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Abstract In this paper, we prove that for any Kéhler metrics wp and x on M,
there exists a Kéhler metric w, = wo+ V—1089¢ > 0 satisfying the J-equation
rp, X =c¢ if and only if (M, [wo], [x]) is uniformly J-stable. As a corollary,
we find a sufficient condition for the existence of constant scalar curvature
Kéhler metrics with ¢; < 0. Using the same method, we also prove a similar
result for the supercritical deformed Hermitian—Yang—Mills equation.
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530 G. Chen

1 Introduction

In this paper, our main goal is to prove the equivalence of the solvability of
the J-equation and a notion of stability. Given Kdhler metrics wg and x on M,
the J-equation is defined as

try,x =¢
for
wy = W ++/—1803¢ > 0.

In general, the equivalence of the stability and the solvability of an equa-
tion is very common in geometry. One of the first results in this direction was
the celebrated work by Donaldson—Uhlenbeck—Yau [17,46] on Hermitian—
Yang-Mills connections. Inspired by the study of Hermitian—Yang—Mills
connections, Donaldson proposed many questions, including the study of the
J-equation using the moment map interpretation [18]. This was the first appear-
ance of the J-equation in the literature.

Yau conjectured that the existence of a Fano Kéhler—Einstein metric is also
equivalent to some kind of stability [48]. Tian made this conjecture precise
in the Fano Kéhler-Einstein case, and it was called the K-stability condition
[44]. It was generalized by Donaldson to the constant scalar curvature Kéhler
(cscK) problem in the projective case using a Riemann—Roch type formula
to calculate the “Donaldson—Futaki invariants” on “test configurations” [19].
This conjecture has been proved by Chen—Donaldson—Sun [8—10] in the Fano
Kéhler—FEinstein case. However, there is evidence that this conjecture may be
wrong in the cscK case [1]. A folklore conjecture states that the uniform ver-
sion of K-stability may be a correct substitution. More recently, the projective
assumption in the definition of uniform K-stability was removed by Dervan—
Ross [22] and, independently, by Sjostrom Dyrefelt [36], using an intersection
formula to replace the Riemann-Roch type formula. When restricted to spe-
cial test configurations called “degeneration to normal cones,” the uniform
K-stability is reduced to Ross-Thomas’s uniform slope K-stability [35].

It is easy to see that cscK metrics are critical points of the K-energy func-
tional [11]

o'\ o
K(p) = /M log (_(p) n_(:] + j—Ric(wo)(‘P)-

n
2]
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The supercritical deformed Hermitian—Yang—Mills equation 531

The J, functional for any real smooth closed (1,1)-form y is defined by

n—1

—1—k
() = — /szx/\“’o/\w (n+1)'/CO¢ZwOAw :

k=0

where ¢ is the constant given by

1
/X/\ “ —oﬁ=0
M (n—D! '

When x is a Kéhler form, it is well known that the critical point of the 7
functional is exactly the solution of the J-equation. This result [11] was the
second appearance of the J-equation in the literature. Following this formula
and using the interpolation of the K-energy and the 7, functional, Chen-Cheng
[5-7] proved that the existence of a cscK metric is equivalent to the geodesic
stability of the K-energy functional. However, the relationship between the
existence of cscK metrics and the uniform K-stability is still open.

When we replace the K-energy functional by the 7, functional for a Kéhler
form y, the analogies of the K-stability and the slope stability conditions
were proposed by Lejmi and Székelyhidi [30]. See also Sect. 6 of [22] for the
extension to the non-projective case. The main theorem of this paper proves
the equivalence between the existence of the critical point of the 7, functional,
the solvability of the J-equation, the coerciveness of the 7, functional, and
the uniform J-stability as well as the uniform slope J-stability.

Theorem 1.1 (Main Theorem) Fix a Kihler manifold M" with Kiihler metrics
x and wq. Let cy > 0 be the constant such that

n—1 n

w, w,
/ an 20 o %0
M (n—l)! Ml’l!

Then the following statements are equivalent:
(1) There exists a unique smooth function ¢ up to a constant such that
wy = wo + +/—100¢ > 0 satisfies the J-equation

trww)( = Cg.

(2) There exists a unique smooth function ¢ up to a constant such that
wy = wo + +/—100¢ > 0 satisfies the J-equation

n—1 n
(n—1)! n!’
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532 G. Chen

(3) There exists a unique smooth function ¢ up to a constant such that ¢ is
the critical point of the J, functional.

(4) The Jy functional is coercive; in other words, there exist a constant
€1.1 > 0 and another constant Cy » such that

Ty (@) = €1.1Twy (@) — Cr 2.

(5) (M, [wo], [x]) is uniformly J-stable; in other words, there exists a con-
stant €11 > 0 such that for all Kdhler test configurations (X, Q2) defined in
Definition 2.10 of [22], the numerical invariant Jj,1(X, Q) defined in Defini-
tion 6.3 of [22] satisfies

Ji(X, Q) > €11 [w) (X, ).

(6) (M, [wo]l, [ x]) is uniformly slope J-stable; in other words, there exists a
constant €11 > O such that for any analytic subvariety V of M, the degener-
ation to the normal cone (X, Q) defined in Example 2.11 (ii) of [22] satisfies

Ji1(X, Q) > €11 [w) (X, ).

(7) There exists a constant €11 > 0 such that

—1
/ (co— (n — p)ernwg — px Awg =0
\4

for all p-dimensional analytic subvarieties V with p = 1,2, ..., n.

Remark 1.2 1t is well known that there exists a constant C 3 depending on n
such that the 7, functional

1 wn*l " 1 _ twn—l
/ / @ | wo A i —n—1% dt:/ «/—l/ dp A dp A i dt
0o \Jm (n—1)! n! 0 M (n—1!

and Aubin’s I-functional

n—1
/ v(wp —wp) = V—lf dp Ndp A Y o Al
M M k=0
satisfy
Cl_.31/ p(of — @) < Ty () < C1.3/ gy — wy).
M M
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The supercritical deformed Hermitian—Yang—Mills equation 533

For example, Collins and Székelyhidi used this fact in Definition 20 of [13] to
replace o, (¢) with [ 9w — a)Z) in the definition of the coerciveness, which
was called “properness” in [13]. By (3) of [2], Aubin’s I-functional can also be
replaced by Aubin’s J-functional in the definition of coerciveness. Accordingly,
in the definition of uniform stability, the numerical invariant Ji,,, (X, €2) can
be replaced by the minimum norm of (X', 2) defined in Definition 2.18 of
[22]. By (62) of [15], Aubin’s J-functional can be further replaced by the d;
distance in the definition of the coerciveness when ¢ is normalized such that
the Aubin-Mabuchi energy of ¢ is 0.

Remark 1.3 By Proposition 2 of [11], if the solution of the J-equation exists,
it is unique up to a constant. It is easy to see that (1) and (2) are equivalent.
The equivalence of (2) and (3) follows from the formula

AN — —).
N T O

dJy f3_¢ o },
dt

By Proposition 21 and Proposition 22 of [13] and Remark 1.2, (1) and (4)
are equivalent. By Corollary 6.5 of [22], (4) implies (5). It is trivial that (5)
implies (6). By [30], (6) implies (7) in the projective case if € ; is replaced
by 0. However, it is easy to see that this is also true in the non-projective
case and for positive €1 1. Thus, we only need to prove that (7) implies (1) in
Theorem 1.1. We remark that there is a simpler proof showing that (1) implies
(7). At each point x, after choosing local coordinates such that

n
X =+—1 Zdzi /\dZi
i=1
and

n
wy =~/—1)_ xidd Ad7

i=1

at x, for any ¢ > 0, the condition

ro_ p—1
cw, — pX Ay

]

J;
1 4 4 A 4

= p!A Z iy oA, (c - ZA,) V=1dzZ AdTY A AN =TdZP A dZP =0

i1<...<ip j=1"

is equivalent to Z?:l % <cforall 1 <i; <ip... <ip < n. If (1) holds,

then tr,, x = co and the upper bound of 2; imply that there exists a constant
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534 G. Chen

€1.1 > 0 such that at each point, Zle % < ¢p — (n — p)e1.1, which is
i

equivalent to
(co— (n — p)er.Nwh — px Awb™" = 0.

Condition (7) follows from the fact that

-1 _
/(co —(n—peNol —px Aol = f (co — (n — pler.Nw) — px Aol L
% v

Remark 1.4 Lejmi and Székelyhidi’s original conjecture is that the solvability
of

T, X = €0

is equivalent to

-1
/coa)g—px/\wg >0
\%4

for all p-dimensional analytic subvarieties V with p = 1,2, ...,n — 1 [30].
For technical reasons, we only prove the uniform version in this paper. When
this paper was under review, this technical issue was solved by Datar and
Pingali [21] in the projective case for the generalized Monge—Ampere equation
which is more general than the J-equation. Moreover, Datar-Pingali’s theorem
includes the equivariant version. Later, Song [38] solved this technical issue
for the J-equation without the projective assumption.

When ¢ (M) < 0, we can choose x as a Kihler form in —c;(M). Since
x log x is bounded from below for any x € R, the entropy || M log(%)% is
0 .

also bounded from below. So the coerciveness of the 7, functional implies
the coerciveness of the K-energy functional. This observation appeared as
Remark 2 of [11]. Using this observation, as a corollary of Theorem 1.3 of [6]
and Theorem 1.1, we find a sufficient condition for the existence of constant
scalar curvature Kihler metrics with ¢; < 0.

Corollary 1.5 If c;(M) < 0, and €11 > O, then for any Kdhler class [wg]
such that

_ . n—1
/ (( nle D] [ p)m) 0 — pol ™' A (—e1(M)) = 0
\%4

[wo]”
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The supercritical deformed Hermitian—Yang—Mills equation 535

for all p-dimensional analytic subvarieties V with p = 1,2, ..., n, there exists
a cscK metric in [wo].

Remark 1.6 1f there exists a metric w, € [wo] such that Ric(wy,) < 0 and w,,
has constant scalar curvature, then the condition above is necessary. In fact, in
this case, the cscK equation

. (_Ric(a)(p)) __nlerD)] - [wp]"!

2w [wo]"

Ric(wy)
2

implies that w, and — € —c1(M) satisfy the J-equation.

In addition to its appearances in the moment map picture and the study of the
cscK problem, the J-equation also features in mathematical physics. In fact,
if w,, is positive, A; are the eigenvalues of w, with respect to x, and arccot
is the inverse function of cot with range (0, ), then using the observation of
Collins—Jacob—Yau [12] that

n n
1
lim k t(kA;) = —,
Jim kD wecottk) =35
1= 1=

the J-equation is exactly the limit of the deformed Hermitian—Yang—Mills
equation

n
Z arccot(A;) = 6o,

i=1

where 6 is a constant. The deformed Hermitian—Yang—Mills equation is the
mirror equation of Harvey-Lawson’s special Lagrangian equation [26] and
plays an important role in mathematical physics [31,32,41].

The most important case of the deformed Hermitian—Yang—Mills equation
is the supercritical case, which means 6y € (0, 7). We remark that we use the
function

arccot(A;) = % — arctan(A;)

to simplify the notations because the term 5 — arctan(;) appears frequently
in this paper. It is easy to see that the supercritical deformed Hermitian—Yang—
Mills equation means that

Xn: tan(iy) nmw o e (n—2) nmw
arctan(A;) = — — - ).
i v 2 2
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536 G. Chen

In the supercritical case, motivated by the J-equation, Collins—Jacob—Yau
[12] conjectured that the solvability of the supercritical deformed Hermitian—
Yang-Mills equation is also equivalent to a condition on integrals on analytic
subvarieties. According to the results in [14], Collins—Jacob—Yau’s condition
can be understood as a notion of algebraic stability. In this paper, we prove
the uniform version of their conjecture. We remark that in an earlier version
of this paper, the author proved the result only in the range (0, 7). When the
earlier version was under review, inspired by the recent results in [27] and [43],
the author made a key observation that the function — co‘[(Z?:l arccot(X;))
is convex and successfully extended the result to the whole supercritical range
0, m).

Theorem 1.7 Fix a Kdhler manifold M"™ with a Kdihler metric x and a real
smooth closed (1,1)-form wg. Assume that there exists a constant 6y € (0, )
such that

/ (Re(wy + v/—1x)" — cot(@p)Im(w, ++/—1x)") = 0.
M

Then the following statements are equivalent:
(1) There exists a smooth function ¢ such that the corresponding eigenvalues
A; satisfy the deformed Hermitian—Yang—Mills equation

n
Z arccot(A;) = 6p.
i=1

(2) For any smooth test family w; o, there exists a constant €11 > 0 indepen-
dent of t, V such that for anyt > 0 and any p-dimensional analytic subvariety
Vy

f (Re(wr.0 + v—1x)P — cot(@p)Im(w; o + v —1x)7) > (n — p)er f x".
\% \%

(3) There exist a test family w; o and a constant €11 > 0 independent of
t, V such that for any t > 0 and any p-dimensional analytic subvariety V,

/ (Re(wr0 + v=Tx)” — cot(@)Im(@r.o + v=Tx)?) = (1 — per. / X"
1% \4

Here, we call a smooth family w; o, t € [0, 00) of real closed (1,1)-forms a
test family if and only if all the following conditions hold:

(A) Whent =0, w0 = wp.

(B) For all s > t, ws — wy is positive definite.
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The supercritical deformed Hermitian—Yang—Mills equation 537

(C) There exists a large enough number T > 0 such that for allt > T,
w0 — cot(en—o))( is positive definite.

Remark 1.8 The main reason for introducing the test family is to correctly
choose the branch of the arccot function such that we stay within the super-
critical case. See Remark 1.10 below for the importance of the supercritical
condition. In the special case when wg > 0, an important choice of the test
family is w;, 0 = twp. In general cases, w; 0 = wo + t x is always a test family.
However, more choices of test families are allowed.

Remark 1.9 Compared to Collins—Jacob—Yau’s conjecture in [12], the main
difference is that we require the uniform lower bound (n — p)e | f v xP.

Remark 1.10 The “easier” direction of Collins—Jacob—Yau’s conjecturein [12]
holds only in the supercritical case. To see this, consider

V ={0} x (C/(Z®~—17))P ¢ M = (C/(Z & N—12Z))"°,
10

wy = x = «/—_IZdZi AdZ,
i=1

and 6y = 57” > 7. Then the deformed Hermitian—Yang—Mills equation

10

Z arccot(A;) = 6y

i=1
can be solved using ¢ = 0, but
/ (Re(wp + v/ —1x)P — cot(Bp)Im(wy + ~/—1x)7P)
14
changes sign when p varies in the set {1, 2, 3..., 10}. All known conjectures

fail in the non-supercritical case except for very special 6y studied in [21,33].

Theorem 1.7 will be proved in Sect. 5 using the same method of the proof
of Theorem 1.1.

