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Learning Non-Parametric Models in Real Time via
Online Generalized Product of Experts

Connor Watson and Tania K. Morimoto

Abstract—In this work, we address the problem of online learn-
ing, where models must be continually updated from an incoming
stream of data, while retaining past information. We develop an
approach that is nonparametric, models uncertainty, and requires
minimal hand-tuning. Our proposed algorithm, which we term on-
line generalized product of experts (OGPoE), extends the powerful
generalized product of experts (GPoE) framework to the online set-
ting by leveraging methods for sparse, variational Gaussian process
approximations, as well as nonparametric clustering. We devise a
1-D example learning problem to illustrate how our method works,
and we verify that we achieve competitive results with other popular
modeling approaches on a benchmark learning problem. Finally,
we demonstrate how our algorithm can produce high accuracy
predictions on a physical system, by learning the kinematics for a
concentric tube robot, even when the robot is subject to changing,
unknown loads.

Index Terms—Model learning for control, modeling, control, and
learning for soft robots, machine learning for robot control.

I. INTRODUCTION

MANY real-world robotics problems involve phenomena
such as friction and uncertainty that are difficult to model

from first principles. These challenges have motivated the use of
learning approaches that build models directly from data without
requiring expert knowledge of the underlying system. While
these learning-based approaches have achieved impressive re-
sults, many of the algorithms can only be performed offline,
limiting their practical use.

Online learning algorithms seek to address this limitation by
inferring models from data and adapting these models continu-
ally over time as new data arrives. In particular, nonparameteric
online learning methods based on the popular Gaussian process
(GP) statistical model are promising due to their many desirable
properties, such as adaptable modeling complexity and predic-
tion uncertainty quantification [1].

A. Related Works

Many approaches have been proposed to minimize the high
computational cost of GP models, which scales cubically with

Manuscript received 23 February 2022; accepted 28 June 2022. Date of
publication 14 July 2022; date of current version 25 July 2022. This letter was
recommended for publication by Associate Editor C. Della Santina and Editor C.
Gosselin upon evaluation of the reviewers’ comments. This work was supported
by the National Science Foundation under Grant 1935329. (Corresponding
author: Connor Watson.)

Connor Watson is with the Department of Mechanical and Aerospace Engi-
neering, University of California, San Diego, La Jolla, CA 92093 USA (e-mail:
cmwatson@eng.ucsd.edu).

Tania K. Morimoto is with the Department of Mechanical and Aerospace
Engineering and the Department of Surgery, University of California, San Diego,
La Jolla, CA 92093 USA (e-mail: tkmorimoto@eng.ucsd.edu).

Digital Object Identifier 10.1109/LRA.2022.3190809

the size of the dataset, N , during training [2]. Approximation
strategies for GPs can typically be classified as either global or
local methods. Global approximation strategies involve choos-
ingM ! N points, called inducing or psuedo-inputs, that, when
used for training, produce an approximate GP with minimal
KL-divergence from a GP trained with all N samples. The
inducing input locations may be sampled from the available
data (based on, e.g., information gain [3], KL divergence [4],
or Nyström sampling [5]), or considered as variables to be
optimized for jointly with the kernel hyperparameters during
training [6]. However, for online learning problems where the
size of the dataset grows large over time, the quality of the GP
approximation using a fixed number of inducing points may
degrade [7] or be confined to a local region of the input space [8].

Local GP approximations improve scalability by first dividing
the training dataset into smaller subsets (e.g. by k-means [9],
randomly [10], or by feature space distance from existing local
models [11]) and then training a local GP model on each subset
of data. Prediction on new inputs can be done with the local
model nearest the input (i.e. naive local experts (NLE) [2])
or by taking a weighted combination of predictions from all
local models (i.e. mixture of experts (MoE) [12] or product
of experts (PoE) [13]). Adapting this local GP approximation
strategy to the online setting is difficult because most of the
effective data partitioning and prediction combination meth-
ods that have been used to date, require some form of offline
computation.

