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Conspecific negative density dependence (CNDD) promotes tree species
diversity by reducing recruitment near conspecific adults due to biotic
feedbacks from herbivores, pathogens, or competitors. While this
process is well-described in tropical forests, tests of temperate tree
species range from strong positive to strong negative density
dependence. To explain this, several studies have suggested that tree
species traits may help predict the strength and direction of density
dependence: for example, ectomycorrhizal-associated tree species
typically exhibit either positive or weaker negative conspecific density
dependence. More generally, the strength of density dependence may be
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predictably related to other species-specific ecological attributes such as
shade tolerance, or the relative local abundance of a species. To test the
strength of density dependence and whether it affects seedling
community diversity in a temperate forest, we tracked the survival of
seedlings of three ectomycorrhizal-associated species experimentally
planted beneath conspecific and heterospecific adults on the Prospect Hill
tract of the Harvard Forest, in Massachusetts, USA. Experimental
seedling survival was always lower under conspecific adults, which
increased seedling community diversity in one of six treatments. We
compared these results to evidence of CNDD from observed sapling
survival patterns of 28 species over approximately 8 years in an adjacent
35-hectare forest plot. We tested whether species-specific estimates of
CNDD were associated with mycorrhizal association, shade tolerance,
and local abundance. We found evidence of significant, negative
conspecific density dependence (CNDD) in 23 of 28 species, and positive
conspecific density dependence in two species. Contrary to our
expectations, ectomycorrhizal-associated species generally exhibited
stronger (e.g. more negative) CNDD than arbuscular mycorrhizal-
associated species. CNDD was also stronger in more shade tolerant
species but was not associated with local abundance. Conspecific adult
trees often have a negative influence on seedling survival in temperate
forests, particularly for tree species with certain traits. Here we found
strong experimental and observational evidence that ectomycorrhizal-
associating species consistently exhibit CNDD. Moreover, similarities in
the relative strength of density dependence from experiments and
observations of sapling mortality suggest a mechanistic link between
negative effects of conspecific adults on seedling and sapling survival
and local tree species distributions.
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Abstract

Conspecific negative density dependence (CNDD) promotes tree species diversity by
reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens,
or competitors. While this process is well-described in tropical forests, tests of temperate tree
species range from strong positive to strong negative density dependence. To explain this,
several studies have suggested that tree species traits may help predict the strength and direction
of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit
either positive or weaker negative conspecific density dependence. More generally, the strength
of density dependence may be predictably related to other species-specific ecological attributes
such as shade tolerance, or the relative local abundance of a species. To test the strength of
density dependence and whether it affects seedling community diversity in a temperate forest, we
tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally
planted beneath conspecific and heterospecific adults on the Prospect Hill tract of the Harvard
Forest, in Massachusetts, USA. Experimental seedling survival was always lower under
conspecific adults, which increased seedling community diversity in one of six treatments. We
compared these results to evidence of CNDD from observed sapling survival patterns of 28
species over approximately 8 years in an adjacent 35-hectare forest plot. We tested whether
species-specific estimates of CNDD were associated with mycorrhizal association, shade
tolerance, and local abundance. We found evidence of significant, negative conspecific density
dependence (CNDD) in 23 of 28 species, and positive conspecific density dependence in two
species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited
stronger (e.g. more negative) CNDD than arbuscular mycorrhizal- associated species. CNDD

was also stronger in more shade tolerant species but was not associated with local abundance.
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Conspecific adult trees often have a negative influence on seedling survival in temperate forests,
particularly for tree species with certain traits. Here we found strong experimental and
observational evidence that ectomycorrhizal-associating species consistently exhibit CNDD.
Moreover, similarities in the relative strength of density dependence from experiments and
observations of sapling mortality suggest a mechanistic link between negative effects of

conspecific adults on seedling and sapling survival and local tree species distributions.

