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Abstract In this paper, we prove that for any Kähler metrics ω0 and χ on M ,
there exists a Kählermetricωϕ = ω0+

√−1∂∂̄ϕ > 0 satisfying the J-equation
trωϕχ = c if and only if (M, [ω0], [χ ]) is uniformly J-stable. As a corollary,
we find a sufficient condition for the existence of constant scalar curvature
Kähler metrics with c1 < 0. Using the same method, we also prove a similar
result for the supercritical deformed Hermitian–Yang–Mills equation.
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530 G. Chen

1 Introduction

In this paper, our main goal is to prove the equivalence of the solvability of
the J-equation and a notion of stability. Given Kähler metrics ω0 and χ on M ,
the J-equation is defined as

trωϕχ = c

for

ωϕ = ω0 + √−1∂∂̄ϕ > 0.

In general, the equivalence of the stability and the solvability of an equa-
tion is very common in geometry. One of the first results in this direction was
the celebrated work by Donaldson–Uhlenbeck–Yau [17,46] on Hermitian–
Yang–Mills connections. Inspired by the study of Hermitian–Yang–Mills
connections, Donaldson proposed many questions, including the study of the
J-equation using themomentmap interpretation [18]. This was the first appear-
ance of the J-equation in the literature.

Yau conjectured that the existence of a Fano Kähler–Einstein metric is also
equivalent to some kind of stability [48]. Tian made this conjecture precise
in the Fano Kähler–Einstein case, and it was called the K-stability condition
[44]. It was generalized by Donaldson to the constant scalar curvature Kähler
(cscK) problem in the projective case using a Riemann–Roch type formula
to calculate the “Donaldson–Futaki invariants” on “test configurations” [19].
This conjecture has been proved by Chen–Donaldson–Sun [8–10] in the Fano
Kähler–Einstein case. However, there is evidence that this conjecture may be
wrong in the cscK case [1]. A folklore conjecture states that the uniform ver-
sion of K-stability may be a correct substitution. More recently, the projective
assumption in the definition of uniform K-stability was removed by Dervan–
Ross [22] and, independently, by SjöströmDyrefelt [36], using an intersection
formula to replace the Riemann-Roch type formula. When restricted to spe-
cial test configurations called “degeneration to normal cones,” the uniform
K-stability is reduced to Ross-Thomas’s uniform slope K-stability [35].

It is easy to see that cscK metrics are critical points of the K-energy func-
tional [11]

K (ϕ) =
∫

M
log

(
ωn

ϕ

ωn
0

)
ωn

ϕ

n! + J−Ric(ω0)(ϕ).
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The supercritical deformed Hermitian–Yang–Mills equation 531

The Jχ functional for any real smooth closed (1,1)-form χ is defined by

Jχ(ϕ) = 1

n!
∫

M
ϕ

n−1∑
k=0

χ ∧ ωk
0 ∧ ωn−1−k

ϕ − 1

(n + 1)!
∫

M
c0ϕ

n∑
k=0

ωk
0 ∧ ωn−k

ϕ ,

where c0 is the constant given by

∫
M

χ ∧ ωn−1
0

(n − 1)! − c0
ωn
0

n! = 0.

When χ is a Kähler form, it is well known that the critical point of the Jχ

functional is exactly the solution of the J-equation. This result [11] was the
second appearance of the J-equation in the literature. Following this formula
and using the interpolation of theK-energy and theJχ functional, Chen-Cheng
[5–7] proved that the existence of a cscK metric is equivalent to the geodesic
stability of the K-energy functional. However, the relationship between the
existence of cscK metrics and the uniform K-stability is still open.

When we replace the K-energy functional by theJχ functional for a Kähler
form χ , the analogies of the K-stability and the slope stability conditions
were proposed by Lejmi and Székelyhidi [30]. See also Sect. 6 of [22] for the
extension to the non-projective case. The main theorem of this paper proves
the equivalence between the existence of the critical point of theJχ functional,
the solvability of the J-equation, the coerciveness of the Jχ functional, and
the uniform J-stability as well as the uniform slope J-stability.

Theorem 1.1 (Main Theorem)Fix a Kähler manifold Mn with Kähler metrics
χ and ω0. Let c0 > 0 be the constant such that

∫
M

χ ∧ ωn−1
0

(n − 1)! = c0

∫
M

ωn
0

n! .

Then the following statements are equivalent:
(1) There exists a unique smooth function ϕ up to a constant such that

ωϕ = ω0 + √−1∂∂̄ϕ > 0 satisfies the J-equation

trωϕχ = c0.

(2) There exists a unique smooth function ϕ up to a constant such that
ωϕ = ω0 + √−1∂∂̄ϕ > 0 satisfies the J-equation

χ ∧ ωn−1
ϕ

(n − 1)! = c0
ωn

ϕ

n! .
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532 G. Chen

(3) There exists a unique smooth function ϕ up to a constant such that ϕ is
the critical point of the Jχ functional.

(4) The Jχ functional is coercive; in other words, there exist a constant
ε1.1 > 0 and another constant C1.2 such that

Jχ(ϕ) ≥ ε1.1Jω0(ϕ) − C1.2.

(5) (M, [ω0], [χ ]) is uniformly J-stable; in other words, there exists a con-
stant ε1.1 > 0 such that for all Kähler test configurations (X , �) defined in
Definition 2.10 of [22], the numerical invariant J[χ ](X , �) defined in Defini-
tion 6.3 of [22] satisfies

J[χ ](X , �) ≥ ε1.1 J[ω0](X , �).

(6) (M, [ω0], [χ ]) is uniformly slope J-stable; in other words, there exists a
constant ε1.1 > 0 such that for any analytic subvariety V of M, the degener-
ation to the normal cone (X , �) defined in Example 2.11 (ii) of [22] satisfies

J[χ ](X , �) ≥ ε1.1 J[ω0](X , �).

(7) There exists a constant ε1.1 > 0 such that

∫
V
(c0 − (n − p)ε1.1)ω

p
0 − pχ ∧ ω

p−1
0 ≥ 0

for all p-dimensional analytic subvarieties V with p = 1, 2, ..., n.

Remark 1.2 It is well known that there exists a constant C1.3 depending on n
such that the Jω0 functional

∫ 1

0

(∫
M

ϕ

(
ω0 ∧ ωn−1

tϕ

(n − 1)! − n
ωn

tϕ

n!

))
dt =

∫ 1

0

(√−1
∫

M
∂ϕ ∧ ∂̄ϕ ∧ tωn−1

tϕ

(n − 1)!

)
dt

and Aubin’s I-functional

∫
M

ϕ(ωn
0 − ωn

ϕ) = √−1
∫

M
∂ϕ ∧ ∂̄ϕ ∧

n−1∑
k=0

ωk
0 ∧ ωn−k−1

ϕ

satisfy

C−1
1.3

∫
M

ϕ(ωn
0 − ωn

ϕ) ≤ Jω0(ϕ) ≤ C1.3

∫
M

ϕ(ωn
0 − ωn

ϕ).
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The supercritical deformed Hermitian–Yang–Mills equation 533

For example, Collins and Székelyhidi used this fact in Definition 20 of [13] to
replaceJω0(ϕ)with

∫
M ϕ(ωn

0−ωn
ϕ) in the definition of the coerciveness, which

was called “properness” in [13]. By (3) of [2], Aubin’s I-functional can also be
replacedbyAubin’s J-functional in the definitionof coerciveness.Accordingly,
in the definition of uniform stability, the numerical invariant J[ω0](X , �) can
be replaced by the minimum norm of (X , �) defined in Definition 2.18 of
[22]. By (62) of [15], Aubin’s J-functional can be further replaced by the d1
distance in the definition of the coerciveness when ϕ is normalized such that
the Aubin-Mabuchi energy of ϕ is 0.

Remark 1.3 By Proposition 2 of [11], if the solution of the J-equation exists,
it is unique up to a constant. It is easy to see that (1) and (2) are equivalent.
The equivalence of (2) and (3) follows from the formula

dJχ

dt
=
∫

M

∂ϕ

∂t
(χ ∧ ωn−1

ϕ

(n − 1)! − c0
ωn

ϕ

n! ).

By Proposition 21 and Proposition 22 of [13] and Remark 1.2, (1) and (4)
are equivalent. By Corollary 6.5 of [22], (4) implies (5). It is trivial that (5)
implies (6). By [30], (6) implies (7) in the projective case if ε1.1 is replaced
by 0. However, it is easy to see that this is also true in the non-projective
case and for positive ε1.1. Thus, we only need to prove that (7) implies (1) in
Theorem 1.1. We remark that there is a simpler proof showing that (1) implies
(7). At each point x , after choosing local coordinates such that

χ = √−1
n∑

i=1

dzi ∧ dz̄i

and

ωϕ = √−1
n∑

i=1

λi dzi ∧ dz̄i

at x , for any c > 0, the condition

cωp
ϕ − pχ ∧ ωp−1

ϕ

= p!
∑

i1<...<i p

λi1 ...λi p

⎛
⎝c −

p∑
j=1

1

λi j

⎞
⎠√−1dzi1 ∧ dz̄i1 ∧ ... ∧ √−1dzi p ∧ dz̄i p ≥ 0

is equivalent to
∑p

j=1
1

λi j
≤ c for all 1 ≤ i1 < i2... < i p ≤ n. If (1) holds,

then trωϕχ = c0 and the upper bound of λi imply that there exists a constant
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534 G. Chen

ε1.1 > 0 such that at each point,
∑p

j=1
1

λi j
≤ c0 − (n − p)ε1.1, which is

equivalent to

(c0 − (n − p)ε1.1)ω
p
ϕ − pχ ∧ ωp−1

ϕ ≥ 0.

Condition (7) follows from the fact that

∫
V
(c0 − (n − p)ε1.1)ω

p
0 − pχ ∧ ω

p−1
0 =

∫
V
(c0 − (n − p)ε1.1)ω

p
ϕ − pχ ∧ ωp−1

ϕ .

Remark 1.4 Lejmi and Székelyhidi’s original conjecture is that the solvability
of

trωϕχ = c0

is equivalent to

∫
V

c0ω
p
0 − pχ ∧ ω

p−1
0 > 0

for all p-dimensional analytic subvarieties V with p = 1, 2, ..., n − 1 [30].
For technical reasons, we only prove the uniform version in this paper. When
this paper was under review, this technical issue was solved by Datar and
Pingali [21] in the projective case for the generalizedMonge–Ampère equation
which is more general than the J-equation. Moreover, Datar-Pingali’s theorem
includes the equivariant version. Later, Song [38] solved this technical issue
for the J-equation without the projective assumption.

When c1(M) < 0, we can choose χ as a Kähler form in −c1(M). Since

x log x is bounded from below for any x ∈ R, the entropy
∫

M log(
ωn

ϕ

ωn
0
)
ωn

ϕ

n! is

also bounded from below. So the coerciveness of the Jχ functional implies
the coerciveness of the K-energy functional. This observation appeared as
Remark 2 of [11]. Using this observation, as a corollary of Theorem 1.3 of [6]
and Theorem 1.1, we find a sufficient condition for the existence of constant
scalar curvature Kähler metrics with c1 < 0.

Corollary 1.5 If c1(M) < 0, and ε1.1 > 0, then for any Kähler class [ω0]
such that

∫
V

((−n[c1(M)] · [ω0]n−1

[ω0]n
− (n − p)ε1.1

)
ω

p
0 − pω

p−1
0 ∧ (−c1(M)) ≥ 0
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The supercritical deformed Hermitian–Yang–Mills equation 535

for all p-dimensional analytic subvarieties V with p = 1, 2, ..., n, there exists
a cscK metric in [ω0].
Remark 1.6 If there exists a metric ωϕ ∈ [ω0] such that Ric(ωϕ) < 0 and ωϕ

has constant scalar curvature, then the condition above is necessary. In fact, in
this case, the cscK equation

trωϕ

(
−Ric(ωϕ)

2π

)
= −n[c1(M)] · [ω0]n−1

[ω0]n

implies that ωϕ and −Ric(ωϕ)

2π ∈ −c1(M) satisfy the J-equation.

In addition to its appearances in themomentmap picture and the study of the
cscK problem, the J-equation also features in mathematical physics. In fact,
if ωϕ is positive, λi are the eigenvalues of ωϕ with respect to χ , and arccot
is the inverse function of cot with range (0, π), then using the observation of
Collins–Jacob–Yau [12] that

lim
k→∞ k

n∑
i=1

arccot(kλi ) =
n∑

i=1

1

λi
,

the J-equation is exactly the limit of the deformed Hermitian–Yang–Mills
equation

n∑
i=1

arccot(λi ) = θ0,

where θ0 is a constant. The deformed Hermitian–Yang–Mills equation is the
mirror equation of Harvey-Lawson’s special Lagrangian equation [26] and
plays an important role in mathematical physics [31,32,41].

The most important case of the deformed Hermitian–Yang–Mills equation
is the supercritical case, which means θ0 ∈ (0, π). We remark that we use the
function

arccot(λi ) = π

2
− arctan(λi )

to simplify the notations because the term π
2 − arctan(λi ) appears frequently

in this paper. It is easy to see that the supercritical deformed Hermitian–Yang–
Mills equation means that

n∑
i=1

arctan(λi ) = nπ

2
− θ0 ∈

(
(n − 2)π

2
,

nπ

2

)
.
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536 G. Chen

In the supercritical case, motivated by the J-equation, Collins–Jacob–Yau
[12] conjectured that the solvability of the supercritical deformed Hermitian–
Yang–Mills equation is also equivalent to a condition on integrals on analytic
subvarieties. According to the results in [14], Collins–Jacob–Yau’s condition
can be understood as a notion of algebraic stability. In this paper, we prove
the uniform version of their conjecture. We remark that in an earlier version
of this paper, the author proved the result only in the range (0, π

4 ). When the
earlier versionwas under review, inspired by the recent results in [27] and [43],
the author made a key observation that the function − cot(

∑n
i=1 arccot(λi ))

is convex and successfully extended the result to the whole supercritical range
(0, π).

Theorem 1.7 Fix a Kähler manifold Mn with a Kähler metric χ and a real
smooth closed (1,1)-form ω0. Assume that there exists a constant θ0 ∈ (0, π)

such that
∫

M
(Re(ωϕ + √−1χ)n − cot(θ0)Im(ωϕ + √−1χ)n) = 0.

Then the following statements are equivalent:
(1)There exists a smooth function ϕ such that the corresponding eigenvalues

λi satisfy the deformed Hermitian–Yang–Mills equation

n∑
i=1

arccot(λi ) = θ0.

(2) For any smooth test family ωt,0, there exists a constant ε1.1 > 0 indepen-
dent of t, V such that for any t ≥ 0 and any p-dimensional analytic subvariety
V ,

∫
V
(Re(ωt,0 + √−1χ)p − cot(θ0)Im(ωt,0 + √−1χ)p) ≥ (n − p)ε1.1

∫
V

χ p.

(3) There exist a test family ωt,0 and a constant ε1.1 > 0 independent of
t, V such that for any t ≥ 0 and any p-dimensional analytic subvariety V ,

∫
V
(Re(ωt,0 + √−1χ)p − cot(θ0)Im(ωt,0 + √−1χ)p) ≥ (n − p)ε1.1

∫
V

χ p.

Here, we call a smooth family ωt,0, t ∈ [0, ∞) of real closed (1,1)-forms a
test family if and only if all the following conditions hold:

(A) When t = 0, ωt,0 = ω0.
(B) For all s > t , ωs − ωt is positive definite.
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The supercritical deformed Hermitian–Yang–Mills equation 537

(C) There exists a large enough number T ≥ 0 such that for all t ≥ T ,
ωt,0 − cot( θ0

n )χ is positive definite.

Remark 1.8 The main reason for introducing the test family is to correctly
choose the branch of the arccot function such that we stay within the super-
critical case. See Remark 1.10 below for the importance of the supercritical
condition. In the special case when ω0 > 0, an important choice of the test
family is ωt,0 = tω0. In general cases, ωt,0 = ω0 + tχ is always a test family.
However, more choices of test families are allowed.

Remark 1.9 Compared to Collins–Jacob–Yau’s conjecture in [12], the main
difference is that we require the uniform lower bound (n − p)ε1.1

∫
V χ p.

Remark 1.10 The “easier” direction ofCollins–Jacob–Yau’s conjecture in [12]
holds only in the supercritical case. To see this, consider

V = {0} × (C/(Z ⊕ √−1Z))p ⊂ M = (C/(Z ⊕ √−1Z))10,

ω0 = χ = √−1
10∑

i=1

dzi ∧ dz̄i ,

and θ0 = 5π
2 > π . Then the deformed Hermitian–Yang–Mills equation

10∑
i=1

arccot(λi ) = θ0

can be solved using ϕ = 0, but
∫

V
(Re(ω0 + √−1χ)p − cot(θ0)Im(ω0 + √−1χ)p)

changes sign when p varies in the set {1, 2, 3..., 10}. All known conjectures
fail in the non-supercritical case except for very special θ0 studied in [21,33].

Theorem 1.7 will be proved in Sect. 5 using the same method of the proof
of Theorem 1.1.

Instead of Theorem 1.1, we will prove the following stronger statement by
induction on the dimension of M :

Theorem 1.11 Fix a Kähler manifold Mn with Kähler metrics χ and ω0. Let
c > 0 be a constant and f > − 1

2n (1c )n−1 be a smooth function satisfying

∫
M

f
χn

n! = c
∫

M

ωn
0

n! −
∫

M
χ ∧ ωn−1

0

(n − 1)! ≥ 0.
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538 G. Chen

Then there exists a Kähler metric ωϕ = ω0 + √−1∂∂̄ϕ > 0 satisfying the
equation

trωϕχ + f
χn

ωn
ϕ

= c

and the inequality

cωn−1
ϕ − (n − 1)χ ∧ ωn−2

ϕ > 0

if there exists a constant ε1.1 > 0 such that

∫
V
(c − (n − p)ε1.1)ω

p
0 − pω

p−1
0 ∧ χ ≥ 0

for all p-dimensional analytic subvarieties V with p = 1, 2, ..., n.

Remark 1.12 By Remark 1.3, Theorem 1.1 is a corollary of Theorem 1.11 by
choosing f = 0.

Remark 1.13 When n = 1, Theorem 1.11 is trivial. When n = 2, The-
orem 1.11 is the statement that Demailly-Paun’s characterization [20] for
[cω0 − χ ] being Kähler implies the solvability of the Calabi conjecture

(cωϕ − χ)2 = (c f + 1)χ2

by Yau [47]. In the toric case in which f is a non-negative constant, the
equivariant version of Theorem 1.11 was proved by Collins and Székelyhidi
[13]. In fact, the idea of using the equation

trωϕχ + f
χn

ωn
ϕ

= c

for induction originates from Collins–Székelyhidi’s arguments [13]. In this
paper, f is instead a function. It will be used in later steps to make sure that
ωn

ϕ ≥ f
c χn concentrates near a given analytic subvariety. To compensate for

the mass concentration without changing the integral of f , we must allow f
to be slightly negative at some points.

There are several steps involved in the proof of Theorem 1.11.
Step 1: Prove the following:

123



The supercritical deformed Hermitian–Yang–Mills equation 539

Theorem 1.14 Fix a Kähler manifold Mn with Kähler metrics χ and ω0. Let
c > 0 be a constant and f > − 1

2n (1c )n−1 be a smooth function satisfying

∫
M

f
χn

n! = c
∫

M

ωn
0

n! −
∫

M
χ ∧ ωn−1

0

(n − 1)! ≥ 0.

Then there exists a Kähler metric ωϕ = ω0 + √−1∂∂̄ϕ > 0 satisfying the
equation

trωϕχ + f
χn

ωn
ϕ

= c

and the inequality

cωn−1
ϕ − (n − 1)χ ∧ ωn−2

ϕ > 0

if

cωn−1
0 − (n − 1)χ ∧ ωn−2

0 > 0.

We will use the continuity method to prove Theorem 1.14. The details will
be provided in Sect. 2.

Remark 1.15 Let χ = δi j and ωϕ = λiδi j . Then the equation

trωϕχ + f
χn

ωn
ϕ

= c

is equivalent to

n∑
i=1

1

λi
+ f∏n

i=1 λi
= c.