Recent works have proposed to combine both local and
global GP approximations to leverage the benefits of each ap-
proach [14], [15]. Training data is divided between multiple,
local models, where each local model is itself a sparse GP
approximation. Although these approaches substantially reduce
training times and effectively scale the complexity of the models
to the observed data, there remain limitations in their predic-
tion strategies. For instance, [15] uses an NLE strategy, which
is known to give artificially discontinuous predictions on the
boundaries of the subregions between local models [2]. The
prediction strategy in [14], on the other hand, uses an MoE
approach to prediction, but does not learn the weighting function
jointly with the local model parameters, which typically leads
to suboptimal predictions [10].

To address remaining limitations in using GPs for online
learning, we propose to adapt the generalized product of experts
(GPoE) framework for multiple model prediction [10] to the
online setting. GPoE is a method for combining the predictions
from multiple local models in a way that does not require joint
training, allowing each local model to be learned independently.
Despite this independent training, the aggregate GPoE predic-
tion has been shown to retain important properties of multiple
model prediction, such as rejection of poor predictions from
local models, smooth interpolation between local models, and
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the ability to precisely combine many uncertain local model
predictions [10].

B. Contributions

The contributions of this paper are as follows. First, we
present a new algorithm, which we call online generalized
product of experts (OGPoE), that extends GPoE to the online
learning setting. This algorithm offers a combination of benefits
unavailable from other online learning algorithms, including the
simultaneous online optimization of local model parameters, a
clear and interpretable data partitioning strategy, and principled
fusion of multiple model predictions without the need for joint
training. We evaluate our proposed algorithm in simulation and
show that it compares favorably to other popular online and
offline modeling approaches on a well-cited benchmark dataset.
Finally, we demonstrate how OGPoE can be used for online
learning tasks that involve physical hardware and dynamic en-
vironments. Specifically, we demonstrate online learning of the
kinematics of a concentric tube robot — both in free space and
in the presence of dynamic environmental constraints — which
is a first for this type of robot. These experiments not only
demonstrate the modeling accuracy that OGPoE can achieve,
but also its versatility in the types of problems it applies to,
making it a powerful tool for online learning.

II. BACKGROUND

In this section, we review GP fundamentals, along with key
works that are leveraged and adapted for OGPoE.

A. Streaming Sparse Gaussian Process Approximations

A standard GP regression model assumes that input-output
data pairs, {x, y}, can be described by the expression y =
f(x) + ε, where f is an unknown function corrupted by Gaus-
sian observation noise ε ∼ N

(
0,σ2

y

)
[7]. A GP prior over the

unknown function, f ∼ GP(m(·), k(·, ·|θ)), is specified by a
mean function, m(·), and a covariance function, k(·, ·), that
depends on hyperparameters θ. As is typically done, we adopt a
zero-mean function for notational convenience in the remainder
of this section. The choice of covariance (or kernel) function
encodes prior assumptions about the spatial correlations between
the inputs to the unknown function, f , and may be informed
by prior knowledge. We employ the popular and interpretable
squared exponential kernel with automatic relevance determi-
nation,

k (x,x′) = σ2
f exp

(
−1

2
(x− x′)

%
W−1 (x− x′)

)
, (1)

which depends upon the hyperparameters that capture the signal
variance (σ2

f ) and the length-scale along each dimension of the
input (W = diag(l21, . . ., l

2
d)).

Given a collection of input-output data pairs, the assumption
of Gaussian observation noise, and the GP prior over f , it is
possible to compute the mean and variance of the posterior
process in closed form at a new input, x∗, as

m∗(x∗) = k(x∗,X)
(
σ2
yI+ k(X,X)

)−1
y

V∗(x∗)=k(x∗,x∗)−k(x∗,X)
(
σ2
yI+k(X,X)

)−1
k(X,x∗)

(2)

The kernel matrix, k(X,X), consists of kernel function eval-
uations between all N datapoints, and must be inverted for
inference. As N approaches ∼ 104, this computation becomes
intractable, motivating methods for choosing M ! N inducing
inputs to approximate the posterior and retain tractability [6].
The vast majority of these approximation methods, however,
can only be applied when all training data is available at once,
which is not the case in the online setting where data is revealed
incrementally over time.

