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Abstract

Tidal wetlands provide myriad ecosystem services across local to global scales. With their uncertain vulnerability or resil-
ience to rising sea levels, there is a need for mapping flooding drivers and vulnerability proxies for these ecosystems at a
national scale. However, tidal wetlands in the conterminous USA are diverse with differing elevation gradients, and tidal
amplitudes, making broad geographic comparisons difficult. To address this, a national-scale map of relative tidal elevation
(Z*\uw)» @ physical metric that normalizes elevation to tidal amplitude at mean high water (MHW), was constructed for
the first time at 30 X 30-m resolution spanning the conterminous USA. Contrary to two study hypotheses, watershed-level
median Z*);;w and its variability generally increased from north to south as a function of tidal amplitude and relative sea-
level rise. These trends were also observed in a reanalysis of ground elevation data from the Pacific Coast by Janousek et al.
(Estuaries and Coasts 42 (1): 85-98, 2019). Supporting a third hypothesis, propagated uncertainty in Z*,y increased from
north to south as light detection and ranging (LiDAR) errors had an outsized effect under narrowing tidal amplitudes. The
drivers of Z*yw and its variability are difficult to determine because several potential causal variables are correlated with
latitude, but future studies could investigate highest astronomical tide and diurnal high tide inequality as drivers of median
Z*ymw and Z*ygw variability, respectively. Watersheds of the Gulf Coast often had propagated Z*,,yy uncertainty greater
than the tidal amplitude itself emphasizing the diminished practicality of applying Z*y;;w as a flooding proxy to microtidal
wetlands. Future studies could focus on validating and improving these physical map products and using them for synoptic
modeling of tidal wetland carbon dynamics and sea-level rise vulnerability analyses.
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Introduction

Tidal wetlands have the capacity to maintain an adaptive
resilience to sea-level rise. As sea level increases, inunda-
tion drives elevation change by stimulating belowground
biomass input and increasing the availability of sediment
which can be trapped and deposited (Morris et al. 2002;
Kirwan et al. 2013; Kirwan et al. 2016). Coastal wetlands
of all land cover classes — saline to fresh, and woody,
emergent, or submerged vegetation — accrete via these
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vegetative and inorganic soil formation pathways. How-
ever, resilience to sea-level rise is not assured or infinite
because biological productivity and preservation are limited
theoretically by plants’ abilities to fix carbon, and practi-
cally by ecological and physical constraints (Morris et al.
2016). Suspended sediment concentration can vary spatially
because of a watershed slope, erodibility, size, and precipi-
tation (Weston 2014), and temporally because of storms and
upstream damming. Local rates of relative sea-level rise
(RSLR), which take into account both eustatic and isostatic
sea-level change, can vary greatly (Jankowski et al. 2017;
Horton et al. 2018).

The conterminous USA (CONUS; Table 1) exhibits a
range of physical conditions across its three coasts with
tidal amplitude generally increasing from south to north,
and being more muted in bays than in open water. RSLR,
as measured over decades to centuries by long-term tide
gauges, follows a similar pattern but is influenced by local
drivers, and generally increases from north to south. Many
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Table 1 A glossary of
abbreviations used in this text

Term

Abbreviation

Aikake’s information criterion for small sample sizes AlCc
Coastal Change Analysis Program C-CAP
Coastal Carbon Research Coordination Network CCRCN
Coastal Elevation National Database CoNED
Coastwide Reference Monitoring System CRMS
Conterminous USA CONUS
Digital elevation model DEM
Diurnal high tide inequality DHQ
Diurnal high tide inequality normalized by tidal amplitude at MHW DHQ*\pw
Elevation Z
Elevation normalized to tidal amplitude z*
Elevation normalized to tidal amplitude at mean high water Z¥*inw
Highest astronomical tide HAT
Highest astronomical tide normalized to tidal amplitude at mean high water HAT*\iyw
Highest observed tide HOT
Highest observed tide normalized to tidal amplitude at mean high water HOT*yyw
Hydrologic unit code level-8 HUCS
Light detection and ranging LiDAR
Marsh Equilibrium Model MEM
Marsh Resilience to Sea-Level Rise MARS
Mean high water MHW
Mean higher high water MHHW
Mean higher gigh water for spring tides MHHWS
Mean sea level MSL
Million hectares M ha
NASA Carbon Monitoring System NASA CMS
National Oceanic and Atmospheric Association NOAA
National Wetlands Inventory NWI
North American vertical datum of 1988 NAVDS88
Relative sea-level rise RSLR
Shuttle radar topography mission SRTM

US Department of Agriculture-Natural Resources Conservation Service USDA-NRCS
US Geological Survey USGS
Wetland Accretion Rate Model of Ecosystem Resilience WARMER

studies have focused on drivers and processes controlling
resiliency on local scales and regional scales (e.g., Thorne
et al. 2018). However, there is a need for simple top-down
metrics that can be used as resiliency proxies to aid in
national-scale planning.

A fundamental aspect of assessing wetland structure
and vulnerability is its relative elevation. Ganju et al.
(2019) showed that in several well-studied sites across
the USA, relative tidal elevation, especially elevation
relative to mean high water, correlates with a different
top-down marsh vulnerability metric, the unvegetated to
vegetated area ratio. Marshes that are relatively low in the
tidal frame may be in some stage of collapse and vegeta-
tion loss. The marsh resilience to sea-level rise index (also
known as MARS index; Raposa et al. 2016) incorporates

elevation as well as tidal range into its ranking, with lower
indices of resilience for microtidal marshes and marshes
lower in the tidal frame, and higher indices for macrot-
idal marshes and marshes higher in the tidal range. Eleva-
tion normalized to tidal amplitude (Z*) has been shown
to correlate with carbon stocks in the Pacific Northwest
(Peck et al. 2020). Despite increasing recognition by the
coastal wetland community of the need to report relative
elevations as metadata for observations, hydrologic set-
tings are most commonly reported qualitatively as either
“high” or “low” marsh environments, or by using indica-
tive vegetation communities (e.g., short and tall Spartina
alterniflora).

Z* is a dimensionless and functionally important variable
used in models of marsh resiliency to sea-level rise. For
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example, both the marsh equilibrium model (MEM; Morris
et al. 2002) and the Wetland Accretion Rate Model of Eco-
system Resilience (WARMER) (Swanson et al. 2014) use
it to constrain relationships between plant productivity and
flooding. It has the advantage of being simple to calculate
and update, making sites across geographies more easily
intercomparable in their physical interaction with tides.