Remark 1.16 Suppose that

cωn−1
ϕ − (n − 1)χ ∧ ωn−2

ϕ ≥ 0

or, equivalently,
∑

i �=k
1
λi

≤ c for all k = 1, 2, ..., n. Then, as long as

n∑
i=1

1

λi
+ f∏n

i=1 λi
= c

123



540 G. Chen

for f > − 1
2n (1c )n−1, it is easy to see that

∑
i �=k

1
λi

< c, which is equivalent
to

cωn−1
ϕ − (n − 1)χ ∧ ωn−2

ϕ > 0.

Remark 1.17 When n = 2, Theorem 1.14 is the Calabi conjecture solved by
Yau [47].When f = 0, Theorem 1.14 is a special case of Song andWeinkove’s

result [40].When f is a constant times
ωn
0

χn , Theorem 1.14was proved by Zheng
[49].

Step 2: Prove the following:

Theorem 1.18 Fix a Kähler manifold Mn with Kähler metrics χ and ω0.
Define �χ,c as the set of ω satisfying

cωn−1 − (n − 1)χ ∧ ωn−2 > 0,

and let �̄χ,c be the closure of �χ,c. Suppose that for all t > 0, there exist
a constant ct > 0 and a smooth Kähler form ωt ∈ [(1 + t)ω0] satisfying
ωt ∈ �χ,c and

trωt χ + ct
χn

ωn
t

= c.

Then there exist a constant ε1.4 > 0 and a current ω1.5 ∈ [ω0 − ε1.4χ ] such
that ω1.5 ∈ �̄χ,c in the sense of Definition 3.3.

Remark 1.19 In general, we can take the wedge product of ωϕ only when ϕ

is in C2. Bedford-Taylor [4] proved that it can also be defined when ϕ is in
L∞. In our case, ϕ is unbounded, so it might be impossible to define cωn−1

1.5 −
(n − 1)χ ∧ ωn−2

1.5 . Therefore, we have to figure out the correct definition of
ω1.5 ∈ �̄χ,c without takingwedge products. Thiswill be done inDefinition 3.3.

Now let us sketch the proof here. It is analogous to the proof of Theorem2.12
in Demailly-Paun’s paper [20]. In fact, when n = 1, the proof of Theorem 1.18
is the same as the proof ofTheorem2.12 of [20].Consider the diagonal
 inside
the product manifold M × M . Cover it by finitely many open coordinate balls
B j . Since 
 is non-singular, we can assume that on B j , g j,k , k = 1, 2, ..., 2n,
are coordinates and 
 = {g j,k = 0, 1 ≤ k ≤ n}. Assume that θ j are smooth
functions supported in B j such that

∑
θ2j = 1 in a neighborhood of 
. For

123



The supercritical deformed Hermitian–Yang–Mills equation 541

ε1.6 > 0, define

ψε1.6 = log

⎛
⎝∑

j

θ2j

n∑
k=1

|g j,k |2 + ε21.6

⎞
⎠ .

Define

χM×M = π∗
1χ + π∗

2χ

and

χM×M,ε1.6,ε1.7 = χM×M + ε1.7
√−1∂∂̄ψε1.6 .

Let

ft,ε1.6,ε1.7 = χ2n
M×M,ε1.6,ε1.7

χ2n
M×M

− 1 + ct

cn
>

χ2n
M×M,ε1.6,ε1.7

χ2n
M×M

− 1.

Then by Lemma 2.1 (ii) of [20], there exists a constant ε1.7 > 0 such that for
ε1.6 small enough,

χ2n
M×M,ε1.6,ε1.7

χ2n
M×M

− 1 > − 1

4n

(
1

(n + 1)c

)2n−1

.

Now we consider ω0,M×M,t = π∗
1ωt + 1

c π∗
2χ . By Theorem 1.14, there exists

a Kähler metric ωt,ε1.6,ε1.7 ∈ [ω0,M×M,t ] such that

trωt,ε1.6,ε1.7
χM×M + ft,ε1.6,ε1.7

χ2n
M×M

ω2n
t,ε1.6,ε1.7

= (n + 1)c.

Using

ω2n
t,ε1.6,ε1.7 ≥ ft,ε1.6,ε1.7

χ2n
M×M

(n + 1)c

and the proof of Proposition 2.6 of [20],ωn
t,ε1.6,ε1.7 looks like a positivemultiple

of [
] near the diagonal 
 ⊂ M × M . Now define �t,ε1.6,ε1.7 by

�t,ε1.6,ε1.7 = cn−1∫
M nχn

(π1)∗(ωn
t,ε1.6,ε1.7 ∧ π∗

2χ).
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Fix ε1.7 and let t and ε1.6 converge to 0. For small enough ε1.4, let ω1.5 be
the weak limit of �t,ε1.6,ε1.7 − ε1.4χ . Then we shall expect ω1.5 ∈ �̄χ,c in the
sense of Definition 3.3. Roughly speaking, in the proof of Theorem 2.12 of
[20], the mass concentration near the diagonal provides the extra ε1.4χ while
the current away from the diagonal is still positive. In our case, we perform
a truncation cutting the positive multiple of [
] to get ε1.4χ while expecting
that the remaining term ω1.5 is still in �̄χ,c. The details will be provided in
Sect. 3.

Step 3: Consider the set I of t ≥ 0 such that there exist a constant ct ≥ 0
and a smooth Kähler form ωt ∈ [(1 + t)ω0] satisfying

(cωt − (n − 1)χ) ∧ ωn−2
t > 0

and

trωt χ + ct
χn

ωn
t

= c.

By Theorem 1.14, it suffices to show that 0 ∈ I . When t is large enough, the
condition of Theorem 1.14 is satisfied. So t ∈ I . It is easy to see that if t ∈ I ,
then for nearby t , the condition of Theorem 1.14 is also satisfied. So I is open.
Again by Theorem 1.14, as long as t ∈ I , then for all t ′ ≥ t , t ′ ∈ I . Thus,
in order to prove the closedness of I , it suffices to show that if t ∈ I for all
t > t0, then t0 ∈ I . After replacing (1 + t0)ω0 with ω0, we can, without loss
of generality, assume that t0 = 0. In particular, we can apply Theorem 1.18 to
get ω1.5.

Let ν(x) be the Lelong number of ω1.5 at x . For ε1.8 > 0 to be determined,
let Y be the set

Y = {x : ν(x) ≥ ε1.8}.

By the result of Siu [37], Y is an analytic subvariety with dimension p < n.
If we assume that Y is smooth, then by the induction hypothesis, we can
apply Theorem 1.11 to Y to obtain a smooth function ϕ1.9 on Y such that
ω1.9 = ω0|Y + √−1∂∂̄ϕ1.9 ∈ �χ |Y ,c−(n−p)ε1.1 satisfies

trω1.9(χ |Y ) + c1.10
(χ |Y )p

ω
p
1.9

= c − (n − p)ε1.1

on Y for the constant c1.10 defined by

∫
Y

c1.10
(χ |Y )p

p! = (c − (n − p)ε1.1)

∫
Y

(ω0|Y )p

p! −
∫

Y
(χ |Y ) ∧ (ω0|Y )p−1

(p − 1)! ≥ 0.
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This implies that

(c − (n − p)ε1.1)ω
p
1.9 − pχ |Y ∧ ω

p−1
1.9 = c1.10(χ |Y )p ≥ 0.

Then for large enough C1.11,

ω1.12 = ω0 + √−1∂∂̄ϕ1.12 = ω0 + √−1∂∂̄(Proj∗Y ϕ1.9 + C1.11dχ(., Y )2)

satisfies
(

c − n − p

2
ε1.1

)
ωn−1
1.12 − (n − 1)χ ∧ ωn−2

1.12 > 0

on a tubular neighborhood of Y , where ProjY means the projection on Y . By
a generalization of the result of Błocki and Kołodziej [3], we can glue the
smoothing of ω1.5 outside Y and ω1.12 near Y into ω1.13 = ω0 + √−1∂∂̄ϕ1.13
satisfying

cωn−1
1.13 − (n − 1)χ ∧ ωn−2

1.13 > 0

on M . Then we are done by Theorem 1.14. In general, Y is singular, and we
need to use Hironaka’s desingularization theorem to resolve it.

The idea of Błocki and Kołodziej’s gluing method can be illustrated by
the following example: Consider −√−1

∑n
i=1 dzi ∧ dz̄i on the torus T 2n =

C
n/Z2n . Then we choose finitely many points p j on T 2n . The local potential

near p j is −|z − p j |2. Then
√−1∂∂̄ max{−|z − p1|2, −|z − p2|2, ...}

is in the zero class. The main benefit of the shift from [−√−1dzi ∧ dz̄i ] to
the zero class is that max{−|z − p1|2, −|z − p2|2, ...} cannot be affected by
the function −|z − p j |2 away from p j so that we do not need to worry about
the fact that −|z − p j |2 can be defined only locally.

Roughly speaking, in our case, the smoothing in different charts has only
small differences away from Y as a result of the smallness of the Lelong
number. It can be controlled if we shift the class from [ω0 − ε1.4χ ] to [ω0].
On the other hand, the maximum must be achieved by ϕ1.12 near Y because
the potential functions of the smoothing of ω1.5 are close to −∞ near Y . We
remark that Błocki and Kołodziej [3] provided an example showing that ε1.8
converges to 0 if ε1.4 converges to 0. Therefore, we need to choose the small
but non-zero constant ε1.8 corresponding to our small but non-zero constant
ε1.4 obtained in Step 2. The details of Step 3 will be provided in Sect. 4.
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2 The analysis part

In this section, we use the continuity method twice to prove Theorem 1.14.
First of all, for t ∈ [0, 1], define χt by

χt = tχ + (1 − t)
c

n
ω0

and define ft ≥ 0 as the constant such that

∫
M

ft
χn

t

n! = c
∫

M

ωn
0

n! −
∫

M
χt ∧ ωn−1

0

(n − 1)! = t

(
c
∫

M

ωn
0

n! −
∫

M
χ ∧ ωn−1

0

(n − 1)!

)
≥ 0.

Now we consider the set I consisting of all t ∈ [0, 1] such that there exists a
Kähler metric ωt = ω0 + √−1∂∂̄ϕt > 0 for smooth ϕt satisfying

trωt χt + ft
χn

t

ωn
t

= c

and

cωn−1
t − (n − 1)χt ∧ ωn−2

t > 0.

Then it is easy to see that 0 ∈ I . We remark that the equation is the same as

c
ωn

t

n! − χt ∧ ωn−1
t

(n − 1)! = ft
χn

t

n! .

The linearization is

1

(n − 1)!
(

cωn−1
t − (n − 1)χt ∧ ωn−2

t

)
∧ √−1∂∂̄

∂ϕt

∂t
= ∂

∂t

(
ft

χn
t

n!
)

+ ∂χt

∂t
∧ ωn−1

t

(n − 1)! .

Assume that t ∈ I , then the left-hand side is a second-order elliptic equation
on ∂ϕt

∂t . On the other hand, our hypothesis regarding the integral implies that the
integral of the right-hand side is 0. By standard elliptic theory and the implicit
function theorem, I is open when we replace the smoothness assumption of
ϕ with C100,α . However, standard elliptic regularity theory implies that any
C100,α solution is automatically smooth. So I is in fact open.

Ifwe are able to show the closedness of I , thenwehave provedTheorem1.14
for f replaced by f1, where f1 means ft when t = 1. We can use another
continuity path by fixingχ andω0 but choosing f̂s = s f1+(1−s) f . However,
it is the same as before except that f̂s > − 1

2n (1c )n−1 is a function instead of a
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constant. Thus, we only need to prove the a priori estimate of ωt by assuming
that ft > − 1

2n (1c )n−1 is a function because proving the openness and the

estimate of ω̂s corresponding to f̂s is similar to proving the statements for ωt .
We start with the following proposition which is analogous to Lemma 3.1 in
Song-Weinkove’s paper [40]:

Proposition 2.1 Assume that t ∈ I and ωt = ω0 + √−1∂∂̄ϕt is the corre-
sponding solution. Then there exist constants C2.1 and C2.2 depending only on
c, ω0, the C∞-norm of χt with respect to ω0, and the C2-norm of || ft || with
respect to ω0 such that

trχt ωt ≤ C2.2eC2.1(ϕt−inf ϕt ).

Proof In local coordinates, χt = √−1χi j̄ dzi ∧ dz j̄ and ωt = √−1gi j̄ dzi ∧
dz j̄ . Fix any point x and choose a χt -normal coordinate such that χi j̄ = δi j̄ ,
χi j̄,k = 0, χi j̄,k̄ = 0, and gi j̄ = λiδi j̄ at x , where the derivatives are all
ordinary derivatives. Then the equation is

∑
i, j

gi j̄χi j̄ + ft
det χαβ̄

det gαβ̄

= c.

Define an operator 
̃ by


̃u =
∑
i,l

⎛
⎝∑

j,k

gi j̄ gkl̄χk j̄ + ft
gil̄ det χαβ̄

det gαβ̄

⎞
⎠ u,i l̄ .

Then it is easy to see that 
̃ is independent of the choice of local coordinates.
At x ,


̃u =
∑

i

(
1

λ2i
+ ft

1

λi

1∏n
α=1 λα

)
u,i ī .

Since 1
λα

< c and ft > − 1
2n (1c )n−1, it is easy to see that

1

λ2i
+ ft

1

λi

1∏n
α=1 λα

> 0

for all i . So 
̃ is a second-order elliptic operator.
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Now we compute 
̃(log trχt ωt ) = 
̃
(
log
(∑

i, j χ i j̄ gi j̄

))
. It is equal to

∑
k

⎛
⎜⎜⎝
∑

i

(
giī,kk̄ +

(
χ i ī
)

,kk̄
λi

)
∑

i λi
− |∑i gi ī,k |2(∑

i λi
)2

⎞
⎟⎟⎠
(

1

λ2k
+ ft

1

λk

1∏n
α=1 λα

))

at x .
If we differentiate the equation

∑
i, j

gi j̄χi j̄ + ft
det χαβ̄

det gαβ̄

= c,

then we get

∑
i, j

gi j̄χi j̄,k −
∑

i, j,a,b

gib̄gab̄,k ga j̄χi j̄ + det χαβ̄

det gαβ̄

(
ft,k

+ ft

∑
i, j

(
χ i j̄χi j̄,k − gi j̄ gi j̄,k

)⎞⎠ = 0.

So

∑
k

⎛
⎝∑

i

1

λi
χi ī,kk̄ −

∑
i

1

λ2i
gi ī,kk̄ +

∑
i, j

1

λ2i

1

λ j

(
|gi j̄,k |2 + |gi j̄,k̄ |2

)

+ 1∏
α λα

⎛
⎝ ft

⎛
⎝|
∑

i

(
1

λi
gi ī,k

)
|2 +

∑
i

χi ī,kk̄ +
∑
i, j

1

λiλ j
|gi j̄,k |2 −

∑
i

1

λi
gi ī,kk̄

⎞
⎠

+ ft,kk̄ − ft,k̄

∑
i

(
1

λi
gi ī,k

)
− ft,k

∑
i

(
1

λi
gi ī,k̄

)))
= 0

at x .
By the Kähler condition, giī,kk̄ = gkk̄,i ī , gi j̄,k = gk j̄,i , and gi j̄,k̄ = gik̄, j̄ .

Using the bounds |χi ī,kk̄ |+|(χ i ī ),kk̄ |+| ft,k |+| ft,k̄ |+| ft,kk̄ |+| ft |+ 1
λi

< C2.3
for all i , k, it is easy to see that by combining the previous equation with the
expression for 
̃(log trχt ωt ), we obtain
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̃
(
log trχωt

) ≥ −C2.4 −
∑

k

( |∑i gi ī,k |2(∑
i λi
)2
)(

1

λ2k
+ ft

1

λk

1∏n
α=1 λα

)

+ 1∑
i λi

∑
k

⎛
⎝∑

i, j

1

λ2i

1

λ j

(
|gi j̄,k |2 + |gi j̄,k̄ |2

)
+ 1∏

α λα

(
ft

(
|
∑

i

(
1

λi
gi ī,k

)
|2

+
∑
i, j

1

λiλ j
|gi j̄,k |2

⎞
⎠− ft,k̄

∑
i

(
1

λi
gi ī,k

)
− ft,k

∑
i

(
1

λi
gi ī,k̄

)⎞
⎠
⎞
⎠ .

We remark that

| 1∏
α λα

ft,k̄

∑
i

(
1

λi
gi ī,k

)
| = | 1∏

α λα

ft,k

∑
i

(
1

λi
gi ī,k̄

)
|

= | ft,k̄ ||
∑

i

1∏
α λα

(
1

λi
gi ī,k

)
| ≤ C2.5

∑
i

| 1
λ2i

gi ī,k |

≤ 1

4

∑
i

1

λ3i
|giī,k |2 + C2.6

∑
i

1

λi
≤ 1

4

∑
i

1

λ3i
|giī,k̄ |2 + C2.7

and

− ft∏
α λα

|
∑

i

(
1

λi
gi ī,k

)
|2 ≤ − n ft∏

α λα

∑
i

1

λ2i
|giī,k |2 ≤ 1

2

∑
i

1

λ3i
|giī,k̄ |2.

So


̃
(
log trχt ωt

) ≥ −C2.8 −
∑

k

( |∑i gi ī,k |2(∑
i λi
)2
)(

1

λ2k
+ ft

1

λk

1∏n
α=1 λα

)

+ 1∑
i λi

∑
k

⎛
⎝∑

i, j

1

λ2i

1

λ j
|gi j̄,k |2 + ft∏

α λα

∑
i, j

1

λiλ j
|gi j̄,k |2

⎞
⎠ .

We have used

∑
i, j

1

λ2i

1

λ j
|gi j̄,k̄ |2 ≥

∑
i

1

λ3i
|giī,k̄ |2

here.
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By the Cauchy–Schwarz inequality and the fact that giī,k = gkī,i ,

∑
k

(
|
∑

i

gi ī,k |2
)(

1

λ2k
+ ft

1

λk

1∏n
α=1 λα

)

≤
∑
i, j,k

|giī,k ||g j j̄,k |
(

1

λ2k
+ ft

1

λk

1∏n
α=1 λα

)

≤
∑
i, j

√√√√∑
k

|giī,k |2
(

1

λ2k
+ ft

1

λk

1∏n
α=1 λα

)√√√√∑
k

|g j j̄,k |2
(

1

λ2k
+ ft

1

λk

1∏n
α=1 λα

)

=
⎛
⎝∑

i

√√√√∑
k

|giī,k |2
(

1

λ2k
+ ft

1

λk

1∏n
α=1 λα

)⎞
⎠

2

≤
(∑

i

λi

)∑
i

∑
k

|giī,k |2
λi

(
1

λ2k
+ ft

1

λk

1∏n
α=1 λα

)

=
(∑

i

λi

)∑
i,k

|gik̄,k |2
λk

(
1

λ2i
+ ft

1

λi

1∏n
α=1 λα

)

≤
(∑

i

λi

)∑
i, j,k

|gi j̄,k |2
λ j

(
1

λ2i
+ ft

1

λi

1∏n
α=1 λα

)
,

so 
̃(log trχt ωt ) ≥ −C2.9 at x . However, since x is arbitrary and 
̃ is inde-
pendent of the local coordinates, we see that 
̃(log trχt ωt ) ≥ −C2.9 on M .

If we choose ε2.10 < c
2n as a small constant such that

cωn−1
0 − (n − 1)χ ∧ ωn−2

0 > 2ε2.10ω
n−1
0 ,

then

cωn−1
0 − (n − 1)χt ∧ ωn−2

0 > 2ε2.10ω
n−1
0

by the definition of χt . Choose C2.1 as 2C2.9
ε2.10

, so at the maximal point of
log trχt ωt − C2.1ϕt ,

−
̃ϕt = −
∑
i,l

⎛
⎝∑

j,k

gi j̄ gkl̄χk j̄ + ft
gil̄ det χαβ̄

det gαβ̄

⎞
⎠(gil̄ − g0

i l̄

)
<

ε2.10

2
.