To address this problem, the authors in [7] pose an opti-
mization problem that recursively updates the locations of M
inducing points, Z = {z1, . . ., zM}, as well as the kernel hyper-
parameters, θ = {σ2

y,σ
2
f ,W}, of a sparse GP model as data is

processed online. Specifically, they show that given some current
posterior GP approximation, GPold, with hyperparameters, θold,
and inducing input locations, Za, that is assigned new data,
Dnew = {xi, yi}Nnew

i=1 , then a quantity called the online varia-
tional free energy (FOVFE) can be maximized to find values for
new hyperparameters and inducing input locations, {θnew,Zb}.
The new hyperparameters and inducing input locations are then
used to form a new posterior approximation, GPnew, which, in
turn, can be used for prediction [7].

B. Generalized Product of Experts

The PoE method for ensemble prediction [13] attempts to
model a target distribution as the product of multiple densities,
each of which is given by a single expert. This method is
sensitive to errors in the predicted variance of the local experts,
in that erroneously low-variance predictions from some local
models will bias the aggregate mean and lead to overconfident
predictions [10]. To suppress the influence of poor experts on the
overall model, GPoE [10] introduces a weight to each expert’s
prediction,

p(y∗|D,x∗) =
1

Z

M∏

i=1

pβi(x∗)
i (y∗|Di,x∗), (3)

where Z is a normalizer, Di is the training data seen by the ith
model, x∗ is a predictive input, and y∗ is an output. The input-
dependent weight function, βi(x∗) =

1
2 (log σ

2
i,∗∗ − log Vi(x∗))

is the differential entropy between the expert’s prior and poste-
rior. When the entropy change for an expert is zero atx∗, then that
expert’s prediction does not contribute to the combined predic-
tion because it does not have any training information relevant
to this new input. Using this weight and (3), the aggregate mean
(mGPoE) and variance (VGPoE) of the ensemble of experts can be
computed in closed form [10]. This simple strategy for weighting
predictions still requires no joint training and alleviates the
PoE problem of being unable to reject poor experts. Despite
its simplicity and minimal computational requirements, GPoE
achieves excellent results on multiple benchmarks [10].

C. DP-Means

DP-means [16], [17] is a nonparametric clustering technique
that allows data to be partitioned for local model training without
specifying the number of clusters a priori. We consider a set
of streaming data, {x1, . . .,xT }, where xt ∈ Rd is the data ob-
served at time t. Each observation is assumed to belong to one of
K clusters and is labeled {ζ1, . . ., ζt}, with ζt ∈ {1, . . .,K}. A
prior over the number of clusters,K, and the cluster assignments,
ζ1:t, specified by a Chinese Restaurant Process (CRP) [18] with
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hyperparameter α, is assumed. The first observation, x1, is
assigned to the first cluster, ζ1 = 1, and the tth observation is as-
signed either to existing cluster k, with probability proportional
to the number of data already in that cluster, or to a new cluster,
with probability proportional to α. If the data in each cluster is
assumed to be Gaussian with cluster-specific means, µk, and a
shared variance, σ2Id, then the likelihood of the data,x1:t, given
clustering ζ1:t and means µ1:k, is

p(x|ζ,µ) =
K∏

k=1

T∏

t=1

N
(
xt|µk,σ

2Id
)
. (4)

Further assuming a zero-mean Gaussian prior on the cluster
means themselves, µk ∼ N (0, ρ2Id), Bayes theorem gives the
posterior distribution over the clustering,

p(ζ,µ|x) ∝ p(x|ζ,µ)p(ζ)p(µ). (5)

The maximum a posteriori (MAP) estimate for the clustering
and the cluster means is found by maximizing this posterior
distribution or, equivalently, minimizing the negative log joint
likelihood

argmax
K,ζ,µ

p(ζ,µ|x) ∝ arg min
K,ζ,µ

− log p(x, ζ,µ). (6)

Typically, computing the MAP estimate is quite difficult, but
by choosing the hyperparameter α = exp(−λ/2σ2) and taking
the small variance asymptotic limit as σ2 → 0, the optimization
reduces to

arg min
K,ζ,µ

K∑

k=1

T∑

t=1

‖xt − µk‖2 + λK. (7)

Note this objective function takes the same form as that of the
k-means algorithm plus a penalty term for adding new clusters.
It is solved straightforwardly by the DP-means algorithm, which
iteratively assigns data to the cluster with the nearest mean unless
the nearest cluster mean exceeds a threshold distance, controlled
by the user-set value λ, upon which a new cluster is generated.
Although more complicated extensions to the DP-Means algo-
rithm exist (e.g. [16], [19]), DP-Means requires few user-set
parameters and often leads to satisfactory results.

