system Resilience (WARMER) (Swanson et al. 2014) use 
it to constrain relationships between plant productivity and 
flooding. It has the advantage of being simple to calculate 
and update, making sites across geographies more easily 
intercomparable in their physical interaction with tides.

Since uncertainty propagation is a vital part of monitor-
ing and decision support (Dietze et al. 2018), we outline the 
sources of uncertainty in the mapped components making 
up Z*. Airborne light detection and ranging (LiDAR) data 
have the potential to generate high-resolution digital eleva-
tion models (DEMs) for mapping flood potential and are 
an important part of coastal wetland monitoring (Chmura 
2013). However, they are often built to accuracy specifi-
cations relevant to assessing potential property damages 
(ASPRS 2004; Coveney 2013); coastal wetland processes 
are sensitive to centimeter-scale gradients and usually cov-
ered by thick vegetation and litter (Schmid et al. 2013) 
through which LiDAR cannot fully penetrate to the ground. 
As a result, LiDAR can overestimate elevations in vegetated 
settings as much as 1 m (Chassereau et al. 2011).

There is also uncertainty in datums used to calculate Z* 
which originate both from the datums themselves and from 
the extrapolation process. In short, datums encompassing 
more data points (higher frequency or a longer time period) 
have less uncertainty than datums encompassing shorter 
time periods; areas located further away from tide gauges 
have higher uncertainty than areas closer to tide gauges. 
While VDATUM is a useful tool for applying uncertainty 
through transformations, its extrapolation methodologies 
generate substantial uncertainty far from tidal stations 
(Defne et al. 2020) and the products do not extend explic-
itly into tidal wetlands (Brophy et al. 2019). Holmquist et al. 
(2018a) used empirical Bayesian kriging to extrapolate water 
levels and errors and calculate a probabilistic map of areas 
falling below the highest monthly tides. Estimating water 
surface elevations away from measured locations is difficult 
(due to surface and subsurface flow conditions). Without 
hydrologic restrictions, elevation maps yield a liberal esti-
mate of flood extent and depth (Chust et al. 2008).

Despite these difficulties, we propose that a CONUS 
scale estimate of relative elevation can move modeling and 
accounting efforts forward by providing a synoptic assess-
ment of the distribution of relative elevations, provided that 
the magnitude and sources of uncertainty are well docu-
mented. As far as we know, no one has calculated a national-
scale Z* map, nor propagated uncertainty for Z* across a 
wide scale. In this paper, we present a relative tidal eleva-
tion map for CONUS tidal wetlands, generated through a 
transparent process, and accompanied by a corresponding 
uncertainty map at 30 × 30-m scale. In addition to providing 
these maps to encourage validation and model development, 

we use these maps to estimate the relative elevation of tidal 
wetlands as above or below the MHW line and thus repre-
sentative of high- and low-elevation zones within estuarine 
emergent wetlands. Finally, we analyze geographic patterns 
in the distribution of mapped Z* and Z* uncertainty aggre-
gated by intermediate watershed unit per the U.S. Environ-
mental Protection Agency Hydrologic Unit framework.

We hypothesized that median tidal elevation, and vari-
ability in tidal elevation would increase from south to north. 
We reasoned that general resilience, and thus marsh plat-
form building, increases with tidal amplitude (Holmquist 
et al. 2021a). We also reasoned that a wider tidal amplitude 
would lead to more variability in relative elevation. Finally, 
we hypothesized that propagated uncertainty in Z* would 
increase from north to south, because of decreases in tidal 
amplitude. Our focus was not on defining ecological bounda-
ries of high marsh and low marsh vegetation species (e.g., 
Sanderson et al. 2001), but a framework for future analyses 
of the physical role of relative elevation and tidal amplitude 
in modeled distributions.

Methods

While the formula for normalizing elevation can vary 
depending on the goal of the researcher, in our study, we cal-
culate it as a function of orthometric elevation (Z) referenced 
to the North American Vertical Datum of 1988 (NAVD88), 
as well as tidal datum MHW and mean sea level (MSL) 
and refer to it throughout as Z*MHW (Eq. 1). We make this 
qualification because MEM (Morris et al. 2002) references 
Z* relative to mean high water (MHW) and WARMER ref-
erences Z* relative to mean higher high water (MHHW) 
(Swanson et al. 2014). We chose this formulation to dif-
ferentiate wetlands that flood twice a day from those that 
flood between once a day and a few times a month, given 
mixed and semi-diurnal tides, providing a convenient and 
physically relevant differentiation between high-elevation 
and low-elevation marshes.

Determining Area of Interest

To create an area of interest for the Z*MHW mapping, we first 
made key updates to the coastal lands layer presented by 
Holmquist et al. (2018a), a probabilistic map of areas below 
mean higher high water spring tide elevation (MHHWS). 
The updates incorporated new underlying data sources and 
revisions to the original methodology (Table 1). Within this 
updated layer, we analyzed all areas identified as estuarine 
wetlands according to the Coastal Change Analysis Program 

(1)Z∗
MHW

=
Z −MSL

MHW −MSL
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(C-CAP; NOAA 2014). For C-CAP palustrine wetlands, 
also known as freshwater wetlands, we included them in the 
analysis if they had greater than a 1% probability of being 
below MHHWS. In anticipation of users wanting to compare 
the relative tidal elevations of wetlands to adjacent surfaces 
that may represent drained, dredged, or developed former 
wetlands, we included farmed, developed, bare, and natural 
lands with the same inclusion criteria applied to freshwater 
wetlands. To broaden the utility of the analysis for a wide 
variety of users, we additionally included any areas mapped 
as tidal wetlands according to the National Wetlands Inven-
tory (U.S. Fish and Wildlife Service 2014).

Elevation and Water Level Mapping

For the analyses, we compiled coastal LiDAR-based DEMs 
from multiple sources, with the goal of geographic com-
pleteness. The majority of the files were aggregated for the 
National Oceanic and Atmospheric Association (NOAA) 
Sea Level Rise Viewer (NOAA 2017a). The aggregated 
DEMs distributed by the sea-level rise viewer, however, are 
not representative of all the data used in the sea-level rise 
viewer or the extent of historically tidal wetlands (Table S1). 
We additionally aggregated DEMs from the Northern Gulf 
of Mexico; the Sacramento Delta in California; Baltimore, 
and Calvert Counties in Maryland; Beaufort, and George-
town Counties in South Carolina; Liberty and Glynn Coun-
ties, Georgia; and Mobile County, Alabama (Table S1). 
Our goal in selecting these DEMs was to utilize the highest 
quality available large-scale syntheses available, not neces-
sarily the most up-to-date or high-quality elevation maps at 
the scale of individual sites, such as those available incre-
mentally through U.S. Geological Survey’s Coastal National 
Elevation Database (CoNED; Danielson et al. 2018).