If

c −
∑
i,l

∑
j,k

gi j̄ gkl̄χk j̄ (2gil̄ − g0
i l̄
) < ε2.10,
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then by the proof of Lemma 3.1 of [40], trχt ωt ≤ C2.11. If

c −
∑
i,l

∑
j,k

gi j̄ gkl̄χk j̄

(
2gil̄ − g0

i l̄

)
≥ ε2.10,

then

−
∑
i,l

ft
gil̄ det χαβ̄

det gαβ̄

(
gil̄ − g0

i l̄

)
<

ε2.10

2
+
∑
i,l

∑
j,k

gi j̄ gkl̄χk j̄

(
gil̄ − g0

i l̄

)

≤ −ε2.10

2
+ c −

∑
i, j

gi j̄χi j̄ = −ε2.10

2
+ ft

det χαβ̄

det gαβ̄

,

so

ft∏
α λα

⎛
⎝∑

i,l

gil̄
(

gil̄ − g0
i l̄

)
+ 1

⎞
⎠ >

ε2.10

2
.

Using the fact that λi > 1
c , the term

∑
i,l gil̄(gil̄ − g0

i l̄
) + 1 is bounded, so∏

α λα < C2.12. Using the lower bound on λi again, this implies the upper
bound on λi , so trχt ωt =∑i λi ≤ C2.13 is also true.

In conclusion, we have proved that at the maximal point of the function
log trχt ωt − C2.1ϕt , trχt ωt is bounded by a constant C2.2 in all cases, where
C2.2 is defined as the maximum of C2.11 and C2.13. So

log trχt ωt − C2.1ϕt ≤ logC2.2 − C2.1 inf
M

ϕt .

This completes the proof of the proposition. ��
By adding a constant if necessary, we can without loss of generality assume

that supM ϕt = 0. Then we have the following C0 estimate:

Proposition 2.2

||ϕt ||C0 ≤ C2.14.

Moreover, C−1
2.15χt ≤ ωt ≤ C2.15χt .

Proof Lemma 3.3 and Lemma 3.4 and Proposition 3.5 of [40] used only the
inequality in Proposition 2.1. So they are still true in our case. ��
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Proposition 2.3 I is closed.

Proof First of all, we want to check the uniform ellipticity and the concavity
for the Evans-Krylov estimate. The equation is

−gi j̄χi j̄ − ft
det χαβ̄

det gαβ̄

= −c.

If we view it as a function in terms of gi j̄ ,χi j̄ , and ft , then the partial derivative
in the gab̄ direction is

gib̄ga j̄χi j̄ + ft
det χαβ̄

det gαβ̄

gab̄.

At x , it is equal to
(

1

λ2a
+ 1

λa

ft∏
i λi

)
δab̄.

It has a uniform upper bound and a uniform lower bound.
The second-order derivative in the gab̄ and gcd̄ direction is

−gid̄ gcb̄ga j̄χi j̄ − gib̄gad̄ gc j̄χi j̄ − ft
det χαβ̄

det gαβ̄

gab̄gcd̄ − ft
det χαβ̄

det gαβ̄

gad̄ gcb̄.

At x , when taking the product with wab̄wcd̄ and summing a, b, c, and d for
any matrix wi j̄ , we get

−
∑
a,b

1

λ2aλb
|wab̄|2 −

∑
a,b

1

λ2bλa
|wab̄|2 − ft∏

i λi

(∑
a

waā

λa

)2

− ft∏
i λi

∑
a,b

1

λaλb
|wab̄|2

≤ −
∑
a,b

|wab̄|2
λ2aλb

−
∑
a,b

|wab̄|2
λ2bλa

+ 1

2n

(
1

c

)n−1 1∏
i λi

(∑
a

waā

λa

)2

+ 1

2n

∑
a,b

|wab̄|2
λ2aλb

≤ −
∑
a,b

|wab̄|2
λ2bλa

+ 1

2

(
1

c

)n−1 1∏
i λi

∑
a

|waā

λa
|2 ≤ −

∑
a

|waā |2
λ3a

+ 1

2

∑
a

|waā |2
λ3a

≤ 0,

using the estimate λi ≥ 1
c as well as the assumption that ft > − 1

2n (1c )n−1.
Thus, if we replace the complex second derivatives with real second deriva-

tives, the uniform ellipticity and concavity for the Evans-Krylov estimate
[23,24,29,45] are satisfied. By checking Evans-Krylov’s estimate carefully, it
is easy to see that in our complex case, the estimate

[(ϕt )i j̄ ]Cα ≤ C2.16
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is still true.
By the standard elliptic estimate, ||ϕt ||C101,α is bounded. By the Arzela-

Ascoli theorem, if ti → t∞ and ti ∈ I , then a subsequence of ϕt converges to
ϕt∞ in the C100,α-norm. By Remark 1.16,

cωn−1
t∞ − (n − 1)χt ∧ ωn−2

t∞ > 0.

So by the standard elliptic regularity, ϕt∞ is smooth. So t∞ ∈ I . ��

3 Concentration of mass and its application

In this section, we prove Theorem 1.18. However, before doing that, we need
to figure out the correct definition of ω ∈ �̄χ,c when ω is only a current and it
might be impossible to take wedge products.

Recall the following definition of the smoothing:

Definition 3.1 Fix a smooth non-negative function ρ supported in [0,1] such
that

∫ 1

0
ρ(t)t2n−1Vol(∂ B1(0))dt = 1

and ρ is a positive constant near 0. For any δ > 0, the smoothing ϕδ is defined
by

ϕδ(x) =
∫
Cn

ϕ(x − y)δ−2nρ
(
| y

δ
|
)

dVoly .

We can define the smoothing of a current using a similar formula. It is easy to
see that the smoothing commutes with the derivatives. So

(√−1∂∂̄ϕ
)

δ
= √−1∂∂̄(ϕδ).

Recall that
√−1∂∂̄ϕ ≥ 0 if and only if

√−1∂∂̄ϕδ ≥ 0 for all δ > 0. In
analogy, we can define ω ∈ �̄χ,c for a closed positive (1,1) current ω using
smoothing. We remark that any closed positive (1,1) current can be written as√−1∂∂̄ acting on a real function locally.

Definition 3.2 Suppose that χ is a Kähler form with constant coefficients on
an open set O ⊂ C

n . Then we say that
√−1∂∂̄ϕ ∈ �̄χ,c on O if for any δ > 0,
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the smoothingϕδ satisfies
√−1∂∂̄ϕδ ∈ �̄χ,c on the set Oδ = {x : Bδ(x) ⊂ O},

which is, by definition, equivalent to

c
(√−1∂∂̄ϕδ

)n−1 − (n − 1)χ ∧
(√−1∂∂̄ϕδ

)n−2 ≥ 0.

We can also define this without assuming constant coefficients.

Definition 3.3 We say thatω ∈ �̄χ,c if on any open subset O of any coordinate
chart, for any Kähler form χ0 ≤ χ with constant coefficients, ω ∈ �̄χ0,c.

Remark 3.4 �̄χ0,c is convex. So if ω is smooth, then ω ∈ �̄χ,c on O point-
wise if and only if it is true on O in the sense of Definition 3.3. A useful
characterization for �̄χ,c is that a current

√−1∂∂̄ϕ on O ⊂ C
n is in �̄χ,c in

the sense of Definition 3.3 if and only if it is the weak limit of smooth forms√−1∂∂̄ϕi in �̄χ,ci for ci → c. In particular, this characterization implies that
Definition 3.3 is independent of the choice of the weight function ρ in the
smoothing. Another useful corollary of this characterization is that if χ1, χ2
are Kähler forms on M and ω1, ω2 are closed positive currents on M such that
χ1
c1

− χ2
c2

is non-negative definitive and ω2 − ω1 is also a positive current, then

ω1 ∈ �̄χ1,c1 in the sense of Definition 3.3 implies that ω2 ∈ �̄χ2,c2 in the sense
of Definition 3.3.

For simplicity, for any positive definite Hermitian n × n matrices A and B,
we define PB(A) as maxk(

∑
j �=k

1
λ j

), where λ j are the eigenvalues of B−1A.
As mentioned in Remark 1.3,

cωn−1 − (n − 1)χ ∧ ωn−2 ≥ 0,

Pχ(ω) ≤ c, and ω ∈ �̄χ,c are equivalent conditions.
For any (n − 1)-dimensional subspace V of Cn , there exists U ∈ C

n×(n−1)

such that Ū T U = In−1 and a basis of V consists of the columns of U . If
we view A as a bilinear form, then the restriction A|V of A on V can be
expressed as Ū T AU in the basis of V which consists of the columns of U .
Then tr(A|V )−1 = tr(Ū T AU )−1 depends only on A and V because a different
choice ofU justmeansmultiplyingU with a unitarymatrix on the right.Choose
U such that (Ū T AU )i j̄ = λ′

iδi j̄ and S ∈ C
n×n such that S̄T S = In and

Si j̄ = Ui j̄ for i = 1, 2, ..., n and j = 1, 2, ..., n − 1. Then by the Schur-Horn

theorem, the diagonal (λ′
1, ...λ

′
n−1, (S̄T AS)nn̄) of the matrix S̄T AS lies in the

convex hull of the vectors obtained by permuting the entries of (λ1, ..., λn),
where λi are the eigenvalues of A. By the convexity of

∑n−1
i=1

1
λ′

i
, it follows
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that

PIn (A) = max
k

⎛
⎝∑

j �=k

1

λ j

⎞
⎠ = max

U∈Cn×(n−1),Ū T U=In−1,(Ū T AU )i j̄ =λ′
i δi j̄

n−1∑
i=1

1

λ′
i

= max
U∈Cn×(n−1),Ū T U=In−1

(
tr(Ū T AU )−1

)
= max

V n−1⊂Cn

(
tr(A|V )−1) ,

which is similar to the Courant–Fischer–Weyl min-max principle.
Now we need a lemma:

Lemma 3.5 Suppose that A ∈ C
m×m, B ∈ C

n×n, C ∈ C
m×n are matrices

such that

[
A C

C̄T B

]
is Hermitian and positive definite. Then

PIm (A − C B−1C̄T ) + tr(B−1) ≤ PIm+n

([
A C

C̄T B

])
.

Proof It is easy to see that

[
Im −C B−1

O In

] [
A C

C̄T B

] [
Im O

−B−1C̄T In

]
=
[

A − C B−1C̄T O
O B

]
,

so A − C B−1C̄T is also positive definite. By taking the inverse, we obtain

[
Im O

−B−1C̄T In

] [
A − C B−1C̄T O

O B

]−1 [
Im −C B−1

O In

]
=
[

A C
C̄T B

]−1

.

After taking traces, the left-hand side equals

tr

((
A − C B−1C̄T

)−1
)

+ tr(B−1) + tr

(
B−1C̄T

(
A − C B−1C̄T

)−1
C B−1

)
.

Thus,

tr
((

A − C B−1C̄T )−1
)

+ tr(B−1
)

≤ tr

([
A C

C̄T B

]−1
)

.

Let U ∈ C
m×(m−1) be the matrix realizing the maximum in

PIm

(
A − C B−1C̄T

)
= max

U∈Cm×(m−1),Ū T U=Im−1

(
tr
(

Ū T
(

A − C B−1C̄T
)

U
)−1
)

.
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Then

PIm (A − C B−1C̄T ) + tr(B−1)

= tr
(

Ū T
(

A − C B−1C̄T
)

U )−1 + tr(B−1
)

= tr
(

Ū T AU − (Ū T C)B−1(C̄T U )
)−1 + tr(B−1)

≤ tr

([
Ū T AU Ū T C
C̄T U B

]−1
)

= tr

(([
Ū T O
O In

] [
A C

C̄T B

] [
U O
O In

])−1
)

≤ PIm+n

([
A C

C̄T B

])
.

This is the required estimate. ��
Now we start the proof of Theorem 1.18. By assumption, for any t > 0,

there exist a constant ct > 0 and a Kähler metric ωt ∈ [(1 + t)ω0] satisfying
cωn−1

t − (n − 1)χ ∧ ωn−2
t > 0

and

trωt χ + ct
χn

ωn
t

= c.

Consider ω0,M×M,t = π∗
1ωt + 1

c π∗
2χ and χM×M = π∗

1χ + π∗
2χ . At each

point, diagonalize them so that χi j̄ = δi j̄ and (ωt )i j̄ = λi,Mδi j̄ . Then the

eigenvalues on the product manifold are λ1,M , ...λn,M , 1
c , ..., 1

c . Their inverses
are 1

λ1,M
, ..., 1

λn,M
, c, ..., c. So the sum of them is at most (n +1)c because ct >

0. In particular, the sum of (2n-1) distinct elements among them is also at most
(n+1)c. Ifwe define ft,ε1.6,ε1.7 as in Sect. 1, then there exists a constant ε1.7 > 0
such that for ε1.6 small enough, ft,ε1.6,ε1.7 > − 1

4n ( 1
(n+1)c )

2n−1. Sowe can apply
Theorem 1.14 to get ωt,ε1.6,ε1.7 ∈ [ω0,M×M,t ] such that PχM×M (ωt,ε1.6,ε1.7) <

(n + 1)c and

trωt,ε1.6,ε1.7
χM×M + ft,ε1.6,ε1.7

χ2n
M×M

ω2n
t,ε1.6,ε1.7

= (n + 1)c.

For each point (x1, x2), we assume that z(1)
1 , ..., z(1)

n are the local coordinates

on M ×{x2} and that z(2)
1 , ..., z(2)

n are the local coordinates on {x1}× M . Then
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we can express ωt,ε1.6,ε1.7 as

ωt,ε1.6,ε1.7 = ω
(1)
t,ε1.6,ε1.7 + ω

(2)
t,ε1.6,ε1.7 + ω

(1,2)
t,ε1.6,ε1.7 + ω

(2,1)
t,ε1.6,ε1.7,

where

ω
(1)
t,ε1.6,ε1.7 =

n∑
i, j=1

√−1ω(1)
t,ε1.6,ε1.7,i j̄

dz(1)
i ∧ dz̄(1)

j ,

ω
(2)
t,ε1.6,ε1.7 =

n∑
i, j=1

√−1ω(2)
t,ε1.6,ε1.7,i j̄

dz(2)
i ∧ dz̄(2)

j ,

ω
(1,2)
t,ε1.6,ε1.7 =

n∑
i, j=1

√−1ω(1,2)
t,ε1.6,ε1.7,i j̄

dz(1)
i ∧ dz̄(2)

j ,

ω
(2,1)
t,ε1.6,ε1.7 = ω

(1,2)
t,ε1.6,ε1.7 .

After changing the definition of z(2)
i if necessary, we can assume that

π∗
2χ = √−1

n∑
i=1

dz(2)
i ∧ dz̄(2)

i

and

ω
(2)
t,ε1.6,ε1.7 = √−1

n∑
i=1

λi dz(2)
i ∧ dz̄(2)

i

at (x1, x2).
Now consider �t,ε1.6,ε1.7 defined as

�t,ε1.6,ε1.7

= cn−1∫
M nχn

(π1)∗
(
ωn

t,ε1.6,ε1.7 ∧ π∗
2χ
)

= cn−1∫
M nχn

(π1)∗
(

nω
(1)
t,ε1.6,ε1.7 ∧

(
ω

(2)
t,ε1.6,ε1.7

)n−1 ∧ π∗
2χ

)

+ cn−1∫
M nχn

(π1)∗(n(n − 1)ω(1,2)
t,ε1.6,ε1.7 ∧ ω

(2,1)
t,ε1.6,ε1.7 ∧ (ω

(2)
t,ε1.6,ε1.7)

n−2 ∧ π∗
2χ).
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At (x1, x2),

nω
(1)
t,ε1.6,ε1.7 ∧

(
ω

(2)
t,ε1.6,ε1.7

)n−1 ∧ π∗
2χ

=
n∑

i, j=1

√−1ω(1)
t,ε1.6,ε1.7,i j̄

dz(1)
i ∧ dz̄(1)

j ∧
(

n∑
α=1

1

λα

)(
ω

(2)
t,ε1.6,ε1.7

)n
,

and

n(n − 1)ω(1,2)
t,ε1.6,ε1.7 ∧ ω

(2,1)
t,ε1.6,ε1.7 ∧

(
ω

(2)
t,ε1.6,ε1.7

)n−2 ∧ π∗
2χ

= −
n∑

i, j,k=1

√−1ω(1,2)
t,ε1.6,ε1.7,i k̄

ω
(1,2)
t,ε1.6,ε1.7, j k̄

dz(1)
i ∧ dz̄(1)

j ∧ 1

λk

⎛
⎝∑

α �=k

1

λα

⎞
⎠(ω(2)

t,ε1.6,ε1.7

)n

≥ −
n∑

i, j,k=1

√−1ω(1,2)
t,ε1.6,ε1.7,i k̄

ω
(1,2)
t,ε1.6,ε1.7, j k̄

dz(1)
i ∧ dz̄(1)

j ∧ 1

λk

(
n∑

α=1

1

λα

)(
ω

(2)
t,ε1.6,ε1.7

)n
.

By Lemma 3.5,

Pπ∗
1 χ

⎛
⎝√−1

n∑
i, j=1

((
ω

(1)
t,ε1.6,ε1.7,i j̄

−
n∑

k=1

1

λk
ω

(1,2)
t,ε1.6,ε1.7,i k̄

ω
(1,2)
t,ε1.6,ε1.7, j k̄

)
dz(1)

i ∧ dz̄(1)
j

)⎞
⎠

≤ PχM×M

(
ωt,ε1.6,ε1.7

)− tr
ω

(2)
t,ε1.6,ε1.7

(π∗
2χ)

≤ (n + 1)c − tr
ω

(2)
t,ε1.6 ,ε1.7

(π∗
2χ).

We remark that there is an abuse of notation here by identifying M × {x2} or
{x1} × M with M . For example, π∗

1χ on M × {x2} is identified as χ on M .
If we view

cn−1∫
M nχn

(
tr

ω
(2)
t,ε1.6,ε1.7

π∗
2χ

)(
ω

(2)
t,ε1.6,ε1.7

)n

as a measure on {x1} × M , then it is easy to see that

cn−1∫
M nχn

∫
{x1}×M

(
tr

ω
(2)
t,ε1.6,ε1.7

π∗
2χ

)(
ω

(2)
t,ε1.6,ε1.7

)n

= cn−1∫
M χn

∫
{x1}×M

(π∗
2χ) ∧

(
ω

(2)
t,ε1.6,ε1.7

)n−1

= cn−1∫
M χn

∫
M

χ ∧
(χ

c

)n−1

= 1.
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By the monotonicity and convexity of Pχ ,

Pχ

(
�t,ε1.6,ε1.7

) ≤ (n + 1)c − cn−1∫
M nχn

∫
{x1}×M

(
tr

ω
(2)
t,ε1.6,ε1.7

π∗
2χ

)2 (
ω

(2)
t,ε1.6,ε1.7

)n

≤ (n + 1)c − cn−1∫
M nχn

(∫
{x1}×M

(
tr

ω
(2)
t,ε1.6,ε1.7

π∗
2χ

)(
ω

(2)
t,ε1.6,ε1.7

)n
)2

∫
{x1}×M

(
ω

(2)
t,ε1.6,ε1.7

)n

= (n + 1)c − ncn−1∫
M χn

(∫
M

( χ
c

)n−1 ∧ χ
)2

∫
M

( χ
c

)n
= c.

To get better estimates, we need to study the weak limit� of a subsequence
of ωn

t,ε1.6,ε1.7 and the weak limit �′ of a subsequence of ωn−1
t,ε1.6,ε1.7 when t and

ε1.6 converge to 0 and ε1.7 is fixed. Then both � and �′ are closed positive
currents. Let ξε3.2 be a non-decreasing family of functions with values in [0,1]
that equal to 1 on 
 and are supported in the region such that the χM×M -
distance to the diagonal 
 is smaller than ε3.2. Then ξε3.2� has a weak limit
1
� when ε3.2 goes to 0. By the Skoda–El Mir extension theorem (Theorem
III.2.3 of [16]), 1
� is a closed positive current. A similar statement is true
for 1
�′. By the support theorem (Corollary III.2.14 of [16]),

1
� = ε3.1[
]

for a non-negative constant ε3.1 (assuming that M is connected; otherwise we
consider each component separately). On the other hand, the support theorem
(Theorem III.2.10 of [16]) implies that

1
�′ = 0.

Up to here, we have not used the equation

trωt,ε1.6,ε1.7
χM×M + ft,ε1.6,ε1.7

χ2n
M×M

ω2n
t,ε1.6,ε1.7

= (n + 1)c.