Since uncertainty propagation is a vital part of monitor-
ing and decision support (Dietze et al. 2018), we outline the
sources of uncertainty in the mapped components making
up Z*. Airborne light detection and ranging (LiDAR) data
have the potential to generate high-resolution digital eleva-
tion models (DEMs) for mapping flood potential and are
an important part of coastal wetland monitoring (Chmura
2013). However, they are often built to accuracy specifi-
cations relevant to assessing potential property damages
(ASPRS 2004; Coveney 2013); coastal wetland processes
are sensitive to centimeter-scale gradients and usually cov-
ered by thick vegetation and litter (Schmid et al. 2013)
through which LiDAR cannot fully penetrate to the ground.
As aresult, LIDAR can overestimate elevations in vegetated
settings as much as 1 m (Chassereau et al. 2011).

There is also uncertainty in datums used to calculate Z*
which originate both from the datums themselves and from
the extrapolation process. In short, datums encompassing
more data points (higher frequency or a longer time period)
have less uncertainty than datums encompassing shorter
time periods; areas located further away from tide gauges
have higher uncertainty than areas closer to tide gauges.
While VDATUM is a useful tool for applying uncertainty
through transformations, its extrapolation methodologies
generate substantial uncertainty far from tidal stations
(Defne et al. 2020) and the products do not extend explic-
itly into tidal wetlands (Brophy et al. 2019). Holmquist et al.
(2018a) used empirical Bayesian kriging to extrapolate water
levels and errors and calculate a probabilistic map of areas
falling below the highest monthly tides. Estimating water
surface elevations away from measured locations is difficult
(due to surface and subsurface flow conditions). Without
hydrologic restrictions, elevation maps yield a liberal esti-
mate of flood extent and depth (Chust et al. 2008).

Despite these difficulties, we propose that a CONUS
scale estimate of relative elevation can move modeling and
accounting efforts forward by providing a synoptic assess-
ment of the distribution of relative elevations, provided that
the magnitude and sources of uncertainty are well docu-
mented. As far as we know, no one has calculated a national-
scale Z* map, nor propagated uncertainty for Z* across a
wide scale. In this paper, we present a relative tidal eleva-
tion map for CONUS tidal wetlands, generated through a
transparent process, and accompanied by a corresponding
uncertainty map at 30 X 30-m scale. In addition to providing
these maps to encourage validation and model development,
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we use these maps to estimate the relative elevation of tidal
wetlands as above or below the MHW line and thus repre-
sentative of high- and low-elevation zones within estuarine
emergent wetlands. Finally, we analyze geographic patterns
in the distribution of mapped Z* and Z* uncertainty aggre-
gated by intermediate watershed unit per the U.S. Environ-
mental Protection Agency Hydrologic Unit framework.

We hypothesized that median tidal elevation, and vari-
ability in tidal elevation would increase from south to north.
We reasoned that general resilience, and thus marsh plat-
form building, increases with tidal amplitude (Holmquist
et al. 2021a). We also reasoned that a wider tidal amplitude
would lead to more variability in relative elevation. Finally,
we hypothesized that propagated uncertainty in Z* would
increase from north to south, because of decreases in tidal
amplitude. Our focus was not on defining ecological bounda-
ries of high marsh and low marsh vegetation species (e.g.,
Sanderson et al. 2001), but a framework for future analyses
of the physical role of relative elevation and tidal amplitude
in modeled distributions.

Methods

While the formula for normalizing elevation can vary
depending on the goal of the researcher, in our study, we cal-
culate it as a function of orthometric elevation (Z) referenced
to the North American Vertical Datum of 1988 (NAVDSS8),
as well as tidal datum MHW and mean sea level (MSL)
and refer to it throughout as Z*;yw (Eq. 1). We make this
qualification because MEM (Morris et al. 2002) references
Z* relative to mean high water (MHW) and WARMER ref-
erences Z* relative to mean higher high water (MHHW)
(Swanson et al. 2014). We chose this formulation to dif-
ferentiate wetlands that flood twice a day from those that
flood between once a day and a few times a month, given
mixed and semi-diurnal tides, providing a convenient and
physically relevant differentiation between high-elevation
and low-elevation marshes.

7+ _Z=MSL |
MHW ™ NMHW — MSL M

Determining Area of Interest

To create an area of interest for the Z*,;;;y mapping, we first
made key updates to the coastal lands layer presented by
Holmquist et al. (2018a), a probabilistic map of areas below
mean higher high water spring tide elevation (MHHWS).
The updates incorporated new underlying data sources and
revisions to the original methodology (Table 1). Within this
updated layer, we analyzed all areas identified as estuarine
wetlands according to the Coastal Change Analysis Program
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(C-CAP; NOAA 2014). For C-CAP palustrine wetlands,
also known as freshwater wetlands, we included them in the
analysis if they had greater than a 1% probability of being
below MHHWS. In anticipation of users wanting to compare
the relative tidal elevations of wetlands to adjacent surfaces
that may represent drained, dredged, or developed former
wetlands, we included farmed, developed, bare, and natural
lands with the same inclusion criteria applied to freshwater
wetlands. To broaden the utility of the analysis for a wide
variety of users, we additionally included any areas mapped
as tidal wetlands according to the National Wetlands Inven-
tory (U.S. Fish and Wildlife Service 2014).

Elevation and Water Level Mapping

For the analyses, we compiled coastal LiDAR-based DEMs
from multiple sources, with the goal of geographic com-
pleteness. The majority of the files were aggregated for the
National Oceanic and Atmospheric Association (NOAA)
Sea Level Rise Viewer (NOAA 2017a). The aggregated
DEMs distributed by the sea-level rise viewer, however, are
not representative of all the data used in the sea-level rise
viewer or the extent of historically tidal wetlands (Table S1).
We additionally aggregated DEMs from the Northern Gulf
of Mexico; the Sacramento Delta in California; Baltimore,
and Calvert Counties in Maryland; Beaufort, and George-
town Counties in South Carolina; Liberty and Glynn Coun-
ties, Georgia; and Mobile County, Alabama (Table S1).
Our goal in selecting these DEMs was to utilize the highest
quality available large-scale syntheses available, not neces-
sarily the most up-to-date or high-quality elevation maps at
the scale of individual sites, such as those available incre-
mentally through U.S. Geological Survey’s Coastal National
Elevation Database (CoNED; Danielson et al. 2018).

The majority of LIDAR DEMs have been hydro-flattened,
meaning the elevation of mapped surface water was arbi-
trarily assigned a low number. Because the resolution of
the underlying DEMs is upscaled in our processing, hydro-
flattened pixels have the potential to bias surfaces, eliminat-
ing features such as berms at marsh edges. We documented
hydro flattened values from file meta-data, or from a thor-
ough inspection of the products, and masked those values
from the upscaling. While minimum binning is one approach
for upscaling DEMs (Schmid et al. 2011), we opted for an
unbinned continuous product (Table S1). To be conserva-
tive, we also made the decision to exclude mapped water fea-
tures from this analysis, including C-CAP pixels mapped as
submerged vegetation and open water, in addition to LiDAR
pixels that had been hydro-flattened.