The majority of LiDAR DEMs have been hydro-flattened, 
meaning the elevation of mapped surface water was arbi-
trarily assigned a low number. Because the resolution of 
the underlying DEMs is upscaled in our processing, hydro-
flattened pixels have the potential to bias surfaces, eliminat-
ing features such as berms at marsh edges. We documented 
hydro flattened values from file meta-data, or from a thor-
ough inspection of the products, and masked those values 
from the upscaling. While minimum binning is one approach 
for upscaling DEMs (Schmid et al. 2011), we opted for an 
unbinned continuous product (Table S1). To be conserva-
tive, we also made the decision to exclude mapped water fea-
tures from this analysis, including C-CAP pixels mapped as 
submerged vegetation and open water, in addition to LiDAR 
pixels that had been hydro-flattened.

For water levels, MSL, MHW, and MHHW relative to 
NAVD88, values came from NOAA’s (2017b) reported tidal 
datums. Typically, datum periods span 1983 to 2001, but some 
gauges with locally high rates of RSLR report datums over 

shorter time periods. Statistical uncertainty came from NOAA 
datum error reports (NOAA 2017c, 2017d, 2017e). MHHWS 
was a customized datum calculated relative to MHHWS from 
NOAA high-low data (NOAA 2016), with standard error 
reported, in Holmquist et al. (2018a). We used Empirical 
Bayesian Kriging (Krivoruchko 2012) and ArcGIS Pro 10.2 
(Esri Inc. 2017) to extrapolate tidal datums from tide gauges. 
We used inverse distance weighting to extrapolate errors in 
tidal datums. See supplemental methods for additional details.

Tidal Elevation Uncertainty Propagation

For elevation mapping, we accounted for both the bias and 
random error associated with LiDAR-based DEMs using a 
literature review (Hladik et al. 2013; Medeiros et al. 2015; 
Buffington et al. 2016; Holmquist et al. 2021b). In our national 
scale analysis, we bias-corrected using a weighted site-level 
average offset of 0.173 m, with a site-level weighted stand-
ard error of 0.110 m (n = 20 sites, 19,762 data points), and a 
weighted random error of 0.205 m. The propagated error at 
the pixel level is the sum of squares of these two uncertain-
ties (Eq. 2), and we assumed average total Z uncertainty of 
0.233 m.

In this update of the probabilistic coastal lands map, in 
addition to propagating the uncertainty in LiDAR-based eleva-
tion, we also accounted for uncertainty between the two tidal 
datum transformation layers (Eq. 2).

In which ρ represents the correlation coefficient between 
MHHWS relative to MHHW and MHHW relative to NAVD88, 
which we calculated to be 0.716.

For each tidal datum, as in Holmquist et al. (2018a), we 
propagated uncertainty from both the uncertainty arising from 
datum quality, as well as uncertainty in the extrapolation pro-
cess. For the datum itself, we used the standard error according 
to the NOAA datum report, extrapolated using inverse dis-
tance weighting. The kriging uncertainty was sourced from the 
standard error of prediction from empirical Bayesian kriging. 
We assumed that these errors were independent, since datum 
error is a function of the proportion of the tidal datum period 
for which there is water level data at the gauge, and kriging 
error is a function of distance from gauge.

We applied the generalized form of an uncertainty propa-
gation equation to the formula for Z*, resulting in Eq. 5. In 
this equation, σz* is the propagated standard deviation of the 
dimensionless tidal elevation map. σz, σmhw, and σmsl are the 

(2)!2
Z
= !2

random
+ !2

bias

(3)!2
datum,c

= !2
datum,a

+ !2
datum,b

+ 2"!2
datum,a

!2
datum,b

!2
datum,total

= !2
datum

+ !2
kriging
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standard deviations of surface elevation, MHW, and MSL, 
respectively.

Terms with the form ∂/∂x are partial derivatives, scal-
ers quantifying how sensitive Z* is to variations in inputs. 
∂Z*/∂Z, ∂Z*/∂MHW, and ∂Z*/∂MSL are the partial derivatives 
of elevation, MHW, and MSL, respectively. The first three 
terms propagate uncertainty by multiplying a sensitivity by 
a variance.

The final term propagates uncertainty arising from covari-
ance between terms MHW and MSL. We assumed that Z is 
statistically independent of MHW and MSL, and therefore, we 
modeled no covariance between those terms. However, MHW 
and MSL were measured and interpolated from the same tide 
gauges and we expected them to co-vary. ρ2 is the correlation 
coefficient between MHW and MSL, which we calculated to 
be 0.873.

We calculated partial derivatives for the uncertainty propa-
gation using the R package Deriv (Clausen and Sokol 2018).

(5)
!2

Z∗
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"Z ∗

"Z
)
2

!2

Z
+ (
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2

!2

mhw

+ (
"Z ∗

"MSL
)
2

!2

msl
+ 2

"Z ∗

"MHW

"Z ∗

"MSL
!mhw!msl#2

(6)!Z∗

!Z
=

1

MHW −MSL

National Mapping

In addition to the updated probabilistic MHHWS map 
(Table 2; Holmquist et al. 2018a), we created three addi-
tional products at the scale of the CONUS including a 
national scale map of Z*MHW according to Eq. 1, an associ-
ated uncertainty map according to Eq. 5, and a probabilistic 
map of low-elevation marsh. For each product, we calculated 
surfaces according to Eq. 1 for 65 LiDAR DEMs. Original 
LiDAR DEM resolutions ranged from 1 to 10 m, but all 
maps were resampled to 30 m resolution, with pixel extent 
and coordinate systems matching C-CAP. The area of inter-
est detailed above in “Determining Area of Interest” was 
used as a mask layer. We removed pixels that were artifi-
cially assigned a low number because of surface water, also 
known as hydro-flattened pixels to avoid artificially lower-
ing the mapped elevation when standardizing resolution to 
30 × 30 m. We mosaicked files in chronological order using 
the minimum date for parent products reported in the file’s 