Instead of Theorem 1.1, we will prove the following stronger statement by
induction on the dimension of M:

Theorem 1.11 Fix a Kdihler manifold M™ with Kchler metrics x and wy. Let
¢ > 0 be a constant and [ > —%(%)"‘1 be a smooth function satisfying

n n n—1
f fx_ch &_/ X A “o ZO
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538 G. Chen

Then there exists a Kdhler metric w, = wo + +/ —100¢ > 0 satisfying the
equation

Xn
ro, X + f— =¢
@y

and the inequality

n—1 n—2
cw,  —m—Dx Ao, >0

if there exists a constant €11 > 0 such that

-1
/(C —(n—pe1)o) —pol Ax =0
v

for all p-dimensional analytic subvarieties V with p = 1,2, ..., n.

Remark 1.12 By Remark 1.3, Theorem 1.1 is a corollary of Theorem 1.11 by
choosing f = 0.

Remark 1.13 When n = 1, Theorem 1.11 is trivial. When n = 2, The-
orem 1.11 is the statement that Demailly-Paun’s characterization [20] for
[cwo — x] being Kéhler implies the solvability of the Calabi conjecture

(cwy — x)* = (cf + Dx?

by Yau [47]. In the toric case in which f is a non-negative constant, the
equivariant version of Theorem 1.11 was proved by Collins and Székelyhidi
[13]. In fact, the idea of using the equation

Xn
tra)(pX + f_n =c
@y

for induction originates from Collins—Székelyhidi’s arguments [13]. In this
paper, f is instead a function. It will be used in later steps to make sure that
a)g > % x" concentrates near a given analytic subvariety. To compensate for
the mass concentration without changing the integral of f, we must allow f
to be slightly negative at some points.

There are several steps involved in the proof of Theorem 1.11.
Step 1: Prove the following:
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The supercritical deformed Hermitian—Yang—Mills equation 539

Theorem 1.14 Fix a Kdihler manifold M™ with Kdhler metrics x and wy. Let
¢ > 0 be a constant and [ > —%(%)"‘1 be a smooth function satisfying

X" ) -0
/MfH_Can / (n—1>'—

Then there exists a Kdihler metric w, = wy + +/ —109¢ > 0 satisfying the
equation

Xn
tra)wX + f_n =c
@y

and the inequality

n—1 n—2
cw,  —m—Dx Ao, >0

ca)o —(n—Dx Ay~ Z>0.

We will use the continuity method to prove Theorem 1.14. The details will
be provided in Sect. 2.

Remark 1.15 Let x = d;; and w, = A;6;;. Then the equation

is equivalent to

n

1

— + —
YRR | Ry Y

i—1

Remark 1.16 Suppose that

n—1 n—2
cw,  —n—Dxrnw, =0

or, equivalently, Zi#k % <cforallk =1,2,...,n. Then, as long as

Zl+ v

l
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540 G. Chen

for f > —ﬁ(%)”_l, it is easy to see that Zi#k Ai < ¢, which is equivalent
to

n—1 n—2
cw, —(n— l)x/\a)(p > 0.

Remark 1.17 When n = 2, Theorem 1.14 is the Calabi conjecture solved by
Yau [47]. When f = 0, Theorem 1.14 is a special case of Song and Weinkove’s

result [40]. When f is a constant times %8,, Theorem 1.14 was proved by Zheng
[49].

Step 2: Prove the following:

Theorem 1.18 Fix a Kdihler manifold M" with Kdhler metrics x and wo.
Define I', . as the set of w satisfying

co" ' —(n—Dx A" >0,

and let l:‘X,C be the closure of T'y . Suppose that for all t > 0, there exist
a constant ¢; > 0 and a smooth Kdhler form w; € [(1 + t)wo] satisfying
w; € 'y ¢ and

n

try, X +¢1—; =c.
t

Then there exist a constant €14 > 0 and a current w5 € [wo — €1.4x] such
that w15 € Ty in the sense of Definition 3.3.

Remark 1.19 In general, we can take the wedge product of w, only when ¢
is in C2. Bedford-Taylor [4] proved that it can also be defined when ¢ is in
L. In our case, ¢ is unbounded, so it might be impossible to define ca)ﬁ'.gl —

n—1Dyx A w'fgz Therefore, we have to figure out the correct definition of
wi5€l x.c without taking wedge products. This will be done in Definition 3.3.

Now let us sketch the proof here. It is analogous to the proof of Theorem 2.12
in Demailly-Paun’s paper [20]. In fact, when n = 1, the proof of Theorem 1.18
is the same as the proof of Theorem 2.12 of [20]. Consider the diagonal A inside
the product manifold M x M. Cover it by finitely many open coordinate balls
Bj. Since A is non-singular, we can assume thaton Bj, g, k = 1,2, ..., 2n,
are coordinates and A = {g;x = 0,1 < k < n}. Assume that 6; are smooth
functions supported in B; such that ) 6?]2 = 1 in a neighborhood of A. For
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The supercritical deformed Hermitian—Yang—Mills equation 541

€1.6 > 0, define

n
Vero =log | D07 Igjul* +eig
k=1

J

Define
" *
XMxM =T X + T X
and
XMxM,eige17 = XMxM + €177 =100, 4.
Let
2n 2n
XM xM.e 6,617 1 Ct AMxM,e6,€17 1
ft,él.6,€17 - n — I+ C_" > n -
XMxM XMxM

Then by Lemma 2.1 (ii) of [20], there exists a constant €; 7 > 0 such that for
€1.6 small enough,

, _
M_1>_i<;>2n l
X]%/;lxM 4n \(n+ 1c

Now we consider wo, yxm,i = 7w, + %n;‘ x. By Theorem 1.14, there exists
a Kihler metric wy ¢, ¢.¢,; € [w0,mxm,¢] such that

X2n
MxM
trwhqﬁ,q] XMxMm + ft,€1‘6,61,7 " = (n+ De.
1,€1.6,€1.7
Using
2n
2n XMxM

herserr = Jrerg.e m

and the proof of Proposition 2.6 of [20], a);’ €le.€17 looks like a positive multiple
of [A] near the diagonal A C M x M. Now define £2; ¢, ¢ ¢, , by

n—1

c
— n *
Q66617 = fM nxn (ﬂl)*(a’t,el,é,e” AT ().
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542 G. Chen

Fix €17 and let ¢ and € ¢ converge to 0. For small enough € 4, let w; 5 be
the weak limit of €; ¢, .¢,; — €1.4). Then we shall expect ) 5 € T'y . in the
sense of Definition 3.3. Roughly speaking, in the proof of Theorem 2.12 of
[20], the mass concentration near the diagonal provides the extra €1 4 x while
the current away from the diagonal is still positive. In our case, we perform
a truncation cutting the positive multiple of [A] to get €1 4 x while expecting
that the remaining term wy s is still in r x.c- The details will be provided in
Sect. 3.

Step 3: Consider the set I of ¢+ > 0 such that there exist a constant ¢; > 0
and a smooth Kihler form w; € [(1 + t)wy] satisfying

(coy —(n—Dy) A2 >0

and

n
try, X +¢1—; =c.
Wy

By Theorem 1.14, it suffices to show that O € /. When ¢ is large enough, the
condition of Theorem 1.14 is satisfied. So ¢ € I. It is easy to see thatif t € I,
then for nearby ¢, the condition of Theorem 1.14 is also satisfied. So / is open.
Again by Theorem 1.14, as long as ¢ € I, then for all ' > ¢, ¢’ € I. Thus,
in order to prove the closedness of /, it suffices to show that if + € [ for all
t > 1o, then 19 € I. After replacing (1 + tp)wo with wg, we can, without loss
of generality, assume that #9 = 0. In particular, we can apply Theorem 1.18 to
get wy 5.

Let v(x) be the Lelong number of w; 5 at x. For €] § > 0 to be determined,
let Y be the set

Y ={x:vx) =erg}.

By the result of Siu [37], Y is an analytic subvariety with dimension p < n.
If we assume that Y is smooth, then by the induction hypothesis, we can
apply Theorem 1.11 to Y to obtain a smooth function ¢ 9 on Y such that

w19 = woly + / —185(,01,9 € Uy ly,c—(n—p)er, satisfies

(xIy)?
oo (X]yY) +cli0—F— =c— (n— p)er
@19

on Y for the constant ¢ 1o defined by

p » -
/ 10X = (c—(n— P)Gl.l)/ (o) _ / (xIy) A @l)” —
Y P! y p! y (p— D!
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The supercritical deformed Hermitian—Yang—Mills equation 543

This implies that

—1
(c—(n—plerDof g — pxly Aoty =criolxly)? = 0.
Then for large enough Cy 11,
w12 = o + vV —183¢1.12 = wo + V=103 (Projy 19 + Cr11d, (., ¥)?)

satisfies

n_
(c ) pem) a)’ﬁé —(m—-1x /\a)’ﬁg >0

on a tubular neighborhood of Y, where Projy means the projection on Y. By
a generalization of the result of Btocki and Kotodziej [3], we can glue the
smoothing of w; 5 outside ¥ and w; 12 near Y into wy.13 = wo + ~/—100¢1 13
satisfying

n—1 n—2
coj 3 —m—DxAnw5>0

on M. Then we are done by Theorem 1.14. In general, Y is singular, and we
need to use Hironaka’s desingularization theorem to resolve it.

The idea of Btocki and Kotodziej’s gluing method can be illustrated by
the following example: Consider —/—1 2?21 dz; A dz; on the torus T?" =
C"/7Z*". Then we choose finitely many points p j on T2". The local potential
near p; is —[z — pj|2. Then

V=190 max{—|z — pi |2, —lz — p2|2, o)

is in the zero class. The main benefit of the shift from [—+/—1dz; A dZ;] to
the zero class is that max{—|z — p1|?, —|z — pa|?, ...} cannot be affected by
the function —|z — p; |> away from p j so that we do not need to worry about
the fact that —[z — p; |2 can be defined only locally.

Roughly speaking, in our case, the smoothing in different charts has only
small differences away from Y as a result of the smallness of the Lelong
number. It can be controlled if we shift the class from [wg — €1.4x] to [wo].
On the other hand, the maximum must be achieved by ¢ 12 near Y because
the potential functions of the smoothing of w; 5 are close to —oo near Y. We
remark that Blocki and Kotodziej [3] provided an example showing that €1 g
converges to 0 if €] 4 converges to 0. Therefore, we need to choose the small
but non-zero constant €; g corresponding to our small but non-zero constant
€14 obtained in Step 2. The details of Step 3 will be provided in Sect. 4.
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2 The analysis part

In this section, we use the continuity method twice to prove Theorem 1.14.
First of all, for ¢ € [0, 1], define x; by

c
xe=1tx+ (- t);wo

and define f; > 0 as the constant such that

n n n—1
Koo e o _
/Mf’n!_C/Mn! /M’“(n—n!_ (/M ! / (n—1>'>0'

Now we consider the set I consisting of all 7 € [0, 1] such that there exists a
Kihler metric w; = wg + +/—199¢; > 0 for smooth ¢, satisfying

n

X
tro, Xt + 17> =c
Wy

and
cw” —(n— D) Aoy —2>0.

Then it is easy to see that 0 € /. We remark that the equation is the same as

The linearization is

n—1

_ d 0 X ox 10}
(cwgl_(n—l)X,Aw, )/\«/ 888(6":5(]9”—”)—#87;/\(”’_1)'

1
(n—1)!

Assume that ¢ € I, then the left-hand side is a second-order elliptic equation

3‘”’ . On the other hand, our hypothesis regarding the integral implies that the
1ntegra1 of the right-hand side is 0. By standard elliptic theory and the implicit
function theorem, / is open when we replace the smoothness assumption of
¢ with C19%-¢ However, standard elliptic regularity theory implies that any
€192 solution is automatically smooth. So I is in fact open.

If we are able to show the closedness of 7, then we have proved Theorem 1.14
for f replaced by fi, where f; means f; when 7 = 1. We can use another
continuity path by fixing x and w but choosmg ﬁ =sf1+(1—s)f. However,
it is the same as before except that fs > ——( y"~1 is a function instead of a
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constant. Thus, we only need to prove the a priori estimate of w; by assuming
that f; > —%(%)”_1 is a function because proving the openness and the

estimate of @, corresponding to ﬁ is similar to proving the statements for w;.
We start with the following proposition which is analogous to Lemma 3.1 in
Song-Weinkove’s paper [40]:

Proposition 2.1 Assume thatt € I and w;, = wy + ~/—1 Bé(pt is the corre-
sponding solution. Then there exist constants Cy.1 and C»> 3 depending only on
¢, wo, the C*°-norm of x; with respect to wy, and the C?-norm of || fz|| with
respect to wqy such that

trXt w; < Cz'zeCZJ (¢ —inf ;) .

Proof In local coordinates, x; = «/—lxl.jrdz" A dzf_' and w; = «/—lgi]-dz" A

dz/. Fix any point x and choose a x;-normal coordinate such that Xij =9 7>
Xijk = 0, Xifk = 0, and gi; = )\'iSiJ_' at x, where the derivatives are all

ordinary derivatives. Then the equation is

det x
Zgljxlj+ft 01/3 = C.
ij Sap
Define an operator A by
- ’l detx
A=Y | T s+ 5" e, F i

il J.k

Then it is easy to see that A is independent of the choice of local coordinates.
At x,

~ 1 1
Au = S
] T
1

Since 5. < ¢ and f; > —%(%)”_1, it is easy to see that

1
+ =0
)Lz t)‘ 1_[01 1)“

for all i. So A is a second-order elliptic operator.
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Now we compute A (log try, @) = A (log (Zi,j Xifgij)>. It is equal to

5 Li (giik/? * (Xiz),k/z A") 1 gl ( ! ! ))

p Yi ki (Cm)® |\ A f”k [To=1 2

at x.
If we differentiate the equation

det x
Zgle1j+ft 05/3 =,
8ap
then we get
- det Xaf
D8 ik 2 8 a8 hii+ o (fr k
i,j i,j,a,b
13 (7 — 87 8i74) | =0.
ij

So

1 1 11 ) 5
> (Z o Xiikk > a8kt > e Ew (lgfj,kl + 187kl )
! i i ij Tt

k i

1-[ ™ (f:(lZ( g,,k)l +ZX“kk+Zkk 127417 2,: g,,kk)
+ ik — fsz( g,,k>—ft,k2i:<;ig,-;,,;)>):0

at x.
By the Kihler condition, 8iikk = 8kk.ii» 8ijk = 8kj.i» and 8iik = 8ikj-

Using the bounds | ;7 | +1(x ™) szl +1 fo k|41 fo g1+ 1f il 1 fil 455 < Cas
for all i, k, it is easy to see that by combining the previous equation with the
expression for A(log tr,,w;), we obtain
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X P 12 8iiil 1
A (logtryw;) = —Ca4 ;( S )»1)2 ) ( fz T )
1 11
* D i ; (Z )Lz A <|gij,k|2 + |gij,12|2> (ft <| Z( 8ii k)

Tt 42 (o) - mz«guk)))

547

We remark that

1 1
1—[ e =ik Z (A_igii,k) | = 1—[ o = Juk Z ()L_igii,k) |
|ﬁku§j ( guk)l_(b5§:|2g”k
[T, 2 X
<7 Z /\_3|gi7’k|2 + Ca6 Z — =7 Z Elgi;,;zlz + Ca7
i i i i i

and

1

Y (e ) P s Y el = 5 Y e
e 2\t ) P = =g 2o gleial” = 3 255 i

So
A(logtrxa);)>—C28—2:<|Z g”k|2) < ft 1 )
' N ' k (Zl)\,l) )\’ HC{ 1)"
Ji 1 2

We have used

1 1

E Ig |22 E —|g‘/}|2
32 315ii,
ey Y A; !

i

here.
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By the Cauchy—Schwarz inequality and the fact that g;; ; = g7 ;.