For water levels, MSL, MHW, and MHHW relative to
NAVDSS, values came from NOAA’s (2017b) reported tidal
datums. Typically, datum periods span 1983 to 2001, but some
gauges with locally high rates of RSLR report datums over

shorter time periods. Statistical uncertainty came from NOAA
datum error reports (NOAA 2017¢, 2017d, 2017e). MHHWS
was a customized datum calculated relative to MHHWS from
NOAA high-low data (NOAA 2016), with standard error
reported, in Holmquist et al. (2018a). We used Empirical
Bayesian Kriging (Krivoruchko 2012) and ArcGIS Pro 10.2
(Esri Inc. 2017) to extrapolate tidal datums from tide gauges.
We used inverse distance weighting to extrapolate errors in
tidal datums. See supplemental methods for additional details.

Tidal Elevation Uncertainty Propagation

For elevation mapping, we accounted for both the bias and
random error associated with LiDAR-based DEMs using a
literature review (Hladik et al. 2013; Medeiros et al. 2015;
Buffington et al. 2016; Holmquist et al. 2021b). In our national
scale analysis, we bias-corrected using a weighted site-level
average offset of 0.173 m, with a site-level weighted stand-
ard error of 0.110 m (n=20 sites, 19,762 data points), and a
weighted random error of 0.205 m. The propagated error at
the pixel level is the sum of squares of these two uncertain-
ties (Eq. 2), and we assumed average total Z uncertainty of
0.233 m.

2 __ 2
07 = O random

+ O-tzyias (2)

In this update of the probabilistic coastal lands map, in
addition to propagating the uncertainty in LiDAR-based eleva-
tion, we also accounted for uncertainty between the two tidal
datum transformation layers (Eq. 2).

Ugatum,c = O-(?atum,a + O-dzatum,b + 2p Oﬁatum,aajalum,b (3)

In which p represents the correlation coefficient between
MHHWS relative to MHHW and MHHW relative to NAVDSS,
which we calculated to be 0.716.

For each tidal datum, as in Holmquist et al. (2018a), we
propagated uncertainty from both the uncertainty arising from
datum quality, as well as uncertainty in the extrapolation pro-
cess. For the datum itself, we used the standard error according
to the NOAA datum report, extrapolated using inverse dis-
tance weighting. The kriging uncertainty was sourced from the
standard error of prediction from empirical Bayesian kriging.
We assumed that these errors were independent, since datum
error is a function of the proportion of the tidal datum period
for which there is water level data at the gauge, and kriging
error is a function of distance from gauge.

2 0_2

o datum

— 2
datum,total — + O-kriging

We applied the generalized form of an uncertainty propa-
gation equation to the formula for Z*, resulting in Eq. 5. In
this equation, o, is the propagated standard deviation of the
dimensionless tidal elevation map. o,, o,,,,» and o, are the
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standard deviations of surface elevation, MHW, and MSL,
respectively.

Terms with the form 0/0x are partial derivatives, scal-
ers quantifying how sensitive Z* is to variations in inputs.
0Z*/0Z, 0Z*/0MHW, and 0Z*/0MSL are the partial derivatives
of elevation, MHW, and MSL, respectively. The first three
terms propagate uncertainty by multiplying a sensitivity by
a variance.

,  0Zx? , aZx 2,
O-Z* =( aZ ) GZ (dMHW) o-mhw (5)
+( 0Z s )262 42 0Z* 0Zx
oMSL’ %mst T “GMHW gMSL mh Omst P2

The final term propagates uncertainty arising from covari-
ance between terms MHW and MSL. We assumed that Z is
statistically independent of MHW and MSL, and therefore, we
modeled no covariance between those terms. However, MHW
and MSL were measured and interpolated from the same tide
gauges and we expected them to co-vary. p, is the correlation
coefficient between MHW and MSL, which we calculated to
be 0.873.

We calculated partial derivatives for the uncertainty propa-
gation using the R package Deriv (Clausen and Sokol 2018).

VAR 1
0Z =~ MHW — MSL

(6)

07+ _ Z—MSL
OMHW — (MHW — MSL)? )
07 Z—MHW
OMSL ~ (MHW — MSL)? ®)
National Mapping

In addition to the updated probabilistic MHHWS map
(Table 2; Holmquist et al. 2018a), we created three addi-
tional products at the scale of the CONUS including a
national scale map of Z*y;;w according to Eq. 1, an associ-
ated uncertainty map according to Eq. 5, and a probabilistic
map of low-elevation marsh. For each product, we calculated
surfaces according to Eq. 1 for 65 LiDAR DEMs. Original
LiDAR DEM resolutions ranged from 1 to 10 m, but all
maps were resampled to 30 m resolution, with pixel extent
and coordinate systems matching C-CAP. The area of inter-
est detailed above in “Determining Area of Interest” was
used as a mask layer. We removed pixels that were artifi-
cially assigned a low number because of surface water, also
known as hydro-flattened pixels to avoid artificially lower-
ing the mapped elevation when standardizing resolution to
30x 30 m. We mosaicked files in chronological order using
the minimum date for parent products reported in the file’s

Table 2 Summary of changes made between Holmquist et al. (2018a) workflow and our reanalysis for probability elevation is lower than mean
higher high water spring (MHHWS) and elevation relative to tidal amplitude at mean high water (Z*y;w) propagated uncertainty

Processing step

Probabilistic MHHWS (2018)

2021 update

Spatial extrapolation of datum errors

Error in LiDAR offset at local scale

Covariance between MHHW and MHHWS
offset

Mobile County, AL
Baltimore County, MD
Southeastern counties (Georgetown, SC;

Beaufort, SC; Liberty, GA; Glynn, GA)
Mask

Mosaicking

Assumed there was spatial structure, used
empirical Bayesian kriging to extrapolate
datum errors between gauges

Assumed LiDAR-bias uncertainty was O

Did not incorporate covariance between
MHHW and MHHWS offset in uncertainty
propagation

Did not include. Resulted in missing patches
between two other surveys

Contained an error in converting NAVDSS ft
to m

Did not include

No mask

Used inverse distance weighting to extrapolate
datum errors between gauges

Propagated site-scale uncertainty from using a
single average vegetation correction

Incorporated covariance in uncertainty
propagation

Included Mobile County in update

Error is corrected

Included in the update

Masked out surfaces that were water or
submerged aquatic vegetation in both 2006
and 2011

Mosaicked files and DEM files in no particular Mosaicked files so that more recent DEMs

order

override older DEMs
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meta-data or file name. We did this so that if more than one
raster overlapped, the newest one would be carried through
to the final layer.