By this equation, ω2n
t,ε1.6,ε1.7 ≥ ft,ε1.6,ε1.7

(n+1)c χ2n
M×M . So as in Proposition 2.6 of

[20], it is easy to see that the constant ε3.1 > 0.
Let ε1.4 = ε3.1

4
cn−1∫
M nχn and let ω1.5 be the weak limit of a subsequence

of �t,ε1.6,ε1.7 − ε1.4χ when t and ε1.6 converge to 0 and ε1.7 is fixed. Then
by Remark 3.4, it suffices to show that for any constant ε3.3 > 0, ω1.5 ∈
�̄χ,c+(n−1)ε3.3 in the sense of Definition 3.3. In other words, on any open
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subset O of any coordinate chart, for any Kähler form χ0 ≤ χ with constant
coefficients, for any δ > 0,we need to show that Pχ0((ω1.5)δ) ≤ c+(n−1)ε3.3,
where (ω1.5)δ is the smoothing of ω1.5 as in Definition 3.1. Since this is a local
problem, we can assume that χ

2 ≤ χ0 ≤ χ on O by shrinking O if necessary.

For any point x1 ∈ O , let ρx1,δ(y) = ρ(
|x1−y|

δ
) in local coordinates, where

ρ is the function used in Definition 3.1. Then since the weak limit of ξε3.2�
′

is 0 and �′ itself is the limit of ωn−1
t,ε1.6,ε1.7 , we see that

lim
ε3.2→0

lim
t,ε1.6→0

∫
M×M

(
ρx1,δ ◦ π1

) · ξε3.2 · π∗
1χ ∧ ωn−1

t,ε1.6,ε1.7 ∧ π∗
2χ ∧ π∗

1 η

= lim
ε3.2→0

lim
t,ε1.6→0

∫
M×M

(
ρx1,δ ◦ π1

) · ξε3.2 · π∗
1χ ∧

(
ω

(2)
t,ε1.6,ε1.7

)n−1 ∧ π∗
2χ ∧ π∗

1 η

= 0

for any (n−1, n−1)-form ηwith constant coefficients on O ⊂ C
n . Therefore,

for sufficiently small ε3.2, t , and ε1.6 depending on M , χ , ω0, �, O , χ0, δ, x1,
ε1.7, and ε3.3,

cn−1∫
M nχn

(
(π1)∗

(
ξε3.2 · π∗

1χ ∧
(
ω

(2)
t,ε1.6,ε1.7

)n−1 ∧ π∗
2χ

))
δ

− ε1.4ε3.3χ0

is negative definite at x1.
Similarly, using the fact that 1
� = ε3.1[
], for sufficiently small ε3.2, t ,

and ε1.6 depending on M , χ , ω0, �, O , χ0, δ, x1, ε1.7, and ε3.3,

cn−1∫
M nχn

(
(π1)∗

(
ξε3.2 · ωn

t,ε1.6,ε1.7 ∧ π∗
2χ
))

δ
− 3ε1.4χ0

is positive definite at x1.
For any Kähler form ω restricted to the first n coordinates of M × M , after

choosing good coordinates, assume that

π∗
1χ = √−1

n∑
i=1

dz(1)
i ∧ dz̄(1)

i

and

ω = √−1
n∑

i=1

λi dz(1)
i ∧ dz̄(1)

i .
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We define the truncation Tπ∗
1 χ

ε3.3

(ω) by

(
Tπ∗

1 χ

ε3.3

(ω)

)

i j̄

= √−1
n∑

i=1

min{λi ,
1

ε3.3
}dz(1)

i ∧ dz̄(1)
i .

We remark that the truncation is independent of the choice of local coordinates.

Now consider the truncation �
(
π∗
1 χ

ε3.3
)

t,ε1.6,ε1.7 defined as

cn−1∫
M nχn

(π1)∗

(
Tπ∗

1 χ

ε3.3

(
ω̃

(1)
t,ε1.6,ε1.7

)
∧
(
ω

(2)
t,ε1.6,ε1.7

)n−1 ∧ π∗
2χ

)
,

where the (1,1)-form ω̃
(1)
t,ε1.6,ε1.7 is defined by

nω
(1)
t,ε1.6,ε1.7 ∧

(
ω

(2)
t,ε1.6,ε1.7

)n−1 ∧ π∗
2χ

+ n(n − 1)ω(1,2)
t,ε1.6,ε1.7 ∧ ω

(2,1)
t,ε1.6,ε1.7 ∧

(
ω

(2)
t,ε1.6,ε1.7

)n−2 ∧ π∗
2χ

= ω̃
(1)
t,ε1.6,ε1.7 ∧

(
ω

(2)
t,ε1.6,ε1.7

)n−1 ∧ π∗
2χ.

Then

�t,ε1.6,ε1.7 − �

(
π∗
1 χ

ε3.3

)

t,ε1.6,ε1.7

≥ cn−1∫
M nχn

(π1)∗
(

ξε3.2

(
ω̃

(1)
t,ε1.6,ε1.7 − π∗

1χ

ε3.3

)
∧
(
ω

(2)
t,ε1.6,ε1.7

)n−1 ∧ π∗
2χ

)
.

So

(
�t,ε1.6,ε1.7

)
δ
−
⎛
⎝�

(
π∗
1 χ

ε3.3

)

t,ε1.6,ε1.7

⎞
⎠

δ

− 2ε1.4χ0

is positive definite at x1.
It is easy to see that

Pπ∗
1 χ

(
Tπ∗

1 χ

ε3.3

(ω)

)
− Pπ∗

1 χ(ω) ≤ (n − 1)ε3.3
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for any (1,1)-formω on the first n coordinates of M × M . So using the estimate
of Pχ(�t,ε1.6,ε1.7), it is easy to see that

Pχ

⎛
⎝�

(
π∗
1 χ

ε3.3

)

t,ε1.6,ε1.7

⎞
⎠ ≤ c + (n − 1)ε3.3.

By monotonicity of Pχ , and the property that 1
2χ ≤ χ0 ≤ χ , we see that

Pχ0

((
�t,ε1.6,ε1.7

)
δ
− ε1.4χ

) ≤ c + (n − 1)ε3.3

at x1. This completes the proof of Theorem 1.18.

4 Regularization

In this section, we prove Theorem 1.11. By Remark 1.13, the n = 1 and n = 2
cases have been proved. By induction, we can assume that Theorem 1.11 has
been proved in dimensions 1, 2, ..., n−1. By Sect. 1, we can in addition assume
that the conditions for Theorem 1.18 are satisfied. So by Theorem 1.18, there
exist a constant ε1.4 > 0 and a currentω1.5 ∈ [ω0−ε1.4χ ] such thatω1.5 ∈ �̄χ,c
in the sense of Definition 3.3.

Pick a small enough constant ε4.1 < 1
10000 such that

ω0 − 100ε4.1ω0 ≥ (1 + ε4.1)
2 (ω0 − ε1.4χ) .

Then there exists a currentω4.2 = ω0−100ε4.1ω0+
√−1∂∂̄ϕ4.2 ∈ �̄χ, c

(1+ε4.1)
2

in the sense of Definition 3.3 by Remark 3.4.
Now we pick a finite number of coordinate balls B2r (xi ) such that Br (xi )

is a cover of M . Moreover, we require that

χ i
0 < χ < (1 + ε4.1) χ i

0

on B2r (xi ) for Kähler forms χ i
0 with constant coefficients. We also assume

that

(1 − ε4.1)
√−1∂∂̄|z|2 ≤ ω0 ≤ (1 + ε4.1)

√−1∂∂̄|z|2

on B2r (xi ). Let ϕi
ω0

be a potential such that
√−1∂∂̄ϕi

ω0
= ω0 on B2r (xi ).

Then we also assume that

|ϕi
ω0

− |z|2| ≤ ε4.1r
2.
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Let ϕi
δ be the smoothing of ϕ4.2 + (1− 100ε4.1)ϕi

ω0
. When δ < r

5 , this is well
defined on B 9

5 r (xi ). By assumption, it is easy to see that

c

(1 + ε4.1)2

(√−1∂∂̄ϕi
δ

)n−1 − (n − 1)χ i
0 ∧
(√−1∂∂̄ϕi

δ

)n−2 ≥ 0.

So

c

1 + ε4.1

(√−1∂∂̄ϕi
δ

)n−1 − (n − 1)χ ∧
(√−1∂∂̄ϕi

δ

)n−2
> 0.

Now define the function ϕi
4.3 from B 9

5 r (xi ) to R as ϕi
δ − ϕi

ω0
so that we can

study the regularized maximum ϕ4.4 of ϕi
4.3.

Recall the definition of the regularized maximum in Lemma I.5.18 of [16].
Let θ be a nonnegative smooth function onRwith support in [−1, 1] such that∫
R

θ(h)dh = 1 and
∫
R

hθ(h)dh = 0. Let ηi be positive numbers smaller than
ε4.1r2

3 . Then the regularized maximum ϕ4.4 of ϕi
4.3 is defined by

ϕ4.4 = Mη

(
ϕ1
4.3, ...ϕ

I
4.3

)
=
∫
RI

I
max
i=1

{ϕi
4.3 + hi }

I∏
i=1

θ

(
hi

ηi

)
dh1...dhI ,

where I is the number of points xi , and ϕi
4.3 is defined as−∞ outside B 9

5 r (xi ).
Our goal is to show that for any x ∈ M ,

ε4.1r
2 + max{

i :x∈B 9
5 r

(xi )\B 8
5 r

(xi )

}ϕi
4.3(x) < max{

i :x∈Br (xi )
}ϕi

4.3(x).

If this is true, then themaximumwill never be achieved by the functionϕi
4.3+hi

outside B 8
5 r (xi ). So by Lemma I.5.18 (c) of [16], we can discard the function

ϕi
4.3 + hi outside B 8

5 r (xi ). Thus, without loss of generality, we can assume

that all ϕi
4.3 under consideration are smooth. It follows that the function ϕ4.4 is

smooth by Lemma I.5.18 (a) of [16]. Moreover, ω4.4 = ω0 +√−1∂∂̄ϕ4.4 > 0
by Lemma I.5.18 (e) of [16].

Now we claim that cωn−1
4.4 − (n − 1)χ ∧ ωn−2

4.4 > 0. In fact,

∂2ϕ4.4

∂z j∂ z̄k
=

I∑
a,b=1

∂2Mη

∂ϕa
4.3∂ϕb

4.3

∂ϕa
4.3

∂z j

∂ϕb
4.3

∂ z̄k
+

I∑
a=1

∂Mη

∂ϕa
4.3

∂2ϕa
4.3

∂z j∂ z̄k
.
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Since Mη(ϕ
1
4.3 + ξ, ...ϕ I

4.3 + ξ) = Mη(ϕ
1
4.3, ...ϕ

I
4.3) + ξ for any constant ξ

by Lemma I.5.18 (d) of [16], it follows that
∑I

a=1
∂ Mη

∂ϕa
4.3

= 1. So the term
∑I

a=1
∂ Mη

∂ϕa
4.3

∂2ϕa
4.3

∂z j ∂ z̄k is a weighted average of
∂2ϕa

4.3
∂z j ∂ z̄k . On the other hand, Mη is

convex by Lemma I.5.18 (a) of [16]. So by the monotonicity and convexity of
Pχ , Pχ(ω4.4) < c

1+ε4.1
. Thus, we are done if

ε4.1r
2 + max{

i :x∈B 9
5 r

(xi )\B 8
5 r

(xi )

}ϕi
4.3(x) < max{

i :x∈Br (xi )
}ϕi

4.3(x).

In general,

ε4.1r
2 + max{

i :x∈B 9
5 r

(xi )\B 8
5 r

(xi )

}ϕi
4.3(x) < max{

i :x∈Br (xi )
}ϕi

4.3(x)

is not true, so ω4.4 may not be smooth. However, using the proof of the results
of Błocki and Kołodziej [3], this is in fact true if the Lelong number is small
enough. The details constitute the rest of this section.

It is easy to see that if x ∈ B 9
5 r (xi )∩ B 9

5 r (x j ) and δ < r
10 , Bi

δ
2
(x) ⊂ B j

δ (x),

where Bi
δ
2
(x) means the coordinate ball with center x and radius δ

2 using the

coordinates corresponding to xi , and the meaning for B j
δ (x) is similar. For any

δ < r
20 and x ∈ B 9

5 r (xi ), we define ϕ̂i
δ by

ϕ̂i
δ(x) = sup

Bi
δ(x)

(
ϕ4.2 + (1 − 100ε4.1)ϕ

i
ω0

)

and νi (x, δ) by

νi (x, δ) =
ϕ̂i

r
16

(x) − ϕ̂i
δ(x)

log
( r
16

)− log δ
.

Then νi (x, δ) is monotonically non-decreasing in δ. Recall that the Lelong
number is defined by

νi (x) = lim
δ→0

νi (x, δ).
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It is independent of i and can instead be denoted as ν(x). Recall the definition
of ρ in Definition 3.1. Let

ε4.5 = ε4.1r2

5
(∫ 1

0 log
(1

t

)
Vol(∂ B1(0))t2n−1ρ(t)dt + log 2 + 32n−1

22n−3 log 2
) .

Then by the result of Siu [37], the set Y = {x : ν(x) ≥ ε4.5} is an analytic
subvariety.

For simplicity, we assume that Y is smooth. The singular case will be
addressed at the end of this section.

Since Y is smooth by our assumption, as in the outline of the proof in Sect.
1, there exists a smooth function ϕ1.12 in a neighborhood O of Y such that

(
c − n − p

2
ε1.1

)
ωn−1
1.12 − (n − 1)χ ∧ ωn−2

1.12 > 0

on O . Now we pick smaller neighborhoods O ′ and O ′′ such that O ′ ⊂ O and
O ′′ ⊂ O ′. We need to prove the following proposition:

Proposition 4.1 (1) For small enough δ < r
20 , if

max{
i :x∈B 9

5 r
(xi )

} νi (x, δ) ≤ 2ε4.5,

then

sup
O ′

ϕ1.12 + 3ε4.5 log δ + ε4.1r
2 < max{

i :x∈B 9
5 r

(xi )

}(ϕi
δ(x) − ϕi

ω0
(x)).

(2) For small enough δ < r
20 , if

inf
O ′

ϕ1.12 + 3ε4.5 log δ − ε4.1r
2 ≤ max{

i :x∈B 9
5 r

(xi )

}
(
ϕi

δ(x) − ϕi
ω0

(x)
)

,

then

max{
i :x∈B 9

5 r
(xi )

} νi (x, δ) < 4ε4.5.
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(3) For small enough δ < r
20 , if

max{
i :x∈B 9

5 r
(xi )

} νi (x, δ) ≤ 4ε4.5.

then

max{
i :x∈B 9

5 r
(xi )\B 8

5 r
(xi )

}
(
ϕi

δ(x) − ϕi
ω0

(x)
)

+ ε4.1r2 < max{
i :x∈Br (xi )

}
(
ϕi

δ(x) − ϕi
ω0

(x)
)

.

If Proposition 4.1 is true, for small enough δ, we can define ϕ1.13 as the
regularized maximum of ϕ1.12(x)+3ε4.5 log δ on O ′ and ϕi

δ −ϕi
ω0

on B 9
5 r (xi ).

Since ν(x) < ε4.5 for x /∈ Y , for small enough δ, max{i :x∈B 9
5 r

(xi )} νi (x, δ) ≤
2ε4.5 for all x /∈ O ′′. So by Proposition 4.1 (1), we do not need to worry about
the discontinuity near the boundary of O ′. By Proposition 4.1 (2) and (3), there
is also no need to worry about the discontinuity near the boundary of B 9

5 r (xi ).
In conclusion, ϕ1.13 will be smooth and satisfy

cωn−1
1.13 − (n − 1)χ ∧ ωn−2

1.13 > 0

on M as long as Y is smooth and Proposition 4.1 is true.
In order to prove Proposition 4.1, we need the following lemma of Błocki

and Kołodziej [3].

Lemma 4.2 For any δ < r
20 and x ∈ B 9

5 r (xi ), the following estimates hold:

(1) 0 ≤ ϕ̂i
δ − ϕ̂i

δ
a

≤ νi (x, δ) log a for all a ≥ 1, and

(2) 0 ≤ ϕ̂i
δ − ϕi

δ ≤ νi (x, δ)
(∫ 1

0 log
(1

t

)
Vol (∂ B1(0)) t2n−1ρ(t)dt

+32n−1

22n−3 log 2
)

.

Proof For readers’ convenience, we almost line by line copy the paper [3]
here:

(1) The estimate 0 ≤ ϕ̂i
δ − ϕ̂i

δ
a

≤ νi (x, δ) log a follows from the logarith-

mical convexity of ϕ̂i
δ and the definition of νi (x, δ).

(2) Define another regularization ϕ̃i
δ by

ϕ̃i
δ(x) = 1

Vol(∂ Bδ(x))

∫
∂ Bδ(x)

(
ϕ4.2 + (1 − 100ε4.1)ϕ

i
ω0

)
dVol.
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Then by the Poisson kernel for subharmonic functions [3] and the estimate in
(1),

ϕ̂i
tδ(x) − ϕ̃i

tδ(x) ≤ 32n−1

22n−2

(
ϕ̂i

tδ − ϕ̂i
tδ/2

)
≤
(
32n−1

22n−2 log 2

)
νi (x, tδ)

for all t ∈ (0, 1]. By monotonicity,

ϕ̂i
tδ(x) − ϕ̃i

tδ(x) ≤
(
32n−1

22n−2 log 2

)
νi (x, tδ) ≤

(
32n−1

22n−2 log 2

)
νi (x, δ).

If we define

ρ̃(t) = Vol(∂ B1(0))t
2n−1ρ(t),

then
∫ 1
0 ρ̃(t) = 1. So

ϕ̃i
δ − ϕi

δ =
∫ 1

0

(
ϕ̃i

δ − ϕ̃i
tδ

)
ρ̃(t)dt ≤

∫ 1

0

(
ϕ̂i

δ − ϕ̂i
tδ

)
ρ̃(t)dt +

(
32n−1

22n−2 log 2

)
νi (x, δ).

By the estimate in (1) again,

ϕ̂i
δ − ϕ̂i

tδ ≤ νi (x, δ) log

(
1

t

)
.

The other side of inequality 0 ≤ ϕ̂i
δ − ϕi

δ is trivial. ��
It is easy to see that there exists a constant C4.6 such that for any δ < r

20
and x ∈ B 9

5 r (xi ), νi (x, δ) < C4.6. Now we are ready to prove Proposition 4.1.

(1) Suppose that δ < r
20 , x ∈ B 9

5 r (xi ), and

νi (x, δ) =
ϕ̂i

r
16

(x) − ϕ̂i
δ(x)

log
( r
16

)− log δ
≤ 2ε4.5.

Then

ϕ̂i
δ(x) ≥ ϕ̂i

r
16

(x) + 2ε4.5
(
log δ − log

( r

16

))
≥ −C4.7 + 2ε4.5 log δ.

By Lemma 4.2 (2),

ϕi
δ(x) ≥ −C4.8 + 2ε4.5 log δ.
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It is easy to see that for δ small enough,

sup
O ′

ϕ1.12 + 3ε4.5 log δ + ε4.1r
2 < ϕi

δ(x) − ϕi
ω0

(x)

because ϕi
ω0

is uniformly bounded on B 9
5 r (xi ).

(2) Suppose that δ < r
20 , x ∈ B 9

5 r (xi ), and

inf
O ′

ϕ1.12 + 3ε4.5 log δ − ε4.1r
2 ≤ ϕi

δ(x) − ϕi
ω0

(x).

Then as before

ϕ̂i
δ(x) ≥ ϕi

δ(x) ≥ −C4.9 + 3ε4.5 log δ.

By Lemma 4.2 (1) and the definition of ϕ̂i
δ
2
(x),

sup
Bi

δ
2
(x)

ϕ4.2 ≥ −C4.10 + 3ε4.5 log δ.

If x ∈ B 9
5 r (x j ), then Bi

δ
2
(x) ⊂ B j

δ (x) and therefore

sup
B j

δ (x)

ϕ4.2 ≥ sup
Bi

δ
2
(x)

ϕ4.2 ≥ −C4.10 + 3ε4.5 log δ.

By the definition of ϕ̂
j
δ (x) and ν j (x, δ), it is easy to see that ν j (x, δ) < 4ε4.5

if δ is small enough.
(3) Suppose that δ < r

20 , x ∈ (B 9
5 r (xi ) \ B 8

5 r (xi )) ∩ Br (x j ), and

max
{i :x∈B 9

5 r
(xi )}

νi (x, δ) ≤ 4ε4.5.