- 2 1
zk: (lXi:giulJ ) ( +f[}t l_["—l >
<Z|g,lkllg,,k|<xz+ﬁ)\ - 1 )

i,j.k

<ZJZ|&,,¢| ( i Hal )JZIg,,kl ( + i 7 ! )

2
(ZJZ“””"( T ))
lgiril® (1 1 1
(2 ze ()
lgiz 4l 1
(22 (i)
lg;7 1> 1
S(ZM); )ij ( ft)L H"Hw)

1

SO A(log try,w;) > —Cs9 at x. However, since x is arbitrary and A is inde-
pendent of the local coordinates, we see that A(logtry,@,) > —Cz9 on M.
If we choose €3 19 < 2‘—n as a small constant such that

n—1 n—2 n—1
cwy  —m—DxANwy = > 2100

then

~1 -2 -1
coy —(m—Dx ANy T > 2e2.100

2Cr9
€.10

by the definition of x;. Choose C» as
logtry,wr — C2.1¢1,

, So at the maximal point of

il_
. det x, 0 €.10
“Agi == | g8 +ﬁrg5 (s =) <5
il \ jk o

If

C—Zzg”g Xk](zgzl g < e,

il jk
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then by the proof of Lemma 3.1 of [40], try,«, < Ca11. If

c= Y288 n; (200 - &%) = 20,

il jk

then

il
- fz—(giz—g,.,-)<—2 +Y ) 6 xkj<
il

detgaﬁ Y

- det x 2

€2.10 ijo €2.10 Xap

s—y rem Letni= g g
i o

SO

Ji ii( 0> €.10
) =) +1 | > ==,
Ha A il 8 \SrT B g 2

0
gil__ gi

l

)

Using the fact that A; > %, the term Zi,l g”_(gil- — g?l-) + 1 is bounded, so
[14 2« < C2.12. Using the lower bound on A; again, this implies the upper

bound on A;, so try,w; = Y _; A; < Co13 is also true.

In conclusion, we have proved that at the maximal point of the function
logtry,w; — Ca.1¢;, try,w; is bounded by a constant C; > in all cases, where

C; 5 is defined as the maximum of C» 11 and C».13. So

logtry,w; — Ca.1¢ <logCan — Ca 1 i]r‘llf @r-

This completes the proof of the proposition.

O

By adding a constant if necessary, we can without loss of generality assume

that sup,, ¢; = 0. Then we have the following C? estimate:

Proposition 2.2
llg:llco < Ca.14.

—1
Moreover, Cy |sxr < wr < Ca15Xs-

Proof Lemma 3.3 and Lemma 3.4 and Proposition 3.5 of [40] used only the

inequality in Proposition 2.1. So they are still true in our case.

O
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Proposition 2.3 [ is closed.

Proof First of all, we want to check the uniform ellipticity and the concavity
for the Evans-Krylov estimate. The equation is

LT detX R
~g" x5~ it = —c.

" det 8up

If we view it as a function in terms of g; P Xifo and f;, then the partial derivative
in the g, direction is

gl xi;+ fi——"g

At x, it is equal to

1 1 f
-+ — 8.5
(Ag A l_[i )‘i) “b
It has a uniform upper bound and a uniform lower bound.
The second-order derivative in the g,; and g_; direction is

_gid_gd;ga';)('_' _ gil;ga‘?gcjx.—. _ ftdet XaB ab cd —fi det Xap ac?gd;.
H H det g,z det g,z

At x, when taking the product with w_;w_; and summing a, b, c, and d for

any matrix w; 7> we get

1 2
Z }\a)&b |wa5|

a,b

2
1 1 ft Waa ft
= S lwyl* - lw,z* — -
;xth ‘ %}xgx @ Tih ;Aa [T %
2
a +L lw,j?
2n ~ 220

|wsl? w1 (1)”‘1 1 w,
< - - +—(=
az A2 ;; Ahy 21 \c [T i Xa: ha

lwal? 1 (1)"*1 1 Wag » lwaal® 1< lwaal®
<- +-(-) =) 1-“P<- + - <0,
;b: Ahe 2 \c [T, » Xa: A Xa: 23 2 Xa: A2

C

using the estimate A; > % as well as the assumption that f; > —ﬁ(%)"ﬁl.

Thus, if we replace the complex second derivatives with real second deriva-
tives, the uniform ellipticity and concavity for the Evans-Krylov estimate
[23,24,29,45] are satisfied. By checking Evans-Krylov’s estimate carefully, it
is easy to see that in our complex case, the estimate

[(@);5lce = Ca6
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is still true.

By the standard elliptic estimate, ||¢;||c101,« is bounded. By the Arzela-
Ascoli theorem, if t; — t», and t; € I, then a subsequence of ¢; converges to
@1, in the C'%-2_norm. By Remark 1.16,

cw?oo_l —(n—Dyx A a);;z > 0.

So by the standard elliptic regularity, ¢, is smooth. So fo € 1. O

3 Concentration of mass and its application

In this section, we prove Theorem 1.18. However, before doing that, we need
to figure out the correct definition of w € r x.c when w is only a current and it
might be impossible to take wedge products.

Recall the following definition of the smoothing:

Definition 3.1 Fix a smooth non-negative function p supported in [0,1] such
that

1
f ()12 'Vol(d B (0))dt = 1
0

and p is a positive constant near 0. For any § > 0, the smoothing ¢; is defined
by

_ _ —2n X
%(x)_/@‘”(x 8 p(|8|)dVoly.

We can define the smoothing of a current using a similar formula. It is easy to
see that the smoothing commutes with the derivatives. So

(\/—_185(p)8 = \/—_186_)(%).

Recall that J—_185¢ > 0 if and only if «/—_185(,05 > Qforall 5 > 0.1In
analogy, we can define w € f‘X’c for a closed positive (1,1) current @ using
smoothing. We remark that any closed positive (1,1) current can be written as
/=139 acting on a real function locally.

Definition 3.2 Suppose that x is a Kihler form with constant coefficients on
anopen set O C C". Then we say that /—199d¢ € I', . on O if forany § > 0,

@ Springer



552 G. Chen

the smoothing ¢; satisfies «/—135% € I—‘X,c ontheset Os = {x : Bs(x) C O},
which is, by definition, equivalent to

2

c (J?laé¢5)n_l —(n—T)x A (J—_185¢5>"_ > 0.

We can also define this without assuming constant coefficients.

Definition 3.3 Wesay thatw € T x.c if onany open subset O of any coordinate
chart, for any Kéhler form yo < x with constant coefficients, w € T’ ..

Remark 3.4 Ty, . is convex. So if w is smooth, then w € T'y . on O point-
wise if and only if it is true on O in the sense of Definition 3.3. A useful
characterization for T'y . is that a current v/—133¢ on O C C"is in Ty . in
the sense of Definition 3.3 if and only if it is the weak limit of smooth forms
=1 85<p,- inT x.c; for ¢; — c. In particular, this characterization implies that
Definition 3.3 is independent of the choice of the weight function p in the
smoothing. Another useful corollary of this characterization is that if x, x2
are Kéhler forms on M and w1, @, are closed positive currents on M such that
’511 X2 is non-negative definitive and wy — wy is also a positive current, then
w] € Fx1 ¢, in the sense of Definition 3.3 implies that w; € Ty, ., in the sense
of Definition 3.3.

For simplicity, for any positive deﬁnite Hermitian n x n matrices A and B,
we define Pg(A) as maxg (D itk T ) where A ; are the eigenvalues of B~ TA.

As mentioned in Remark 1.3,

co" M —(n—=1Dyx A" 2 >0,

Py(w) <c,andw € I—‘X,C are equivalent conditions.

For any (n — 1)-dimensional subspace V of C", there exists U e C"*"—D
such that UTU = I,_; and a basis of V consists of the columns of U. If
we view A as a bilinear form, then the restriction A|y of A on V can be
expressed as UT AU in the basis of V which consists of the columns of U.
Thentr(Aly)~! = tr(UT AU) ™! depends only on A and V because a different
choice of U just means multiplying U with a unitary matrix on the right. Choose
U such that ((_]TAU)UT = A;Si; and § € C"™" such that STS = I, and
Sl.] = Ui] fori =1,2,...,nand j = 1,2, ..., n — 1. Then by the Schur-Horn
theorem, the diagonal (1, ...A;_l, (ST AS),;) of the matrix ST AS lies in the
convex hull of the vectors obtained by permuting the entries of (Al, vy An)s

where 2; are the eigenvalues of A. By the convexity of ) ._ 11 A it follows
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that
q n—1 1
Pr(A) =max |}~ | = Sy Y
. nx(n—1 Trr— T -=\.8. - /
T UeCr<n=D UTU=1,_1,(UT AU);;=1}8;; i=1 i
_ max (tr(l_]TAU)_l>: max_ (tr(Aly) ™)),
UeCnxm=1) gTy=J,_, yn=lcCn

which is similar to the Courant-Fischer—Weyl min-max principle.
Now we need a lemma:

Lemma 3.5 Suppose that A € C™*", B € C"*", C € C™*" are matrices

A
such that [ cT §i| is Hermitian and positive definite. Then

1A _ A C
P (A—CB'CT)y+u(B™) < Py, ([éT BD

Proof 1t is easy to see that

I, —CB~'][ A C I, O]_JA-cB7'CT O

o I CTB||-B7!CT I,| 0 B’
so A — CB~!CT is also positive definite. By taking the inverse, we obtain

In _O1[A-CB™'CT 0] ' [, —cB™"] _[4A ]!

-B~ICT I, 0 B o I, | |CTB| -

After taking traces, the left-hand side equals

_ —1 _ _ —1
tr((A—CB“CT) )+tr(B“)+tr (B—lcT (A—CB“CT) CB—1>.

Thus,

tr ((A — CB_IC_'T)_1> + tr(B_1> <tr ([gT g}_l) .

Let U € C™*=D be the matrix realizing the maximum in

- _ _ —1
Py, (A—CBilCT) = max (tr (UT (A—CBilCT) U) )
UGC’”X(”’_I),UTU=IM,1
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Then
P, (A—CB7'CTy+u(B™)
— (UT <A — CB*16T> Uy~ + tr(B*l)

—tr (UTAU — (UTC)B—I(CTU))_1 +t(B7 Y
_([0TavdTc -
="\| ¢c’v B
_.(([2T o[ A c][u o]\
= onl||lcTBl||lol,
AC
= P1m+n <|:6T Bi|) .

This is the required estimate. O

Now we start the proof of Theorem 1.18. By assumption, for any # > 0,
there exist a constant ¢; > 0 and a Kéhler metric w; € [(1 + t)wg] satisfying

col '—n—Dxra2>0

and

n
try, X +¢1—; =c.
Wy

Consider wo, yxm,r = Tfw; + %n;‘x and xyxm = m{x + m5x. At each
point, diagonalize them so that ;7 = §;7 and (&;);; = % m§;;. Then the
eigenvalues on the product manifold are A1y, ... A5 M, %, s % Their inverses

1 1

e 37—\ oy T €y ey € So the sum of them is at most (n + 1)c because ¢; >
n

0. In particular, the sum of (2n-1) distinct elements among them is also at most

(n+1)c.If wedefine f; ¢, 4 ¢ ; asin Sect. 1, then there exists a constante; 7 > 0
ol 1 1 2n—1

such that for €1 ¢ small enough, fi ¢ 5.e17 > —7; (G71c) "~1.So we can apply

Theorem 1.14 to get wy ¢, 4,¢;7 € [@o,Mxm i) such that Py, (@ ¢ ¢.e,7) <

(n+ 1)c and

X2n
MxM
trwl,elﬁ,elj XMxM + fl‘,elh,e]j n = (Vl + I)C

wlafl.ésfli
For each point (x1, x»), we assume that zgl), e z,(ll) are the local coordinates

on M x {x»} and that Z(12) s ey zf,z) are the local coordinates on {x} x M. Then
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WE Can express Wy e, ¢.¢; 7 a8

(1,2) + (2,1

_ (D (2)
Wr,e16.€1.7 = Dre1 6,617 + Dt 16,617 + Ot 16,17

1,€1.6:€1.7°
where
n
D — 1w® M =)
Preser = Z _lwhélb,ém,ij_'dzi /\dzj ’
i,j=1
n
@ — —1?® @ , =)
Cresear = Z 1wt,61.6,6147,ij_'dzi Nz,
i,j=1
n
2 PR M =@
Cresear = Z lwl,€|.6,€1.7,ifdzi /\dzj ’
i,j=1
2.1 (1,2
Wrer 6,617 — Prrerg.ere

After changing the definition of zl.(z) if necessary, we can assume that

n
wix =v=1Y dz” ndz?

i=1

and

n
2 / 2 -2
wt(,é)m,ém =v-l Z)‘idzi( ) A dZE )

i=l

at (xp, x2).
Now consider £2; ¢, 4 ¢, ; defined as

Qt,ﬂ.s,ém

Cn—l

= W(ﬂl)* (@ 1.0 A T3X)

! ) ) A=l
= X" (1)« NW; ¢y 6,617 N <w1,€1.6,€147) ATy X

Jun

n—1

(1,2) 2, @)

+

f nxn (1)« (n(n — 1)w5761.6751,7 N0 e N (@ e
M

Y72 A T3 X).

@ Springer



556 G. Chen

At (x1, x2),
M N L
NW; ¢ 6,617 Wi ey 6,617 X

n n

-y M W p gz a (T ") (2 )

= V_lwt,q,e,qj,ifdzi /\de A o (a)t,6146,€1.7> ’
ij=1 o=l

and

-2
(1,2) [eR)) ) " *
nn = Dwp g a7 NOé ga7 N (wf,el.syém) AT X

t.€16.€17.ik  1.€16.€17.jk

n
SN 1 1 n
1,2 1,2 1 -( 2
I Y L _dzfmdz;mrk > - (w;,glw)
o

ijk=1 a#k
- i VT RO PROBNSEBSE X":L < ® )”
- t.€16.€1.7.0k  t.€16.€17.jk < % Ak Ao Creigens) -

i,j.k=1 a=1

By Lemma 3.5,

n n
— o N oao i) M, =
P”l*X 1 Z ((a)l,ﬂ_s,em,ij ;Ak wt.e]_s,el.7,isz,ém.ﬂ.%jk) dz; /\de )

i,j=1

*
< Pyyum (a)t,él_(nélj) - trwﬁ)l s (3 )

<(m+1c— trwiz) (73 %).
€1.6:€1.7

We remark that there is an abuse of notation here by identifying M x {x»} or
{x1} x M with M. For example, 7| x on M x {x;} is identified as x on M.
If we view

n—1
¢ ) .
tr @ nfx) (a)t )
anXn ( Opé1 o1 7 1€1.6,€1.7

as a measure on {x1} x M, then it is easy to see that

-1
c" n
f nxn /{v IxM (trwt(zgléémnékx) (wf(i)lﬁ,ﬂj)
M X15X TR

Cn—l @ n—1
N fM x" /{x }xM(T[Z*X) " (wt’él's’ﬂj)
1

1

C}’l* n—1
- ®)
fMXn M ¢

=1.
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By the monotonicity and convexity of P,,

Cn—l 2 ) n
Py (Qtv€l.6-fl.7) <=+ Dc— / (trw(z) ”;X> (wt(yf)l.fnflJ)
{xi}xM

fM ny" 1.€1.6:€1.7
) m\?
n—1 f[ pxm | T,@ HEP (a)t,éle-éw)
< 1 ¢ i ©rep 617 O
s+ )C_anx" 2 "
f(me Dt e16.€17
_ 2
ne*1 (fM (%)n A X)
=m+1)c—

Ju x" Ju (%)n

=C.