Since a Z*yw value of 1 is the MHW line, we mapped
both “high-" and “low-"elevation marsh conditions (above
and below Z*,;;w = 1), given a 50% probability of inclusion
in either class. In order to estimate the relative area of high
and low elevation marsh, we created a version of the Z* 1w
map which only included wetlands classified as estuarine
emergent in the 2010 C-CAP maps. We also calculated a
pixel-level probability of membership in each category.
We normalized the thresholds relative to the mean mapped
Z*\w to its respective uncertainty layer using Eq. 9. These
error-normalized Z*yyy scores are referred to them as Z'
in Eq. 9.

r_x—Z*

O+

z

©))

We calculated probability of membership in the low-
elevation marsh class as a function of mean Z' and a
threshold of 1 (Eq. 10). We converted the Z' to an array,
converted values to cumulative probabilities using the
cumulative distribution function for a normal distribu-
tion, and the empirical response function from the Numpy
package (NumPy Developers 2017). We saved resulting
probabilistic low marsh maps with two decimal points of
precision. We calculated the probability of membership in
the high elevation marsh class by subtracting from 1 the
probability of a pixel being a low-elevation marsh (Egs. 10
and 11).

pZ" <1)=f(x=1,pu,0) (10)

p(Z*>1)=1-pZ < 1) (11)

We summarized area by treating each probability class as
a binomial distribution and estimating mean and standard
deviation using Eq. 12 and Eq. 13.

=100
w=_, n (12)

o= Y gl - ) (13)

In which ¢ is a probability of inclusion, i refers to 100
0.01 wide probability class bins, and n is the number of
pixels that fall into a probability class bin.

Regional Summarization

We report two series of regional summary statistics. First,
for lands classified as estuarine emergent wetlands accord-
ing to C-CAP 2010, we summarized the area of high and

low elevations by broad geographic/political regions
defined by state boundaries. We classified Oregon and
Washington as the Northwest; California as the South-
west; Texas and Louisiana as South Central; Mississippi,
Alabama, Florida, Georgia, South Carolina, and North
Carolina as the Southeast; Virginia, Maryland, the Dis-
trict of Columbia, and Delaware as the Mid-Atlantic; and
New Jersey, Pennsylvania, New York, Connecticut, Rhode
Island, Massachusetts, New Hampshire, and Maine as the
Northeast.

Second, we report summary statistics for Z*;;y and
Z*\gw uncertainty for all estuarine emergent wetlands
at the scale of the intermediate watershed unit, Hydro-
logic Unit Code Level 8 (HUCS8) (United States Depart-
ment of Agriculture-Natural Resources Conservation
Service [USDA-NRCS], the United States Geological
Survey [USGS], and the Environmental Protection Agency
[EPA] 2015). We report statistics for the subset of HUC8s
which overlap mapped tidal wetlands according to the
National Wetlands Inventory (NWI). For Z*, 4y, We report
mean; standard deviation; number of pixels; median; the
2.5%, 25%, 75%, and 97.5% quantiles; and the minimum
and maximum values. For Z*,;,;y uncertainty, we report
HUCS8-level medians.

In the course of creating these summary statistics, it
became apparent that some watershed units had anomalously
high median Z*y values. We screened HUCS8 watershed
summaries for outliers, and omitted some from data visuali-
zation and modeling, and list them separately under Supple-
mentary Material (2. Additional Results). We defined outli-
ers as any watershed with a median Z*;4y, value greater
than the 75% quantile plus 1.5 times the interquartile range.

Initial data visualization showed spatial patterns of
Z*\pw and Z*y 4w uncertainty within the coasts that we
hypothesized were related to local patterns in RSLR and
tidal amplitude. In order to test these hypotheses, we cre-
ated corresponding RSLR and tidal amplitude maps and
reported these as HUCS8-level summaries. For RSLR, we
queried monthly mean sea level data from any NOAA tide
gauge listed as a long-term tide gauge by the Permanent Ser-
vice for Mean Sea Level (Permanent Service for Mean Sea
Level 2016). We chose gauges with at least 66% complete
data between 1983 and 2001. We downloaded NOAA data
using the R package downloader (Chang 2015) and calcu-
lated RSLR as the slope of a linear regression with fractional
year as the independent variable and water-level in millim-
eters relative to station datum, as the dependent variable.

We extrapolated between gauges using empirical Bayes-
ian kriging in ArcGIS pro (ESRI Inc 2017) using the same
parameters used for extrapolating water levels (Supplemen-
tal Information). For tidal amplitude, we simply subtracted
the MSL from the MHW levels kriged for the creation of
Z*\mw and resampled the resolution to 30 m to match the
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Z*\qw and area-of-interest rasters. For both these layers, we
summarized the median values of the rasters for each HUCS8
watershed unit.

We tested hypotheses about correlations between these
potential physical drivers, Z*y;;w properties, and general
spatial trends by (1) using linear modeling and model selec-
tion techniques to create a covariate model and (2) using
semi-variograms and ordinary kriging of the covariate model
residuals to create a spatial model. We tested the hypothesis
that watershed median Z*y;y and Z*;w variability (quan-
tified with interquartile range) were significantly correlated
with watershed median RSLR and tidal amplitude, and that
those two independent variables interacted with each other.
For Z*\yw uncertainty, we performed a simple linear regres-
sion in which Z*y;;w uncertainty was the dependent variable
and tidal amplitude the independent variable. All depend-
ent and independent variables were plotted with histograms
to visually inspect the assumptions that distributions were
normal. We natural log-transformed tidal amplitude, Z*y;qw
variability, and Z*;w uncertainty, so that they would meet
the assumptions of normality.

We used the dredge function in the R package MuMin
(Bartori 2013) in order to intercompare each possible com-
bination of these dependent variables and determine which
model structure had the optimal tradeoff between explana-
tory power and parsimony according to Aikake’s Infor-
mation Criterion for small sample sizes (AICc). For each
model, we used anova_stats function in the sjstats R pack-
age (Liidecke 2018) to estimate effect sizes for each param-
eter (w?). We hypothesized that the median Z*;;;y and the
variability of Z*,;w within watersheds would increase with
tidal amplitude.

Finally, we wanted to know how other potential drivers
with spatial components, such as geomorphic dynamics or
the spatial autocorrelation in LiDAR errors, were affect-
ing mapped Z*;w properties, so we fit a spatial model to
the residuals of the process model. We fit semi-variograms
to the residuals of each model using the R package gstats
(Pebesma 2004; Griler et al. 2016). In order to estimate a
“pseudo-R?” value, we used a bootstrapping technique, leav-
ing out one watershed at a time, fitting a semi-variogram
to the rest of the watersheds, and using ordinary kriging
to make a prediction for the left-out watershed. For each
iteration, (i) we calculated both the error of the prediction
(x;—y;) and the error relative to the mean of the calibration
dataset (x;—y-bar). The variance of the residual model is the
result of Eq. 14. The total variance explained is the adjusted
(1 —R?) value from the covariate model multiplied by the
residual pseudo-R? from the spatial model.