Then

ϕ̂i
δ
2
(x) − ϕi

ω0
(x) ≤ sup

Bi
δ
2
(x)

ϕ4.2 + 2ε4.1r
2+(2r + δ)2−(2r)2−100ε4.1

(
7

5
r

)2
,

and

sup
B j

δ (x)

ϕ4.2 ≤ ϕ̂
j
δ (x) − ϕ j

ω0
(x) + 2ε4.1r

2+(2r + δ)2−(2r)2+100ε4.1

(
6

5
r

)2
.
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By Lemma 4.2 (1),

ϕ̂i
δ − ϕ̂i

δ
2

≤ νi (x, δ) log 2 ≤ 4ε4.5 log 2.

By Lemma 4.2 (2), ϕi
δ ≤ ϕ̂i

δ , and

ϕ̂
j
δ − ϕ

j
δ ≤ 4ε4.5

(∫ 1

0
log

(
1

t

)
Vol (∂ B1(0)) t2n−1ρ(t)dt + 32n−1

22n−3 log 2

)
.

Since supBi
δ
2
(x) ϕ4.2 ≤ sup

B j
δ (x)

ϕ4.2, by summing everything together, for δ

small enough, ϕi
δ(x) − ϕi

ω0
(x) + ε4.1r2 < ϕ

j
δ (x) − ϕ

j
ω0(x). We are done if Y

is smooth.
In general, Y is singular. By Hironaka’s desingularization theorem, there

exists a blow-up M̃ of M obtained by a sequence of blow-ups with smooth
centers such that the proper transform Ỹ of Y is smooth. Without loss of
generality, assume thatwe only need to blowup once. Letπ be the projection of
M̃ on M . Let E be the exceptional divisor. Let s be the defining section of E . Let

h be any smoothmetric on the line bundle [E], so
√−1
2π ∂∂̄ log |s|2h = [E]+ω4.11

by the Poincaré-Lelong equation. Then it is well known that the smooth (1,1)-
form ω4.11 ∈ −[E] on M̃ and ω4.11 > −C4.12π

∗ω0. For example, see Lemma
3.5 of [20] for the explanation. Define ω4.13 = C4.12π

∗ω0 +ω4.11. Then ω4.13
is a Kähler form on M̃ .

Lemma 4.3 Let C4.14 = 6n
ε1.1

. Then for all small enough t and q-dimensional

analytic subvarieties V of M̃, as long as q < n,

∫
V

(
c − n − q

3n
ε1.1

) (
(1 + C4.14t)π∗ω0 + C4.14t2ω4.13

)q

≥
∫

V
q
(
(1 + C4.14t)π∗ω0 + C4.14t2ω4.13

)q−1 ∧ (π∗χ + t2ω4.13
)
.

Proof By assumption,

∫
V

(
c − ε1.1

3

)
π∗ωq

0 − qπ∗ωq−1
0 ∧ π∗χ =

∫
π(V )

(
c − ε1.1

3

)
ω

q
0 − qω

q−1
0 ∧ χ ≥ 0.

So

∫
V

(
c − ε1.1

3

) (
(1 + C4.14t)π∗ω0

)q − q
(
(1 + C4.14t)π∗ω0

)q−1 ∧ ((1 + C4.14t)π∗χ
) ≥ 0.
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It suffices to show that

∫
V

(
c − ε1.1

3

) (
(1 + C4.14t)π∗ω0 + C4.14t2ω4.13

)q

− q
(
(1 + C4.14t)π∗ω0 + C4.14t2ω4.13

)q−1 ∧ (π∗χ + t2ω4.13
)

≥
∫

V

(
c − ε1.1

3

) (
(1 + C4.14t)π∗ω0

)q

− q
(
(1 + C4.14t)π∗ω0

)q−1 ∧ ((1 + C4.14t)π∗χ
)
.

Since it depends only on the cohomology classes, we want to replace ω0
with a better representative in its cohomology class. We remark that π(E) is
smooth by assumption. So we can apply Theorem 1.11 to π(E). As in Sect.
1, there exists a smooth function ϕ4.15 on a neighborhood O4.16 of π(E) in M
such that ω4.15 = ω0 + √−1∂∂̄ϕ4.15 satisfies

(
c − ε1.1

2

)
ωn−1
4.15 − (n − 1)χ ∧ ωn−2

4.15 > 0

on O4.16. Define ϕ4.17 = π∗
log |s|2h
4πC4.12

on M \ π(E). Recall the definition of the
regularizedmaximum inLemma I.5.18 of [16]. For large enoughC4.18, letϕ4.19
be the regularizedmaximumof ϕ4.17+C4.18 andϕ4.15. Thenϕ4.19 is smooth on
M and ω4.19 = ω0 +√−1∂∂̄ϕ4.19 > 0 on M . Moreover, there exists a smaller
neighborhood O4.20 of π(E) such that ϕ4.19 = ϕ4.15 on O4.20 ⊂ O4.16.

After replacing ω0 by ω4.19, it suffices to show that

(
c − ε1.1

3

) q∑
i=1

q!
i !(q − i)!

(
(1 + C4.14t)π∗ω4.19

)q−i ∧ (C4.14t2ω4.13
)i

− q
q∑

i=1

(q − 1)!
(q − i)!(i − 1)!

(
(1 + C4.14t)π∗ω4.19

)q−i ∧ Ci−1
4.14(t

2ω4.13)
i

− q
q−1∑
i=1

(q − 1)!
i !(q − 1 − i)!

(
(1 + C4.14t)π∗ω4.19

)q−1−i

∧ (C4.14t2ω4.13
)i ∧ (1 + C4.14t)π∗χ

+ q
(
(1 + C4.14t)π∗ω4.19 + C4.14t2ω4.13

)q−1 ∧ C4.14tπ∗χ
≥ 0.
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By definition of C4.14,

q
(q − 1)!

(q − i)!(i − 1)! <
ε1.1

6

q!
i !(q − i)!C4.14

for all i = 1, 2, ..., q. So we can combine the first term and the second term.
If the point is inside π−1(O4.20), then for all i = 1, 2, ..., q − 1,

(
c − ε1.1

2

) (
π∗ω4.19

)q−i ≥ (q − i)
(
π∗ω4.19

)q−1−i ∧ π∗χ

because
(

c − ε1.1

2

)
ωn−1
4.19 ≥ (n − 1)ωn−2

4.19 ∧ χ

on O4.20. So the sumof the first three terms is non-negative if i = 1, 2, ..., q−1.
Therefore we are done because the i = q term and the fourth term are non-
negative. If the point is outside π−1(O4.20), then there exists a constant C4.21
such that

C4.21π
∗χ > ω4.13 > C−1

4.21π
∗χ

and

C4.21π
∗χ > π∗ω4.19 > C−1

4.21π
∗χ

on M̃ \ π−1(O4.20). The only first-order term in t is

qπ∗ωq−1
4.19 ∧ C4.14tπ∗χ.

Since it is positive, for small enough t , we also get the required inequality. ��
Now we pick t > 0 such that t satisfies Lemma 4.3 and

c

1 + C4.14t + C4.12C4.14t2
> max

{
c − ε1.1

4n
,

c

1 + ε4.1

}
.

We apply Theorem 1.11 to the lower-dimensional smooth manifold Ỹ with the
Kähler forms (1+C4.14t)π∗ω0 +C4.14t2ω4.13 and π∗χ + t2ω4.13. As in Sect.
1, there exists a smooth function ϕ4.22 on a neighborhood of Ỹ in M̃ such that

ω4.22 = (1 + C4.14t)π∗ω0 + C4.14t2ω4.13 + √−1∂∂̄ϕ4.22
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satisfies
(

c − ε1.1

4n

)
ωn−1
4.22 − (n − 1)

(
π∗χ + t2ω4.13

) ∧ ωn−2
4.22 > 0

near Ỹ . Similarly, let ϕ4.23 be the potential function near E . Then for a large
enough constant C4.24, we define ϕ4.25 as the regularized maximum of ϕ4.23
and ϕ4.22 + C−1

4.24π
∗ϕ4.17 + C4.24 and define ω4.25 by

ω4.25 = (1 + C4.14t)π∗ω0 + C4.14t2ω4.13 + √−1∂∂̄ϕ4.25.

Then
(

c − ε1.1

4n

)
ωn−1
4.25 − (n − 1)

(
π∗χ + t2ω4.13

) ∧ ωn−2
4.25 > 0

on a neighborhood O of Ỹ ∪ E in M̃ . Since t2ω4.13 > 0, it is easy to see that

(
c − ε1.1

4n

)
(π∗ω4.25)

n−1 − (n − 1)χ ∧ (π∗ω4.25)
n−2 > 0

on π(O \ E). Now we choose neighborhoods O ′ and O ′′ of Y ∪ π(E) in M
such that O ′ ⊂ π(O) and O ′′ ⊂ O ′. Then as before, for small enough δ,
we can define ϕ4.26 as the regularized maximum of π∗ϕ4.25 + 3ε4.5 log δ on
O ′ \ π(E) and ϕi

δ − ϕi
ω0

on B 9
5 r (xi ). Then ϕ4.26 is smooth and bounded on

M \ π(E). Moreover, for

ω4.26 = (1 + C4.14t)ω0 + C4.14t2π∗ω4.13 + √−1∂∂̄ϕ4.26

= (1 + C4.14t + C4.12C4.14t2)ω0 + C4.14t2π∗ω4.11 + √−1∂∂̄ϕ4.26,

it is easy to see that

(
max

{
c − ε1.1

4n
,

c

1 + ε4.1

})
ωn−1
4.26 − (n − 1)χ ∧ ωn−2

4.26 > 0

on M \ π(E) because C4.14tω0 + C4.14t2π∗ω4.13 > 0. Now we define

ω4.27 = ω4.26

1 + C4.14t + C4.12C4.14t2
= ω0 + C4.14t2π∗ω4.11 + √−1∂∂̄ϕ4.26

1 + C4.14t + C4.12C4.14t2
,

so by the choice of t ,

cωn−1
4.27 − (n − 1)χ ∧ ωn−2

4.27 > 0
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on M \π(E). For a large enough constantC4.28, define ϕ4.29 as the regularized
maximum of

C4.14t2

2π π∗ log |s|2h + ϕ4.26

1 + C4.14t + C4.12C4.14t2
+ C4.28

and ϕ4.15. Then ϕ4.29 is smooth on M , andω4.29 = ω0+√−1∂∂̄ϕ4.29 satisfies

cωn−1
4.29 − (n − 1)χ ∧ ωn−2

4.29 > 0

on M . We are done.

5 Deformed Hermitian–Yang–Mills equation

In this section, we prove Theorem 1.7. As in the J-equation case, for simplicity,
we define the following notations:

Definition 5.1 Define P : Rn → (0, (n − 1)π) and Q : Rn → (0, nπ) by

P(λ1, ...λn) = n
max
i=1

⎛
⎝∑

k �=i

arccot(λk)

⎞
⎠

and

Q(λ1, ...λn) =
n∑

k=1

arccot(λk).

Let 0 < θ0 < �0 < π be any constants. Define �θ0,�0 to be the subset of Rn

such that P is smaller than θ0 and Q is smaller than �0. Its closure is denoted
by �̄θ0,�0 .

Let A, B be Hermitian matrices. Assume that A is positive definite. Then
PA(B) is defined as P(λ1, ...λn), where λi are the eigenvalues of the matrix
A−1B. The function Q A(B) is defined as Q(λ1, ...λn). The set �A,θ0,�0 is
defined as the set of all matrices B such that (λ1, ..., λn) ∈ �θ0,�0 . Its closure
is denoted by �̄A,θ0,�0 .

If (1) of Theorem 1.7 holds, then for any smooth test family ωt,0, we can
define another family ωt,ϕ = ωt,0 + √−1∂∂̄ϕ. Then Pχ(ωt,ϕ) < Pχ(ωϕ) ≤
θ0. So by Lemma 8.2 of [12],
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d

dt

∫
V

(
Re
(
ωt,ϕ + √−1χ

)p − cot(θ0)Im
(
ωt,ϕ + √−1χ

)p)

=
∫

V
p

(
Re
(
ωt,ϕ + √−1χ

)p−1 − cot(θ0)Im
(
ωt,ϕ + √−1χ

)p−1
)

∧ d

dt
ωt,ϕ ≥ 0.

By Lemma 8.2 of [12], we also know that there exists a constant ε1.1 > 0 such
that for any point x ∈ M and any p-dimensional vector space Vx ⊂ Tx M , the
restriction of the form

Re
(
ωt,0 + √−1χ

)p − cot(θ0)Im
(
ωt,0 + √−1χ

)p − (n − p)ε1.1χ
p

on Vx is positive. Then we get (2) of Theorem 1.7 using the fact that

∫
V

(
Re
(
ωt,0 + √−1χ

)p − cot(θ0)Im
(
ωt,0 + √−1χ

)p)

=
∫

V

(
Re
(
ωt,ϕ + √−1χ

)p − cot(θ0)Im
(
ωt,ϕ + √−1χ

)p)
.

It is trivial that (2) of Theorem 1.7 implies (3) of Theorem 1.7. On the other
hand, as long as the following proposition holds, then (3) of Theorem 1.7
implies (1) of Theorem 1.7 by choosing the function f as 0 and choosing an
arbitrary �0 ∈ (θ0, π).

Proposition 5.2 Fix a Kähler manifold Mn with a Kähler metric χ and a
real smooth closed (1,1)-form ω0. Let θ0 ∈ (0, π) be a constant, and let
�0 ∈ (θ0, π) be another constant. Then there exists a constant ε5.1 > 0
depending only on n, θ0, �0 such that the following statement holds.

Assume the following: (1) When n ≥ 4, f > −ε5.1 is a smooth function
satisfying

∫
M

f χn =
∫

M

(
Re
(
ωϕ + √−1χ

)n − cot(θ0)Im
(
ωϕ + √−1χ

)n) ≥ 0.

(2) When n = 1, 2, 3, f ≥ 0 is a constant satisfying

∫
M

f χn =
∫

M

(
Re
(
ωϕ + √−1χ

)n − cot(θ0)Im
(
ωϕ + √−1χ

)n) ≥ 0.

(3) There exists a test family ωt,0 and a constant ε1.1 > 0 independent of
t, V such that for any t ≥ 0 and any p-dimensional analytic subvariety V ,

∫
V

(
Re
(
ωt,0 + √−1χ

)p − cot(θ0)Im
(
ωt,0 + √−1χ

)p) ≥ (n − p)ε1.1

∫
V

χ p.
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Then there exists a smooth function ϕ satisfying

Re
(
ωϕ + √−1χ

)n − cot(θ0)Im
(
ωϕ + √−1χ

)n − f χn = 0,

where ωϕ = ω0 + √−1∂∂̄ϕ ∈ �χ,θ0,�0 .

Remark 5.3 Proposition 5.2 is similar to Theorem 1.11 and the results in [33].
In fact, the equation

Re
(
ωϕ + √−1χ

)n − cot(θ0)Im
(
ωϕ + √−1χ

)n − f χn = 0

originates from [33].

Remark 5.4 The proof of Proposition 5.2 relies on Lemma 5.6, which requires
f to be a constant when n = 1, 2, 3. However, sometimes we can prove Propo-
sition 5.2 directly without using Lemma 5.6. In fact, when n = 1, it is trivial
that Proposition 5.2 holds for non-constant f . When n = 2, Proposition 5.2
holds for non-constant f using the observation of Jacob andYau in [28].When
n = 3, the methods used in [34] may be useful, but it is still open whether
Proposition 5.2 holds for non-constant f . Nevertheless, this does not affect
the proof of Theorem 1.7.

When n = 1, Proposition 5.2 is trivial. In higher dimensions, we will prove
it by induction on the dimension n of M . As the first step, inspired by the work
of Collins–Jacob–Yau [12], we state the following proposition in analogy with
Theorem 1.14:

Proposition 5.5 Fix a Kähler manifold Mn with a Kähler metric χ and a
real smooth closed (1,1)-form ω0. Let θ0 ∈ (0, π) be a constant, and let
�0 ∈ (θ0, π) be another constant. Then there exists a constant ε5.1 > 0
depending only on n, θ0, �0 such that the following statement holds.

Assume the following: (1) When n ≥ 4, f > −ε5.1 is a smooth function
satisfying

∫
M

f χn =
∫

M

(
Re
(
ωϕ + √−1χ

)n − cot(θ0)Im
(
ωϕ + √−1χ

)n) ≥ 0.

(2) When n = 1, 2, 3, f ≥ 0 is a constant satisfying

∫
M

f χn =
∫

M

(
Re
(
ωϕ + √−1χ

)n − cot(θ0)Im
(
ωϕ + √−1χ

)n) ≥ 0.

(3) ω0 ∈ �χ,θ0,�0 .
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Then there exists a smooth function ϕ satisfying

Re
(
ωϕ + √−1χ

)n − cot(θ0)Im
(
ωϕ + √−1χ

)n − f χn = 0,

where ωϕ = ω0 + √−1∂∂̄ϕ ∈ �χ,θ0,�0 .

Wewill use the continuity method to prove Proposition 5.5. We first choose
the path

ω1,s = s (ω0 − cot(θ0)χ) + cot

(
θ0

2n

)
χ

and f1,s as the constant satisfying

∫
M

f1,sχ
n =

∫
M

(
Re
(
ω1,s + √−1χ

)n − cot(θ0)Im
(
ω1,s + √−1χ

)n)

for s ∈ [0, 1]. Then, since ω1,s ≥ cot( θ0
2n )χ , we see that Pχ(ω1,s) ≤

Qχ(ω1,s) ≤ θ0
2 and f1,s ≥ 0. Let I1 be the set of s such that there exists

a smooth function ϕs satisfying ω1,ϕs ,s = ω1,s + √−1∂∂̄ϕs ∈ �χ,θ0,�0 and

Re
(
ω1,ϕs ,s + √−1χ

)n − cot(θ0)Im
(
ω1,ϕs ,s + √−1χ

)n − f1,sχ
n = 0.

Then 0 ∈ I1. The openness of I1 follows from the condition on the integral of
f1,s , the implicit function theorem, and the standard elliptic estimates. If we
can prove the a priori estimate, then we can take a weak limit. The limit is
still in the region �χ,θ0,�0 by Lemma 5.6 (5) below. So we get the closedness
of I1 and therefore prove that 1 ∈ I1 assuming the a priori estimate.

Then we choose the path

ω2,s = ω0 + sχ

and f2,s as the constant satisfying

∫
M

f2,sχ
n =

∫
M

(
Re
(
ω2,s + √−1χ

)n − cot(θ0)Im
(
ω2,s + √−1χ

)n)

for s ∈ [0, cot
(

θ0
2n

)
− cot(θ0)]. Then we see that

Pχ(ω2,s) ≤ Pχ(ω0) < θ0
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and

Qχ(ω2,s) ≤ Qχ(ω0) < �0.

So

∂ f2,s
∂s

∫
M

χn =
∫

M
n

(
Re
(
ω2,s + √−1χ

)n−1 − cot(θ0)Im
(
ω2,s + √−1χ

)n−1
)

∧ χ ≥ 0

by Lemma 8.2 of [12]. So f2,s ≥ 0 because f2,s is non-negative when s =
0 by the assumption in Proposition 5.5. We remark that we move forward
when proving f2,s ≥ 0 but move backward when solving ω2,ϕs ,s = ω2,s +√−1∂∂̄ϕs ∈ �χ,θ0,�0 satisfying the equation

Re
(
ω2,ϕs ,s + √−1χ

)n − cot(θ0)Im
(
ω2,ϕs ,s + √−1χ

)n − f2,sχ
n = 0.

Finally, we fix ω0 and choose the path

f3,s = s f + (1 − s)

∫
M f χn∫
M χn

for s ∈ [0, 1]. We omit the arguments for the second path and the third path
because they are similar to the first path.

Therefore, we only need to prove the a priori estimate along the paths.
This will be achieved by Székelyhidi’s estimates in [42]. In order to apply
Székelyhidi’s estimates in [42], we need the following lemma:

Lemma 5.6 For any 0 < θ0 < �0 < π , there exist a constant ε5.1 > 0
depending only on n, θ0, �0 and constants C5.2 > 0, ε5.3 > 0 depending only
on n, �0 such that the following holds:

Assume that f is a parameter such that f ≥ 0 when n = 1, 2, 3 and such
that f ≥ −ε5.1 when n ≥ 4. Then the function F : �̄θ0,�0 → R defined by

F(λ1, ...λn) = Re
∏n

k=1(λk + √−1)

Im
∏n

k=1(λk + √−1)
− f

Im
∏n

k=1(λk + √−1)
− cot(θ0)

satisfies the following properties:
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(1) 1
Im
∏n

k=1(λk+
√−1)

≤ 1
C5.2

.