To get better estimates, we need to study the weak limit ® of a subsequence
of f,, . ., and the weak limit ®' of a subsequence of ;' ;1'6,61‘7 when ¢ and
€1.6 converge to 0 and € 7 is fixed. Then both ® and ®’ are closed positive
currents. Let &, , be a non-decreasing family of functions with values in [0,1]
that equal to 1 on A and are supported in the region such that the xpzx -
distance to the diagonal A is smaller than €3 5. Then &, ,® has a weak limit
1A® when €3> goes to 0. By the Skoda—El Mir extension theorem (Theorem
II1.2.3 of [16]), 1A ® is a closed positive current. A similar statement is true
for 1, ®’. By the support theorem (Corollary III.2.14 of [16]),

IA® = e31[A]

for a non-negative constant €3 1 (assuming that M is connected; otherwise we
consider each component separately). On the other hand, the support theorem
(Theorem I11.2.10 of [16]) implies that

1,0 =0.

Up to here, we have not used the equation

X2n
MxM
trwt,él'éﬁl"] XMxM + ft,61_6,€1,7 n = (n+ De.

1,€1.6,€1.7

By this equation, “’1221.6,6147 > %Xﬁ’x” So as in Proposition 2.6 of
[20], it is easy to see that the constant €31 > 0.

Let €14 = E%Tlf;ln—r:(” and let w; 5 be the weak limit of a subsequence

of Q¢ 6,7 — €1.4x When t and €1 ¢ converge to 0 and €; 7 is fixed. Then

kzy Remark 3.4, it suffices to show that for any constant €33 > 0, w15 €

[y c+(m—1)es5 In the sense of Definition 3.3. In other words, on any open
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subset O of any coordinate chart, for any Kéhler form xg < x with constant
coefficients, forany § > 0, we need to show that Py, ((w1.5)s) < c+(n—1)e33,
where (w1 5)s is the smoothing of w 5 as in Definition 3.1. Since this is a local
problem, we can assume that % < xo0 < x on O by shrinking O if necessary.

For any point x; € O, let py, s(y) = p(l’”s—_y') in local coordinates, where
p is the function used in Definition 3.1. Then since the weak limit of &, ,®’
is 0 and @' itself is the limit of a):’,;l‘é’ ¢,,» We see that

. . * —1 * *
lim  lim (Px1.5071) beyy T ND g AT X AT
e32—=>01€16—0 Sy m i
-1
. : * (2) " * *
= lim lim (pxl,(g ) m) e, TUXA (w,’51_6’61_7) AT AT
e32—>0t€16—0 Sy
=0

for any (n— 1, n — 1)-form n with constant coefficients on O C C". Therefore,
for sufficiently small €3 3, ¢, and €1 ¢ depending on M, x, wp, O, O, xo, 5, X1,
€17, and €3 3,

n—1

¢ * (2 n-l *
| T | e - T X A (w,,el,ﬁ,m) ATy X — €1.4€33X0
Junx 8

is negative definite at xj.
Similarly, using the fact that 1o ® = €3.1[A], for sufficiently small €3, ¢,
and €1 ¢ depending on M, x, wg, O, O, xo, 8, x1, €17, and €3 3,

Cn—l
W ((nl)* (5632 : w;l,€l46761.7 A n;X))S — €140
M

is positive definite at x;.
For any Kéhler form w restricted to the first n coordinates of M x M, after
choosing good coordinates, assume that

n
nix =~—1 Zdzgl) A dZEl)
i=1
and

n
w=v=1Y ndz" naz".

i=1
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We define the truncation Tﬂ (w) by
€33

n
. 1 1 (1
Tﬂ(w) = V=1 me{ki, a}dz? ) /\dzf ),

€33 ij i=1

We remark that the truncation is independent of the choice of local coordinates.

7 x
1
Now consider the truncation , 23 . _ defined as
! 7. (M @ \7' s
f n (1)« wix \Prerger ) N\ Prierg.en AT X |
m "X a3

where the (1,1)-form ol is defined by

1,€1.6:€1.7

—1
(1) () " *
Nt e 6617 N\ Pre6€17 ATy X

= D02y Ao A (0 ) T A
= 5)1(,16)1.6,617 A (wt(,ze)l.s,ﬂJ)n_l A ”;X'
Then
(%)
Qt,€|.6761.7 - Q1,12613.-63,6147

e = () X @) n-l
Z f I’an (7'[1)* <E€342 (a)t,G]A(,,E]j - 63 3 A (a)t,G]Aﬁ,E]j) N ”;X .
M .

So

nikx
€33

(Qtwelhaflﬂ)g - Qt,élb,e[j - 261.4)(0

is positive definite at x.
It is easy to see that

Priy | Trpx (@) | = Priy(@) < (n— Dess
€33
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for any (1,1)-form w on the first n coordinates of M x M. So using the estimate
of Py (£2,¢,.¢,7), 1t is €asy to see that

(%)
PX 0 €33

Leges | ¢+ —1Des.

By monotonicity of P,, and the property that % X < xo < x,we see that

Pyo ((Qt,qs,em)a - E1.4)() <c+m—1e33

at x1. This completes the proof of Theorem 1.18.

4 Regularization

In this section, we prove Theorem 1.11. By Remark 1.13,then = 1 andn = 2
cases have been proved. By induction, we can assume that Theorem 1.11 has
been proved in dimensions 1, 2, ...,n — 1. By Sect. 1, we can in addition assume
that the conditions for Theorem 1.18 are satisfied. So by Theorem 1.18, there
existaconstante| 4 > Oandacurrentw s € [wg—€j4x]suchthatw; 5 € f‘x,c
in the sense of Definition 3.3.

Pick a small enough constant €41 < m such that

wo — 100€4. 100 = (1 + €4.1)° (wo — €1.4%) -

Then there exists a current ws » = wo— 100€4. 1 wo++/—100¢42 € f‘x? <
(14€4.1)

in the sense of Definition 3.3 by Remark 3.4.
Now we pick a finite number of coordinate balls By, (x;) such that B, (x;)
is a cover of M. Moreover, we require that

X6 <x < +en)xh

on By, (x;) for Kéhler forms Xé with constant coefficients. We also assume
that

(1 — e4.)V—=100z1> < wo < (1 + €4.1)v/—180]z|?

on By, (x;). Let gofao be a potential such that «/—IBE_)(pfvo = wp on By, (x;).
Then we also assume that

j 2 2
Qe — 12171 < €anr.
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Let gog be the smoothing of ¢4 + (1 — 10064,1)<pfl)0. When § < g, this is well
defined on B 9 . (xi). By assumption, it is easy to see that

m (J_aa¢5) - D xh A («/—_185%’5)”_2 > 0.

So

—1 _ A\n—2
(V=103¢5)" = = Dy A (V=T03g})" > 0.
1+641

Now define the function goi 5 from By (x;) to R as goé - gofuo so that we can
. 5

study the regularized maximum ¢4 4 of (pfm.

Recall the definition of the regularized maximum in Lemma [.5.18 of [16].
Let 6 be a nonnegative smooth function on R with support in [—1, 1] such that
Jr H(h)dh = land [ h6(h)dh = 0. Let ; be positive numbers smaller than

L 1’ . Then the regularized maximum ¢4 4 of g04 3 is defined by

hi
w44 = M, (‘/’437- (P43 / max{¢43+h}l_[9(n)dhl dhy,
l

where [ is the number of points x;, and gofm is defined as —oo outside B 9 (x;).
Our goal is to show that for any x € M,

€a1r’ + max wiﬁ(x) <  max gafm(x).
{ileBgr(xi)\Bgr(xi)} i:xeB,(x;)
5 5

If this is true, then the maximum will never be achieved by the function (,051.3 +h;
outside B 8, (x;). So by Lemma 1.5.18 (c) of [16], we can discard the function

<pf; 3 + hi outside Bg, (x;). Thus, without loss of generality, we can assume
. 5

that all (pr3 under consideration are smooth. It follows that the function ¢4 4 is
smooth by Lemma 1.5.18 (a) of [16]. Moreover, w44 = wo + \/—_185904,4 >0
by Lemma 1.5.18 (e) of [16].

Now we claim that ca)Z;l —(m—=DyxA wfﬁz > 0. In fact,

I I
02044 _ Z *M, 0¢§; ¢}, Z IM, ¢

dz/ 9z S A 0¢k, 9z7 9z — 0¢f5 02707
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Since M,7(<pi3 + &, ...<pi3 + &) = Mn(goéb, ...(pé{j) + & for any constant &
by Lemma 1.5.18 (d) of [16], it follows that Y/ _| %
>, My 7981 s o weighted £ 242 On the other hand, M, i

a=1 3> 527050 ghted average of 7—=. On the other hand, M, is
convex by Lemma 1.5.18 (a) of [16]. So by the monotonicity and convexity of
Py, P, (w44) < 77— Thus, we are done if

= 1. So the term

I+e€4.1
€a1r? + max ph3(x) < max @ 5(x).
{i:xeBgr(xi)\Bgr(xi)} :x€By(x;)
5 5
In general,
es1r’ + max phi(x) < max ¢ 5(x)
{i:xEBgr(x,')\B&.(x[)} i:xeB,(x;)
5 5

is not true, so w4 4 may not be smooth. However, using the proof of the results
of Blocki and Kotodziej [3], this is in fact true if the Lelong number is small
enough. The details constitute the rest of this section.

It is easy to see thatif x € B%r(xi) ﬂB%r(xj) and § < 5, B%(x) C st(x),

where Bé (x) means the coordinate ball with center x and radius % using the
2

coordinates corresponding to x;, and the meaning for B g (x) is similar. For any
§ <s5andx € B%r(x,-), we define @5 by

P30 = sup (a2 + (1= 100e4 1),
Bj(x)

and v (x, 8) by

Then v (x, 8) is monotonically non-decreasing in 8. Recall that the Lelong
number is defined by

{(x) = lim V' (x, 8).
v (x) Bg)r%)V(x,)
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It is independent of i and can instead be denoted as v(x). Recall the definition
of p in Definition 3.1. Let

€412

5 ( S 10g (1) Vol(9B1 (001211 p(1)dt + log 2 + s log 2)

€45 =

Then by the result of Siu [37], the set Y = {x : v(x) > €45} is an analytic
subvariety.

For simplicity, we assume that Y is smooth. The singular case will be
addressed at the end of this section.

Since Y is smooth by our assumption, as in the outline of the proof in Sect.
1, there exists a smooth function ¢ 12 in a neighborhood O of Y such that

n—p _ -
(c - 61.1) o — =Dy Aof; >0

on O. Now we pick smaller neighborhoods O’ and 0" such that 0’ C 0 and
0" C O’. We need to prove the following proposition:

Proposition 4.1 (1) For small enough § < 55, if

max Vi(x,8) <24,
{i:xew
gr

then

sup ¢1.12 + 3€4.51log 8 + e’ < max  (ph(x) — (pé)o (x)).
o’ {i:xeBgr(xi)}
5

(2) For small enough § < 5, if

inf @112 + 3451088 — €4 r” < max ((pfé(x) - <pf,)0(X)) :
o’ -
t.xeBgr(x,')

5

then

max pi (x,0) < 4deys.
{i:xeBg’.(xi)}
5
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(3) For small enough § < 55, if

max vi(x, 8) < deys.
{i:xeBgr(xi)
5

then

max ((pg (x) — <p2)0 (x)) +egr? < max ((pé(x) — (pi)o (x)) .

i:xeBgr(x,-)\Bgr(x,-)] i:xeB,(x;)
5 5

If Proposition 4.1 is true, for small enough §, we can deﬁne ©1.13 as the
regularized maximum of ¢y 12(x) +3€4.51og § on O’ and @5 — (péoo on B%r (x;).

Since v(x) < €45 for x ¢ Y, for small enough §, max ;. 5o (x)) vi(x,8) <
2¢45 forall x ¢ O”. So by Proposition 4.1 (1), we do not need to worry about

the discontinuity near the boundary of O’. By Proposition 4.1 (2) and (3), there
is also no need to worry about the discontinuity near the boundary of B 9 (xi).

In conclusion, ¢; 13 will be smooth and satisfy
n—1 _ ( _ 1) A n—2 0
cwy 3 —\n XN@y3 =

on M as long as Y is smooth and Proposition 4.1 is true.
In order to prove Proposition 4.1, we need the following lemma of Blocki
and Kotodziej [3].

Lemma 4.2 Forany < 2’—0 andx € B 9 . (xi), the following estimates hold:
(1)0 < g5 — ¢ <vi(x,8)loga foralla > 1, and

a

200 = ¢ — ¢ = vix9) (fylog(}) Vol 0B10) 12~ p(r)dr
2n—1

+32n—73 log 2).

Proof For readers’ convenience, we almost line by line copy the paper [3]

here:
(1) The estimate 0 < (ﬁé — g?)"é < vi(x, 8) loga follows from the logarith-

mical convexity of g?)é and the definition of v/ (x, §).
(2) Define another regularization @é by

1

4 = 0B ) 9B5(x)

(922 + (1 = 100eq.1)¢l, ) dVol.
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Then by the Poisson kernel for subharmonic functions [3] and the estimate in

(1),
. . 2n—1 ) ) 2n—1 )
Prs () — @5(x) < -2 <§0;5 - (P;(s/z) =< <m 10g2) v (x, 18)

for all ¢ € (0, 1]. By monotonicity,

%®%¢Mﬂs(;%bﬁ>ﬂmms<;:;%ﬁwuﬁy
If we define
p(t) = Vol (@B (0)r*" ' p(1),
then f, o(r) = 1. So

1 2n—1

" " 5 3 .
(f/’:s - <P;5) p(t)dt + (22,17,2 10g2) v (x, 8).

3 —vh= [ (h—dis) s = [
0 0

By the estimate in (1) again,
Ny i 1
Qs — @5 < V' (x,8)log 7))

The other side of inequality 0 < @g - <p§ is trivial. O

It is easy to see that there exists a constant Cy4 ¢ such that for any § < 2’—0
and x € By, (x;), vi(x,8) < Ca. Now we are ready to prove Proposition 4.1.
5

r

(1) Suppose that § < 55, x € Bgr(x,-), and

@"1% (x) — @i (x)

i gy =16 07
vi(x.9) log ({z) — logs

< 2e45.