III. ONLINE GENERALIZED PRODUCT OF EXPERTS

In this section, we present Online Generalized Product of
Experts (OGPoE), which consists of a partitioning stage, a
training stage, and a prediction stage. We present the algorithm
design and implementation, and we discuss how the specific
combination of algorithms gives OGPoE several advantages
compared to the state-of-the-art in online learning.

A. Algorithm Design

To overcome current limitations in using GPs for online
learning, each component of the OGPoE algorithm must be
carefully selected. First, the training component should provide
a principled method for updating the model inducing point
locations and hyperparameters. Previous works either update
these values separately [20], require that the hyperparameters be
known a priori [11], or implicitly assume that the training data is
independently, identically distributed (iid) [21]. We select to use
streaming sparse GP approximations in order to simultaneously
update both the inducing point locations and hyperparameters

even when the training data is generated from a time series and
is not iid.

Second, in order to grow the model complexity as the amount
of training data increases, the partitioning strategy must be
simple, easily tune-able, and interpretable, in order to divide
data amongst an ensemble of local models. Previous works have
used somewhat opaque online partitioning strategies [11], [14],
[15] that make it difficult to predict when a new model will be
formed, and consequently more challenging to tune. We select
to use the DP-means algorithm, which can be analysed through
the lens of small variance asmpytotics [17] to better understand
its inherent assumptions and convergence. This simple strategy
is regulated by a single user-set parameter that is straightforward
to tune.

Lastly, the prediction strategy must be able to fuse predictions
from multiple local models, online, without imposing restrictive
assumptions on how the models are trained. Many prediction
strategies, however, assume all local models share the same hy-
perparameters ([11], [22]). We therefore select to use the GPoE
framework, which allows for each of the individual experts to
be trained independently and the aggregate prediction to better
capture non-stationary features in the dataset [2]. Further, GPoE
does not require the data used for training each expert to be
local, and produces good aggregate predictions even when the
individual experts are trained on random subsets of data that
may significantly overlap [10], as could be the case when using a
sparse GP approximation. Together, these features allow OGPoE
to build models online that describe data exhibiting complex
phenomena such as non-stationarity and heteroscedastic noise.

B. Implementation

Implementation of OGPoE consists of an initialization phase,
followed by online learning and prediction (Fig. 1).

Initialization: We assume access to Ninit > M samples
which are used to initialize our model. When learning a kine-
matics or dynamics model, for example, these samples might
be acquired by sending random, low-magnitude signals to the
robot joints. We assign all initial data to a single cluster, which
is represented by its mean, µ1 = 1

Ninit

∑Ninit
i=1 xi. A sparse GP

model is then instantiated as in [6] by solving an optimzation
problem to determine initial inducing input and hyperparameter
values.

Online Training: Data arrives sequentially in small batches
of Nnew samples for processing. Each data point is assigned
to either an existing cluster or to a new cluster by solving
the optimization problem in (7). Once all data in a batch has
been assigned, existing cluster means are updated with the
data assigned to that cluster. The assigned data is then used
to update the sparse GP approximation associated with each
cluster by optimizing the online variational free energy objective
as described in Section II-A. If a new cluster is generated, the
sparse GP approximation of the nearest existing cluster is used
for this optimization. This process can be repeated as long as
there are batches of data to process.