(2) | ∂
∂λi

1
Im
∏n

k=1(λk+
√−1)

| ≤ 1√
C5.2

√ ∏n
k=1(1+λ2k)

(Im
∏n

k=1(λk+
√−1))3

1√
1+λ2i

.

(3) ∂ F
∂λi

> 0.

(4) When n ≥ 4, for any real numbers ui ,

n∑
i, j=1

∂2F

∂λi∂λ j
ui u j ≤ −ε5.3

∏n
k=1(1 + λ2k)(

Im
∏n

k=1

(
λk + √−1

))3
n∑

i=1

u2
i

1 + λ2i
.

When n = 1, 2, 3, for any real numbers ui ,
∑n

i, j=1
∂2F

∂λi ∂λ j
ui u j ≤ 0.

(5) If λ ∈ �̄θ0,�0 , and F(λ) = 0, then λ ∈ �θ0,�0 .
(6) For any λ ∈ �θ0,�0 , the set

{
λ′ ∈ �θ0,�0 : F(λ′) = 0, λ′

i ≥ λi , for all i = 1, 2, 3, ..., n
}

is bounded, where the bound depends on n, θ0, �0, λ, | f |.
(7) �̄θ0,�0 is convex.
(8) ∂

∂λi
F(λ) ≤ ∂

∂λ j
F(λ) if λi ≥ λ j .

(9) For any positive definite Hermitian matrix A, the function FA :
�̄A,θ0,�0 → R

n is concave, where FA(B) = F(λ1, ...λn) if λi are the eigen-
values of A−1B.

(10) For any positive definite Hermitian matrix A, the set �̄A,θ0,�0 is convex.

Proof When n = 1, F(λ1) = λ1− f −cot(θ0). So all the properties are trivial.
So we assume that n ≥ 2.

For simplicity, define θi = arccot(λi ). Then it is easy to see that

sin(θi ) = 1√
1 + λ2i

, cos(θi ) = λi√
1 + λ2i

,

Re
n∏

k=1

(λk + √−1) = cos

(
n∑

k=1

θk

)
n∏

k=1

√
1 + λ2k,

and

Im
n∏

k=1

(λk + √−1) = sin

(
n∑

k=1

θk

)
n∏

k=1

√
1 + λ2k .
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(1) First of all, there exists a constant C5.4 > 0 depending only on �0 such
that sin(x) ≥ C5.4 as long as π > �0 ≥ x ≥ �0

2 > 0. Moreover, it is easy to
see that there exist constants C5.5 > 0, C5.6 > 0 depending only on �0 such
that sin(x) ≥ C5.5x for all x ∈ (0, �0) and tan(x) ≤ C5.6x for all x ∈ (0, �0

2 ).
Now we study two cases. If

∑n
k=1 θk ≥ �0

2 , then

Im
n∏

k=1

(
λk + √−1

)
= sin

(
n∑

k=1

θk

)
n∏

k=1

√
1 + λ2k ≥ C5.4.

If
∑n

k=1 θk ≤ �0
2 , then λi ≥ cot(�0

2 ) > 0 for all i = 1, 2, 3, ..., n. So

Im
n∏

k=1

(
λk + √−1

)
≥ C5.5

⎛
⎝ n∑

k=1

θk

⎞
⎠ n∏

k=1

λk ≥ C5.5

C5.6

⎛
⎝ n∑

k=1

1

λk

⎞
⎠ n∏

k=1

λk ≥ nC5.5

C5.6
cotn−1

(
�0

2

)
.

So we can choose C5.2 as min{nC5.5
C5.6

cotn−1(�0
2 ), C5.4}.

(2)

| ∂

∂λi

1

Im
∏n

k=1
(
λk + √−1

) | = Im
∏

k �=i
(
λk + √−1

)
(
Im
∏n

k=1
(
λk + √−1

))2 ≤
√∏

k �=i (1 + λ2k )

(
Im
∏n

k=1
(
λk + √−1

))2

=
√∏

k=1(1 + λ2k )

(
Im
∏n

k=1
(
λk + √−1

))2
1√

1 + λ2i

≤ 1√
C5.2

√√√√√
∏n

k=1

(
1 + λ2k

)
(
Im
∏n

k=1
(
λk + √−1

))3
1√

1 + λ2i

.

(3)

∂ F

∂λi
= 1

sin2
(∑n

k=1 θk
) 1

1 + λ2i
+ f Im

∏
k �=i (λk + √−1)(

Im
∏n

k=1

(
λk + √−1

))2

= 1

sin2
(∑n

k=1 θk
) 1

1 + λ2i
+ 1

sin2
(∑n

k=1 θk
) 1

1 + λ2i

f sin
(∑

k �=i θk

)
∏

k �=i

√
1 + λ2k

.

Therefore, if ε5.1 < 1, then ∂ F
∂λi

> 0.

(4)

∂2F

∂λ2i

= 2 cos
(∑n

k=1 θk
)

sin3
(∑n

k=1 θk
) 1(

1 + λ2i

)2 + 1

sin2
(∑n

k=1 θk
) −2λi(

1 + λ2i

)2 − 2
f
(
Im
∏

k �=i
(
λk + √−1

))2

z
(
Im
∏n

k=1
(
λk + √−1

))3

= 2 cot
(∑n

k=1 θk
)− 2λi

sin2
(∑n

k=1 θk
) (

1 + λ2i

)2 − f
∏n

k=1(1 + λ2k )

(1 + λ2i )
(
Im
∏n

k=1
(
λk + √−1

))3 · 2 sin2
⎛
⎝∑

k �=i

θk

⎞
⎠ .
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When i �= j , then

∂2F

∂λi∂λ j
= 2 cot

(∑n
k=1 θk

)
sin2

(∑n
k=1 θk

) 1(
1 + λ2i

) (
1 + λ2j

)

+
f
(
Im
∏

k �=i, j

(
λk + √−1

)) (
Im
∏n

k=1

(
λk + √−1

))
(
Im
∏n

k=1

(
λk + √−1

))3

−
2 f
(
Im
∏

k �=i

(
λk + √−1

)) (
Im
∏

k �= j

(
λk + √−1

))
(
Im
∏n

k=1

(
λk + √−1

))3 .

Using

Im
∏
k �= j

(
λk + √−1

)
= λi Im

∏
k �=i, j

(
λk + √−1

)
+ Re

∏
k �=i, j

(
λk + √−1

)
,

Im
∏
k �=i

(
λk + √−1

)
= λ j Im

∏
k �=i, j

(
λk + √−1

)
+ Re

∏
k �=i, j

(
λk + √−1

)
,

and

Im
n∏

k=1

(
λk + √−1

)
= (λi λ j − 1

)
Im

∏
k �=i, j

(
λk + √−1

)
+ (λi + λ j

)
Re

∏
k �=i, j

(
λk + √−1

)
,

it is easy to see that

⎛
⎝Im ∏

k �=i, j

(
λk + √−1

)⎞⎠
⎛
⎝Im

n∏
k=1

(
λk + √−1

)⎞⎠−
⎛
⎝Im∏

k �=i

(
λk + √−1

)⎞⎠
⎛
⎝Im ∏

k �= j

(
λk + √−1

)⎞⎠

= −
⎛
⎝Im ∏

k �=i, j

(
λk + √−1

)⎞⎠
2

−
⎛
⎝Re ∏

k �=i, j

(
λk + √−1

)⎞⎠
2

= −
∏n

k=1

(
1 + λ2k

)
(
1 + λ2i

) (
1 + λ2j

) = −
n∏

k=1

(
1 + λ2k

) sin(θi )√
1 + λ2i

sin(θ j )√
1 + λ2j

.
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Thus,

n∑
i, j=1

∂2F

∂λi ∂λ j
ui u j = −2

sin2
(∑n

k=1 θk
)
⎛
⎜⎝− cot

⎛
⎝ n∑

k=1

θk

⎞
⎠ n∑

i, j=1

ui u j

(1 + λ2i )(1 + λ2j )
+

n∑
i=1

λi u2i(
1 + λ2i

)2

⎞
⎟⎠

−
f
∏n

k=1

(
1+λ2k

)
(
Im
∏n

k=1
(
λk +√−1

))3 ·
⎛
⎝ n∑

i, j=1

sin

⎛
⎝∑

k �=i

θk

⎞
⎠ sin

⎛
⎝∑

k �= j

θk

⎞
⎠ ui√

1+λ2i

u j√
1+λ2j

+
n∑

i=1

sin2

⎛
⎝∑

k �=i

θk

⎞
⎠ u2i

1 + λ2i

+
n∑

i=1

∑
j �=i

sin(θi ) sin(θ j )
ui√

1 + λ2i

u j√
1 + λ2j

⎞
⎠ .

Without loss of generality, assume that λ1 ≥ λ2... ≥ λn . When n ≥ 4, we
first claim that there exists a constant ε5.7 depending only on n, �0 such that

−2

sin2
(∑n

k=1 θk
)
⎛
⎝− cot

(
n∑

k=1

θk

)
n∑

i, j=1

ui u j(
1 + λ2i

) (
1 + λ2j

) +
n∑

i=1

λi u2
i(

1 + λ2i

)2
⎞
⎠

≤ −ε5.7

∏n
k=1

(
1 + λ2k

)
(
Im
∏n

k=1

(
λk + √−1

))3
n∑

i=1

u2
i

1 + λ2i
.

This claim is equivalent to

− cot

⎛
⎝ n∑

k=1

θk

⎞
⎠
⎛
⎝ n∑

i=1

ui

1 + λ2i

⎞
⎠
2

+
n∑

i=1

λi u2i(
1 + λ2i

)2 ≥ ε5.7

2Im
∏n

k=1
(
λk + √−1

)
n∑

i=1

u2i
1 + λ2i

.

We divide it into several cases.
In the first case, θ1 ≤ ... ≤ θn ≤ �0

2 < π
2 and cot(

∑n
k=1 θk) ≤ 1

2n cot(�0
2 ),

then

− cot

⎛
⎝ n∑

k=1

θk

⎞
⎠
⎛
⎝ n∑

i=1

ui

1 + λ2i

⎞
⎠
2

≥ − 1

2n
cot

(
�0

2

) n∑
i=1

λi u2i
(1 + λ2i )2

n∑
i=1

1

λi
≥ − 1

2

n∑
i=1

λi u2i
(1 + λ2i )2

.

Since sin(
∑n

k=1 θk) ≥ C5.4,

1

2Im
∏n

k=1

(
λk + √−1

)
n∑

i=1

u2
i

1 + λ2i
≤ 1

2C5.4
∏n

k=1

√
1 + λ2k

n∑
i=1

u2
i

1 + λ2i
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≤ 1

2C5.4

n∑
i=1

λi u2
i

λ2i (1 + λ2i )
≤

cot2
(

�0
2

)
+ 1

2C5.4 cot2
(

�0
2

)
n∑

i=1

λi u2
i(

1 + λ2i

)2 .

So we get the required estimate if ε5.7 <
C5.4 cot2

(
�0
2

)

cot2
(

�0
2

)
+1

.

In the second case, θ1 ≤ ... ≤ θn ≤ �0
2 < π

2 and cot(
∑n

k=1 θk) >
1
2n cot(�0

2 ), then

n∑
k=1

θk < arccot

(
1

2n
cot

(
�0

2

))
<

π

2
.

So

− cot

(
n∑

k=1

θk

)(
n∑

i=1

ui

1 + λ2i

)2

≥ − cot

(
n∑

k=1

θk

)
n∑

i=1

λi u2
i(

1 + λ2i

)2
n∑

i=1

1

λi
.

If α, β > 0 and α + β < π
2 , then

tan(α + β) = tan(α) + tan(β)

1 − tan(α) tan(β)
> tan(α) + tan(β).

So

1 − cot

(
n∑

k=1

θk

)
n∑

i=1

1

λi
= 1 − cot

(
n∑

k=1

θk

)
n∑

i=1

tan(θi )

> 1 − cot

(
n∑

k=1

θk

)(
tan(θn) + tan

(
n−1∑
i=1

θi

))
= tan(θn) tan

(
n−1∑
i=1

θi

)

≥ tan(θn)

n−1∑
i=1

tan(θi ) = 1

λn

n−1∑
i=1

1

λi
≥ 1

λnλn−1
.

As in (1), we know that

Im
∏n

k=1
(
λk + √−1

)
∏n

k=1

√
1 + λ2k

= sin

⎛
⎝ n∑

k=1

θk

⎞
⎠ ≥ C5.5

n∑
k=1

θk ≥ C5.5

C5.6

n∑
k=1

1

λk
≥ C5.5

C5.6λn
.
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Im
n∏

k=1

(
λk + √−1

)
≥ C5.5

C5.6λn

n∏
k=1

√
1 + λ2k ≥ C5.5

C5.6

n−1∏
k=1

√
1 + λ2k

≥ C5.5

C5.6
λ1λn−2λn−1 ≥ C5.5

C5.6
λ1λn−1λn

using the assumption that n ≥ 4.
Therefore,

1

2Im
∏n

k=1

(
λk + √−1

)
n∑

i=1

u2
i

1 + λ2i
≤ C5.6

2C5.5

1

λnλn−1

n∑
i=1

λi u2
i

λ2i

(
1 + λ2i

)

≤
C5.6

(
cot2

(
�0
2

)
+ 1
)

2C5.5 cot2
(

�0
2

)
λnλn−1

n∑
i=1

λi u2
i(

1 + λ2i

)2 .

So we get the required estimate if
C5.6ε5.7

(
cot2

(
�0
2

)
+1
)

2C5.5 cot2
(

�0
2

) ≤ 1.

In the third case, θn > �0
2 . So

∑n−1
k=1 θk < �0

2 < π
2 . As in the second case,

− cot

(
n−1∑
k=1

θk

)(
n−1∑
i=1

ui

1 + λ2i

)2

+
n−1∑
i=1

λi u2
i(

1 + λ2i

)2 ≥ 1

λn−1λn−2

n−1∑
i=1

λi u2
i(

1 + λ2i

)2 .

We already know that sin(
∑n

k=1 θk) ≥ C5.4, so

1

2Im
∏n

k=1

(
λk + √−1

)
n−1∑
i=1

u2
i

1 + λ2i
≤ 1

2C5.4
∏n

k=1

√
1 + λ2k

n−1∑
i=1

u2
i

1 + λ2i

≤ 1

2C5.4λn−1λn−2λ1

n−1∑
i=1

u2
i

1 + λ2i
≤ 1

2C5.4λn−1λn−2

n−1∑
i=1

λi u2
i

λ2i (1 + λ2i )

≤
cot2

(
�0
2

)
+ 1

2C5.4 cot2
(

�0
2

)
λn−1λn−2

n−1∑
i=1

λi u2
i(

1 + λ2i

)2 .

123



582 G. Chen

On the other hand,

− cot

⎛
⎝ n∑

k=1

θk

⎞
⎠
⎛
⎝ n∑

i=1

ui

1 + λ2i

⎞
⎠
2

+ cot

⎛
⎝n−1∑

k=1

θk

⎞
⎠
⎛
⎝n−1∑

i=1

ui

1 + λ2i

⎞
⎠
2

+ λnu2n
(1 + λ2n)2

= −2 cot

⎛
⎝ n∑

k=1

θk

⎞
⎠
⎛
⎝n−1∑

i=1

ui

1 + λ2i

⎞
⎠ un

1 + λ2n
+
⎛
⎝cot

⎛
⎝n−1∑

k=1

θk

⎞
⎠− cot

⎛
⎝ n∑

k=1

θk

⎞
⎠
⎞
⎠
⎛
⎝n−1∑

i=1

ui

1 + λ2i

⎞
⎠
2

+
(
λn − cot

(∑n
k=1 θk

))
u2n

(1 + λ2n)2

≥
⎛
⎝λn − cot

⎛
⎝ n∑

k=1

θk

⎞
⎠− cot2

(∑n
k=1 θk

)
cot
(∑n−1

k=1 θk

)
− cot

(∑n
k=1 θk

)
⎞
⎠ u2n

(1 + λ2n)2

=

⎛
⎜⎜⎜⎜⎜⎝

λn −
λn cot

(∑n−1
k=1 θk

)
− 1

cot
(∑n−1

k=1 θk

)
+ λn

−

(
λn cot

(∑n−1
k=1 θk

)
−1

cot
(∑n−1

k=1 θk

)
+λn

)2

cot
(∑n−1

k=1 θk

)
− λn cot

(∑n−1
k=1 θk

)
−1

cot
(∑n−1

k=1 θk

)
+λn

⎞
⎟⎟⎟⎟⎟⎠

u2n
(1 + λ2n)2

=
⎛
⎜⎝ λ2n + 1

cot
(∑n−1

k=1 θk

)
+ λn

−
(
λn cot

(∑n−1
k=1 θk

)
− 1
)2

(
cot
(∑n−1

k=1 θk

)
+ λn

) (
cot2

(∑n−1
k=1 θk

)
+ 1
)
⎞
⎟⎠ u2n

(1 + λ2n)2

=
cot2

(∑n−1
k=1 θk

)
+ λ2n + 2λn cot

(∑n−1
k=1 θk

)
(
cot
(∑n−1

k=1 θk

)
+ λn

) (
cot2

(∑n−1
k=1 θk

)
+ 1
) u2n

(1 + λ2n)2

=
λn + cot

(∑n−1
k=1 θk

)

cot2
(∑n−1

k=1 θk

)
+ 1

u2n
(1 + λ2n)2

= sin2

⎛
⎝n−1∑

k=1

θk

⎞
⎠
⎛
⎝ cos(θn)

sin(θn)
+ cot

⎛
⎝n−1∑

k=1

θk

⎞
⎠
⎞
⎠ u2n

(1 + λ2n)2

=
sin
(∑n−1

k=1 θk

)
sin
(∑n

k=1 θk
)

sin(θn)

u2n
(1 + λ2n)2

≥ C5.5

C5.6λn−1
C5.4

u2n
1 + λ2n

1√
1 + λ2n

.

It is easy to see that

1

2Im
∏n

k=1(λk + √−1)

u2n
1 + λ2n

≤ 1

2C5.4
∏n

k=1

√
1 + λ2k

u2n
1 + λ2n

≤ 1

2C5.4λn−1

u2n
1 + λ2n

1√
1 + λ2n

.

Therefore, as long as
ε5.7(cot2(

�0
2 )+1)

2C5.4 cot2(
�0
2 )

< 1 and ε5.7
2C5.4

<
C5.5
C5.6

C5.4, we get the

required estimate.
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Thus, when n ≥ 4, we have proved that

−2

sin2
(∑n

k=1 θk
)
⎛
⎝− cot

(
n∑

k=1

θk

)
n∑

i, j=1

ui u j

(1 + λ2i )(1 + λ2j )
+

n∑
i=1

λi u2
i(

1 + λ2i

)2
⎞
⎠

≤ −ε5.7

∏n
k=1(1 + λ2k)(

Im
∏n

k=1

(
λk + √−1

))3
n∑

i=1

u2
i

1 + λ2i
.

When n = 2, 3, a similar argument implies that

−2

sin2(
∑n

k=1 θk)

⎛
⎝− cot

(
n∑

k=1

θk

)
n∑

i, j=1

ui u j

(1 + λ2i )(1 + λ2j )
+

n∑
i=1

λi u2
i

(1 + λ2i )
2

⎞
⎠ ≤ 0.

Compared to Theorem 1.1 of [43], the main improvement is that we choose
the variable �̂ in Theorem 1.1 of [43] as (n − 1)π

2 , and we also have a better

estimate −ε5.7

∏n
k=1(1+λ2k)(

Im
∏n

k=1
(
λk+

√−1
))3
∑n

i=1
u2i

1+λ2i
, which will be used to deal with

terms involving f when n ≥ 4.
The next goal is to prove that when n ≥ 3, the matrix corresponding to

n∑
i=1

sin2

⎛
⎝∑

k �=i

θk

⎞
⎠ v2i +

n∑
i=1

∑
j �=i

sin(θi ) sin(θ j )viv j

is positive definite. When θ1 = θ2 = ... = θn is sufficiently small, it is easy
to see that sin2(

∑
k �=i θk) > sin2(θi ). So the matrix is positive definite. Since

the space �̄θ0,�0 is path connected, it suffices to show that the determinant of
the matrix is positive on �̄θ0,�0 .