2
X: — .
Residual psuedo R> = 1 — z(l—yl) (14)

> (- y)z
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Comparison to a Ground-Based Latitudinal Survey

During the course of our analyses, two of our original
hypotheses, positive correlation between tidal amplitude
and watershed median Z*;,y, and positive correlation
between tidal amplitude and variability in Z¥yy, were
refuted. The data supported alternative hypotheses at this
watershed scale, namely, negative correlations between
median Z*);w and tidal amplitude, and negative correlation
between Z*y;w variability and tidal amplitude. Because one
possible explanation for this could have been artifacts arising
from the GIS processing, we compared the trends in Z*#y;;w
from the LiDAR based maps to a latitudinal survey of 12
sites along the US Pacific Coast by Janousek et al. (2019).

The elevation and vegetation and plant community data
needed to be reprocessed so that the time frame and metrics
were comparable. We reprocessed Z* using MHW as in our
study instead of MHHW as in theirs. Because the surveys
were from a point in time, we calculated datums according to
the year of the survey. We visually matched each site to the
nearest NOAA tide gauge which had water levels referenced
to NAVDS8 and had complete 6-min tide gauge data for the
survey year. We recalculated a custom set of tidal datums for
the year the survey occurred. See supplemental information
(2. Additional Methods) for additional details.

Because Janousek et al. (2019) analyzed geographic pat-
terns in plant species niche partitioning, we simplified the
dataset to unique plot-level elevation measurements only
and analyzed trends in total site-wide elevation distribu-
tion. We performed two simple regression models to mirror
the analysis of our remotely sensed data, one in which site-
wide median Z*y,; was the dependent variable, and one
for which Z*y;y variability (quantified with interquartile
range) was the dependent variable, and both for which tidal
amplitude was the independent variable. We natural log-
transformed tidal amplitude and Z*,;y, variability, so that
they would meet the assumptions of normality.

Because the trends in on-the-ground median Z#,;w
and Z*,;yw variability were similar to trends seen in the
mapped data, and both observations were contrary to our
hypotheses, we performed a preliminary investigation of
how a few other tidal properties, which may have process
links to those metrics, scale with tidal amplitude along the
Pacific Coast. We referenced the same 10 tide gauges as in
our reanalysis of Janousek et al. (2019) data. We hypoth-
esized that highest astronomical tide (HAT), and/or high-
est observed tide (HOT), normalized to tidal amplitude at
MHW (HAT*y;w and HOT*,;y4w) would correlate nega-
tively with tidal amplitude. Support for this hypothesis could
point to the upland-tidal wetland interface being a “cap”
that limits median wetland Z*,;y, over broad geographic
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scales. We also hypothesized that diurnal high tide inequal-
ity (DHQ), in other words the average difference between
MHW and MHHW, normalized by tidal amplitude at
MHW (DHQ*y;qw) would also correlate negatively with
tidal amplitude. Support for this hypothesis could point to
a process link between the variability of twice daily tidal
elevations and the variability in Z*);;;w. We referenced the
1983 to 2001 tidal datums from NOAA (2017b), which fit
three linear regressions with HAT*yw, HOT*\w-. and
DHQ*\uw as the independent variables and tidal amplitude
at MHW as the dependent variable. Tidal amplitude and
DHQ*yyw Were natural log-transformed in order to satisfy
the assumption of normality.

General Analysis Notes

We performed data analysis using the R packages Raster to
analyze raster data (Hijmans and van Etten 2016), sp to for
projecting spatial data (Bivand et al. 2013; Pebesma et al.
2016), and dplyr for analyzing tabular data (Wickham et al.
2019). Plots 2—6 and 8 were made using ggplot (Wickham
2016), with GridExtra (Auguie 2017) and RColorBrewer
(Neuwirth 2014). Plots 2—4 and 7-8 were made using Rnat-
uralearth (South 2017), the simple features of package sf
(Pebesma 2018), and ggsflabel (Yutani 2018) to create the
map elements.

Results

A visualization of our Z*,;;;y map, with a focus on six sites,
is presented in Fig. 1. Additional discussion of how the map
corresponds to documented elevation and land cover class
observations is available under Supplemental Results.

Area of High and Low Wetland Elevations

Of the 1.8 million hectares (M ha) of estuarine emergent
tidal wetlands in the CONUS (NOAA, 2014), there are
1.18 M ha of low-elevation marsh (Table 3). This makes
up 61% of estuarine emergent marshes in the CONUS. In
comparison, 0.71 m ha, 39%, of estuarine emergent wetlands
were classified as high-elevation marsh, receiving one tide
per day or fewer given mixed and semi-diurnal tidal sys-
tems. The coverage of low-elevation marsh varies slightly
across geographic/political regions of the USA ranging from
66% of marshes in the Southeast to 53% in the Northwest
(Table 3).

Regional Summaries

The quantile distributions of Z*,;;y at the watershed scale
shows that median elevations typically peak at a Z*;w

value of 1.1 (slightly greater than MHW). Fifty percent
of watersheds cluster between 0.7 and 2.0 median Z* -
Ninety-five percent of watersheds cluster between — 1.3
and 6.1 median Z*;yy. The median distribution of a
watershed is slightly greater than 1, meaning a typical
wetland classification is above MHW and thus high eleva-
tion (or infrequently flooded). Of watersheds, 55.8% had
median Z*,;qy values that were greater than or equal to
1. This does not contradict our earlier assessment that by
acreage, low-elevation marshes are the dominant CONUS
marsh type. This is because a few watersheds in Louisiana
contain a disproportionately high area of wetlands, and
those are dominated by low-elevation marsh. The three
watersheds with the most estuarine emergent wetland area
are in Louisiana, they contain 21% of CONUS estuarine
emergent wetland area, and they are all dominated by
subtidal wetlands or low-elevation marsh: Eastern Loui-

siana Coastal, 8%, median Z*;w = — 0.05; West Central
Louisiana Coastal, 7.2%, Z*yqw =0.51; and East Central
Louisiana Coastal, 6%, Z*ygw = — 0.95. Summary sta-

tistics for each watershed are displayed in Figs. 2-5 and
listed in Table S2.

Figures 2-5 show visually that there is a high degree
of spatial clustering. Watersheds that are adjacent to each
other have a high degree of similarity in terms of summary
statistics.

There were 12 watersheds that we classified as having
median Z*;;w values that were positive outliers and we
include detailed observations of them under Supplemental
Material (2. Additional Results). We included three out-
lier watersheds from Texas, but excluded the rest of the
classified outliers in Figs. 2—4, and the linear and spatial
modeling.

For watershed-level median Z*,;y, the fully param-
eterized model had the best tradeoff between performance
and parsimony. The total covariate model had an R? of
0.20. Tidal amplitude was the most impactful parameter
(Figs. 5SA-C and 6), followed by the interactive effects
between tidal amplitude and RSLR. The spatial model of
the residuals had a pseudo-R? of 0.19 explaining just about
as much variance as the covariate model. This is visually
apparent in Figs. 2, 3 and 4 in the north to south trends in
median Z*w and as well as some additional spatial clus-
tering of median values.