For all model training, we empirically find it helpful to add
an inequality constraint to the online VFE optimization problem
that constrains each of the lengthscales of the squared exponen-
tial kernel to not be greater than twice the legnthscale parameter
used in the clustering algorithm, li≤2λ ∀i∈{1, ..d}. Intuitively,
the kernel function lengthscales, which dictate the correlations
between datapoints, should not exceed the diameter of the cluster
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Fig. 1. Flowcharts depicting online learning with incoming data and the GPoE framework for ensemble prediction. Online learning assumes that data arrives
sequentially in small batches of Nnew samples that are used either to update an existing local model, or to generate a new local model. Ensemble prediction returns
an aggregate predictive mean and variance, mGPoE , VGPoE , for an input x∗.

from which they originate. Note that this constraint does not
require the individual kernel lengthscales to be equal to one
another, but merely enforces an upper bound.

Prediction: In order to combine predictions from multiple
local models on a new input, we use the GPoE framework
described in Section II-B. One disadvantage is that for test
points far from any training data, the difference between the
prior and posterior variance for all experts is nearly zero [9],
[22], causing all of the weights to go to zero and the predictive
variance of the aggregate model to explode (i.e. as βi → 0,
VGPoE → ∞). Although this is only a minor concern for most
online learning problems since predictions are made close to
the training data which is revealed incrementally over time, we
choose to mitigate this issue by simply normalizing the weights
such that

∑K
i=1 βi = 1 for prediction.

User Set Parameters: OGPoE requires little tuning to apply
to new problems. We provide the following suggestions for
the only two parameters, M and λ, that must be set by the
user. It is worth noting that these are distinct from the kernel
hyperparameters, θ, which are determined automatically from
the data by optimization. M is the number of inducing inputs
per sparse GP model that will be used for training. The question
of how to choose M , such that M ! N points are guaranteed
to approximate a GP model with tight KL divergence bounds
is still an area of active research [23]. Practically, we find that
setting the value for M presents a tradeoff between increased
computation time for training and better modeling accuracy.
Therefore, we advise choosing M to be as large as possible,
while still maintaining a model update rate that is suitable for
the particular application. The other parameter that must be set
by the user is the cluster lengthscale, λ, used in the DP-means al-
gorithm for data partitioning. Because of the similarity between
DP-means and k-means, if a subset of data is available for offline
computation, we find that clustering this data with k-means and
then setting λ to be the average radius of the resultant clusters, is
an effective initial guess for this parameter that may be further
tuned as needed. Finally, although the batch size of training data
is typically not controlled by the user since data is streaming
at a fixed rate and processed as fast as possible, Nnew can be
set for simulated experiments. In this case, larger values of Nnew
increase the training time per batch of data, but can lead to better
fits ([7]).

IV. SIMULATED EVALUATION

We assess the performance of OGPoE through numerical ex-
perimentation. We present a simple learning problem to demon-
strate the effectiveness of OGPoE for multiple model prediction,

and we compare its performance to other popular modeling
approaches on the SARCOS arm dataset.

A. Toy Example

We consider the problem of learning an approximation to the
1-D function y = sinc(x) + ε, with ε ∼ N (0, 0.04). We gener-
ate 500 samples from this function for training, which we process
sequentially from x = −4 to x = 4 (excluding x ∈ [−0.5, 0])
in batches of Nnew = 20 samples, in order to simulate online
training. For testing, we compare against the noise-free function
ȳ = sinc(x) for x ∈ [−5, 5]. With λ = 0.5 and M = 10, online
training produces 4 local models with inducing point locations
and individual predictions shown in Fig. 2 a. No one local model
learns the entire latent function — with an RMSE of 0.091 for
the best local model — necessitating an ensemble prediction
strategy. There is overlap between the models, which can be
attributed to the fact that each new local model is initialized
using the nearest, existing local model, and the optimization
used to update the locations of the local model inducing points
can find values outside the region of the training data [7], [14].
Despite the overlap, Fig. 2 b shows that OGPoE can effectively
combine local model predictions and capture the underlying
function (0.059 RMSE), because it does not assume that the
individual models cover independent regions of the input space.
Instead, OGPoE effectively blends contributions from proximal
models in an aggregate prediction.