Then
Ps(x) = éjilLﬁ (x) + 2ess <10g8 —log <1r_6)) > —C47 + 2€45l0gs.
By Lemma 4.2 (2),
9i(x) = —Cyg + 2€45log .

@ Springer



566

G. Chen

It is easy to see that for § small enough,

sup ¢1.12 + 3€4.51og 8 + ear? < <p§(x) _ ‘Pfoo(x)
0/

because <pr0 is uniformly bounded on B 9 (x;).

(2) Suppose that § < 55, x € Bgr(xl-), and

inf @112 + 3easlogd — ex17% < i(x) — (Pi)o(x)-
0/
Then as before
Ph(x) = pi(x) = —Ca9 + 3es5logs.

By Lemma 4.2 (1) and the definition of (/3’% (x),

Sup @42 = —C4.10 + 3€4510g 4.
By (x)
2

If x B%r(xj), then BfS (x) C ng(x) and therefore
2

sup @42 > sup @42 = —Cq10 + 3€4510g 8.
B](x) By (x)
2

By the definition of g?)g (x) and v/ (x, 8), it is easy to see that v (x,8) < dess

if § is small enough.

(3) Suppose that § < Zr_()’ X € (B%r(x,-) \ B%r(x,-)) N By(x;), and

max v’ (x,0) < deys.
{i:xeBgr(xi)}
5

Then

@"% (x) — @l (X) < sup @42+ 2e4.177+(2r 4 8)*— (2r)* = 100€4.,

B (x)
2

and

Bi(x)
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By Lemma 4.2 (1),

g?)é — ¢k <vi(x,d) log?2 < 4e45log?2.
2

By Lemma 4.2 (2), wg < @g, and

32n—l
5 log 2)

C 1
@] — @) <4ess ( / 1og( )Vol (9B1(0)) 12"~ 1p<r>dt+2

Since sup Bi, (x) 942 < Sup,; () P4.25 by summing everything together, for §
9 8
2

small enough, (pg (x) — (pfvo (x) + €472 < (pg (x) — (pj)o (x). We are done if Y
is smooth.

In general, Y is singular. By Hironaka’s desingularization theorem, there
exists a blow-up M of M obtained by a sequence of blow-ups with smooth
centers such that the proper transform Y of Y is smooth. Without loss of
generality, assume that we only need to blow up once. Let 7w be the projection of
M on M.Let E be the exceptional divisor. Let s be the defining section of E. Let
h be any smooth metric on the line bundle [E], so %5— F 90 log |s | » = [Eltws11
by the Poincaré-Lelong equation. Then it is well known that the smooth (1,1)-
form w411 € —[E]on M and w4.11 > —Cy4.127* wg. For example, see Lemma
3.5 of [20] for the explanation. Define w4.13 = C4.127*wo + w4.11. Then w4 13
is a Kéhler form on M.

Lemma 4.3 Let Cq.14 = - Then for all small enough t and q-dimensional

analytic subvarieties V of M ,as long as g < n,

n—gq
/ (c - 61_1) ((1 + Cy14) 7 w0 + C4.14t2a)4.13)q
174 3l’l
—1
> / g ((1+ Caat)yw*wo + Carat’ws13)’ " A (2*x + Poa13) -
v

Proof By assumption,
€ _ € _
/(c—£>n*wg—qn*wg 1/\71*)(:/ (c—ﬂ)wg—qwg 1/\)(20.
v 3 (V) 3
So

/ (C - 6171) (A + Caratym*wo)? —q (1 + C4.14t)71*w0)q_1 A+ Caranm*x) = 0.
v
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It suffices to show that

€1.1
/ (C — T) (1 + Cat) 7 w0 + C4.14l2w4.13)q
1%

-1
—q ((1 + Cya.14t) 7 w0 + C4.14t2w4.13)q A (7T*X + t2w4.13)
€
> / <C - %) ((1+ Ca1a)7* wp)?
1%

—q((1+ 674.141)71"‘600)(1_1 A ((1+ Cara)¥x) .

Since it depends only on the cohomology classes, we want to replace wg
with a better representative in its cohomology class. We remark that 7 (E) is
smooth by assumption. So we can apply Theorem 1.11 to m(E). As in Sect.
1, there exists a smooth function @415 on a neighborhood O4 16 of 7 (E) in M
such that w4 |5 = wo + \/—_185<p4,15 satisfies

€1.1 — _
(e~ Lorit — - e nefit o

12
on Oy 16. Define ¢4.17 = 74 i;gcli |]"2 on M \ w(E). Recall the definition of the

regularized maximum in LemmaI.5.18 of [ 16]. For large enough Cy 13, let ¢4.19
be the regularized maximum of 4,17+ C4.18 and ¢4.15. Then ¢4, 19 is smooth on
M and w419 = wo++/—1 85(,04,19 > 0 on M. Moreover, there exists a smaller
neighborhood 0429 of w(E) such that ¢4.19 = ¢4.15 on O420 C O4.16.

After replacing wg by w419, it suffices to show that

|

q . .
(c — E%) 21: ﬁ ((1 + Ca1an)m*wa.10)" " A (Carat*ws3)
i=

q
(g — D! i . ‘
—q) G- (1 + Cara)m*ws10)" A Cipy (P ws13)
g—1
(g — D! N g—1—i
— ——— ((1 + C4.14t
q; g —1-0) (1 + Ca1a)7* w4.19)
A (Carat’ws13)' A (14 Carat)*x
1
+q ((1+ Coat) T 0119 + Ca1at’ws13)" A Caratn*y
> 0.
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By definition of Cy4 14,

=Dt a1 g .
Ta—DG-D! "6 il(g -0

4.14

foralli =1, 2, ..., g. So we can combine the first term and the second term.
If the point is inside 7 1 (04.20), then foralli = 1,2, ...,qg — 1,

(C — %) (ﬂ*w4.19)q_i > (g —1) (ﬂ*w4.19)q_1_i AT )

because

€1.1 _ _
(C - 7) @79 = (n— D75 A X

on O4 0. So the sum of the first three terms is non-negative ifi =1, 2, ..., g—1.
Therefore we are done because the i = ¢ term and the fourth term are non-
negative. If the point is outside 71 04.20), then there exists a constant Cy 2
such that
C * -1 _ %
4217 X > w413 > Cyr T X

and

1
Caoim™x > w419 > Cyyym*x

on M \ 71(04.20). The only first-order term in ¢ is
* q—1 *
qr wy 19 A Capat™ x.
Since it is positive, for small enough ¢, we also get the required inequality. O

Now we pick ¢ > 0 such that ¢ satisfies Lemma 4.3 and

C { €1.1 C }
> maxic — —, .
1+ Cy14t + C4.12C4 1412 dn 1+ €4

We apply Theorem 1.11 to the lower-dimensional smooth manifold ¥ with the
Kiihler forms (1 + Cy4.148)7*wq + Cy 14t*wy 13 and T*x + t2@4_13.~As in Sect.
1, there exists a smooth function ¢4 77 on a neighborhood of ¥ in M such that

w420 = (1 + Cy1at)m* w0 + Cy14°w4.13 + V— 1009422
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satisfies

€1.1 N
(= 55) @izt — 0= 1) (x"x + Poniz) A vy > 0

near Y. Similarly, let ¢4 23 be the potential function near E. Then for a large
enough constant Cy424, we define @475 as the regularized maximum of ¢4 53
and @427 + C4_.21477*(p4.17 + C4.24 and define w4 25 by

w425 = (1 + Cy1at)m*wp + Ca141%w4.13 + V= 10004 25

Then

€1.1 B
(= 53) @izt == 1) (x"x + Poris) Awipd > 0

on a neighborhood O of Y UE in M. Since 2ws 13 > 0, itis easy to see that

<C - 641—n> (Tew125)" " = (n = D) x A (Tawa25)" % > 0
on (O \ E). Now we choose neighborhoods O" and O” of Y U (E) in M
such that O’ C 7(0) and O” C O’. Then as before, for small enough §,
we can define ¢4, 26 as the regularized maximum of w425 + 3€4.51l0og§ on
o \ 7(E) and @5 — (pwo on 39 +(xi). Then @426 is smooth and bounded on
M \ 7 (E). Moreover, for

w426 = (1 + Cy1a0)w0 + Cy 14> w413 + /= 1009426
= (1 + Ca.1at + Ca.12Cs 141%) w0 + Ca 14t mwa 11 + v/~ 19094 26,

it is easy to see that

€]1.1 c -1 -2
(max {c T Tem}) 0)226 —(n—=Dxn “’2.26 >0

on M \ w(E) because Cy 14two + Cy1at’mw4 13 > 0. Now we define

w426 _ Ca141° 7411 + +/—10094 26
1 + Cy.14t + C4.12C4.1412 1 + Ca.14t + C4.12C4 1412

w427 =
so by the choice of ¢,
€Wy — X A\ @407
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on M \ w(E). For alarge enough constant C4 »g, define ¢4 29 as the regularized
maximum of

Cy 141> 2
=i, log sl + @a.26

1 + Cy14t + C4.12Cy.1412

+ Ca28

and @4.15. Then @4 29 is smooth on M, and w429 = wo++/—1 35(p4,29 satisfies
n—1 n—2
Cwy a9 —(M— DX ANwyrg >0

on M. We are done.

5 Deformed Hermitian—Yang-Mills equation

In this section, we prove Theorem 1.7. As in the J-equation case, for simplicity,
we define the following notations:

Definition 5.1 Define P : R* — (0, (n — 1)) and Q : R" — (0, nx) by

n
P(\1, ...A;) = max arccot(A
(A +hn) = ma) ; (1)

and

Oy, ... hp) = Zarccot(kk).

k=1

Let 0 < ) < ®g < 7 be any constants. Define I'g) ¢, to be the subset of R"
such that P is smaller than 6y and Q is smaller than ®y. Its closure is denoted
by F@o,@)o-

Let A, B be Hermitian matrices. Assume that A is positive definite. Then
P4(B) is defined as P(XAy, ...A,), where A; are the eigenvalues of the matrix
A~!B. The function Q4 (B) is defined as Q(A1, ...A,). The set I"a,00,00 18
defined as the set of all matrices B such that (A1, ..., A,) € I'gy 0,. Its closure
is denoted by T4 g,.0,-

If (1) of Theorem 1.7 holds, then for any smooth test family w; o, we can
define another family w; , = w; 0 + +/—10d¢. Then Py (w; o) < Py(wy) <
6p. So by Lemma 8.2 of [12],
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(Re (@1 +v=1x)" = cot@tm (wrp +v=1x)")
= ./V P (Re (w,,(ﬂ + x/?lx)pil — cot(0p)Im (w,,(p + \/jlx)pil> A iwt,(p > 0.

dr
dt

By Lemma 8.2 of [12], we also know that there exists a constant €; | > 0 such
that for any point x € M and any p-dimensional vector space V, C Ty M, the
restriction of the form

p p
Re (w0 + v=Tx)" = cot@)m (w0 +v=Tx)" — (1 = pler.1x”

on V, is positive. Then we get (2) of Theorem 1.7 using the fact that

/V <Re (a)z,o - \/—_1X>p — cot(6p)Im (wt,o + “/__1X>p)
- /V (Re (ww + \/—_1)()1) — cot(fp)Im (“’w T */__lx)p) ‘

It is trivial that (2) of Theorem 1.7 implies (3) of Theorem 1.7. On the other

hand, as long as the following proposition holds, then (3) of Theorem 1.7
implies (1) of Theorem 1.7 by choosing the function f as 0 and choosing an
arbitrary ©¢ € (6p, 7).
Proposition 5.2 Fix a Kihler manifold M"™ with a Kdhler metric x and a
real smooth closed (1,1)-form wq. Let 6y € (0,7) be a constant, and let
®g € (0g, w) be another constant. Then there exists a constant €51 > 0
depending only on n, 6y, ®q such that the following statement holds.

Assume the following: (1) When n > 4, f > —es.1 is a smooth function
satisfying

/ x" / Re (a)w + \/_)0 — cot(6p)Im (a)(p + «/—_lx>n) > 0.
(2) Whenn =1, 2,3, f > 0is a constant satisfying
/ 1% / (Re (e, + J_X> — cot(#)1m (@, + J—_1x>n) > 0.

(3) There exists a test family w; o and a constant €11 > 0 independent of
t, V such that for any t > 0 and any p-dimensional analytic subvariety V,

/V (Re (w10 +v/=Tx)" = cot@)im (w0 +v=Tx)") = (1 = prers /V X
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Then there exists a smooth function ¢ satisfying
n n
Re (% n ~/—1x> — cot(fp)Im (a)(p n «/—lx) _fy =

where wy, = wp + «/ —13590 € I'y 60,0

Remark 5.3 Proposition 5.2 is similar to Theorem 1.11 and the results in [33].
In fact, the equation

Re (w0, +v=Tx) " = cot(@)m (@, +v=1x)" = fx" =

originates from [33].

Remark 5.4 The proof of Proposition 5.2 relies on Lemma 5.6, which requires
f tobe aconstant whenn = 1, 2, 3. However, sometimes we can prove Propo-
sition 5.2 directly without using Lemma 5.6. In fact, when n = 1, it is trivial
that Proposition 5.2 holds for non-constant f. When n = 2, Proposition 5.2
holds for non-constant f using the observation of Jacob and Yau in [28]. When
n = 3, the methods used in [34] may be useful, but it is still open whether
Proposition 5.2 holds for non-constant f. Nevertheless, this does not affect
the proof of Theorem 1.7.

When n = 1, Proposition 5.2 is trivial. In higher dimensions, we will prove
it by induction on the dimension n of M. As the first step, inspired by the work
of Collins—Jacob—Yau [12], we state the following proposition in analogy with
Theorem 1.14:

Proposition 5.5 Fix a Kdihler manifold M" with a Kdihler metric x and a
real smooth closed (1,1)-form wqo. Let 6y € (0, m) be a constant, and let
®p € (0, w) be another constant. Then there exists a constant €51 > 0
depending only on n, 6y, ®¢ such that the following statement holds.

Assume the following: (1) When n > 4, f > —e€s1 is a smooth function

satisfying

/ 1" / (Re (@ +v=Tx)" = cot@)im (w, +v=Tx)") = 0.
(2) Whenn =1, 2,3, f > 0is a constant satisfying

/ £x" / (Re (@ +v=Tx)" = cot@)im (w, +v=Tx)") = 0.

(3) wo € I'y 09,00
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Then there exists a smooth function ¢ satisfying
n n
Re (w¢-|—«/—1x> — cot(fp)Im (w¢+«/—lx> — fx" =0,

where wy, = wo + /—130¢ € Ty g,.0,-

We will use the continuity method to prove Proposition 5.5. We first choose
the path

0
w1,s = S (wp — cot(bp) x) + cot (2_()) X
n

and f} ; as the constant satisfying
n n
[ frxt= [ (Re (wrc+v=Tx)" = cot@tm (w1 + v=Tx)")
M M

for s € [0, 1]. Then, since w;; > cot(g—g)x, we see that Py (w1) =<
Oy(wis) < %0 and f1 s > 0. Let I; be the set of s such that there exists
a smooth function ¢ satisfying wy o, s = w15 + «/—185(,03 e I'y 90,00 and

n n
Re (@1,4,,5 +v/=Tx) = cot@)m (14,5 +v=1x) = fisx" =0.
Then O € ;. The openness of I; follows from the condition on the integral of
f1.s, the implicit function theorem, and the standard elliptic estimates. If we
can prove the a priori estimate, then we can take a weak limit. The limit is
still in the region I', g, @, by Lemma 5.6 (5) below. So we get the closedness

of 11 and therefore prove that 1 € 11 assuming the a priori estimate.
Then we choose the path

wys =wo+SX

and f> ¢ as the constant satisfying
n n
/ fasx" = / (Re (a)z,s + V—1X> — cot(6p)Im (a)z,s + \/—1X) )
M M

for s € [0, cot (%) — cot(fp)]. Then we see that
Px (C‘)Z,s) = Px (wo) < 6o
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and

Qx(a)2,s) = Q)((CUO) < Q.