(7)
!Z∗

!MHW
=

Z −MSL

(MHW −MSL)2

(8)
!Z∗

!MSL
=

Z −MHW

(MHW −MSL)2

Table 2  Summary of changes made between Holmquist et al. (2018a) workflow and our reanalysis for probability elevation is lower than mean 
higher high water spring (MHHWS) and elevation relative to tidal amplitude at mean high water (Z*MHW) propagated uncertainty

Processing step Probabilistic MHHWS (2018) 2021 update

Spatial extrapolation of datum errors Assumed there was spatial structure, used 
empirical Bayesian kriging to extrapolate 
datum errors between gauges

Used inverse distance weighting to extrapolate 
datum errors between gauges

Error in LiDAR offset at local scale Assumed LiDAR-bias uncertainty was 0 Propagated site-scale uncertainty from using a 
single average vegetation correction

Covariance between MHHW and MHHWS 
offset

Did not incorporate covariance between 
MHHW and MHHWS offset in uncertainty 
propagation

Incorporated covariance in uncertainty  
propagation

Mobile County, AL Did not include. Resulted in missing patches 
between two other surveys

Included Mobile County in update

Baltimore County, MD Contained an error in converting NAVD88 ft 
to m

Error is corrected

Southeastern counties (Georgetown, SC;  
Beaufort, SC; Liberty, GA; Glynn, GA)

Did not include Included in the update

Mask No mask Masked out surfaces that were water or  
submerged aquatic vegetation in both 2006 
and 2011

Mosaicking Mosaicked files and DEM files in no particular 
order

Mosaicked files so that more recent DEMs 
override older DEMs
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meta-data or file name. We did this so that if more than one 
raster overlapped, the newest one would be carried through 
to the final layer.

Since a Z*MHW value of 1 is the MHW line, we mapped 
both “high-” and “low-”elevation marsh conditions (above 
and below Z*MHW = 1), given a 50% probability of inclusion 
in either class. In order to estimate the relative area of high 
and low elevation marsh, we created a version of the Z*MHW 
map which only included wetlands classified as estuarine 
emergent in the 2010 C-CAP maps. We also calculated a 
pixel-level probability of membership in each category. 
We normalized the thresholds relative to the mean mapped 
Z*MHW to its respective uncertainty layer using Eq. 9. These 
error-normalized Z*MHW scores are referred to them as Z′ 
in Eq. 9.

We calculated probability of membership in the low-
elevation marsh class as a function of mean Z′ and a 
threshold of 1 (Eq. 10). We converted the Z′ to an array, 
converted values to cumulative probabilities using the 
cumulative distribution function for a normal distribu-
tion, and the empirical response function from the Numpy 
package (NumPy Developers 2017). We saved resulting 
probabilistic low marsh maps with two decimal points of 
precision. We calculated the probability of membership in 
the high elevation marsh class by subtracting from 1 the 
probability of a pixel being a low-elevation marsh (Eqs. 10 
and 11).

We summarized area by treating each probability class as 
a binomial distribution and estimating mean and standard 
deviation using Eq. 12 and Eq. 13.

In which φ is a probability of inclusion, i refers to 100 
0.01 wide probability class bins, and n is the number of 
pixels that fall into a probability class bin.

Regional Summarization

We report two series of regional summary statistics. First, 
for lands classified as estuarine emergent wetlands accord-
ing to C-CAP 2010, we summarized the area of high and 

(9)Z
′

=
x − Z∗

!Z∗

(10)p(Z∗ < 1) = f (x = 1,!, ")

(11)p(Z∗ > 1) = 1 − p(Z∗ < 1)

(12)! =
∑i=100

i=0
ni"i

(13)!2 =
∑i=100

i=0
ni"i(1 − "i)

low elevations by broad geographic/political regions 
defined by state boundaries. We classified Oregon and 
Washington as the Northwest; California as the South-
west; Texas and Louisiana as South Central; Mississippi, 
Alabama, Florida, Georgia, South Carolina, and North 
Carolina as the Southeast; Virginia, Maryland, the Dis-
trict of Columbia, and Delaware as the Mid-Atlantic; and 
New Jersey, Pennsylvania, New York, Connecticut, Rhode 
Island, Massachusetts, New Hampshire, and Maine as the 
Northeast.

Second, we report summary statistics for Z*MHW and 
Z*MHW uncertainty for all estuarine emergent wetlands 
at the scale of the intermediate watershed unit, Hydro-
logic Unit Code Level 8 (HUC8) (United States Depart-
ment of Agriculture-Natural Resources Conservation 
Service [USDA-NRCS], the United States Geological 
Survey [USGS], and the Environmental Protection Agency 
[EPA] 2015). We report statistics for the subset of HUC8s 
which overlap mapped tidal wetlands according to the 
National Wetlands Inventory (NWI). For Z*MHW, we report 
mean; standard deviation; number of pixels; median; the 
2.5%, 25%, 75%, and 97.5% quantiles; and the minimum 
and maximum values. For Z*MHW uncertainty, we report 
HUC8-level medians.

In the course of creating these summary statistics, it 
became apparent that some watershed units had anomalously 
high median Z*MHW values. We screened HUC8 watershed 
summaries for outliers, and omitted some from data visuali-
zation and modeling, and list them separately under Supple-
mentary Material (2. Additional Results). We defined outli-
ers as any watershed with a median Z*MHW value greater 
than the 75% quantile plus 1.5 times the interquartile range.

Initial data visualization showed spatial patterns of 
Z*MHW and Z*MHW uncertainty within the coasts that we 
hypothesized were related to local patterns in RSLR and 
tidal amplitude. In order to test these hypotheses, we cre-
ated corresponding RSLR and tidal amplitude maps and 
reported these as HUC8-level summaries. For RSLR, we 
queried monthly mean sea level data from any NOAA tide 
gauge listed as a long-term tide gauge by the Permanent Ser-
vice for Mean Sea Level (Permanent Service for Mean Sea 
Level 2016). We chose gauges with at least 66% complete 
data between 1983 and 2001. We downloaded NOAA data 
using the R package downloader (Chang 2015) and calcu-
lated RSLR as the slope of a linear regression with fractional 
year as the independent variable and water-level in millim-
eters relative to station datum, as the dependent variable.