Other ensemble prediction strategies are shown in Fig. 2 c and
2 d. NLE, for example, uses the predictive mean and covariance
of the local model nearest the predictive input (Fig. 2 c). Con-
sequently, its prediction contains artificial discontinuities where
there is a transition between the local models used, despite the
smoothness of the underlying function (0.085 RMSE). Heuristic
MoE (Fig. 2 d) trains an additional meta GP model used to weight
the predictive mean from each local model [11], [14]. Because
this method combines the predictions of multiple models, it
avoids the discontinuities associated with the NLE method but
at the cost of additional training time. Additionally, because the
local model weights are exponential in the distance between the
model center and the predictive input, most of the weight for
prediction is usually concentrated on a single model, producing
a predictive output that is not substantially better than prediction
with NLE (0.084 RMSE).

B. SARCOS Arm Benchmark

In this section, we study the effects of varying OGPoE’s user-
set parameters, λ and M , and compare our proposed algorithm
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Fig. 2. (a) Sparse, local GP models are learned using data, ‘+,’ drawn from a noisy, unknown function as detailed in Section IV-A. The predictions from these
local models are combined using (b) OGPoE, (c) NLE, and (d) a heuristic MoE approach. The predictive mean of each aggregation method is shown in red along
with the one standard deviation confidence bounds in orange.

Fig. 3. Plots depicting training results on the SARCOS arm benchmark for
different values of the user-set parameters (a) λ and (b) M .

to other modeling approaches, using the SARCOS arm dataset.1
This publicly available dataset is frequently used to benchmark
the performance of offline [1], [9], [11] and online [14], [15], [24]
modeling approaches, making it a suitable standard to compare
against without having to reproduce the results of many previous
works. The objective is to learn an inverse dynamics mapping
from a 21 dimensional input joint space to the first of 7 output
joint torques, using a dataset that consists of 48,933 samples
(44,484 for training and 4,449 for validation) [1], [9], [15].

First we assess the effect of the clustering lengthscale param-
eter, λ. We set M = 50 and process data sequentially in batches
of Nnew = 100 samples for training, as is done in [15], and then
evaluate the prediction of the learned model on the validation
dataset. We repeat this simulation for λ ∈ [3.25, 7] (Fig. 3 a). As
expected, the performance degrades as lambda is increased since
the number of local models generated, and consequently the total
number of inducing points used to capture the data, decrease.
Next, to assess the effect of M on learning performance, we fix
λ to the best value from Fig. 3 a and repeat the experiment, this
time varying M from 20 to 70. The results, shown in Fig. 3 b,
depict how performance improves with increasing M, although
with diminishing returns as M becomes large.

Finally, we report the results of other popular modeling
approaches on the SARCOS dataset in Fig. 4. The value of
M used for OGPoE was set to 50 in order directly compare
against the methods studied in [15], while λ was set to 3.5,
which was the best result from the experiment shown in Fig. 3
a. Looking at the performance of LGPR [11], which requires
offline optimization of the hyperparameters, we would expect it
to significantly outperform OGPoE, where the hyperparameters

1Dataset available at: http://www.gaussianprocess.org/gpml/data/

Fig. 4. SARCOS benchmark results demonstrating OGPoE achieves excellent
performance relative to the state of the art in online learning methods. We report
the results of SOLAR, WGPR, and LGPR from [15] and the analytical model
and LWPR from [24].

are optimized online. However, we note that we achieve nearly
comparable results, with a RMSE of 3.507 compared to 3.195
reported in [15].

The online methods we compare to are the well-known
LWPR [24], as well as SOLAR-GP [14] and WGPR [15], which
are the most similar algorithms to OGPoE. Our results show
that we outperform these methods on this benchmark, even for
a wide range of values of λ (Fig. 3 a). Because SOLAR and
WGPR leverage the same sparse GP approximation strategy as
OGPoE, the difference in performance can likely be attributed
to differences in how data is partitioned between local models
and how combined predictions are generated. OGPoE’s data
partitioning scheme differs in that data assignment is indepen-
dent of the parameters used to define the local models, which
change over time. The prediction framework employed by OG-
PoE more effectively combines information from multiple local
models, leading to improved aggregate prediction as discussed
in Section IV-A.