Without loss of generality, assume that θn ≥ θn−1... ≥ θ1. When i �= n,

θi ≤ θn <
∑
k �=i

θk ≤ �0 − θi < π − θi ,

so sin(θi ) < sin
(∑

k �=i θk

)
. When sin2

(∑n−1
k=1 θk

)
�= sin2(θn), let A be the

complex diagonal matrix such that

Aii =

√√√√√sin2

⎛
⎝∑

k �=i

θk

⎞
⎠− sin2(θi ),
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and define

B =
(
sin(θ1)

A11
, ...,

sin(θn)

Ann

)
.

Then we need to compute det AT (I + BT B)A. By elementary linear algebra,

det AT (I + BT B)A = (det A)2(1 + B BT )

=
n∏

i=1

⎛
⎝sin2

⎛
⎝∑

k �=i

θk

⎞
⎠− sin2(θi )

⎞
⎠
⎛
⎝1 +

n∑
i=1

sin2(θi )

sin2
(∑

k �=i θk

)
− sin2(θi )

⎞
⎠

=
n∏

i=1

⎛
⎝sin2

⎛
⎝∑

k �=i

θk

⎞
⎠− sin2(θi )

⎞
⎠+

n∑
i=1

sin2(θi )
∏
j �=i

⎛
⎝sin2

⎛
⎝∑

k �= j

θk

⎞
⎠− sin2(θ j )

⎞
⎠ .

By continuity, this equation also holds when sin2(
∑n−1

k=1 θk) = sin2(θn).
Therefore, when sin2(

∑n−1
k=1 θk) ≥ sin2(θn), we already get the required

inequality. We only need to prove that

n∑
i=1

sin2(θi )

sin2
(∑

k �=i θk

)
− sin2(θi )

< −1

when sin2(
∑n−1

k=1 θk) < sin2(θn). In this case,
∑n−1

k=1 θk < θn .
Now we want to study the function

G(α, β) = sin2(β)

sin2(α − β) − sin2(β)
= −2 sin2(β)

cos(2α − 2β) − cos(2β)
= sin2(β)

sin(α) sin(α − 2β)

for any 0 < β < α
2 < π

2 . Then

∂G

∂β
= 2 sin(β) cos(β) sin(α − 2β) + 2 sin2(β) cos(α − 2β)

sin(α) sin2(α − 2β)
= 2 sin(β) sin(α − β)

sin(α) sin2(α − 2β)
> 0,

so

∂

∂β
log

(
∂G

∂β

)
= cot(β) − cot(α − β) + 4 cot(α − 2β)

= cot(β) − cot(α − β) + 4
cot(β) cot(α − β) + 1

cot(β) − cot(α − β)

= (cot(β) + cot(α − β))2 + 4

cot(β) − cot(α − β)
.
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Since 0 < β < α − β < π , we know that cot(β) − cot(α − β) > 0, so
∂2G
∂β2 > 0. Therefore, whenwe replace θ1 by 0 and replace θn−1 by θn−1+θ1, we

see that
∑n

i=1
sin2(θi )

sin2(
∑

k �=i θk)−sin2(θi )
strictly increases. We can repeat the process

to prove that

n∑
i=1

sin2(θi )

sin2
(∑

k �=i θk

)
− sin2(θi )

<
sin2(θn)

sin2
(∑n−1

k=1 θk

)
− sin2(θn)

+
sin2

(∑n−1
k=1 θk

)

sin2(θn) − sin2
(∑n−1

k=1 θk

) = −1.

This is the required inequality.
Thus, when n ≥ 3, we have proved that

n∑
i, j=1

∂2

∂λi∂λ j

(
1

Im
∏n

k=1(λk + √−1)

)
ui u j ≥ 0.

When n = 2, it is also true because

n∑
i=1

sin2

⎛
⎝∑

k �=i

θk

⎞
⎠ v2i +

n∑
i=1

∑
j �=i

sin(θi ) sin(θ j )viv j ≥ 0

by the Cauchy–Schwarz inequality.
Therefore, when f ≥ 0, we get (4) as long as ε5.3 < ε5.7. When −ε5.1 ≤

f < 0 and n ≥ 4, using the bound that | sin(θi )| ≤ 1 and | sin(∑k �=i θk)| ≤ 1,
it is easy to see that

− f
∏n

k=1(1 + λ2k )(
Im
∏n

k=1
(
λk + √−1

))3 ·
⎛
⎝ n∑

i, j=1

sin

⎛
⎝∑

k �=i

θk

⎞
⎠ sin

⎛
⎝∑

k �= j

θk

⎞
⎠ ui√

1 + λ2i

u j√
1 + λ2j

+
n∑

i=1

sin2

⎛
⎝∑

k �=i

θk

⎞
⎠ u2i

1 + λ2i

+
n∑

i=1

∑
j �=i

sin(θi ) sin(θ j )
ui√

1 + λ2i

u j√
1 + λ2j

⎞
⎠

≤ 3nε5.1
∏n

k=1(1 + λ2k )(
Im
∏n

k=1
(
λk + √−1

))3
n∑

i=1

u2i
1 + λ2i

.

Therefore, as long as ε5.1 <
ε5.7
6n and ε5.3 <

ε5.7
2 , we get the required estimate.

(5) Suppose that λ ∈ �̄θ0,�0 and F(λ) = 0. For any i = 1, 2, 3, ...n, using
(3), we see that F(λ) is strictly smaller than the limit of F when we fix λk for
k �= i and let λi go to infinity. Using a similar argument to (1), we see that

Im
n∏

k=1

(λk + √−1) ≥ min{C5.4,
(n − 1)C5.5

C5.6
cotn−2

(
�0

2

)
}λi .
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So the limit of F is cot(
∑

k �=i arccot(λk))−cot(θ0). So
∑

k �=i arccot(λk) < θ0.
Moreover, using the fact that

0 = cot

(
n∑

k=1

arccot(λk)

)
− f

Im
∏n

k=1(λk + √−1)
− cot(θ0)

≤ cot

(
n∑

k=1

arccot(λk)

)
− cot(θ0) + ε5.1

C5.2
,

we see that
∑n

k=1 arccot(λk) < �0 as long as ε5.1 < C5.2(cot(θ0)−cot(�0)).
Thus, λ ∈ �θ0,�0 .
(6) Let λ be any element in �θ0,�0 . Let λ′ be any element in �θ0,�0 such

that F(λ′) = 0 and λ′
k ≥ λk for all k = 1, 2, 3, ..., n.

Then for any i = 1, 2, 3, ...n,
∑

k �=i arccot(λk) < θ0. If

λ′
i > cot

(
θ0 −∑k �=i arccot(λk)

2

)

and

min

{
C5.4,

(n − 1)C5.5

C5.6
cotn−2

(
�0

2

)}
λ′

i >
| f |

cot
(

θ0+∑k �=i arccot(λk )

2

)
− cot(θ0)

,

we get a direct contradiction to the estimate that

0 ≥ cot

(
n∑

k=1

arccot(λ′
k)

)
− cot(θ0) − | f |

min
{

C5.4,
(n−1)C5.5

C5.6
cotn−2

(
�0
2

)}
λ′

i

.

(7) Fix any λ ∈ �̄θ0,�0 . Consider the set C of λ′ ∈ �̄θ0,�0 such that tλ +
(1 − t)λ′ ∈ �̄θ0,�0 for all t ∈ [0, 1]. It is easy to see that C is a closed set in
the relative topology on �̄θ0,�0 . Now if λ′ is in this set, for any λ′′ ∈ �̄θ0,�0

sufficiently close to λ′, there exist π > �′
0 > �0 > θ ′

0 > θ0 such that
tλ+(1−t)λ′′ ∈ �̄θ ′

0,�
′
0
. By (4) applied to the set �̄θ ′

0,�
′
0
and the case f = 0, we

see that cot(
∑n

k=1 arccot(tλk+(1−t)λ′′
k )) is a concave function. So it is at least

�0. Similar arguments can be applied to cot(
∑

k �=i arccot(tλk + (1 − t)λ′′
k ))

for any i = 1, 2, 3, ..., n. So we see that λ′′ is in C . In other words, C is
also open in the relative topology. Since �̄θ0,�0 is connected, and λ ∈ C , we
see that �̄θ0,�0 = C . So �̄θ0,�0 is convex because for any λ, λ′ ∈ �̄θ0,�0 ,
tλ + (1 − t)λ′ ∈ �̄θ0,�0 .
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(8) This follows from the concavity of

F
(
λ1, ...λi−1, tλi + (1 − t)λ j , λi+1, ..., λ j−1, tλ j + (1 − t)λi , λ j+1, ..., λn

)
= F

(
λ1, ...λi−1, tλ j + (1 − t)λi , λi+1, ..., λ j−1, tλi + (1 − t)λ j , λ j+1, ..., λn

)

(9) This follows from (4), (8), and the result in [39], which was also used
as Equation (66) in [42].

(10) This is similar to (7). ��
As a corollary, we get the required a priori estimate:

Corollary 5.7 Let Mn be a Kähler manifold with a Kähler metric χ and a
real smooth closed (1,1)-form ω0. Let θ0 ∈ (0, π) be a constant, and let
�0 ∈ (θ0, π) be another constant. Then there exists a constant ε5.1 > 0
depending only on n, θ0, �0 such that the following statement holds.

Assume the following: (1) When n ≥ 4, f > −ε5.1 is a smooth function.
(2) When n = 1, 2, 3, f ≥ 0 is a constant.
(3) ω0 ∈ �χ,θ0,�0 .
Assume that ϕ is a smooth function satisfying supM ϕ = 0, ωϕ = ω0 +√−1∂∂̄ϕ ∈ �χ,θ0,�0 , and

Re(ωϕ + √−1χ)n − cot(θ0)Im(ωϕ + √−1χ)n − f χn = 0.

Then for any k ∈ N, any α ∈ (0, 1), there exists a constant C5.8 depending only
on M, n, χ , ||ω0||C∞(χ), θ0, �0, || f ||C∞(χ), k, α, maxx∈M(θ0 − Pχ(ω0)(x)),
and maxx∈M(�0 − Qχ(ω0)(x)) such that

||ϕ||Ck,α(χ) ≤ C5.8.

Proof Compared to Székelyhidi’s conditions in [42], there are two major dif-
ferences. First, F also depends on f . Second, � does not contain the positive
orthant. However, we will show that his results still survive without many
changes.

Székelyhidi’s C0 estimate relies on a variant of the Alexandroff-Bakelman-
Pucci maximum principle similar to Lemma 9.2 of [25]. Clearly, it does not
take derivatives of f . So Székelyhidi’s C0 estimate is still true.

The next step is to prove that

|√−1∂∂̄ϕ|χ ≤ C5.9(1 + sup
M

|∇ϕ|2χ).

We will use the same notations as in [42] except that the letter f in [42] is
replaced by F , the letter F is replaced by Fχ , and the letter u is replaced by ϕ.
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It is easy to see that (78) of [42] still holds. Now we differentiate the equation
Fχ( f, ωϕ) = 0. We see that

Fi j
χ gi j̄1 + F f

χ f1 = 0,

and

F pq,rs
χ gpq̄1grs̄1̄ + Fkk

χ gkk̄11̄ + Fkk, f
χ gkk̄1 f1̄ + Fkk, f

χ gkk̄1̄ f1 + F f
χ f11̄ = 0

because F f f
χ = 0. Since |F f

χ | ≤ 1
C5.2

by Lemma 5.6 (1), the term F f
χ f11̄ is

bounded. So the only additional term in (85) of [42] is−C0λ
−1
1 |Fkk, f

χ gkk̄1| on
the right-hand side. Instead of (94) of [42], we get

Fkk
χ gkk̄ p + F f

χ f p = 0.

Since |F f
χ f p| is bounded, the estimate in (95) still holds. So the only additional

term in (99) and (104) of [42] is −C0λ
−1
1 |Fkk, f

χ gkk̄1| on the right-hand side.
Case 1 in [42] will not happen if λ1 is large enough. The additional term in
(120) of [42] is also −C0λ

−1
1 |Fkk, f

χ gkk̄1|. However, recall that (67) of [42] is

−Fi j,rs
χ gi j̄1grs̄1̄ ≥ −Fi j gi ī1g j j̄ 1̄ −

∑
i>1

F1 − Fi

λ1 − λi
|gi 1̄1|.

(We remark that the letter f in [42] is replaced by F and that the letter F
is replaced by Fχ .) The term −Fi j gi ī1g j j̄ 1̄ was thrown away. However, by
Lemma 5.6 (2), Lemma 5.6 (4), and the Cauchy–Schwarz inequality,

−Fi j gi ī1g j j̄ 1̄ ≥ C0|Fkk, f
χ gkk̄1| − C5.10.

So Székelyhidi’s estimate

|√−1∂∂̄ϕ|χ ≤ C5.9

(
1 + sup

M
|∇ϕ|2χ

)

still holds.
Székelyhidi used the property that � contains the positive orthant to prove

the C2 estimate [42]. We do not have this property. However, we can use
Proposition 5.1 of [12] to achieve this.

Evans-Krylov’s estimate requires the uniform ellipticity and concavity of
Fχ( f, .). These conditions follows from Lemma 5.6 (3) and Lemma 5.6 (9).
The higher-order estimate follows from standard elliptic theories. ��
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The analog of Theorem 1.18 is the following:

Proposition 5.8 Fix a Kähler manifold Mn with a Kähler metric χ and a test
family ωt,0 of real closed (1,1)-forms. Suppose that for all t > 0, there exist a
constant ct > 0 and a smooth function ϕt such that ωt = ωt,0 + √−1∂∂̄ϕt ∈
�χ,θ0,�0 satisfies

Re
(
ωt + √−1χ

)n − cot(θ0)Im
(
ωt + √−1χ

)n − ctχ
n = 0.

Then there exist a constant ε5.11 > 0 and a current ω5.12 ∈ [ω0 − ε5.11χ ] such
that ω5.12 ∈ �̄χ,θ0,�0 in the sense of Definition 5.10.

The definition of the sum ω of a real smooth closed (1,1)-form and a closed
positive (1,1)-current being in �̄χ,θ0,�0 is similar to Definition 3.3.

Definition 5.9 Suppose that χ0 is a Kähler form with constant coefficients on
an open set O ⊂ C

n and that ω is the sum of a real smooth closed (1,1)-
form and a closed positive (1,1)-current. Then we say that ω ∈ �̄χ0,θ0,�0 on
O if for any δ > 0, the smoothing ωδ satisfies ωδ ∈ �̄χ0,θ0,�0 on the set
Oδ = {x : Bδ(x) ⊂ O}.
Definition 5.10 We say that ω ∈ �̄χ,θ0,�0 if for any ε5.13 > 0 and ε5.14 > 0
satisfying

(1 + ε5.14) (cot(θ0) + ε5.13) > cot(θ0),

on any open subset O of any coordinate chart, for any Kähler form χ0 with
constant coefficients satisfying

(1 + ε5.14)χ0 ≥ χ ≥ χ0,

we have

ω + ε5.13χ ∈ �̄χ0,θ0,�0 .

Remark 5.11 By Lemma 5.6 (10), when ω is smooth, it is easy to see that
ω ∈ �̄χ,θ0,�0 in the sense of Definition 5.10 if and only if ω ∈ �̄χ,θ0,�0 in
the usual sense. Another key property is that the condition ω ∈ �̄χ,θ0,�0 in
the sense of Definition 5.10 is preserved under weak limits in the sense of
currents.

The analog of Lemma 3.5 is the following:
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Lemma 5.12 Suppose that A is a p × p Hermitian matrix, B is a diagonal
q × q Hermitian matrix with Bii = λi , C is a p × q complex matrix, and D
is another diagonal q × q matrix such that

Dii = Im
∏

k �=i (λk + √−1)

Im
∏q

k=1(λk + √−1)
.

Suppose that

QIp+q

([
A C

C̄T B

])
< π.

Then D is well defined. Moreover,

QIp

(
A − C DC̄T

)
+ QIq (B) ≤ Q Ip+q

([
A C

C̄T B

])

and

PIp

(
A − C DC̄T

)
+ QIq (B) ≤ PIp+q

([
A C

C̄T B

])
.

Proof Define E , F to be diagonal q × q matrices such that

Eii = λi

1 + λ2i
, Fii = 1

1 + λ2i
.

We first claim that

QIp+C FC̄T (A − C EC̄T ) + QIq (B) = Q Ip+q

([
A C

C̄T B

])
.

In fact, using

[
A − C(B + √−1Iq )−1C̄T + √−1Ip O

O B + √−1Iq

]

=
[

Ip −C(B + √−1Iq )−1

O Iq

][
A + √−1Ip C

C̄T B + √−1Iq

][
Ip O

−(B + √−1Iq )−1C̄T Iq

]
,
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it is easy to see that

det

([
A − C EC̄T O

O B

]
+ √−1

[
Ip + C FC̄T O

O Iq

])

= det

([
A − C(B + √−1Iq)−1C̄T + √−1Ip O

O B + √−1Iq

])

= det

([
A + √−1Ip C

C̄T B + √−1Iq

])
= det

([
A C

C̄T B

]
+ √−1

[
Ip O
O Iq

])
.

It follows that

QIp+C FC̄T (A − C EC̄T ) + QIq (B) ≡ Q Ip+q (

[
A C

C̄T B

]
) mod 2π.

This is also true when we replace A by A + t Ip and replace B by B + t Iq for
t ≥ 0. However, when t is large enough, all the quantities are close to 0. So
there is no multiple of 2π there. By continuity, there is also no multiple of 2π
when t = 0.

As a corollary of the claim, we see that Q Iq (B) < π . This implies that

Im
q∏

k=1

(λk + √−1) > 0.

So D is well-defined.
Moreover,

Dii − Eii = −Re
∏q

k=1(λk + √−1)

(1 + λ2i )
(
Im
∏q

k=1(λk + √−1)
) = − cot(QIq (B))Fii .

Now we write A − C EC̄T as ai j and C FC̄T as bi j . Define

a = √−1
p∑

i, j=1

ai j dzi ∧ dz̄ j , b = √−1
p∑

i, j=1

bi j dzi ∧ dz̄ j , c = √−1
p∑

i=1

dzi ∧ dz̄i .

Then Qc+b(a) < π − Q Iq (B) < π . Now we define

I = {t ∈ [0, 1] such that Qcs (as) ≤ Qc+b(a) for all s ∈ [0, t]} ,
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where as = a + s cot(QIq (B))b and cs = c +b − sb. If b = 0, then it is trivial
that I = [0, 1]. So we only need to consider the case when b �= 0. It is also
trivial that 0 ∈ I and that I is closed. Now we assume that t ∈ I . Then

d

ds
|s=t cot(Qcs (as)) = d

ds
|s=t

Re(as + √−1cs)
p

Im(as + √−1cs)p

= p(Re(as + √−1cs)
p−1 ∧ cot(QIq (B))b + Im(as + √−1cs)

p−1 ∧ b)

Im(as + √−1cs)p

− Re(as +
√−1cs)

p

Im(as +
√−1cs)p

p
(−Re(as + √−1cs)

p−1 ∧ b + Im(as + √−1cs)
p−1 ∧ cot(QIq (B))b

)
Im(as + √−1cs)p

= p(cot(QIq (B)) + cot(Qcs (as)))·(
Re(as + √−1cs)

p−1 − cot(QIq (B) + Qcs (as))Im(as + √−1cs)
p−1
) ∧ b

Im(as + √−1cs)p
> 0

by Lemma 8.2 of [12]. So I is open. It must be [0, 1]. So 1 ∈ I . It follows that

QIp(A − C DC̄T ) = Qc1(a1) ≤ Qc+b(a) = QIp+C FC̄T (A − C EC̄T ).

Thus, we have proved that

QIp(A − C DC̄T ) + QIq (B) ≤ Q Ip+q

([
A C

C̄T B

])
< π.

Using a similar argument to the paragraph before Lemma 3.5, by the Schur-
Horn theorem and the convexity of − cot(

∑p−1
i=1 arccot(λ′

i )),

PIp(A − C DC̄T ) = max
U∈Cp×(p−1),Ū T U=Ip−1

QIp−1

(
Ū T (A − C DC̄T

)
U ).