The fully parameterized model predicting tidal marsh
variability also had the best tradeoff between performance
and parsimony. Overall, this model explained much more
variance than the median Z*,; model, with an R? of 0.45.
Tidal amplitude was, by far, the most impactful param-
eter. The spatial model explained more variance (pseudo-
R?=0.20) than that of median Z*;,, model, but less than
the covariate model for interquartile range of Z*,;;w. The
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Fig. 1 Maps of Z*y;w (elevation normalized to tidal amplitude at mean high water [MHW]) representing diverse locations spanning the conter-
minous USA

variability of marsh Z*,y is more predictable than median  in the upper 25% quartile, as well as the relatively high
marsh Z*y;w- This is also visually apparent in Figs. 24 in  degree of spatial clustering of IQRs.
the north to south trends in the width of the boxes, especially

Table 3 Fractional breakdown

¢ 7 ‘ . Region Mean low Mean high Standard Mean fraction % of EEM
? tZ'dNiHW (ell.t:vgtlon normalized elevation EEM elevation EEM error (ha) classified as low elevation
o tidal amplitude at mean . (ha) (ha) Ty < 1)
high water [MHW]) categories
by regiop and for the entire Northwest 5,458 4,892 9 53
conterminous USA (CONUS). Southwest 26,001 15313 16 63
Base data from Estuarine
Emergent (EEM) Class of the South Central 499,827 371,362 108 57
2010 Coastal Change Analysis Southeast 398,903 201,265 77 66
Program. Areas are represented  Mjd-Atlantic 98,019 72,494 49 57
in hectares (ha) Northeast 90,694 48237 38 65
CONUS 1,118,902 713,564 147 61

@ Springer



Estuaries and Coasts (2022) 45:1596-1614

1605

Fig. 2 Distribution of Z#yw
(elevation normalized to tidal
amplitude at mean high water
[MHW]) for estuarine emergent
marshes of the Pacific Coast of
the conterminous USA. Left
panel shows the distribution

of Z*\qw by watershed unit
arranged by latitude. The center
line of the boxplot represents
the median, the edges of the
box the 25 and 75% quantiles,
and the lines the 2.5 and 97.5%
quantiles. Zero, which is mean

sea level (MSL), and one, which datum
is MHW, are plotted for refer-
ence. The right panel shows the MHW
coastal watersheds analyzed
MSL

10
Z*yuw (Higher | Lower)

Comparison of Remotely Sensed Trends
to Ground-Based Surveying

For the Pacific Coast analysis, we observed similar trends
from our remotely sensed relative tidal elevation mapping in
ground-based survey data (Janousek et al. 2019; Fig. 7). Total-
site median Z*),y increased from north to south and was
significantly and negatively correlated with log-transformed
tidal amplitude (p=0.0011, R?*=0.67, n= 12). Variability in
elevation generally increased from north to south as well. Log-
transformed IQR of Z*y;;y was significantly and negatively
correlated with log-transformed tidal amplitude, although the
significance and variance explained was lower than the median
Z¥ymw (p=0.044, R*=0.35, n=12).

HOT*yiuw> HAT* 1w, and DHQ*yyw were all signifi-
cantly and negatively correlated with tidal amplitude (Fig. S1)
for the 10 gauges used to calculate Z*;y for our reanalysis
of the 12 sites in Janousek et al. (2019). DHQ*;;w was the
most strongly correlated with tidal amplitude (p=6.538e —05,
R2=0.86, n=10), followed by HAT*\;;w (p=0.0002,
R*=0.81, n=10), and finally by HOT*;;;y (p=0.040,
R>=0.36, n=10).

45°N

40°N

35°N

5 0 -5 120°W 118°W 116°W

Uncertainty in Relative Tidal Elevation

At the watershed scale, uncertainty in Z*yw was correlated
significantly with tidal amplitude (R>=0.97, p <0.0001;
Table 4; Figs. 5 and 6). Watershed-level uncertainty displays
spatial patterns and latitudinal gradients (Fig. 8). On the Pacific
Coast, uncertainty was generally less than the difference
between MHW and MSL. On the Gulf Coast, uncertainty was
extreme as it was mostly greater than the tidal amplitude. For
88% of CONUS mapped estuarine emergent wetlands, LIDAR
uncertainty was the dominant source of Z*,;;;y uncertainty.

Discussion

Our goal in this paper was to share a CONUS scale product,
detail its transparent production and uncertainty propaga-
tion, and examine the patterns apparent at the national scale.
We found that by area, low-elevation wetlands (Z*\w <1)
are the dominant marsh type by approximately 2 to 1. How-
ever, this trend is driven primarily by a few watersheds
in Louisiana which are dominated by low-elevation and
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Fig.3 Distribution of Z* 32°N -
(elevation normalized to tidal
amplitude at mean high water
[MHW]) for estuarine emergent
30°N -

marshes of the Gulf Coast of
the USA. The top panel shows
the coastal watersheds analyzed.
The bottom panel shows the
distribution of Z*y;;;y by water-
shed unit arranged by longitude.
The center line of the boxplot
represents the median, the edges
of the box the 25 and 75% quan-
tiles, and the lines the 2.5 and
97.5% quantiles. Zero, which is
mean sea level, and one, which
is mean high water, are plotted
for reference

Z*ynw (Higher | Lower)

subtidal wetlands and contain about 20% of the estuarine
emergent marshes in the CONUS. When breaking relative
percentages of high and low elevation zones down by inter-
mediate watershed units, most watersheds are dominated by
high-elevation tidal marshes (61%).

We analyzed watershed summaries of Z*,;yy look-
ing at median Z*yy, variability in Z*y;;w. and uncer-
tainty in Z*y;qw- Both of the model fits, predicting median
Z¥gw and variability of Z*,;4y, were highly significant
(p<0.0001). However, they both had limited explanatory
power (R*<0.2), both refuted our hypothesis, and both sup-
ported the counter hypothesis, in which tidal amplitude cor-
relates negatively with median Z*yy and the variability of
Z*unw- These trends were also observed in a reanalysis of
Pacific Coast, ground-based data by Janousek et al. (2019).
This gives us confidence that the trends we see are not arti-
factual, but are representative of real trends.

We hypothesize that the correlations we see between
tidal amplitude and median Z*;y and Z*yy variability
are a case of correlation not equaling causation. In other
words, it could be that median elevation and/or variabil-
ity in elevation is driven by phenomena that are strongly
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correlated with RSLR and tidal amplitude. In our limited
analysis of other tidal metrics which may have more direct
process relationships to median Z* and variability of Z*,
we found strong correlation between tidal amplitude and
HAT*\gw and DHQ*\;qw- These two metrics shrink with
tidal range providing an intuitive explanation for the trends
we see in our map. As tidal ranges get wider, the highest
flooding elevations relative to the tidal amplitude is lower
(Fig. S1). Thus, relative to the tidal amplitude, the height of
the marsh-upland interface gets lower, along with the overall
median Z*yw of the marsh. Likewise, the negative corre-
lation between Z*yyw variation and tidal amplitude could
be explained by other tidal properties. As tidal amplitude
increases, the difference between MHW and MHHW rela-
tive to the tidal amplitude at MHW decreases. Future studies
could expand on the ground observations made here for the
Pacific Coast and determine whether this is a more widely
observable phenomenon.