We extrapolated between gauges using empirical Bayes-
ian kriging in ArcGIS pro (ESRI Inc 2017) using the same 
parameters used for extrapolating water levels (Supplemen-
tal Information). For tidal amplitude, we simply subtracted 
the MSL from the MHW levels kriged for the creation of 
Z*MHW and resampled the resolution to 30 m to match the 
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Z*MHW and area-of-interest rasters. For both these layers, we 
summarized the median values of the rasters for each HUC8 
watershed unit.

We tested hypotheses about correlations between these 
potential physical drivers, Z*MHW properties, and general 
spatial trends by (1) using linear modeling and model selec-
tion techniques to create a covariate model and (2) using 
semi-variograms and ordinary kriging of the covariate model 
residuals to create a spatial model. We tested the hypothesis 
that watershed median Z*MHW and Z*MHW variability (quan-
tified with interquartile range) were significantly correlated 
with watershed median RSLR and tidal amplitude, and that 
those two independent variables interacted with each other. 
For Z*MHW uncertainty, we performed a simple linear regres-
sion in which Z*MHW uncertainty was the dependent variable 
and tidal amplitude the independent variable. All depend-
ent and independent variables were plotted with histograms 
to visually inspect the assumptions that distributions were 
normal. We natural log-transformed tidal amplitude, Z*MHW 
variability, and Z*MHW uncertainty, so that they would meet 
the assumptions of normality.

We used the dredge function in the R package MuMln 
(Bartoń 2013) in order to intercompare each possible com-
bination of these dependent variables and determine which 
model structure had the optimal tradeoff between explana-
tory power and parsimony according to Aikake’s Infor-
mation Criterion for small sample sizes (AICc). For each 
model, we used anova_stats function in the sjstats R pack-
age (Lüdecke 2018) to estimate effect sizes for each param-
eter (ω2). We hypothesized that the median Z*MHW and the 
variability of Z*MHW within watersheds would increase with 
tidal amplitude.

Finally, we wanted to know how other potential drivers 
with spatial components, such as geomorphic dynamics or 
the spatial autocorrelation in LiDAR errors, were affect-
ing mapped Z*MHW properties, so we fit a spatial model to 
the residuals of the process model. We fit semi-variograms 
to the residuals of each model using the R package gstats 
(Pebesma 2004; Gräler et al. 2016). In order to estimate a 
“pseudo-R2” value, we used a bootstrapping technique, leav-
ing out one watershed at a time, fitting a semi-variogram 
to the rest of the watersheds, and using ordinary kriging 
to make a prediction for the left-out watershed. For each 
iteration, (i) we calculated both the error of the prediction 
(xi − yi) and the error relative to the mean of the calibration 
dataset (xi − y-bar). The variance of the residual model is the 
result of Eq. 14. The total variance explained is the adjusted 
(1 − R2) value from the covariate model multiplied by the 
residual pseudo-R2 from the spatial model.

(14)Residual psuedo R2 = 1 −

∑

(xi − yi)
2

∑

(xi − y)
2

Comparison to a Ground-Based Latitudinal Survey

During the course of our analyses, two of our original 
hypotheses, positive correlation between tidal amplitude 
and watershed median Z*MHW, and positive correlation 
between tidal amplitude and variability in Z*MHW, were 
refuted. The data supported alternative hypotheses at this 
watershed scale, namely, negative correlations between 
median Z*MHW and tidal amplitude, and negative correlation 
between Z*MHW variability and tidal amplitude. Because one 
possible explanation for this could have been artifacts arising 
from the GIS processing, we compared the trends in Z*MHW 
from the LiDAR based maps to a latitudinal survey of 12 
sites along the US Pacific Coast by Janousek et al. (2019).

The elevation and vegetation and plant community data 
needed to be reprocessed so that the time frame and metrics 
were comparable. We reprocessed Z* using MHW as in our 
study instead of MHHW as in theirs. Because the surveys 
were from a point in time, we calculated datums according to 
the year of the survey. We visually matched each site to the 
nearest NOAA tide gauge which had water levels referenced 
to NAVD88 and had complete 6-min tide gauge data for the 
survey year. We recalculated a custom set of tidal datums for 
the year the survey occurred. See supplemental information 
(2. Additional Methods) for additional details.

Because Janousek et al. (2019) analyzed geographic pat-
terns in plant species niche partitioning, we simplified the 
dataset to unique plot-level elevation measurements only 
and analyzed trends in total site-wide elevation distribu-
tion. We performed two simple regression models to mirror 
the analysis of our remotely sensed data, one in which site-
wide median Z*MHW was the dependent variable, and one 
for which Z*MHW variability (quantified with interquartile 
range) was the dependent variable, and both for which tidal 
amplitude was the independent variable. We natural log-
transformed tidal amplitude and Z*MHW variability, so that 
they would meet the assumptions of normality.

Because the trends in on-the-ground median Z*MHW 
and Z*MHW variability were similar to trends seen in the 
mapped data, and both observations were contrary to our 
hypotheses, we performed a preliminary investigation of 
how a few other tidal properties, which may have process 
links to those metrics, scale with tidal amplitude along the 
Pacific Coast. We referenced the same 10 tide gauges as in 
our reanalysis of Janousek et al. (2019) data. We hypoth-
esized that highest astronomical tide (HAT), and/or high-
est observed tide (HOT), normalized to tidal amplitude at 
MHW (HAT*MHW and HOT*MHW) would correlate nega-
tively with tidal amplitude. Support for this hypothesis could 
point to the upland-tidal wetland interface being a “cap” 
that limits median wetland Z*MHW over broad geographic 
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scales. We also hypothesized that diurnal high tide inequal-
ity (DHQ), in other words the average difference between 
MHW and MHHW, normalized by tidal amplitude at 
MHW (DHQ*MHW) would also correlate negatively with 
tidal amplitude. Support for this hypothesis could point to 
a process link between the variability of twice daily tidal 
elevations and the variability in Z*MHW. We referenced the 
1983 to 2001 tidal datums from NOAA (2017b), which fit 
three linear regressions with HAT*MHW, HOT*MHW, and 
DHQ*MHW as the independent variables and tidal amplitude 
at MHW as the dependent variable. Tidal amplitude and 
DHQ*MHW were natural log-transformed in order to satisfy 
the assumption of normality.