So

Afars n—1 n—1
12, / x" 2/ n(Re (a)ziys—i-\/—l)() — cot(fp)Im (a)g_x—i—\/—l)() )AX >0
s Iy M

by Lemma 8.2 of [12]. So f» s > 0 because f> s is non-negative when s =
0 by the assumption in Proposition 5.5. We remark that we move forward
when proving f> ; > 0 but move backward when solving w3 o, s = w25 +
V—=133¢; € Ty g,.0, satisfying the equation

n n
Re (2,6 + V=Tx) = cot@)m (@20, + V=Tx) = fosx" =0.
Finally, we fix wp and choose the path

fM x"
Ju x"

fas=sf+0—ys)

for s € [0, 1]. We omit the arguments for the second path and the third path
because they are similar to the first path.

Therefore, we only need to prove the a priori estimate along the paths.
This will be achieved by Székelyhidi’s estimates in [42]. In order to apply
Székelyhidi’s estimates in [42], we need the following lemma:

Lemma 5.6 For any 0 < 6y < ®¢ < 7, there exist a constant €51 > 0
depending only on n, 6y, ®¢ and constants C5, > 0, €53 > 0 depending only
on n, ®q such that the following holds:

Assume that f is a parameter such that f > 0 whenn = 1,2, 3 and such
that f > —es5.1 when n > 4. Then the function F : 1:‘907@0 — R defined by

_ Re 1_[221()% + \/__1) _ f
Im[Ti_; Ok + /=1 Im[[i_; G + /=1

F(q, ... A) — cot(fp)

satisfies the following properties:
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-1 - _1
(1) Im [T, Gi++/—=1) =Ty

(2) |L 1 |< 1 lecl:l(1+)‘%) 1
P I [Ty aebv=D 1 = VG2 | ([T Gabv=D) | f152”

(3) 3F>0

(4) When n > 4, for any real numbers u;,

" 9°F [Ti= 1(1"')%) i
5 1+x2'

Uilj < —€53

21 0%i0%) ’ (Im [Tiy (A + /=

When n = 1, 2, 3, for any real numbers u;, Z?l 1 a)? 311 uiuj <0.

(5)If » € Tgy.0, and F(L) = 0, then A € Ty,.0,.
(6) For any A € Ty, o, the set

(M €Tgo: F)=0,1; = &, foralli =1,2,3,...,n}

is bounded, where the bound depends on n, 6y, O, A, | f|.

(7) Fgo Oy is convex.

(8) 5 F () < 55 F) if A = Aj.

(9) For any posmve definite Hermitian matrix A, the function Fy
ﬁA,90,®o — R" is concave, where Fs(B) = F (A, ...Ay) if A; are the eigen-
values of A~'B.

(10) For any positive definite Hermitian matrix A, the set r A.60,0p 1S convex.

Proof Whenn =1, F(L1) = A1 — f —cot(6p). So all the properties are trivial.
So we assume that n > 2.
For simplicity, define 68; = arccot(%;). Then it is easy to see that

1 Ai
NAE NI

sin(6;) = cos(6;) =

Rel_[()»lﬁ—\/_) = cos (Zek> [TV1+2
k=1

and

Iml_[(kk+\/_) = sin (Z@) [TV1+2
k=1
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(1) First of all, there exists a constant C5 4 > 0 depending only on ®¢ such
that sin(x) > Cs4 aslongasw > ®g > x > % > 0. Moreover, it is easy to
see that there exist constants C55 > 0, C5.6 > 0 depending only on ®q such
that sin(x) > Cs5sx forall x € (0, ®¢) and tan(x) < Cs¢x forall x € (0, @).

Now we study two cases. If Y} _, 6k > %, then

Iml—[(kk+\/_) —sm<;9k>]_[m>cs4

Y7 6 < 9, then A; > cot(R) > O foralli = 1,2,3,...,n.So

n

vz (S [z 6 (£ ) s e ()

So we can choose Cs 1 as min{"gﬁ cot”_l(%), Cs.4}.

2)

K 1 o Im [Teei (i +v=1) Vi (14 20)

i Tz (k+vV=1) (m[_, (o +v=D)>  (Im[Ti, (e + 1))

YTk=r (139 L1 J [Ti=i (1+A%) 1
(

T TT, G+ v=D) Jiga2 V2 (T, G+ v=1) Ji442

3)
ki sin® (o1 00) 1+A7  (Im[Ti, (u + v=1))

: | . 1 | J[sin <Zk¢i Qk)
sin? (Y1 0k) L4+ A7  sin? (35— 6k) 1+ A7 [Teri m ‘

Therefore, if €51 < 1, then > 0.

C))
2
PF_2e0(Thn ) 1 I S (1 [Tiss (V1))
i e %) (1402)° e (1452)° 2 ImTTo (e VD)’
n —2\; n 2
__2cot(¥- O) = 2 - : fnkznl(l +22) o (Zek) |
sin? (Y4, 00) (1422)7 (44D (T (e + v=1) =
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When i # j, then

02F  2cot (Y4, k) 1
0kidrj — sin® (L_10k) (14 22) (1 +A2.>
£ (1m T s (R + V/=1)) (I Ty Gk + V/=T))
(Im [Ti—y (o + ‘/__))
2f (m [T Gt + v=1)) (1m [Ty (o + ~/_))
(Im [Ti—y (v + ‘/_))

Using

m [T (% +v=T) = 2tm [T (s +v=T) +Re [T (s +v=1).

k#j ki, j ki, j

m [T (2 + v=1) =2jim [T (e +v=1) +Re [T (s +v=1).

ki ki, j ki, j
and
m ] (/\k +ﬁ) = (nj —1)Im [ (/\k+ﬁ) + (i +1)Re ] (Ak +ﬁ),
k=1 ki, j ki)

it is easy to see that

(Im l_[ (Ak + F)) ﬁ (kk + f)) (Im 1_[ (kk + le)) (Im l_[ (}»k + \/?1>)
ki, j k=1 ki k)
2 2
:—(Im A,ﬁf) —(Re /\k+ﬁ))
k#i, j k#i, j
[Tizi <1 +)‘k) o u a2 sin(¢;)  sin(8;)

ey B
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Thus,

2F -2 uinj " Aju?
—ujuj = —5—m—— | —cot Ok + i
I,JZZI arjor; sin? (37 6k) ( (Z ) Z (142D +25) ; i 2

= i,j=1

Iz (148) (¢ D
- . sin O | sin 0,
(im [T, (xwﬁ)f (Z (k; ") (; k)mm

+ sin2 6 + sm(@)@m(@ ) —

Without loss of generality, assume that Ay > Xs... > A,. Whenn > 4, we
first claim that there exists a constant €57 depending only on n, ®¢ such that

n

-2 U j riu?
—sin2 (Zzzl —cot (Z Gk) Z Uil + Z i .

i1 (1+47) (1 +)‘?> izt (1+27)

[Tic (142

< —€57
(Im [Ti— 1()*k+\’ 321+)‘2

This claim is equivalent to

2
o~ hiuj €57
_cot(zek) (ZH_M) +§(1+A%)2 = 2im [T} l(kk+\/—)zl+xz

We divide it into several cases.

In the first case, §) < ... <6, < % < Zand cot(D_j_, Ok) < %
then

@())

)|

2
1 00\ © 1 1
—COt(ZQk) (ZHA) z_ﬂcm( 20>Z(1+A2)2§’TZ E21: “”\2)2

i=1

Since sin(}_;_, k) > Cs 4,

n
1 Z s < - Y=
2m [Ty (e +V=1) (S 147 acs, i, J1+22 15 THA
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2(©

1 2”: rup et (7°> +1 2 u?

- 2 2\ — 2"
2C5'4 i=1 )\' (1 )\' ) 2C54 C0t2 (%) i=1 (1 + )\,2)

. . . Csqco (7)
So we get the required estimate if €57 <

cot2<®%>+1 '

In the second case, 8] < ... < 6, < %‘) < % and cot(D_j_; 6) >
cot(oo) then

1 @0 T
Z Oy < arccot | — cot < —.
P 2n 2 2

So
) 2 n n 2 n 1
—cot Ok d > —cot Ok —.
() (Er5) = (B0 BT
Ifa,>0anda + B < 7, then
tan(a) + tan(p)
t = t t .
an(o + B) I — tan(a) tan(p) > tan(w) 4+ tan(B)
So
n n 1 n n
1 — cot (Z 9k> Z Iy =1 —cot (Z Gk) ' tan(6;)
i=1 k=1 i=1
n n—1 n—1
> 1 — cot (Z 0k> (tan(@n) + tan (Z 0,)) tan(6,) tan (Z 0,-)
k=1 i=1 i=1
n—1 n—1
1 1 1
> tan(6 tan(6;) = — — > .
> tan(6,) ; i v It vES v
As in (1), we know that
n n n
Iml_[k:l()hk—}_\/_;l)=sin Zek >C5529k2§ %chsi
l‘[gzl 1 —I—)»]% s s 5.6 1 Mk 5.6An
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using the assumption that n > 4.
Therefore,

1 2”: u? _ G 1 Zn: hiu}

2Im [Ti_; (i + V/=1) & 1427 = 2Cs.5 hndn—1 = 27 (1 +47)
Cs.e (cot2 ( ) + 1) n
1

5-
2Cs 5 cot? (70) Anhn—t i1 (1+247)

=

®
i i . Cs€57 cot?( 20 +1
So we get the required estimate if ( ( é ) ) <1
2Cs5 C0t2( )

In the third case, 6,, > %. So k 1 Qk < % < —. As in the second case,

2 n—1 2 n—1

n—1 _
- Ailt;
00t<29k> (ZHAZ) +,-X=1:(1+x?) s lkn > 1+A22'

i=1

We already know that sin(ZZ: 10k) = Cs.4, 50

1 n—1 uz 1 n—1 l/t2
n / Z i 2 = Z i D)
Am [Ty (e +V=1) IS 1R T 9, [Ti=1 m o LA
n—l 2 n—1 2
~ 2Cs4hn—1hn—2M 1+22 = 2Cs.4hn—1An—2 — W21 +22)
2(© _
cot (TO> +1 ;125

 2Cs.4cot? <%) An—1An—2 i=1 +)“2)
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On the other hand,
w n—1 n—1 w: 2 A uz
- 9 — | + 8 ! +
cot Z k ;HA% cot Z k ; 1422 (1 +22)2

= —2cot (Z@k) (TZ;I 1+A2) I—H\z + (cot (ZGk) — cot (Zek)) (tg:l 1-7—1)»12)

LG cot (k- k) i
(14252

_ S _ cot® (X4 ) up

(An o (;; ek) cot (ZZ;} Qk) —cot (Y7, Qk)) a +I;\%)2
An cot(zk 1 Ok) 2
An cot (Zz;ll Gk) -1 ( cot<zk=| Qk)+kn )

- - - - 2
) 5 o) 2 | T
oo (gt ) 1) ;
cot (ZZ;} Gk) +An - (cot (ZZ;} Gk) + )Ln) (cot2 (Z" g ) + 1) (1+22)?
cot? (ZZ;} 0k) + 22 + 22, cot (ZZ;} 0k) u2
(cot (Zz;ll Gk) + An) (cot2 (Zz;ll Bk) + 1) (1+23)?

v

u

—1 _
A + cot (ZZ=1 Gk) u? = cos(6n) = i
= - 55 = Sin ZGk o + cot O 722
co? (S4zf o) +1 L +24D) = sin(6y) pa (1+47)

. 1 .
_ s (ZZ:I ek) s (ZZ:I 6/() u% - Css c u’21 1
- sin(6y) (142122 = Csehn—1 5‘41+A% /1 +,\%'

It is easy to see that

1 u? 1 u? 1 u? 1

< < :
Am i O + V=D 1+23 ~ 2054 T, /1+A§ L+ 25 ~ 2Csahn—1 1443 [1 152

2 1
M < land 527 < C5 2Cs.4, we get the

Therefore, as long as
2Cs5.4 cot2( >

required estimate.
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Thus, when n > 4, we have proved that

-2 Uil ; " Aiu.z
+ — cot Ok / + L
San (ZZ:I k (Z ) Z (1 4 )\‘2)(1 + )\2) Z 2

ij i=1 (1 +)‘i2)

1+
< esr [Ti (1 + 29 32 .
(Im [Tiz; (% +v=1)) E

When n = 2, 3, a similar argument implies that

n

e P Ze Z il +3 AL
sin” (37, 0) ) b+l T A ) T

i,j=1

Compared to Theorem 1.1 of [43], the main improvement is that we choose
the variable ® in Theorem 1.1 of [43] as (n — 1)Z, and we also have a better
[Tizi (142D

(Im [Tezy (A +v/=1))

terms involving f when n > 4.
The next goal is to prove that when n > 3, the matrix corresponding to

2
estimate —es 7 3 Zz 17 +A2’ which will be used to deal with

n n
Z sin’ Z Ok v,-2 + Z Z sin(6;) sin(0;)v;v;
i=1

ki i=1 ji

is positive definite. When 61 = 6, = ... = 0, is sufficiently small, it is easy
to see that sinz(zk#i 0) > sin®(6;). So the matrix is positive definite. Since

the space Ty, @, is path connected, it suffices to show that the determinant of
the matrix is positive on I'g, .
Without loss of generality, assume that 6, > 6,,_1... > 0;. When i # n,

6i <On <) Ok <O —6 <76
ki

so sin(f;) < sin (Zk#i Gk). When sin? (ZZ;II 9k> # sin(6,), let A be the
complex diagonal matrix such that

Aji = |sin? Z@k — sin?(6)),
ki
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and define

B (sin(@l) sin(@n)>
A T A )

Then we need to compute det A7 (I + BT B)A. By elementary linear algebra,

det AT(1 + BT B)A = (det A)2(1 + BBT)

! sin%(6;)
Or | — sin (9 )
1 ( (kz#l k) ) ( ,Zl sin? (Zk;ﬁi Bk) — sin2(0,~))
( (Zek) — sin®(6; )) +Zsm2(9 ] ( (Z ek) —sinz(ej)) .
1 ki i k+j

By continuity, this equation also holds when sinz(zz;% Or) = sin%(6,).
Therefore, when sinz(zz;ll Or) > sinZ(6,), we already get the required
inequality. We only need to prove that

:]:

i

Il
::

n

sin®(6;)
< —
1 sin? (i ) — sin®(6)

when s1n2(Zk 100 < sin(6,). In this case, ZZ;} O < 0.
Now we want to study the function

sin?(B) —2sin?(B) sin?(B)
sin2(a — B) — sin2(B) _ cos2a — 2B) — cos(2B) _ sin(a) sin(a — 28)

Gla, p) =

forany 0 < B < § < 7. Then

E _ 2 sin(B) cos(B) sin(a — 28) + 2 sinz(ﬁ) cos(e —2B) 2sin(B) sin(ax — B) -0
B sin(a) sin?(« — 28) " sin(e) sin?(a — 28)

SO

0 G
— log (—) = cot(B) — cot(ax — B) + 4 cot(a — 2P)

ap B
cot(B) cot(x — B) + 1
cot(B) — cot( — B)
_ (cot(B) + cot(ar — B))* +4
~ cot(B) —cot(ax — B)

=cot(B) —cot(a — B) + 4
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Since 0 < B <a—pB < m, we know that cot(8) — cot(a — B) > 0, so
a fﬂ > (. Therefore, when we replace 61 by 0 and replace 6,,_1 by 6,1 +61, we

sin (9 ) . .
seethaty | Sy 00— @) strictly increases. We can repeat the process

to prove that

=-1

02 —1
Z sin2(6;) ) sin2(6,) Lo o (Zici )
=1 sin? (Lesi 6 ) = sin@)  sin® (42] 6k ) = sin(@)  sin (@) — sin? (LhZ} 6 )

This is the required inequality.
Thus, when n > 3, we have proved that

n

92 1
uiu; >0
wz=:1 04i04; (Imﬂzzl(/\wm/—l)) o

When n = 2, it is also true because

Xn:sinz > o | v+ Xn:Zsin(Gi)sin(Gj)vivj >0

i=1 ki i=1 j#i

by the Cauchy—Schwarz inequality.