This is also a generalization of the celebrated Courant–Fischer–Weyl min-max
principle.

123



The supercritical deformed Hermitian–Yang–Mills equation 593

Let U ∈ C
p×(p−1) be the matrix realizing maxU∈Cp×(p−1),Ū T U=Ip−1

QIp−1

(Ū T (A − C DC̄T )U ), then

PIp(A − C DC̄T ) + QIq (B)

= QIp−1

(
Ū T (A − C DC̄T )U

)
+ Q Iq (B)

= QIp−1

(
Ū T AU − (Ū T C)D(C̄T U )

)
+ QIq (B)

≤ QIp+q−1

([
Ū T AU Ū T C
C̄T U B

]−1
)

= QIp+q−1

([
Ū T O
O In

] [
A C

C̄T B

] [
U O
O In

])

≤ PIp+q

([
A C

C̄T B

])
.

��
Now we need to prove the following:

Proposition 5.13 Let χM×M = π∗
1χ +π∗

2χ be a Kähler form on M × M. Let
C5.15, θ5.16, �5.17, �5.18, and �5.19 be constants depending only on n, θ0, �0
such that

θ5.16 = θ0 + narccot(C5.15) < �5.17 = �5.18 + narccot(C5.15) < �5.19

= �0 + narccot(C5.15) < π.

Suppose that

ω5.20 = π∗
1ω0 + C5.15π

∗
2χ + √−1∂∂̄ϕ5.20

is a real smooth closed (1,1)-form on M×M such thatω5.20 ∈ �χM×M ,θ5.16,�5.17 .
Define ω5.21 by

ω5.21 =
∑� n−1

2 �
k=0 (−1)k n!

(n−2k)!(2k+1)!(π1)∗(ωn−2k
5.20 ∧ π∗

2χ2k+1)∫
M Im(C5.15χ + √−1χ)n

.

Then ω5.21 ∈ �χ,θ0,�0 .

Remark 5.14 Proposition 5.13 also holds when �5.17 = �5.19. However, we
instead require �5.17 < �5.19 to make sure that if ω ∈ �χ,θ5.16,�5.17 , then

1
cot(Qχ (ω))−cot(�5.19)

changes only a little when we perform the truncation as in
Sect. 3.
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Proof As in Sect. 3, at each p = (p1, p2) ∈ M × M , let z(1)
i be the local

coordinates on M ×{p2} and z(2)
i be the local coordinates on {p1}× M . Then

ω5.20 = ω(1) + ω(2) + ω(1,2) + ω(2,1),

where

ω(1) =
n∑

i, j=1

√−1ω(1)
i j̄

dz(1)
i ∧ dz̄(1)

j , ω(2) =
n∑

i, j=1

√−1ω(2)
i j̄

dz(2)
i ∧ dz̄(2)

j ,

ω(1,2) =
n∑

i, j=1

√−1ω(1,2)
i j̄

dz(1)
i ∧ dz̄(2)

j ,

and ω(2,1) = ω(1,2). After changing the definition of z(2)
i if necessary, we can

assume that

π∗
2χ = √−1

n∑
i=1

dz(2)
i ∧ dz̄(2)

i

and

ω(2) = √−1
n∑

i=1

λi dz(2)
i ∧ dz̄(2)

i

at p.
Then

ω5.21 =
∑� n−1

2 �
k=0 (−1)k(π1)∗ω̂k∫

M Im(C5.15χ + √−1χ)n
,

where ω̂k equals

n!
(n − 2k − 1)!(2k + 1)!ω

(1) ∧ (ω(2))n−2k−1 ∧ π∗
2χ2k+1

+ n!
(n − 2k − 2)!(2k + 1)!ω

(1,2) ∧ ω(2,1) ∧ (ω(2))n−2k−2 ∧ π∗
2χ2k+1

=
n∑

i, j=1

√−1ω(1)
i j̄

dz(1)
i ∧ dz̄(1)

j

(2k + 1)! ∧
⎛
⎝ ∑

α1,...α2k+1distinct

1

λα1 ...λα2k+1

⎞
⎠ (ω(2))n
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−
n∑

i, j,l=1

√−1ω(1,2)
i l̄

ω
(1,2)
j l̄

dz(1)
i ∧ dz̄(1)

j

(2k + 1)! ∧
∑

α1,...α2k+1,ldistinct

1

λlλα1 ...λα2k+1

(ω(2))n .

So ω5.21 = (π1)∗ω5.22, where ω5.22 equals

Im(ω(2) + √−1π∗
2 χ)n

∫
{p1}×M Im(ω(2) + √−1π∗

2 χ)n
∧

n∑
i, j,l=1

(ω
(1)
i j̄

− ω
(1,2)
i l̄

Im
∏

k �=l (λk + √−1)

Im
∏n

k=1(λk + √−1)
ω

(1,2)
j l̄

)dz(1)
i ∧ dz̄(1)

j .

By Lemma 5.12,

Qπ∗
1 χ

⎛
⎝ n∑

i, j,l=1

(
ω

(1)
i j̄

− ω
(1,2)
i l̄

Im
∏

k �=l
(
λk + √−1

)
Im
∏n

k=1
(
λk + √−1

)ω(1,2)
j l̄

)
dz(1)

i ∧ dz̄(1)
j

⎞
⎠ < �5.17 − Qπ∗

2 χ (ω(2)).

Now we consider the function 1
cot(Qχ (ω))−cot(�5.19)

for ω ∈ �χ,θ5.16,�5.17 .
Since

D2
(

1

cot(Qχ (ω)) − cot(�5.19)

)
= −D2 cot(Qχ (ω))(

cot(Qχ (ω)) − cot(�5.19)
)2 + 2D cot(Qχ (ω)) ⊗ D cot(Qχ (ω))(

cot(Qχ (ω)) − cot(�5.19)
)3

and cot(Qχ(ω)) is concave by Lemma 5.6 (9), we see that 1
cot(Qχ (ω))−cot(�5.19)

is convex on �χ,θ5.16,�5.17 .
So

1

cot
(
Qχ (ω5.21)

)− cot(�5.19)

<

∫
{p1}×M

1

cot
(
�5.19 − Qπ∗

2 χ (ω(2))
)

− cot(�5.19)

Im
(
ω(2) + √−1π∗

2 χ
)n

∫
{p1}×M Im

(
ω(2) + √−1π∗

2 χ
)n

=
∫
{p1}×M

(
Re
(
ω(2) + √−1π∗

2 χ
)n − cot(�5.19)Im

(
ω(2) + √−1π∗

2 χ
)n)

(1 + cot2(�5.19))
∫
{p1}×M Im

(
ω(2) + √−1π∗

2 χ
)n

= Re
(
C5.15 + √−1

)n − cot(�5.19)Im
(
C5.15 + √−1

)n
(1 + cot2(�5.19))Im(C5.15 + √−1)n

= 1

cot(�0) − cot(�5.19)
.

By a similar calculation, 1
cot(Pχ (ω5.21))−cot(�5.19)

< 1
cot(θ0)−cot(�5.19)

. By the
convexity of the set �χ,θ5.16,�5.17 , we also know that ω5.21 ∈ �χ,θ5.16,�5.17 . It
follows that ω5.21 ∈ �χ,θ0,�0 . ��
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We use the samemethod as in Sect. 3 to prove Proposition 5.8. The equation

trωt,ε1.6,ε1.7
χM×M + ft,ε1.6,ε1.7

χ2n
M×M

ω2n
t,ε1.6,ε1.7

= (n + 1)c

is replaced by

Re
(
ωt,ε1.6,ε1.7 + √−1χM×M

)2n − cot(θ5.16)Im
(
ωt,ε1.6,ε1.7 + √−1χM×M

)2n = ft,ε1.6,ε1.7χ
n

for ωt,ε1.6,ε1.7 ∈ [π∗
1ωt,0 + C5.15π

∗
2χ ], χM×M = π∗

1χ + π∗
2χ , and ft,ε1.6,ε1.7

similar to how it was defined before. It is easy to see that there exists a constant
C5.23 > 0 depending only on n, θ0, �0, and �5.18 such that

Re
2n∏

k=1

(λk + √−1) − cot(θ5.16)Im
2n∏

k=1

(λk + √−1) ≤ C5.23

2n∏
k=1

(λk − cot(�5.19))

for all λ ∈ �θ5.16,�5.17 . We also know that ω − cot(�5.19)χ must be a Kähler
form for all ω ∈ �χ,θ5.16,�5.17 . Combining these facts with Proposition 5.5,
Remark 5.11, Proposition 5.13 and Remark 5.14, we can prove Proposition 5.8
using a similar method to that in Sect. 3.

With all these preparations, we can prove Proposition 5.2 and, as a corollary,
Theorem 1.7. We prove it by induction on the dimension n of M . When n = 1,
it is trivial. So we assume that it has been proved for all lower dimensions and
then try to prove it. Define I to be the set of t ∈ [0, ∞) such that there exists a
smooth functionϕt and a constant ct ≥ 0 satisfyingωt,ϕt = ωt,0+

√−1∂∂̄ϕt ∈
�χ,θ0,�0 and

Re(ωt,ϕt + √−1χ)n − cot(θ0)Im(ωt,ϕt + √−1χ)n − ctχ
n = 0.

By (C) of the definition of the test family and Proposition 5.5, I is non-empty.
We also know that I is open by Proposition 5.5. In fact, the space �χ,θ0,�0 is
open, and the condition ct ≥ 0 is ensured by the third assumption of Propo-
sition 5.2 applied to V = M . To show the closeness, assume that tk ∈ I is
a sequence converging to t∞. Then by the monotonicity of Pχ and Qχ , the
third assumption of Proposition 5.2 applied to V = M , and Proposition 5.5,
we know that t ∈ I for all t > t∞. We need to show that t∞ ∈ I . Without
loss of generality, assume that t∞ = 0. By Proposition 5.8, there exist a con-
stant ε5.11 > 0 and a current ω5.12 = ω0 − ε5.11χ + √−1∂∂̄ϕ5.12 such that
ω5.12 ∈ �̄χ,θ0,�0 in the sense of Definition 5.10. By Proposition 5.5, it suffices
to find a form ω5.24 = ω0 + √−1∂∂̄ϕ5.24 in �χ,θ0,�0 . We essentially follow
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the procedure in Sect. 4, with minor adjustments to deal with the problem that
ω0 is no longer Kähler.

Let ε5.13 = min{ ε5.11
3 , 1

100 } to get the corresponding ε5.14. By choosing ε5.14
small enough, we can also assume that as long as (1+ ε5.14)χ0 ≥ χ ≥ χ0 and
a real smooth closed (1,1)-form ω ∈ �̄χ0,θ0,�0 , then ω + ε5.13χ ∈ �χ,θ0,�0 .
We can also assume that ε5.14 < 1

100 . Then, as in Sect. 4, there exist a finite
number of coordinate balls B2r (xi ) such that Br (xi ) is a cover of M . Moreover,
let ϕi

ω0
, ϕi

χ be potentials such that
√−1∂∂̄ϕi

ω0
= ω0 and

√−1∂∂̄ϕi
χ = χ on

B2r (xi ). Then we require that

|ϕi
χ − |z|2| ≤ ε5.13r2

100(1 + | cot(θ0)|)
and

√−1∂∂̄|z|2 ≤ χ ≤ (1 + ε5.14)
√−1∂∂̄|z|2

on B2r (xi ). By the uniform continuity of ϕi
ω0
, there exists a constant ε5.25 < r

5

such that |ϕi
ω0

(x) − ϕi
ω0

(y)| ≤ ε5.13r2

100 for all x ∈ B 9r
5
(xi ) such that |x − y| ≤

ε5.25.
As in Sect. 4, we take δ <

ε5.25ε5.13
100(1+| cot(θ0)|) , let ϕi

δ be the smoothing of

ϕi
ω0

− 2ε5.13ϕi
χ + ϕ5.12, and let ϕi

5.26 = ϕi
δ − ϕi

ω0
+ ε5.13ϕ

i
χ . Since ω5.12 ∈

�̄χ,θ0,�0 in the sense of Definition 5.10, we know that
√−1∂∂̄ϕi

δ ∈ �̄χ0,θ0,�0

on B 9r
5
(xi ) by Definition 5.10 and the monotonicity of �̄χ0,θ0,�0 . This implies

that

ω0 + √−1∂∂̄ϕi
5.26 = √−1∂∂̄ϕi

δ + ε5.13χ ∈ �χ,θ0,�0

on B 9r
5
(xi ). We also know that

ω0 − 3ε5.13χ + √−1∂∂̄ϕ5.12 − cot(θ0)χ ≥ ω5.12 − cot(θ0)χ

is a positive current because ω5.12 ∈ �̄χ,θ0,�0 in the sense of Definition 5.10.
As in Sect. 4, we pick a small enough number

ε5.27 = ε5.13r2

100(
∫ 1
0 log

(1
t

)
Vol(∂ B1(0))t2n−1ρ(t)dt + log 2 + 32n−1

22n−3 log 2)
,

where ρ is the function in Definition 3.1. Then we consider the set Y in which
the Lelong number of ϕ5.12 is at least ε5.27. By Siu’s work [37], Y is an analytic
subvariety.
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If we can find a smooth function ϕ5.28 near Y such thatω0+√−1∂∂̄ϕ5.28 ∈
�χ,θ0,�0 , then using the methods in Sect. 4, as long as δ is small enough, the
regularized maximum of ϕ5.28 + 3ε5.27 log δ with ϕi

5.26 provides the required
smooth function ϕ5.24 on M .

Therefore, we only need to find ϕ5.28. By Hironaka’s desingularization the-
orem, there exists a blow-up M̃ of M obtained by a sequence of blow-ups
with smooth centers such that the proper transform Ỹ of Y is smooth. Without
loss of generality, assume that we only need to blow up once because other-
wise we just repeat the process. Let π be the projection from M̃ to M . Let E
be the exceptional divisor. Let s be the defining section of E . Let h be any

smooth metric on the line bundle [E]. Then
√−1
2π ∂∂̄ log |s|2h = [E] + ω5.29 by

the Poincaré-Lelong equation. Further, there exists a constant C5.30 such that
ω5.31 = ω5.29 + C5.30π

∗χ > 0.
Let ω2,0 be ωt,0 when t = 2, and let ω1,0 be ωt,0 when t = 1. Then there

exists a constant ε5.32 > 0 such that ω2,0−ω1,0 ≥ ε5.32χ . Further, there exists
a smooth function ϕ5.33 on M such that ω1,0 +√−1∂∂̄ϕ5.33 ∈ �χ,θ0,�0 on M .
This implies that

∫
V

(
Re
(
ωt,0 − ε5.32χ + √−1χ

)p − cot(θ0)Im
(
ωt,0 − ε5.32χ + √−1χ

)p)

≥
∫

V

(
Re
(
ω1,0 + √−1χ

)p − cot(θ0)Im
(
ω1,0 + √−1χ

)p) ≥ (n − p)ε1.1

∫
V

χ p

for all t ≥ 2 and all p-dimensional analytic subvarieties V of M . By choosing
ε5.32 small enough, using the fact that ωt,0 is bounded with respect to χ for all
t ∈ [0, 2], we can also assume that

∫
V

(
Re
(
ωt,0 − ε5.32χ + √−1χ

)p − cot(θ0)Im
(
ωt,0 − ε5.32χ + √−1χ

)p) ≥ (n − p)
ε1.1

2

∫
V

χ p .

for all t ≥ 0 and all p-dimensional analytic subvarieties V of M .
Now we want to find constants 0 < ε5.34 < 1 and C5.35 independent of t

and consider the Kähler form π∗χ + ε5.34ω5.31 on M̃ and the test family

π∗ωt,0 − ε5.32π
∗χ + (t + C5.35)ε5.34ω5.31

on M̃ . We know that π(E) is smooth. So by the induction hypothesis, as in
Sect. 4, we can find a smooth function ϕ5.36 on M such that ω5.36 = ω0 +√−1∂∂̄ϕ5.36 satisfies ω5.36 ∈ �χ,θ0,�0 on a neighborhood U5.37 of π(E). By
shrinkingU5.37 and replacing ε5.32 if necessary, we can assume that there exists
a constant ε5.38 > 0 such that ω5.36 − ε5.32χ ∈ �χ,θ0−ε5.38,�0 on U5.37. By the
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compactness of M , there exists a constant ε5.39 > 0 such that

ω1,0 + √−1∂∂̄ϕ5.33 ∈ �χ,θ0−ε5.39,�0

on M .
Thenwe required thatC5.35 > cot

(
ε5.38

n

)
andC5.35 > cot

(
ε5.39

n

)
. ByLemma

8.2 of [12], when t ≥ 2,

Im
(

e−√−1θ0
(
π∗ωt,5.33 + (t + C5.35)ε5.34ω5.31 + √−1

(
π∗χ + ε5.34ω5.31

))q)

− Im
(

e−√−1θ0
(
π∗ωt,5.33 + √−1π∗χ

)q)

= Im

⎛
⎝e−√−1θ0

q−1∑
k=0

q!
k!(q − k)!

(
π∗ωt,5.33 + √−1π∗χ

)k ∧
((

t + C5.35 + √−1
)

ε5.34ω5.31

)q−k

⎞
⎠

≤ Im
(

e−√−1θ0
(

t + C5.35 + √−1
)q

ε
q
5.34ω

q
5.31

)
,

where ωt,5.33 = ωt,0 − ε5.32χ + √−1∂∂̄ϕ5.33. So

∫
V
Im
(

e−√−1θ0
(
π∗ωt,0 − ε5.32π

∗χ + (t + C5.35)ε5.34ω5.31 + √−1
(
π∗χ + ε5.34ω5.31

))q)

≤
∫

V
Im(e−√−1θ0 (π∗ωt,0 − ε5.32π

∗χ + √−1π∗χ)q )

+
∫

V
Im
(

e−√−1θ0
(

t + C5.35 + √−1
)q

ε
q
5.34ω

q
5.31

)

≤ − sin(θ0)(n − q)
ε1.1

2

∫
V

π∗χq + Im
(

e−√−1θ0
(

t + C5.35 + √−1
)q) ∫

V
(ε5.34ω5.31)

q

≤ −ε5.40

∫
V

(
π∗χ + ε5.34ω5.31

)q

for any q-dimensional analytic subvariety V of M̃ and a constant ε5.40 inde-
pendent of t and V .

On the other hands, for t ∈ [0, 2], we get a similar estimate withinU5.37. As
for the set M̃ \π−1(U5.37), we know that all the forms π∗ω5.36, π∗χ , andω5.29
are bounded using the norm defined by π∗χ + ε5.34ω5.31. Moreover, π∗χ is
also bounded below by a positive constant multiple of π∗χ + ε5.34ω5.31. So
if ε5.34 is small enough, then the Kähler form π∗χ + ε5.34ω5.31 and the test
family π∗ωt,0−ε5.32π

∗χ + (t +C5.35)ε5.34ω5.31 on M̃ satisfy the assumption
of Proposition 5.2. Since Ỹ is smooth, by the induction hypothesis and the
arguments in Sect. 1, there exists a smooth function ϕ5.41 on M̃ such that

π∗ω0 − ε5.32π
∗χ + C5.35ε5.34ω5.31 + √−1∂∂̄ϕ5.41 ∈ �π∗χ+ε5.34ω5.31,θ0,�0
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on a neighborhood U5.42 of Ỹ . By a similar argument to that in the proof of
Lemma 5.12, this implies that

π∗ω0 − ε5.32π
∗χ + (C5.35 − cot(θ0)) ε5.34ω5.31 + √−1∂∂̄ϕ5.41 ∈ �π∗χ,θ0,�0

on U5.42 \ π−1(E). So by choosing (C5.35 − cot(θ0))ε5.34C5.30 < ε5.32, we
see that

π∗ω0 + √−1∂∂̄

(
ϕ5.41 + (C5.35 − cot(θ0)) ε5.34

√−1

2π
log |s|2h

)
∈ �π∗χ,θ0,�0

on U5.42 \ π−1(E). Finally, we choose a large enough constant C5.43
and define ϕ5.28 as the regularized maximum of π∗(ϕ5.41 + (C5.35 −
cot(θ0))ε5.34

√−1
2π log |s|2h) with ϕ5.36 − C5.43.
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