General Analysis Notes

We performed data analysis using the R packages Raster to 
analyze raster data (Hijmans and van Etten 2016), sp to for 
projecting spatial data (Bivand et al. 2013; Pebesma et al. 
2016), and dplyr for analyzing tabular data (Wickham et al. 
2019). Plots 2–6 and 8 were made using ggplot (Wickham 
2016), with GridExtra (Auguie 2017) and RColorBrewer 
(Neuwirth 2014). Plots 2–4 and 7–8 were made using Rnat-
uralearth (South 2017), the simple features of package sf 
(Pebesma 2018), and ggsflabel (Yutani 2018) to create the 
map elements.

Results

A visualization of our Z*MHW map, with a focus on six sites, 
is presented in Fig. 1. Additional discussion of how the map 
corresponds to documented elevation and land cover class 
observations is available under Supplemental Results.

Area of High and Low Wetland Elevations

Of the 1.8 million hectares (M ha) of estuarine emergent 
tidal wetlands in the CONUS (NOAA, 2014), there are 
1.18 M ha of low-elevation marsh (Table 3). This makes 
up 61% of estuarine emergent marshes in the CONUS. In 
comparison, 0.71 m ha, 39%, of estuarine emergent wetlands 
were classified as high-elevation marsh, receiving one tide 
per day or fewer given mixed and semi-diurnal tidal sys-
tems. The coverage of low-elevation marsh varies slightly 
across geographic/political regions of the USA ranging from 
66% of marshes in the Southeast to 53% in the Northwest 
(Table 3).

Regional Summaries

The quantile distributions of Z*MHW at the watershed scale 
shows that median elevations typically peak at a Z*MHW 

value of 1.1 (slightly greater than MHW). Fifty percent 
of watersheds cluster between 0.7 and 2.0 median Z*MHW. 
Ninety-five percent of watersheds cluster between − 1.3 
and 6.1 median Z*MHW. The median distribution of a 
watershed is slightly greater than 1, meaning a typical 
wetland classification is above MHW and thus high eleva-
tion (or infrequently flooded). Of watersheds, 55.8% had 
median Z*MHW values that were greater than or equal to 
1. This does not contradict our earlier assessment that by 
acreage, low-elevation marshes are the dominant CONUS 
marsh type. This is because a few watersheds in Louisiana 
contain a disproportionately high area of wetlands, and 
those are dominated by low-elevation marsh. The three 
watersheds with the most estuarine emergent wetland area 
are in Louisiana, they contain 21% of CONUS estuarine 
emergent wetland area, and they are all dominated by 
subtidal wetlands or low-elevation marsh: Eastern Loui-
siana Coastal, 8%, median Z*MHW =  − 0.05; West Central 
Louisiana Coastal, 7.2%, Z*MHW = 0.51; and East Central 
Louisiana Coastal, 6%, Z*MHW =  − 0.95. Summary sta-
tistics for each watershed are displayed in Figs. 2–5 and 
listed in Table S2.

Figures 2–5 show visually that there is a high degree 
of spatial clustering. Watersheds that are adjacent to each 
other have a high degree of similarity in terms of summary 
statistics.

There were 12 watersheds that we classified as having 
median Z*MHW values that were positive outliers and we 
include detailed observations of them under Supplemental 
Material (2. Additional Results). We included three out-
lier watersheds from Texas, but excluded the rest of the 
classified outliers in Figs. 2–4, and the linear and spatial 
modeling.

For watershed-level median Z*MHW, the fully param-
eterized model had the best tradeoff between performance 
and parsimony. The total covariate model had an R2 of 
0.20. Tidal amplitude was the most impactful parameter 
(Figs. 5A–C and 6), followed by the interactive effects 
between tidal amplitude and RSLR. The spatial model of 
the residuals had a pseudo-R2 of 0.19 explaining just about 
as much variance as the covariate model. This is visually 
apparent in Figs. 2, 3 and 4 in the north to south trends in 
median Z*MHW and as well as some additional spatial clus-
tering of median values.

The fully parameterized model predicting tidal marsh 
variability also had the best tradeoff between performance 
and parsimony. Overall, this model explained much more 
variance than the median Z*MHW model, with an R2 of 0.45. 
Tidal amplitude was, by far, the most impactful param-
eter. The spatial model explained more variance (pseudo-
R2 = 0.20) than that of median Z*MHW model, but less than 
the covariate model for interquartile range of Z*MHW. The 
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variability of marsh Z*MHW is more predictable than median 
marsh Z*MHW. This is also visually apparent in Figs. 2–4 in 
the north to south trends in the width of the boxes, especially 

in the upper 25% quartile, as well as the relatively high 
degree of spatial clustering of IQRs.

Fig. 1  Maps of Z*MHW (elevation normalized to tidal amplitude at mean high water [MHW]) representing diverse locations spanning the conter-
minous USA

Table 3  Fractional breakdown 
of Z*MHW (elevation normalized 
to tidal amplitude at mean 
high water [MHW]) categories 
by region and for the entire 
conterminous USA (CONUS). 
Base data from Estuarine 
Emergent (EEM) Class of the 
2010 Coastal Change Analysis 
Program. Areas are represented 
in hectares (ha)

Region Mean low  
elevation EEM 
(ha)

Mean high  
elevation EEM 
(ha)

Standard 
error (ha)

Mean fraction % of EEM 
classified as low elevation 
(Z*MHW < 1)

Northwest 5,458 4,892 9 53
Southwest 26,001 15,313 16 63
South Central 499,827 371,362 108 57
Southeast 398,903 201,265 77 66
Mid-Atlantic 98,019 72,494 49 57
Northeast 90,694 48,237 38 65
CONUS 1,118,902 713,564 147 61
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Comparison of Remotely Sensed Trends 
to Ground-Based Surveying

For the Pacific Coast analysis, we observed similar trends 
from our remotely sensed relative tidal elevation mapping in 
ground-based survey data (Janousek et al. 2019; Fig. 7). Total-
site median Z*MHW increased from north to south and was 
significantly and negatively correlated with log-transformed 
tidal amplitude (p = 0.0011, R2 = 0.67, n = 12). Variability in 
elevation generally increased from north to south as well. Log-
transformed IQR of Z*MHW was significantly and negatively 
correlated with log-transformed tidal amplitude, although the 
significance and variance explained was lower than the median 
Z*MHW (p = 0.044, R2 = 0.35, n = 12).