V. HARDWARE EVALUATION

In this section, we use OGPoE to learn the forward kinematics
of a concentric tube robot (CTR) from streaming data. CTRs
are a class of continuum robot made up of precurved, flexible,
telescoping tubes that when translated and rotated relative to one
another, interact in bending and torsion to reach different equi-
librium configurations [25], [26]. Mechanical models based on
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Fig. 5. The experimental setup consists of a 3-tube CTR and associated
actuation unit from [29]. An EM sensor is attached to the CTR tip in order
to track its position.

the theory of Cosserat Rods [27] have been developed to describe
their forward kinematics, where the tip position is computed as
a function of the rotational and translational positions of each
of the tubes [28]. Typically, these models assume that all tubes
share a common centerline and ignore the effects of friction and
clearance between the tubes. While these assumptions lead to a
tractable set of equations for the kinematics, they also contribute
to modeling inaccuracies. We approach learning kinematics for
these robots in two ways: one in which the forward kinematics
must be learned completely from scratch, and another in which
we augment the learned model with a mean function derived
from first principles.

A. Experimental Setup

The 3-tube CTR and associated actuation unit from [29] were
used in this experiment (Fig. 5). An Aurora electromagnetic
(EM) tracking system (NDI) is used to measure the 3-D position
of an EM sensor (0.92 mm outer diameter) attached to the tip
of the robot. Joint and EM sensor positions are sent to the
OGPoE algorithm to be used for training via the Robot Operating
System (ROS) [30], which is used to enable parallel processes for
prediction and training [14]. An open-loop joint space trajectory
is also published over ROS to set the joint positions and to predict
the robot tip position from the learned model.

For our hybrid learning approach, which involves augmenting
the learned prediction with an analytical model, we follow the
model derivation of [28]. This approach amounts to solving
a set of ordinary differential equations subject to boundary
conditions (BCs) imposed by the joint values of the tubes. For
our CTR, these equations have a unique solution for every set
of BCs dictated by the robot’s joint configuration, defining a
unique mapping that we use as our analytical kinematic model.
Because this mapping is deterministic, we may incorporate it
into our learning problem by adopting a zero-mean GP prior
over the difference between the tip position predicted by this
model and the true tip position observations measured by the
EM sensor for learning. For prediction, we combine the output
of the analytical model with this learned error function. To save
computation time, we follow the example of [24] and [14] by us-
ing the same learned model to predict each component of the tip
position.

B. Online Learning of Robot Kinematics in Free Space

In this experiment, the CTR is commanded to follow an
open-loop joint-space trajectory consisting of 600 points that
was designed offline to cover a significant region of the robot
workspace. At each timestep, we predict the robot tip position
for the next joint configuration using one of three models —
the Cosserat-rod-based kinematics model, the OGPoE model,
or the hybrid model. To initialize the learned models, we sam-
ple random joint configurations in close joint space proximity
to the robot’s home configuration, which results in small tip
motions. Specifically, we draw 50 samples for each joint from
U(q0 − 2.5 mm, q0 + 2.5 mm) for translational joints and from
U(q0 − 5◦, q0 + 5◦) for rotational joints, where q0 is the home
position of the joint andU(a, b) is a uniform random distribution
with lower limit a and upper limit b. These initial models are
updated online according to the OGPoE framework as data
arrives over the course of the trajectory and used to predict on
new inputs just outside the distribution of training data. When the
robot reaches the end of the trajectory, it returns to the starting
position and then follows the same trajectory again to assess
the behavior of the learned models when re-entering previously
visited regions of the state space. For both the hybrid and purely
learned OGPoE models, we set λ = 3.75 and M = 25, which
we found to be acceptable after minimal tuning.

The prediction results in Fig. 6 show that there is significant
error in the analytical model predictions (4.8 mm ± 1.52 mm)
primarily in predicting the x and y components of the tip
position. This error is expected for these models [28], [31],
and a large part is likely due to ignoring clearance between the
tubes of the robot, which causes the true shape to be straighter
than the Cosserat rod model predicts [32]. Consequently, the
path traced by the robot tip has a smaller radius than the one
predicted by the model (Fig. 6 a). Both of the learned models,
on the other hand, achieve much lower mean absolute error for
predicting the tip position — 0.79 mm ± 0.48 mm and 0.58 mm
± 0.4 mm for the purely learned and hybrid models, respectively
— demonstrating the feasibility of using OGPoE in an online
learning scenario. The prediction error of the learned models
decreases slightly between the two passes through the trajectory,
while the number of local models stays constant, indicating that
these learned models retain information about regions of the
state space they have already visited. While both approaches
achieve high accuracy predictions, the hybrid approach exhibits
a slightly smaller average error due to incorporation of a good,
physics-based, analytical mean function.