The fact that median Z*,;,y is correlated with tidal
amplitude and may be driven more directly by HAT*y;w
provides an important observation on which we could base
further inquiry. Janousek et al. (2019), for example, use
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Fig.4 Distribution of Z#yw
(elevation normalized to tidal
amplitude at mean high water
[MHW]) for estuarine emergent
marshes of the Atlantic Coast of
the USA. Left panel shows the
distribution of Z*;;y by water-
shed unit arranged by latitude.
The center line of the boxplot
represents the median, the edges
of the box the 25 and 75% quan-
tiles, and the lines the 2.5 and
97.5% quantiles. Zero, which is
mean sea-level (MSL), and one,
which is MHW, are plotted for
reference. The right panel shows

the coastal watersheds analyzed datum

MHW
MSL

45°N -

40°N -

35°N -

25°N

Z*ynw (Higher | Lower)

the HAT as a proxy for the marsh-upland interface. Given
the lack of a physiological upper growing elevation of
high marsh species, in controlled mesocosm experiments
(e.g., Spartina patens; Langley et al. 2013; Kirwan and
Guntenspergen 2015), but an upper growing limit and
parabolic responses between Z* and biomass production
in popular marsh elevation models (Morris et al. 2002;
Swanson et al. 2014), the existence and observability of
an ecological upper growing limit could be key to applying
these models at scale.

Some other potential abiotic phenomena that could
affect median Z*,;y4y and its variability include lateral
marsh migration space, which is driven by topography and
adjacent land use (Thorne et al. 2018), and has a latitudi-
nal trend negatively correlated with RSLR and tidal ampli-
tude (Holmquist et al. 2021a). The lunar nodal cycle’s
amplitude and phase also have spatial components (Peng
et al. 2019). Potential drivers that have a latitudinal biotic
component include growing degree days, temperature, and

photosynthetically active radiation (Kirwan et al. 2009). In
both our Z*yyw models, there was a substantial proportion
of the variance that could not be explained by tidal ampli-
tude or RSLR, but could be explained by spatial autocor-
relation. Some potential drivers of median Z*yw and the
variability in Z*);; that could have spatial structure that
is not latitudinal include (1) proximity to mineral sediment
source (Weston 2014) such as a delta, or (2) storm impacts
(Williams and Flanagan 2009; Morton and Barras 2011),
or (3) spatial autocorrelation in LiDAR bias. The inde-
pendent comparison of trends between remotely sensed
and ground data (Janousek et al. 2019) gives us confidence
that what we observe from remote sensing and physical
water level gauges represent trends in the ecology and geo-
morphology of US marshes, rather than artifacts intro-
duced by the original LiDAR data, or its post-processing.

For uncertainty in Z*yy» tidal amplitude was the major
driver, with the Gulf Coast watersheds almost all having
uncertainties greater than one, the tidal amplitude itself.

@ Springer



1608

Estuaries and Coasts (2022) 45:1596-1614

Fig.5 Scatterplots showing the
relationship between water-
shed median Z* )y (elevation
normalized to tidal amplitude

at mean high water [MHW])
watershed Z*y .y variability

in the form of the interquar-

tile range (IQR), and median
watershed Z*y . uncertainty
for estuarine emergent marshes,
as a function of tidal amplitude
(mean high water [MHW]-mean
sea level [MSL]). Note that the
x-axis and the y-axis of the mid-
dle and bottom plots are log;,
transformed. MHW and MSL
are in meters
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Table 4 Parameter summaries from covariate models. *p <0.01, **p <0.001, ***p <0.0001. IQR, interquartile range; MHW, mean high water;
MSL, mean sea level, RSLR, relative sea-level rise. MHW and MSL are in meters. RSLR is in millimeters per year

Dependent variable Intercept Log(MHW-MSL) RSLR Log(MHW-MSL)xRSLR  Adj. R>  p-value

Z*\pw median 1.57 £0.17%%%* 0.20+0.22 —0.43+0.09%*%*  —(0.38+0.08%** 0.20 7.326e—12
Log(QR Z*\iuw) 0.01£0.08 —0.53£0.12%%%* —0.12+£0.04%** —0.09+£0.05* 0.45 <2.2e—-16
Log(Z*\jgw uncertainty) ~ —1.37+0.01%**  —1.07+0.01%** NA NA 0.97 <22e-16

We think this brings up two questions for how these indices
should be utilized and interpreted for microtidal areas. One,
how practical are they to implement given the high uncer-
tainty introduced by small tidal amplitude? Two, is Z*w
an ecologically meaningful metric in the most microtidal
marshes?.

One, in our study, we found the dominant source of
uncertainty in Z*,w was random error in the LIiDAR-based
elevation maps. We calculated uncertainty at the pixel level
and did not factor in spatial autocorrelation when aggre-
gating over larger areas. Random error should reduce as a
function of the sum of squares when aggregating over larger
areas and should hypothetically cancel out and approach
zero when applied over larger and larger regions. The other
components of uncertainty, uncertainty in LiDAR bias, and
uncertainties in tidal datum transformations should be spa-
tially autocorrelated and would not cancel out when aggre-
gating over large areas. Future studies will need to quantify
spatial autocorrelation in order to more fully account for the
effect of aggregating Z*,,qw across different spatial scales.
Overall, we think that anyone utilizing this product for deriv-
ative analyses should keep in mind that errors are likely to
be more pronounced at smaller scales.

Two, this inquiry leads to whether or not Z*,y is still
a meaningful ecological indicator for the most microtidal
wetlands. A previous review showed that tidal amplitude

Fig.6 Variance explained by

is a meaningful determinant of Spartina alterniflora mini-
mum and maximum elevation tolerance as tidal amplitude
shrinks north to south, as observed in Mississippi and the
Florida Panhandle (McKee and Patrick 1988). However, in
controlled elevation mesocosm experiments performed to
quantify the relationships between flooding and marsh plant
productivity in the most microtidal wetlands of the USA
along the Louisiana coast, researchers did not emphasize
tidal datums. Instead, they compared plant growth directly to
the percent of time flooded (Snedden et al. 2015; Tobias and
Nyman 2017). It could be that Z*,;;y, becomes less mean-
ingful as a proxy for flooding as more of the variability in
flooding becomes dominated by wind, river level, and storms
(Snedden et al. 2015). At the very least, caution should be
used when utilizing these maps at small scales in microtidal
environments. At most, future studies may need to reevaluate
Z*ymw as a metric and flooding proxy for microtidal wet-
lands. It would be beneficial for researchers to have guidance
on when and where applying this proxy is appropriate, and
the extent to which more complex flooding-elevation profiles
are needed to synoptically characterize marsh dynamics and
make vegetation and carbon response predictions.