Therefore, when f > 0, we get (4) as long as €53 < €57. When —e51 <
f < 0andn > 4, using the bound that | sin(6;)| < 1 and | sin(zk#i O <1,
it is easy to see that

- : sin O O
(Im [Ty G +v=1))° ijzl 1; 1; J1 +A2 W

n .
-i-X:sin2 Zek +ZZsm(9 ) sin(0;) i )
i=1 (k;ﬁi ) H‘ - 1j#i NIRRTy

3 14+ "
- nes.q [Ti— 1(+k)32 N
(ImTTi_y (e + /=1 1+

Therefore, as long as €51 < 65n7 and €53 < 657-7, we get the required estimate.

(5) Suppose that A € 1;90,@0 and F(A) = 0. Foranyi = 1,2, 3, ...n, using
(3), we see that F(A) is strictly smaller than the limit of F when we fix Ay for
k # i and let A; go to infinity. Using a similar argument to (1), we see that

Im l_[()»k + +/—1) = min{Cs 4, w cot" 2 <®O>}A

k=1 Cs6
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So the limit of F is cot(zk#i arccot(Ag)) —cot(fp). So Zk#i arccot(Ag) < 6.
Moreover, using the fact that

. f
— _ _ 2]
0 = cot ( E arccot()»;d) I O = cot(6p)

k=1
. €s.1
< cot arccot(Ag) | — cot(6y) + ——,

we see that ZZ:] arccot(Ar) < ®paslongases | < Csa(cot(fy) —cot(®g)).
Thus, A € I'gy,0,-
(6) Let A be any element in g, @,. Let A" be any element in I'g, @, such
that F(A') =0and A > A forallk =1,2,3,...,n
Then for any i =1, 2, 3, ...n, Zk#i arccot(Ay) < 6g. If

6o — . arccot(Ag)
A; > cot ( Lii )

2

and

- 1DC ®
min {C5‘4, (= DCss cot" 2 <*0> } A > B0+ -ar!cfo!(l ) ’
Cse 2 cot (%) — cot(6p)

we get a direct contradiction to the estimate that

n
[f1
0 > cot arccot(ry) | — cot(fp) —
<; min{C5_4, %cot" 2( )])J

(7) Fix any A € 1:‘90 ©,- Consider the set C of 1" € f‘go ®, such that 1A +
(1 = 1)) € Ty, @, forall r € [0, 1]. It is easy to see that C is a closed set in
the relative topology on I'g,.@,. Now if A" is in this set, for any A" € T'g,.0,
sufficiently close to 1/, there exist 7 > O > @9 > 6; > 6 such that
ta+(1—-0))" € 1:96’96' By (4) applied to the set I_‘%’% and the case f = 0, we
see that cot(ZZ:l arccot(tAr+(1 —I)AZ)) is a concave function. Soitis at least
®g. Similar arguments can be applied to COt(Zk;&i arccot(try + (1 — t))»;(’))
for any i = 1,2,3,...,n. So we see that 1" is in C. In other words, C is
also open in the relatlve topology. Since Fgo ©p 18 connected, and A € C, we
see that I'g) ¢, = C. So I'g,, @, is convex because for any A, Aoe Fgo ©0»
th+ (1 —-0A € FGO,OO
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(8) This follows from the concavity of

F (A, izt thi 4+ (1= DA j, Aty ooy Aj—1, A 4 (L= DA, Ajits ooy An)
= F (M1, dicts thj A+ (1= Dhis higets ooy Ajmts i+ (L= DX j, djat ooy An)

(9) This follows from (4), (8), and the result in [39], which was also used
as Equation (66) in [42].
(10) This is similar to (7). O

As a corollary, we get the required a priori estimate:

Corollary 5.7 Let M" be a Kihler manifold with a Kihler metric x and a
real smooth closed (1,1)-form wq. Let 6y € (0,7) be a constant, and let
®g € (0g, w) be another constant. Then there exists a constant €51 > 0
depending only on n, 6y, ®q such that the following statement holds.

Assume the following: (1) Whenn > 4, f > —es.1 is a smooth function.

(2) Whenn = 1,2,3, f > 0is a constant.

(3) w) € FX’QO’@)O.

Assume that ¢ is a smooth function satisfying supy, ¢ = 0, wy = wo +
«/—_185(,0 € I'y 6,00 and

Re(w, + v/—1x)" — cot(@o)Im(w, + /—1x)" — fx" = 0.

Then foranyk € N, anya € (0, 1), there exists a constant Cs g depending only

on M, n, x, [lwollce(x), 0o, Oo, I fllcoo(x), k, o, maxeepm (Bo — Py (wo)(x)),
and maxyepm (Og — Qy (wo)(x)) such that

lellcka(yy = Css.

Proof Compared to Székelyhidi’s conditions in [42], there are two major dif-
ferences. First, F' also depends on f. Second, I' does not contain the positive
orthant. However, we will show that his results still survive without many
changes.

Székelyhidi’s C© estimate relies on a variant of the Alexandroff-Bakelman-
Pucci maximum principle similar to Lemma 9.2 of [25]. Clearly, it does not
take derivatives of f. So Székelyhidi’s C° estimate is still true.

The next step is to prove that

IW/=180¢|, < Cso(1 +sup|Ve|2).
M

We will use the same notations as in [42] except that the letter f in [42] is
replaced by F, the letter F' is replaced by F,, and the letter u is replaced by ¢.

@ Springer



588 G. Chen

It is easy to see that (78) of [42] still holds. Now we differentiate the equation
Fy (f, wy) = 0. We see that

F)I(ngj_l + F{fl == Ov
and
FP gpqig,si + Fyl gt + Py g i+ F i i + F i1 =0

because F{f = 0. Since |F{| < é by Lemma 5.6 (1), the term Fffli is

bounded. So the only additional term in (85) of [42] is —CoA |F gkkll on
the right-hand side. Instead of (94) of [42], we get

F)/(‘kgk,;p +Flf,=0.

Since | F { fplisbounded, the estimate in (95) still holds. So the only additional
term in (99) and (104) of [42] is —CoA |F gkkll on the right-hand side.
Case 1 in [42] will not happen if Aq is large enough. The additional term in
(120) of [42] is also —CoA; ' |[Fy*7 g,z,|. However, recall that (67) of [42] is

—F)"7 851851 = —Fijgin 8551 — Z M—|8111|
i>1

(We remark that the letter f in [42] is replaced by F and that the letter F
is replaced by F.) The term —Fj;g;7,8 7T was thrown away. However, by
Lemma 5.6 (2), Lemma 5.6 (4), and the Cauchy—Schwarz inequality,

Fljgnlgjﬂ —COlF fgkk1|_c5 10

So Székelyhidi’s estimate

|V/—183¢l, < Cs. (1 + sup Moli)
M

still holds.

Székelyhidi used the property that I contains the positive orthant to prove
the C? estimate [42]. We do not have this property. However, we can use
Proposition 5.1 of [12] to achieve this.

Evans-Krylov’s estimate requires the uniform ellipticity and concavity of
F, (f,.). These conditions follows from Lemma 5.6 (3) and Lemma 5.6 (9).
The higher-order estimate follows from standard elliptic theories. |
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The analog of Theorem 1.18 is the following:

Proposition 5.8 Fix a Kihler manifold M" with a Kdhler metric x and a test
Sfamily w; o of real closed (1,1)-forms. Suppose that for all t > 0, there exist a
constant ¢; > 0 and a smooth function ¢, such that w; = w; o + -1 8590, €
[y 00,0, satisfies

n n
Re (w, 4 ~/—1x) — cot(6)Im (a), n \/—1X) — " =0.

Then there exist a constant €511 > 0 and a current ws.13 € [wo — €5.11x ] such
that ws 12 € 'y gy,0, in the sense of Definition 5.10.

The definition of the sum w of a real smooth closed (1,1)-form and a closed
positive (1,1)-current being in I'y g4, @, is similar to Definition 3.3.

Definition 5.9 Suppose that x is a Kéhler form with constant coefficients on
an open set O C C" and that w is the sum of a real smooth closed (1,1)-
form and a closed positive (1,1)-current. Then we say that w € f‘xo,go,(m)o on
O if for any § > 0, the smoothing w; satisfies ws € I'y, g,,0, On the set
Os = {x : Bs(x) C O}.

Definition 5.10 We say that w € f‘x’go,@o if for any €513 > O and €5.14 > 0
satisfying

(1 + €5.14) (cot(Bp) + €5.13) > cot(6p),

on any open subset O of any coordinate chart, for any Kihler form xo with
constant coefficients satisfying

(I'+€s5.14)x0 = X = Xo,

we have

w+ €513 € Iy.60,00-

Remark 5.11 By Lemma 5.6 (10), when w is smooth, it is easy to see that
w € fx’907(~)0 in the sense of Definition 5.10 if and only if w € f‘x,go,@o in
the usual sense. Another key property is that the condition @ € T g, @, in
the sense of Definition 5.10 is preserved under weak limits in the sense of
currents.

The analog of Lemma 3.5 is the following:
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Lemma 5.12 Suppose that A is a p X p Hermitian matrix, B is a diagonal
q X q Hermitian matrix with Bj; = A;, C is a p x q complex matrix, and D
is another diagonal g x q matrix such that

_ Im Hk;,si (A ++/—1)
CIm[_ e+ VD)

ii

Suppose that

AC
Q1p+q ([éT Bi|) <7T.

Then D is well defined. Moreover,

le (A — CD(_jT) + qu(B) = Q1p+q ([éqT g])

and

Py, (A — CDC‘T) +0.,(B) <P, (|:é4T g]) .

Proof Define E, F to be diagonal g x g matrices such that

_ Ai P 1
A2

E;;
We first claim that
- A C
T
Q]p+CFéT(A - CEC )+ qu(B) = Q1p+q <|:éT B:|) .

In fact, using

A—CB+—1I)~ICT + =11, 10)
0] B+-11I,

Iy —CB+ V=TI | A+ V=10 c Ip o
“lo Iy cl  B+v=lL||-B+v-11p7'CT 1, |
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it is easy to see that

A—CECT o I,+CFCT 0
det([ 0 Bi|+\/—1 |: 0 I,
— det A—C(B+/-1I)71CT +/~11, 0
B 0 B+ /-1l

([ ) (B8] (5 2)

It follows that

AC

Qp,+crer (A= CEC")+ Q;,(B) = Q1p+q(|:ér B]) mod 27.

This is also true when we replace A by A + ¢/, and replace B by B + 1, for
t > 0. However, when ¢ is large enough, all the quantities are close to 0. So
there is no multiple of 27 there. By continuity, there is also no multiple of 27
when t = 0.

As a corollary of the claim, we see that O I, (B) < m. This implies that

q
Im [ [ +v=1) > 0.
k=1
So D is well-defined.
Moreover,
—Re[]/_, O +/—1)
D;; — Ej; k=1

= = — B))F;;.
(1+25) (Im ], ++/=D) coHer, (5

Now we write A — CECT as a;j and CFCT as b;j. Define

p p p
a=v=1)" ajdd ndZ/ b=y=1)" bjjd ndZ/,c=+~1) dz' rdZ'.

ij=1 ij=1 i=1

Then Q.ypa) < — o, (B) < . Now we define

I = {1 € [0, 1] such that Q. (as) < Qc4p(a) forall s € [0, 1]},
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whereay, = a+s cot(Qy, (B)bandcy = c+b—sb.1If b = 0, then it is trivial
that / = [0, 1]. So we only need to consider the case when b # 0. It is also
trivial that O € I and that / is closed. Now we assume that ¢t € /. Then

d d Re(ay + /—1cs)?
als:t cot(Qc, (as)) = E|s=rm
pRe(ay + v/=Tcs)?~! A cot(Qy, (B)b + Im(as + /—Teg)P~! Ab)
- Im(a, + v/—1c;)?
Re(as++/—1e;)? p (—Re(as + v/ =Tc)?~1 A b+ Im(ag + +/=Tcs)?~! A cot(Qy, (B))b)
 Im(ay+/—Tey)P Im(as + v/—1Tcs)P
= p(cot(Qy, (B)) + cot(Qc, (ay)))-
(Re(as + /=Te)P ™' —cot(Qy, (B) + Qc, (a)Im(as + v/—=Tc)?~ ') A b
Im(as + v—Tco)? =0

by Lemma 8.2 of [12]. So [ is open. It must be [0, 1]. So 1 € I. It follows that
Q1,(A=CDC") = Q¢ (a1) < Qerp(@) = @y ,cper(A—CECT).

Thus, we have proved that
= A C
Q1,(A—CDCT)+ Q;,(B) < 0y, <|:C_‘T B}) <m.

Using a similar argument to the paragraph before Lemma 3.5, by the Schur-
Horn theorem and the convexity of — cot(Zf:l arccot(1})),

Pi,(A—CDCT) = max 0;,, (07(a-cpCT)v).
UeCrxr=H yTu=I,_,

This is also a generalization of the celebrated Courant—Fischer—Weyl min-max

principle.
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Let U € CP*(P=D be the matrix realizing maXy ecrx(v-0 GTU=1,_ 1,
(UT(A - CDCT)U), then

P;,(A—CDC") + Q,,(B)
=01, (074 = CcDEU) + 01, (B)

-0, (UTAU - (UTC)D(CTU)) +Q1,(B)
- oTAaUu 0Tc]!