HOT*MHW, HAT*MHW, and DHQ*MHW were all signifi-
cantly and negatively correlated with tidal amplitude (Fig. S1) 
for the 10 gauges used to calculate Z*MHW for our reanalysis 
of the 12 sites in Janousek et al. (2019). DHQ*MHW was the 
most strongly correlated with tidal amplitude (p = 6.538e − 05, 
 R2 = 0.86, n = 10), followed by HAT*MHW (p = 0.0002, 
R2 = 0.81, n = 10), and finally by HOT*MHW (p = 0.040, 
R2 = 0.36, n = 10).

Uncertainty in Relative Tidal Elevation

At the watershed scale, uncertainty in Z*MHW was correlated 
significantly with tidal amplitude (R2 = 0.97, p < 0.0001; 
Table 4; Figs. 5 and 6). Watershed-level uncertainty displays 
spatial patterns and latitudinal gradients (Fig. 8). On the Pacific 
Coast, uncertainty was generally less than the difference 
between MHW and MSL. On the Gulf Coast, uncertainty was 
extreme as it was mostly greater than the tidal amplitude. For 
88% of CONUS mapped estuarine emergent wetlands, LiDAR 
uncertainty was the dominant source of Z*MHW uncertainty.

Discussion

Our goal in this paper was to share a CONUS scale product, 
detail its transparent production and uncertainty propaga-
tion, and examine the patterns apparent at the national scale. 
We found that by area, low-elevation wetlands (Z*MHW < 1) 
are the dominant marsh type by approximately 2 to 1. How-
ever, this trend is driven primarily by a few watersheds 
in Louisiana which are dominated by low-elevation and 

Fig. 2  Distribution of Z*MHW 
(elevation normalized to tidal 
amplitude at mean high water 
[MHW]) for estuarine emergent 
marshes of the Pacific Coast of 
the conterminous USA. Left 
panel shows the distribution 
of Z*MHW by watershed unit 
arranged by latitude. The center 
line of the boxplot represents 
the median, the edges of the 
box the 25 and 75% quantiles, 
and the lines the 2.5 and 97.5% 
quantiles. Zero, which is mean 
sea level (MSL), and one, which 
is MHW, are plotted for refer-
ence. The right panel shows the 
coastal watersheds analyzed
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subtidal wetlands and contain about 20% of the estuarine 
emergent marshes in the CONUS. When breaking relative 
percentages of high and low elevation zones down by inter-
mediate watershed units, most watersheds are dominated by 
high-elevation tidal marshes (61%).

We analyzed watershed summaries of Z*MHW look-
ing at median Z*MHW, variability in Z*MHW, and uncer-
tainty in Z*MHW. Both of the model fits, predicting median 
Z*MHW and variability of Z*MHW, were highly significant 
(p < 0.0001). However, they both had limited explanatory 
power (R2 < 0.2), both refuted our hypothesis, and both sup-
ported the counter hypothesis, in which tidal amplitude cor-
relates negatively with median Z*MHW and the variability of 
Z*MHW. These trends were also observed in a reanalysis of 
Pacific Coast, ground-based data by Janousek et al. (2019). 
This gives us confidence that the trends we see are not arti-
factual, but are representative of real trends.

We hypothesize that the correlations we see between 
tidal amplitude and median Z*MHW and Z*MHW variability 
are a case of correlation not equaling causation. In other 
words, it could be that median elevation and/or variabil-
ity in elevation is driven by phenomena that are strongly 

correlated with RSLR and tidal amplitude. In our limited 
analysis of other tidal metrics which may have more direct 
process relationships to median Z* and variability of Z*, 
we found strong correlation between tidal amplitude and 
HAT*MHW and DHQ*MHW. These two metrics shrink with 
tidal range providing an intuitive explanation for the trends 
we see in our map. As tidal ranges get wider, the highest 
flooding elevations relative to the tidal amplitude is lower 
(Fig. S1). Thus, relative to the tidal amplitude, the height of 
the marsh-upland interface gets lower, along with the overall 
median Z*MHW of the marsh. Likewise, the negative corre-
lation between Z*MHW variation and tidal amplitude could 
be explained by other tidal properties. As tidal amplitude 
increases, the difference between MHW and MHHW rela-
tive to the tidal amplitude at MHW decreases. Future studies 
could expand on the ground observations made here for the 
Pacific Coast and determine whether this is a more widely 
observable phenomenon.

The fact that median Z*MHW is correlated with tidal 
amplitude and may be driven more directly by HAT*MHW 
provides an important observation on which we could base 
further inquiry. Janousek et al. (2019), for example, use 

Fig. 3  Distribution of Z*MHW 
(elevation normalized to tidal 
amplitude at mean high water 
[MHW]) for estuarine emergent 
marshes of the Gulf Coast of 
the USA. The top panel shows 
the coastal watersheds analyzed. 
The bottom panel shows the 
distribution of Z*MHW by water-
shed unit arranged by longitude. 
The center line of the boxplot 
represents the median, the edges 
of the box the 25 and 75% quan-
tiles, and the lines the 2.5 and 
97.5% quantiles. Zero, which is 
mean sea level, and one, which 
is mean high water, are plotted 
for reference
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the HAT as a proxy for the marsh-upland interface. Given 
the lack of a physiological upper growing elevation of 
high marsh species, in controlled mesocosm experiments 
(e.g., Spartina patens; Langley et al. 2013; Kirwan and 
Guntenspergen 2015), but an upper growing limit and 
parabolic responses between Z* and biomass production 
in popular marsh elevation models (Morris et al. 2002; 
Swanson et al. 2014), the existence and observability of 
an ecological upper growing limit could be key to applying 
these models at scale.