Two further directions we recommend for future research-
ers include continual improvement to these products, as
well as their integration into vulnerability assessments
and coastal monitoring programs. Leveraging existing
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Fig.7 Ground-based tidal marsh elevation data from Janousek et al.
(2019) reanalyzed so that Z* refers to Z*y;yy (elevation normalized
to tidal amplitude at mean high water [MHW]). A. Map of the US
Pacific Coast with site locations. B Box and whisker plots show the
distribution density of the elevation distribution for individual site
Z*yaw- The center line of the boxplot represents the median, the

or emerging technologies could help cover spatial gaps
observed in plane-based LiDAR datasets. These other
data sources include the shuttle radar topography mis-
sion (SRTM) data and space-based LiDAR, such as GEDI
(Dubayah et al. 2020). Future mapping could benefit from
a more fine-tuned approach to vegetation bias-corrections
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edges of the box the 25 and 75% quantiles, and the lines either rep-
resent the minimum, maximum, or the cutoff range for outliers (1.5
times the interquartile range). Dots represent outlier values. C The
relationship between site-level tidal amplitude at MHW and median
Z*yuw- D The relationship between site-level tidal amplitude at
MHW and the interquartile range of Z*yyw

based on species or region or the incorporation of spatial
autocorrelation in LiDAR errors. Separate water level mod-
els could likely be improved. We spatially extrapolated tidal
datums using Empirical Bayesian Kriging, which neither
takes into account that tidal amplitude should decrease with
friction over marshes (e.g., Temmerman et al. 2005) nor
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Fig. 8 Spatial trends in watershed level Z*,;;w (elevation normalized to tidal amplitude at mean high water [MHW]) uncertainty for estuarine
emergent marshes. Note that on the Gulf Coast, the median uncertainty in Z*)y, exceeds the tidal amplitude (Z*yyw=1)

takes into account water control structures and dikes. Future
versions could take into account more information sources
than just NOAA long-term tide gauges, (e.g., Coastwide
Reference Monitoring System [CRMS] datasets, Steyer
et al. 2003) and also integrate models of physical hydrology
(Wu et al. 2019) to improve the predictive ability of datum
maps.

In addition to continual improvements to this product,
we recommend exploring its use in top-down wetland
vulnerability analyses and soil carbon stocks mapping.
Defne et al. (2020) showed that elevation and tidal range
are tightly linked with wetland vulnerability and vegeta-
tion loss. The distribution of elevation from higher and
lower marshes will be important to future mapping and
forecasting of tidal wetland vulnerability to global change
factors. Low marshes are more vulnerable to erosion and
loss by sea-level rise, since they are already lower in the
tidal frame and rely more on sediment deposition for their
input (Morris and Callaway 2019). Regional surveys pair-
ing high-quality elevation data and soil cores have dem-
onstrated correlations between tidal elevation and carbon
stocks with wetlands lower in the tidal frame tending to be
more mineral dominated and wetlands higher in the tidal
frame being more organic dominated (Callaway et al. 2012;
Peck et al. 2020). Thus, we propose future studies inves-
tigate this link at larger scales to determine whether our
Z*ymw 1s of sufficiently high quality to map organic and
inorganic-dominant soil types, thus improving coastal wet-
land carbon stock assessments (Holmquist et al. 2018a).

Top-down analysis of remotely sensed data can also be
used to plan new or evaluate existing monitoring systems
by identifying regions or zones that are over-sampled and
those that are under-sampled (Shiklomanov et al. 2019). In
evaluating the representativeness of surface elevation table
and marker horizons used for monitoring wetland elevation
change and accretion relative to relative sea-level change,
Osland et al. (2017) observe that the current distribution of
monitoring stations does not fully represent observed eleva-
tion gradients. They also note that for both modeling and
monitoring, these observation networks need to be strategi-
cally designed to span elevation gradients as well as gradi-
ents in other relevant wetland drivers. From a modeling and
monitoring perspective, there is a need to move toward quan-
titative mapping and reporting of surface elevation for wet-
land characterization. Since absolute elevation differs from
tidal elevation, and tidal properties can vary regionally, we
propose that our Z*,;;w map could be useful in other repre-
sentativeness assessments for other regions needing relative
and quantitative surface elevation assessments, including the
Gulf Coast region. We suggest these assessments of map
utility despite the high uncertainty for Z*,; metrics in the
Gulf Coast region, which is unavoidable at this time given
the limitations of LiDAR random error and the sensitivity
of Z*yyw as a metric to small tidal amplitudes.

The Coastal Carbon Research Coordination Network
(CCRCN)’s data library includes survey-grade wetland
elevation data if associated with sampling location of soil
profiles (CCRCN 2021). However, this is only for soil
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coring locations. Given the potential of Z* as a proxy for
tidal flooding processes, we encourage wider publication and
synthesis of paired elevation survey data and contemporane-
ous local tidal datums (including MSL, MHW, and MHHW)
for soil profiles, other types of tidal wetland monitoring such
as plant cover and biomass (for example, Elsey-Quirk and
Unger 2018), as well as on their own, to enable synthesis,
intercomparison, and map validation.

Conclusions

Relative tidal elevation is a vital metric for assessing coastal
wetland function from a synoptic scale. Z*y;;w can provide
a physical index of flooding exposure, or “elevation capital,”
which could be an early indicator of marsh susceptibility to
collapse. Z* has been correlated with soil carbon stocks, and
it is part of the vital machinery of numerical marsh process
models both for function and structure. With our maps, we
observed latitudinal and regional trends in median Z*yy
and Z*,;yw variability that were contrary to our hypoth-
esis, but were supported by a reanalysis of ground-based
survey data by Janousek et al. (2019). These trends may be
explained by how the relative height of the marsh-upland
interface and relative difference between MHW and MHHW
scale with tidal amplitude. Tidal amplitude also correlates
strongly with propagated uncertainty in the mapped product.
Random error in LiDAR based maps is the larger source of
overall uncertainty, compared to site-specific uncertainty in
the bias term. Since random error in LiDAR should have
little spatial autocorrelation compared to site-specific uncer-
tainty in the bias term, overall uncertainty should decrease
when used over wider scales, a testable hypothesis. Future
versions of this map could be improved by LiDAR maps that
have both improved random error and more sophisticated
vegetation bias-corrected elevations. The Z*,;,y maps and
underlying data used to make them are almost entirely free
and available. We invite other scientists in the community to
independently assess our Z*4w maps for accuracy, improve
the maps through iteration, and test their utility for other
even more derived purposes.
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