Keywords: conspecific negative density dependence, diversity, saplings, temperate tree

seedlings, mycorrhizal fungi, ectomycorrhizae, shade tolerance

Introduction

Conspecific negative density dependence (CNDD), whereby population growth rates
decline with increasing population density due to a negative feedback on recruitment or survival,
is a critical mechanism that can support local tree diversity (Chesson 2000). One example of
CNDD is known as the Janzen-Connell hypothesis. This hypothesis suggests that specialized
enemies, such as herbivores or pathogens, reduce the recruitment of offspring nearby parent trees
in highly diverse tropical forests (Janzen 1970; Connell 1971). This process hinders the
formation and preservation of monodominant stands, and the resulting spatial distribution of
trees supports the coexistence of many species. It is broadly assumed that CNDD can operate as
a stabilizing mechanism to support diverse communities; however, very few studies of density
dependence have quantified the effects of CNDD on diversity. Theoretical work (Chesson 2000)
and observational studies (LaManna et al. 2017; Johnson et al. 2012) have linked higher species

diversity to stronger CNDD, but experimental evidence of this link remains rare (Bagchi et al.
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2014; Levine and HilleRisLambers 2009). In particular, few studies show whether and how
CNDD can produce greater diversity over ecological time.

Strong CNDD is pervasive in the tropics (Comita et al. 2014; Terborgh 2012), making it
an attractive potential driver of latitudinal patterns of tree diversity. However, there is also
increasing support for CNDD as a mechanism that influences tree communities in temperate
forests (Johnson et al. 2014, 2012; McCarthy-Neumann and Kobe 2010; Ramage et al. 2017;
Jiang et al. 2020, 2021). While this work illustrates the potential for CNDD to drive population
dynamics in temperate systems, there is wide variation in the strength of CNDD among tree
species (Bennett et al. 2017; Johnson et al. 2014) and along environmental gradients (LaManna
et al. 2016; Smith and Reynolds 2015).

Plant functional traits provide one potential means for predicting differences in the
strength of density dependence among species (Bennett et al. 2017; Brown et al. 2019; Jia et al.
2020). In particular, functional traits that confer resistance to attack from herbivores or
pathogens, the primary drivers of CNDD, may be associated with the strength of density
dependence. For tree species, the type of mycorrhizal association, either arbuscular (AM) or
ectomycorrhizal (ECM), has been associated with patterns in CNDD. In previous studies,
ectomycorrhizal-associated tree species tend to exhibit weaker or even positive density
dependence (Bennett et al. 2017; Jiang et al. 2020, 2021; Chen et al. 2019; Qin et al. 2021),
possibly due to the greater protection from soil pathogens that the fungi confer to their tree host
(Corrales et al. 2016; Bennett et al. 2017). Indeed, recent work suggests that while both AM and
ECM fungal networks may partially counteract conspecific negative density dependent mortality,

ECM fungi may be more effective than AM fungi at countering the mortality agents which
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typically drive CNDD patterns (Liang et al. 2021). However, in other studies the strength of
CNDD was similar in AM and ECM associated tree species (Jia et al. 2020).

In addition to mycorrhizal association, shade tolerance has been associated with species-
specific patterns in CNDD; shade tolerant tree species are less susceptible to microbial attack due
to conservative life history strategies, suggesting that they should exhibit weaker CNDD
(McCarthy-Neumann and Kobe 2008; Song et al. 2021). However, shade tolerant species are
also more likely to be infected by necrotrophic fungal pathogens, which kill their hosts and feed
on the decaying tissue, while shade intolerant species are more likely to be infected by biotrophs,
which feed on live tissue without killing their hosts (Garcia-Guzman and Heil 2014). Indeed, low
light areas of the forest where shade tolerant seedlings are likely to be found typically contain
higher pathogen loads (Augspurger and Kelly 1984). Therefore, despite their conservative
allocation strategy, shade tolerant species may be more affected by CNDD, if the pathogens
driving density dependence are more abundant and virulent. Indeed, the few explicit tests of how
shade tolerance relates to CNDD in temperate forests are conflicting: shade tolerant species may
be more (Jia et al. 2020) or less (Brown et al. 2019) likely to exhibit CNDD than shade intolerant
species within temperate forests.

Additionally, temperate species do not always follow the same patterns as tropical
species: in the tropics, rare species typically exhibit stronger CNDD, which helps maintain
diverse communities with many rare species (Xu, Wang, and Yu 2015; Comita et al. 2010;
Mangan et al. 2010). In temperate forests, the pattern between CNDD and local abundance is less
clear: while some studies show that rare species exhibit stronger negative density feedbacks
(Johnson et al. 2012), others show the opposite pattern, with more abundant species exhibiting

stronger CNDD (Zhu et al. 2015; LaManna et al. 2016). Quantifying the strength of CNDD
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across multiple co-occurring species can help to detangle sources of variability in CNDD studies
and is needed to generalize the importance of CNDD in temperate, as well as tropical, forests.