Some other potential abiotic phenomena that could 
affect median Z*MHW and its variability include lateral 
marsh migration space, which is driven by topography and 
adjacent land use (Thorne et al. 2018), and has a latitudi-
nal trend negatively correlated with RSLR and tidal ampli-
tude (Holmquist et al. 2021a). The lunar nodal cycle’s 
amplitude and phase also have spatial components (Peng 
et al. 2019). Potential drivers that have a latitudinal biotic 
component include growing degree days, temperature, and 

photosynthetically active radiation (Kirwan et al. 2009). In 
both our Z*MHW models, there was a substantial proportion 
of the variance that could not be explained by tidal ampli-
tude or RSLR, but could be explained by spatial autocor-
relation. Some potential drivers of median Z*MHW and the 
variability in Z*MHW that could have spatial structure that 
is not latitudinal include (1) proximity to mineral sediment 
source (Weston 2014) such as a delta, or (2) storm impacts 
(Williams and Flanagan 2009; Morton and Barras 2011), 
or (3) spatial autocorrelation in LiDAR bias. The inde-
pendent comparison of trends between remotely sensed 
and ground data (Janousek et al. 2019) gives us confidence 
that what we observe from remote sensing and physical 
water level gauges represent trends in the ecology and geo-
morphology of US marshes, rather than artifacts intro-
duced by the original LiDAR data, or its post-processing.

For uncertainty in Z*MHW, tidal amplitude was the major 
driver, with the Gulf Coast watersheds almost all having 
uncertainties greater than one, the tidal amplitude itself. 

Fig. 4  Distribution of Z*MHW 
(elevation normalized to tidal 
amplitude at mean high water 
[MHW]) for estuarine emergent 
marshes of the Atlantic Coast of 
the USA. Left panel shows the 
distribution of Z*MHW by water-
shed unit arranged by latitude. 
The center line of the boxplot 
represents the median, the edges 
of the box the 25 and 75% quan-
tiles, and the lines the 2.5 and 
97.5% quantiles. Zero, which is 
mean sea-level (MSL), and one, 
which is MHW, are plotted for 
reference. The right panel shows 
the coastal watersheds analyzed
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Fig. 5  Scatterplots showing the 
relationship between water-
shed median Z*MHW (elevation 
normalized to tidal amplitude 
at mean high water [MHW]) 
watershed Z*MHW variability 
in the form of the interquar-
tile range (IQR), and median 
watershed Z*MHW uncertainty 
for estuarine emergent marshes, 
as a function of tidal amplitude 
(mean high water [MHW]-mean 
sea level [MSL]). Note that the 
x-axis and the y-axis of the mid-
dle and bottom plots are  log10 
transformed. MHW and MSL 
are in meters
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We think this brings up two questions for how these indices 
should be utilized and interpreted for microtidal areas. One, 
how practical are they to implement given the high uncer-
tainty introduced by small tidal amplitude? Two, is Z*MHW 
an ecologically meaningful metric in the most microtidal 
marshes?.

One, in our study, we found the dominant source of 
uncertainty in Z*MHW was random error in the LiDAR-based 
elevation maps. We calculated uncertainty at the pixel level 
and did not factor in spatial autocorrelation when aggre-
gating over larger areas. Random error should reduce as a 
function of the sum of squares when aggregating over larger 
areas and should hypothetically cancel out and approach 
zero when applied over larger and larger regions. The other 
components of uncertainty, uncertainty in LiDAR bias, and 
uncertainties in tidal datum transformations should be spa-
tially autocorrelated and would not cancel out when aggre-
gating over large areas. Future studies will need to quantify 
spatial autocorrelation in order to more fully account for the 
effect of aggregating Z*MHW across different spatial scales. 
Overall, we think that anyone utilizing this product for deriv-
ative analyses should keep in mind that errors are likely to 
be more pronounced at smaller scales.

Two, this inquiry leads to whether or not Z*MHW is still 
a meaningful ecological indicator for the most microtidal 
wetlands. A previous review showed that tidal amplitude 

is a meaningful determinant of Spartina alterniflora mini-
mum and maximum elevation tolerance as tidal amplitude 
shrinks north to south, as observed in Mississippi and the 
Florida Panhandle (McKee and Patrick 1988). However, in 
controlled elevation mesocosm experiments performed to 
quantify the relationships between flooding and marsh plant 
productivity in the most microtidal wetlands of the USA 
along the Louisiana coast, researchers did not emphasize 
tidal datums. Instead, they compared plant growth directly to 
the percent of time flooded (Snedden et al. 2015; Tobias and 
Nyman 2017). It could be that Z*MHW becomes less mean-
ingful as a proxy for flooding as more of the variability in 
flooding becomes dominated by wind, river level, and storms 
(Snedden et al. 2015). At the very least, caution should be 
used when utilizing these maps at small scales in microtidal 
environments. At most, future studies may need to reevaluate 
Z*MHW as a metric and flooding proxy for microtidal wet-
lands. It would be beneficial for researchers to have guidance 
on when and where applying this proxy is appropriate, and 
the extent to which more complex flooding-elevation profiles 
are needed to synoptically characterize marsh dynamics and 
make vegetation and carbon response predictions.

Two further directions we recommend for future research-
ers include continual improvement to these products, as 
well as their integration into vulnerability assessments 
and coastal monitoring programs. Leveraging existing 

Fig. 6  Variance explained by 
parameters in the covariate 
models (ω2), the total variance 
explained by the covariate 
models (adjusted R2), and the 
total variance explained by the 
spatial models (pseudo-R2). Red 
refers to the covariate model, 
and blue to the spatial model

Table 4  Parameter summaries from covariate models. *p < 0.01, **p < 0.001, ***p < 0.0001. IQR, interquartile range; MHW, mean high water; 
MSL, mean sea level, RSLR, relative sea-level rise. MHW and MSL are in meters. RSLR is in millimeters per year

Dependent variable Intercept Log(MHW-MSL) RSLR Log(MHW-MSL) × RSLR Adj. R2 p-value

Z*MHW median 1.57 ± 0.17*** 0.20 ± 0.22  − 0.43 ± 0.09***  − 0.38 ± 0.08*** 0.20 7.326e − 12
Log(IQR Z*MHW) 0.01 ± 0.08  − 0.53 ± 0.12***  − 0.12 ± 0.04**  − 0.09 ± 0.05* 0.45  < 2.2e − 16
Log(Z*MHW uncertainty)  − 1.37 ± 0.01***  − 1.07 ± 0.01*** NA NA 0.97  < 2.2e − 16
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or emerging technologies could help cover spatial gaps 
observed in plane-based LiDAR datasets. These other 
data sources include the shuttle radar topography mis-
sion (SRTM) data and space-based LiDAR, such as GEDI 
(Dubayah et al. 2020). Future mapping could benefit from 
a more fine-tuned approach to vegetation bias-corrections 

based on species or region or the incorporation of spatial 
autocorrelation in LiDAR errors. Separate water level mod-
els could likely be improved. We spatially extrapolated tidal 
datums using Empirical Bayesian Kriging, which neither 
takes into account that tidal amplitude should decrease with 
friction over marshes (e.g., Temmerman et al. 2005) nor 