=i \| ¢ty B

_ ur o[ A Cl[u o

=Ch-i\| 0 1,||¢7 B|| 01,

<o ([45])

Now we need to prove the following:

Proposition 5.13 Let xyxy = 71 x + 75 x be a Kihler formon M x M. Let
Cs.15, 05.16, ©5.17, Os5.18, and Os 19 be constants depending only on n, 6y, O¢
such that

05.16 = 6y + narccot(Cs.15) < @517 = Os.18 + narccot(Cs.15) < Os5.19
= ¢ + narccot(Cs 15) < 7.

Suppose that
ws20 = Tiwo + Cs.1575 x + v/ —133¢s 20

is areal smooth closed(1,1)-formon M x M suchthat ws 9 € T’
Define ws 31 by

XMxM05.16,05.17

127 ] ! —2k
k=0 (—=DF (n—zk)7(2k+1)!(”1)*(");20 A T3 X

[y Im(Cs.15x + /—1x)"

2k+1)

w521 =

Then ws21 € T'y g,,00-

Remark 5.14 Proposition 5.13 also holds when ®s 17 = ©5.19. However, we

instead require ®s 17 < ©s5.19 to make sure that if w € I'y 45 ,( ©5,,, then

1 . . .
o0, (@) —col@515) changes only a little when we perform the truncation as in

Sect. 3.
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Proof As in Sect. 3, at each p = (p1, p2) € M x M, let zgl) be the local
coordinates on M x {p;} and zl@ be the local coordinates on {p;} x M. Then

ws20 = oV + ©? + o2 4 &)

where

n n
1 _— —1,.(D) 4 (1) =) (2 _ —1,.2) ;5 (2 =(2)
o'’ = Zv 1a)l_J-_dzl. /\dzj , " = Zv 1“’,-de1' /\dzj ,
i,j=1 i,j=1

n
(1,2) _ 1., (L2) ; (1) =)
w = E oV la)l_j-_ dz; /\dzj,
ij=1

and 0>V = (1.2, After changing the definition of zi(z) if necessary, we can
assume that

n
wix =v—1Y dz® ndz®

i=1
and
n
w® = /=1 Z)\idzl@ A dZi(z)
i=1
at p.
Then

L2571 k .
k=0 (=D ()i

[uy IM(Cs.15x + /=137

w521 =

where @y equals

n!
(n —2k — D!Q2k + 1)!

2k+1

o A (@Y% A gty
n!
_l’_
(n—2k —2)!12k + 1)!

1) 5 () =(1)
_ 2”: \/lel_j dz;’ NdZ; /\( Z 1 )(w(z))n

w(1,2) /\w(Z.l) A (w(2))n—2k—2 /\JT;)(ZI(_H

Qk +1)! Dty Pt

i,j=1 ay,...an+ distinct
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/1., 1.2 (1.2) ;_(1) =)
n _lwif wji dzi /\de 1 2n
— A —(w")".
2k + 1!

MAay Aoy

i,j =1 ay,...o0k+1,ldistinct

So w521 = (1) w522, Where ws 22 equals

Im(0® + =1} )" N Xn: 0D 02 Im [Tz O + /=D o124
T @@+ tron " 2 5 = T Ga ko T

=(1)
Adzj .

By Lemma 5.12,

" [Ty (i + ~/=1
QNI‘X(Z (wa_)_wq.z) ket (O +v/T)

(1,2) ) —(1) ?2)
e ) W' dz: ' NdZ < Os517 — Q0 x, (07).
i\ I G+ V=) ) l ! ) 2

Now we consider the function
Since

1
oy @) —cot(@s 1) 10T @ € T 516,057

2 1 —D? cot(Qy (»)) 2D cot(Qy (@) ® D cot(Qy (@)
D = 2 + 3
col(@y (@)) = cot(®s.19) ) (cot(Qy () — cot(Os 19)) (cot(Qy (@)) — cot(Os5.19))

and cot(Qy (w)) is concave by Lemma 5.6 (9), we see that cot(Qy (w))l—c"t(@5 19)
is convex on I'y o5 ¢ 05 -
So

1
cot (Qx (ws21)) — cot(Os 19)

n
1 Im (w(z) + \/—lﬂ;)()
n
©s.19 — Q,,;X(w(z))) —cot(©5.19) Jipy}xm I (0@ + V=173 %)

. n n
Sipyemt (Re (0@ +v=Tx 1) = cot@s 19)im (0 + V=T x)")
(1+c02(©5.19)) [y epr I (0P + V=175 x)"
_ Re (C5_15 + 71)’1 —cot(®5.19)Im (C5.15 =+ 71)}1

(1 + cot?(®@s 19NIm(Cs 15 + /= 1)
1
 cot(®) — cot(Os 19)”

<
{p1ixM cot(

- . 1 1
By a similar calculation, NP, @saD)=col@315) < Coto)=co@319)" By the

convexity of the set I'y o5 c,05 7, We also know that w521 € I'y o5 6,057 It
follows that ws 21 € I'y gy, 0,- O
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We use the same method as in Sect. 3 to prove Proposition 5.8. The equation

X2n
MxM
trwt,el'(),e]j XMXM + fl,€|'6,€1,7 2n = (n + l)C

1,€1.6:€1.7

is replaced by

2n 2n
Re (wz,em,e” + V_]XMXM) — cot(6s,16)Im (wt,e],ﬁ,e” + V_IXMXM) = frerge17 X"

for wy,e; .67 € [T{ @10 + Csa5my X1 xmxm = 7 x + 75 %, and fie 4.6
similar to how it was defined before. It is easy to see that there exists a constant
Cs.23 > 0 depending only on n, 6y, @, and s 13 such that

2n 2n 2n
Re [ [k + v=1) = cot(@s,16)Im [ | G +v/=1) < Cs23 [ [ e — cot(©s5,19))
k=1 k=1 k=1

for all A € 'y, 4,05 ;- We also know that w — cot(®s,19) x must be a Kihler
form for all @ € T'y 45 ,4,05,,- Combining these facts with Proposition 5.5,
Remark 5.11, Proposition 5.13 and Remark 5.14, we can prove Proposition 5.8
using a similar method to that in Sect. 3.

With all these preparations, we can prove Proposition 5.2 and, as a corollary,
Theorem 1.7. We prove it by induction on the dimension n of M. Whenn =1,
itis trivial. So we assume that it has been proved for all lower dimensions and
then try to prove it. Define / to be the set of # € [0, co) such that there exists a
smooth function ¢, and a constant ¢; > O satisfying w; 4, = w,,o—l—\/—_l 0 5(0, €
FXﬁO’@)O and

Re(wr,g, + v —1x)" — cot(@p)Im(wy,g, + v —1x)" —c; x" = 0.

By (C) of the definition of the test family and Proposition 5.5, I is non-empty.
We also know that I is open by Proposition 5.5. In fact, the space I', g, @, 18
open, and the condition ¢; > 0 is ensured by the third assumption of Propo-
sition 5.2 applied to V. = M. To show the closeness, assume that #; € [ is
a sequence converging to 7. Then by the monotonicity of P, and Q,, the
third assumption of Proposition 5.2 applied to V = M, and Proposition 5.5,
we know that ¢t € [ for all t > 7. We need to show that 71, € I. Without
loss of generality, assume that 7o, = 0. By Proposition 5.8, there exist a con-
stant €511 > 0 and a current ws 12 = wy — €5.11X + \/—_185905_12 such that
w512 €l x.60,0, 1N the sense of Definition 5.10. By Proposition 5.5, it suffices
to find a form ws24 = wo + +/—1 85(,05.24 in 'y g,.0,- We essentially follow
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the procedure in Sect. 4, with minor adjustments to deal with the problem that
o is no longer Kéhler.

Letes 3 = min{553” , 100} to get the corresponding €5 14. By choosing €5 14
small enough, we can also assume that as long as (1 +€5.14) xo > x > xo and
a real smooth closed (1,1)-form w € l:‘XOﬁO’@)O, then w + €5.13x € 'y g,,0-
We can also assume that €5 14 < ﬁ. Then, as in Sect. 4, there exist a finite
number of coordinate balls By, (x;) such that B, (x;) is a cover of M. Moreover,
let (pfuo, (p; be potentials such that \/—_185%)0 = wp and «/—_185@( = x on
B>, (x;). Then we require that

€s.1372

S 100(1 + | cot(éo)])

o}, —

and
V=183)z* < x < (1 + e5.14)v/— 133z

on By, (x;). By the uniform continuity of (pfoo, there exists a constant €575 < g
. . 2 _
such that |, (x) — ¢y, (V)] < 651630’ for all x € By (x;) such that |[x — y| <
5

€5.25-

As in Sect. 4, we take § < m, let % be the smoothing of
(pwo 2¢s. 13(0X + ¢s5.12, and let 5 ¢ = @5 — @, + €5 13(0)( Since ws.12 €

FX 60,0, 1n the sense of Definition 5.10, we know that N 88(/)5 el %0,00,0
on Bgsl (x;) by Definition 5.10 and the monotonicity of r 0.60,00- This implies
that

wo + /_135%.26 = «/—185(,03 +es5.13x € Ty 0,00

on B%r (x;). We also know that

wo — 3€5.13X + —185(p5,12 —cot(bp)x > ws.12 — cot(bp)

is a positive current because ws 17 € r .60, 10 the sense of Definition 5.10.
As in Sect. 4, we pick a small enough number

2
€5.137

100( f;y log (L) Vol(@B1(0)1"~1 p(t)d1 +log2 + 35— log2)

€527 =

where p is the function in Definition 3.1. Then we consider the set ¥ in which
the Lelong number of ¢s 1> is at least €5 27. By Siu’s work [37], Y is an analytic
subvariety.
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If we can find a smooth function @5 58 near Y such that wg + VAT 5g05.23 €
"y 60,00, then using the methods in Sect. 4, as long as § is small enough, the
regularized maximum of @528 + 3€527log § with <pg_26 provides the required
smooth function ¢s.24 on M.

Therefore, we only need to find @5 23. By Hironaka’s desingularization the-
orem, there exists a blow-up M of M obtained by a sequence of blow-ups
with smooth centers such that the proper transform ¥ of ¥ is smooth. Without
loss of generality, assume that we only need to blow up once because other-
wise we just repeat the process. Let 77 be the projection from M to M. Let E
be the exceptional divisor. Let s be the defining section of E. Let & be any

smooth metric on the line bundle [ E]. Then %85 log |s|%l = [E] 4+ w529 by
the Poincaré-Lelong equation. Further, there exists a constant Cs 3g such that
ws31 = w529 + Cs530m*x > 0.

Let wy ¢ be w;0 when t = 2, and let w; ¢ be w; o when ¢ = 1. Then there
exists a constant €5 37 > 0 such that wy o — w1,0 > €5.32x . Further, there exists
a smooth function ¢s 33 on M such that w9 + \/—_185g05_33 €'y 60000 M.
This implies that

[v (Re (wt.o —és3x + ﬁx)p — cot(6p)Im (wz,o —esnx + ‘EX)[))
> /v (Re (wl,o + ﬁx)p — cot(p)Im (wl,o + ﬁx)p) > (n— pler1 /V x?

for all + > 2 and all p-dimensional analytic subvarieties V of M. By choosing
€5.32 small enough, using the fact that ey o is bounded with respect to x for all
t € [0, 2], we can also assume that

/V (Re (wz,o —€53X + ﬁx)p — cot(6p)Im (wz,o —€es3x + xﬁlx>p) > (n— p)%l /v x?P.

for all # > 0 and all p-dimensional analytic subvarieties V of M.
Now we want to find constants 0 < €534 < 1 an~d C5.35 independent of ¢
and consider the Kihler form 7*x + €534@s5.31 on M and the test family

w0 — €53 x + (t + Cs535)€53405 31

on M. We know that 7 (E) is smooth. So by the induction hypothesis, as in
Sect. 4, we can find a smooth function @536 on M such that w535 = wo +
\/—_185(p5.36 satisfies ws 36 € I'y g,,0, On a neighborhood Us 37 of w(E). By
shrinking Us 37 and replacing €5 3, if necessary, we can assume that there exists
a constant €5 33 > 0 such that ws 36 —€530% € I'y gy—es15,00 ON Us 37. By the
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compactness of M, there exists a constant €539 > 0 such that

w1,0 + v —135%.33 € I'y 00—es.30,00

on M.
Then we required that Cs 35 > cot (%) and Cs 35 > cot (“22). By Lemma
8.2 of [12], when ¢t > 2,

=T q
Im (e 1% (ﬂ*wz,sss + (1 + Cs35)€5.34w531 + V=1 (7% x + 65.34605.31)) )

—Im (e—ﬁﬂo (ﬂ*wt 533+ «/jlﬂ*)()q)
( R Z m (”*wz,5.33 + «mﬂ*x)k A ((f +Cs35 + ﬁ) 65.34w5.31)q_k)

s q
<Im (e vl (t +Cs35 + V—‘> 53.34“’2.31)’

where w533 = Wr,0 — €532 + A/ —135(p5.33. So

/V Im (e—ﬁeo (n*wz,o — €530 X + (1 + Cs 35)€5 3405 31 + v/ =1 (%1 + 65.34‘05.31))4)
< /V Tm (e~ 1% (¥ w0 — es 3wy + V=17 0)7)
+ /v Im (e**ﬁwo (t +Cs35 + ﬁ)q 621.34‘”(5].31)
= —sin(@o)(n — ) 5t fv 7 x? +1m (V710 (14 Cs 35+ V=1)) fv (esa405.31)"

< *65440/‘/ (% + €5.340531)

for any g-dimensional analytic subvariety V of M and a constant €5.40 inde-
pendent of  and V.

On the other hands, for ¢ € [0, 2], we get a similar estimate within Us 37. As
for the set M \ 7~ (Us 37), we know that all the forms 7 *ws 36, 70* x, and ws.29
are bounded using the norm defined by 7 * x + €5.34ws.31. Moreover, 7*x is
also bounded below by a positive constant multiple of 7% + €534w5.31. S0
if €534 is small enough, then the Kéhler form 7* x + €534w5 31 and the test
family m*w; 0 — €5.30m* x + (t 4+ C5.35)€5.38w5.31 on M satisfy the assumption
of Proposition 5.2. Since Y is smooth, by the induction hypothesis and the
arguments in Sect. 1, there exists a smooth function ¢s5.4; on M such that

m¥wo — €530 x + C535€534w531 + v —1900541 € Ty tes 3005 31,60, 00
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on a neighborhood Us 47 of Y. By a similar argument to that in the proof of
Lemma 5.12, this implies that

m*wo — €5.30m* x + (Cs35 — cot(Bp)) €5.34w5.31 + v/ — 13095 41 € Trry 00,00

on Us 4y \ 71 (E). So by choosing (Cs 35 — cot(6p))es34Cs30 < €532, We
see that

. V=1
w¥wo + /' —100 | ¢5.41 + (Cs.35 — cot(6p)) €5.34 e log|s17 ) € T y.60.00

on Usg \ 7~ YE). Finally, we choose a large enough constant Cs.43

and define ¢s553 as the regularized maximum of m.(¢s54; + (Cs535 —

COt@o))Gs.m% log |s|7) with @536 — Cs.43.
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