The success of OGPoE can be attributed to the fact that it
updates a model online with data from the trajectory that is being
followed, allowing for good predictions on new, nearby inputs.
On average, the model update rate is 0.3 s and the prediction rate
is 106 Hz, which is sufficient for surgical procedures where the
robot speed will not exceed a few cm/s [33]. The benchtop setup
can also be substantially improved with specialized hardware
and software.

C. Online Learning of Robot Kinematics With Dynamic
Loading Conditions

Next we demonstrate the ability of OGPoE to learn the kine-
matics of a CTR when the robot is subjected to an unknown and
changing environmental constraint. This ability is particularly
important for CTRs, since many of their intended applications
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Fig. 6. Results of the online kinematics learning task using (a) an analytical model, (b) a model learned with OGPoE, and (c) a hybrid of the two approaches,
where OGPoE is used to learn the error in the analytical model. The plots on the left show the predicted and measured tip positions from two different angles for
each of the models used, and the plot on the right shows the prediction error over time for all three models.

Fig. 7. Predicted tip position of the CTR following a planar, triangle-shaped path using an (a) analytical (b) learned and (c) hybrid model as well as (d) the
prediction errors over time. On the first pass through the trajectory, an obstacle blocks the robots path, causing a large deviation from the analytical model. On the
second pass through, the obstacle is removed.

involve navigation through dynamic environments, yet there is
a notable lack of proposed solutions in the literature due to the
difficulty of the problem.

We initialize the robot as in Section V-B and command it to
follow a new open-loop trajectory, twice. This time however, an
un-modeled obstacle is placed in the path of the robot, such that
the robot tip is significantly deflected when it comes into contact
with the obstacle. Before the robot traverses the trajectory a
second time, the obstacle is removed, resulting in different tip
position measurements that conflict with the data gathered on the
first pass. Fig. 7 shows the robot tip position predicted by the
analytical, learned, and hybrid models, along with the associated
prediction errors.

As seen in Fig. 7(a), the presence of the obstacle causes large
errors in the analytical model prediction (4.73 ± 2.23 mm aver-
age, 13.42 mm maximum), whereas the OGPoE-based methods
achieve much more accurate results (learning: 0.75 ± 0.49 mm
average, 4.67 mm maximum; hybrid: 0.72 ± 0.84 mm average,
5.00 mm maximum). It is also interesting to note that the error
in the hybrid modeling approach has a small, transient increase
when the robot encounters the obstacle (presumably due to the
inaccuracy of the analytical model) and again when the robot
traverses the region of the state space where the obstacle has
been removed (where the previously learned deviation from
the analytical model needs to be un-learned). Nonetheless, the
low average prediction error of both OGPoE-based methods

demonstrates the applicability of this method for learning CTR
kinematics under these challenging conditions.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, we presented OGPoE and illustrated its ef-
fectiveness starting with a simple 1-D example. We verified
that OGPoE achieves excellent results on the SARCOS arm
benchmark relative to the state of the art, making it a potentially
useful tool for complex online learning problems. Finally, we
demonstrated the ability of OGPoE to learn the kinematics for
a continuum robot in an online setting, both with and without
prior model information and even in the presence of changing,
unknown loading conditions.

There are several directions for future work that can further
expand the applicability of OGPoE. For example, the develop-
ment of a method to bound the prediction error of the aggregate
model learned by OGPoE can enable its use in online learning
applications that require guaranteed safety, as have been recently
studied using standard GPs with known hyperparameters [34].
Additionally, dimensionality reduction techniques could poten-
tially be used with OGPoE to do effective online learning for
problems with very high dimensional inputs. Finally, OGPoE
could be applied to many other robotics problems, including
learning and adapting a model for use with inverse kinematics
methods to enable real-time control in unknown environments.
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