Fig. 7  Ground-based tidal marsh elevation data from Janousek et al. 
(2019) reanalyzed so that Z* refers to Z*MHW (elevation normalized 
to tidal amplitude at mean high water [MHW]). A. Map of the US 
Pacific Coast with site locations. B Box and whisker plots show the 
distribution density of the elevation distribution for individual site 
Z*MHW. The center line of the boxplot represents the median, the 

edges of the box the 25 and 75% quantiles, and the lines either rep-
resent the minimum, maximum, or the cutoff range for outliers (1.5 
times the interquartile range). Dots represent outlier values. C The 
relationship between site-level tidal amplitude at MHW and median 
Z*MHW. D The relationship between site-level tidal amplitude at 
MHW and the interquartile range of Z*MHW

1610 Estuaries and Coasts  (2022) 45:1596–1614



takes into account water control structures and dikes. Future 
versions could take into account more information sources 
than just NOAA long-term tide gauges, (e.g., Coastwide 
Reference Monitoring System [CRMS] datasets, Steyer 
et al. 2003) and also integrate models of physical hydrology 
(Wu et al. 2019) to improve the predictive ability of datum 
maps.

In addition to continual improvements to this product, 
we recommend exploring its use in top-down wetland 
vulnerability analyses and soil carbon stocks mapping. 
Defne et al. (2020) showed that elevation and tidal range 
are tightly linked with wetland vulnerability and vegeta-
tion loss. The distribution of elevation from higher and 
lower marshes will be important to future mapping and 
forecasting of tidal wetland vulnerability to global change 
factors. Low marshes are more vulnerable to erosion and 
loss by sea-level rise, since they are already lower in the 
tidal frame and rely more on sediment deposition for their 
input (Morris and Callaway 2019). Regional surveys pair-
ing high-quality elevation data and soil cores have dem-
onstrated correlations between tidal elevation and carbon 
stocks with wetlands lower in the tidal frame tending to be 
more mineral dominated and wetlands higher in the tidal 
frame being more organic dominated (Callaway et al. 2012; 
Peck et al. 2020). Thus, we propose future studies inves-
tigate this link at larger scales to determine whether our 
Z*MHW is of sufficiently high quality to map organic and 
inorganic-dominant soil types, thus improving coastal wet-
land carbon stock assessments (Holmquist et al. 2018a).

Top-down analysis of remotely sensed data can also be 
used to plan new or evaluate existing monitoring systems 
by identifying regions or zones that are over-sampled and 
those that are under-sampled (Shiklomanov et al. 2019). In 
evaluating the representativeness of surface elevation table 
and marker horizons used for monitoring wetland elevation 
change and accretion relative to relative sea-level change, 
Osland et al. (2017) observe that the current distribution of 
monitoring stations does not fully represent observed eleva-
tion gradients. They also note that for both modeling and 
monitoring, these observation networks need to be strategi-
cally designed to span elevation gradients as well as gradi-
ents in other relevant wetland drivers. From a modeling and 
monitoring perspective, there is a need to move toward quan-
titative mapping and reporting of surface elevation for wet-
land characterization. Since absolute elevation differs from 
tidal elevation, and tidal properties can vary regionally, we 
propose that our Z*MHW map could be useful in other repre-
sentativeness assessments for other regions needing relative 
and quantitative surface elevation assessments, including the 
Gulf Coast region. We suggest these assessments of map 
utility despite the high uncertainty for Z*MHW metrics in the 
Gulf Coast region, which is unavoidable at this time given 
the limitations of LiDAR random error and the sensitivity 
of Z*MHW as a metric to small tidal amplitudes.

The Coastal Carbon Research Coordination Network 
(CCRCN)’s data library includes survey-grade wetland 
elevation data if associated with sampling location of soil 
profiles (CCRCN 2021). However, this is only for soil 

Fig. 8  Spatial trends in watershed level Z*MHW (elevation normalized to tidal amplitude at mean high water [MHW]) uncertainty for estuarine 
emergent marshes. Note that on the Gulf Coast, the median uncertainty in Z*MHW exceeds the tidal amplitude (Z*MHW = 1)
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coring locations. Given the potential of Z* as a proxy for 
tidal flooding processes, we encourage wider publication and 
synthesis of paired elevation survey data and contemporane-
ous local tidal datums (including MSL, MHW, and MHHW) 
for soil profiles, other types of tidal wetland monitoring such 
as plant cover and biomass (for example, Elsey-Quirk and 
Unger 2018), as well as on their own, to enable synthesis, 
intercomparison, and map validation.

Conclusions

Relative tidal elevation is a vital metric for assessing coastal 
wetland function from a synoptic scale. Z*MHW can provide 
a physical index of flooding exposure, or “elevation capital,” 
which could be an early indicator of marsh susceptibility to 
collapse. Z* has been correlated with soil carbon stocks, and 
it is part of the vital machinery of numerical marsh process 
models both for function and structure. With our maps, we 
observed latitudinal and regional trends in median Z*MHW 
and Z*MHW variability that were contrary to our hypoth-
esis, but were supported by a reanalysis of ground-based 
survey data by Janousek et al. (2019). These trends may be 
explained by how the relative height of the marsh-upland 
interface and relative difference between MHW and MHHW 
scale with tidal amplitude. Tidal amplitude also correlates 
strongly with propagated uncertainty in the mapped product. 
Random error in LiDAR based maps is the larger source of 
overall uncertainty, compared to site-specific uncertainty in 
the bias term. Since random error in LiDAR should have 
little spatial autocorrelation compared to site-specific uncer-
tainty in the bias term, overall uncertainty should decrease 
when used over wider scales, a testable hypothesis. Future 
versions of this map could be improved by LiDAR maps that 
have both improved random error and more sophisticated 
vegetation bias-corrected elevations. The Z*MHW maps and 
underlying data used to make them are almost entirely free 
and available. We invite other scientists in the community to 
independently assess our Z*MHW maps for accuracy, improve 
the maps through iteration, and test their utility for other 
even more derived purposes.
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