In this study we used a combination of experimental and observational approaches to ask how
prevalent CNDD is in a temperate forest, with particular emphasis on whether ectomycorrhizal-
associated species commonly exhibit CNDD. We used a seedling planting experiment to test
whether the species identity (conspecific versus heterospecific) of neighboring mature trees
influences seedling survival in ectomycorrhizal-associating tree species, and whether CNDD
effects on ECM seedling mortality alter seedling community diversity. We then used the survival
of naturally occurring saplings to quantify the strength of CNDD across 28 co-occurring woody
species. Finally, we asked whether mycorrhizal type, shade tolerance, and local abundance
predict variation in the strength of CNDD among species.

Materials and methods:

Site Description

This study took place on the Prospect Hill tract of the Harvard Forest (HF) located in Petersham,
Massachusetts. This forest is in the northern hardwood-hemlock-white-pine transition zone
(42.530°°N, 72.190°°W, 300 m elevation above sea level). The mean annual temperature and
precipitation are 7.1°C and 1066 mm, respectively. For the observational part of our study, we
utilized the 35-hectare HF ForestGEO plot where every woody stem >1 cm diameter at breast
height (DBH) has been identified to species, tagged, geolocated and its diameter was measured
(Orwig et al. 2022). The experimental portion of our study took place in plots that are adjacent to
the ForestGEO plot (Appendix 1: Figure S1).

Experimental Methods
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We selected three ectomycorrhizal species: Pinus resinosa, Quercus rubra and Pinus
strobus which represent a range in other plant traits, including shade tolerance(Niinemets and
Valladares 2006). All three species are common at our study site, although the population of
Pinus resinosa were planted there in the early 1900s and now consist of both planted and
naturally regenerated individuals. In the forest adjacent to the mapped ForestGEO plot, we
located 30 experimental plots (Appendix 1: Figure S1). Each circular plot had a diameter of 20 m
and was centered on a focal Pinus resinosa, Quercus rubra, or Pinus strobus with a DBH greater
than 28cm such that there were ten plots centered on each of the three species. We chose
locations where none of the other study species occurred: e.g., in a plot centered on a Q. rubra
tree, there were no Pinus resinosa or Pinus strobus. We used these plots to plant seedlings of
each of the three species beneath both conspecific and heterospecific “adult” trees (defined as
trees with a DBH greater than 28 cm).

In addition to these three species, we also planted Picea abies seedlings. Picea abies are
present at this site but not native to the area. Like Pinus resinosa, Picea abies was commonly
planted in the early 1900s and now naturally regenerate at this site. We included this species in
the seedling planting primarily to increase the diversity of our planted seedling communities.
Picea abies was chosen as it was available from the same nursery as the three experimental
species, was a similar size and age to the other three species, associates with the same type of
mycorrhizal fungi, and is a common species at this study site (Table 1). We purchased bare-root
seedlings in May 2019 which were grown outdoors at the New Hampshire State Nursery in
Boscawen, NH. Picea abies and Quercus rubra seedlings were two years old at planting while
Pinus strobus and Pinus resinosa were three years old.

Experimental planting

Page 8 of 103
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Within each plot, we constructed two subplots, 1 m x 1 m, into which the seedlings were
planted. Subplots were located approximately 1 meter apart and within 2 meters of the base of
the trunk of the focal tree, and subplot type (“even” or “uneven”) was randomly assigned. In
each subplot, we planted 20 seedlings. To test whether CNDD promotes diversity, and whether
the effects of CNDD on diversity were dependent on the initial diversity of the community, in
one subplot (“Even”), we planted 5 individuals of each species. In the other (“Uneven”), we
planted 11 individuals of the same species as the focal tree (conspecifics), and 3 of each of the
heterospecific species. Thus, the two subplots had the same total number of seedlings, but the
conspecific seedling was either at the same density as each of the heterospecifics, or at a much
higher density, as would be more likely under natural regeneration conditions. We used a
standard, randomized planting design such that the spatial arrangement of conspecific seedlings
relative to heterospecific seedlings was consistent across all subplots of the same type
(Supplementary Fig 2). All 1200 seedlings were planted between May 31st and June 7th, 2019.

Before planting, each subplot was cleared of aboveground stems greater than 20cm in
height with hand clippers, so that competition with herbaceous plants and ferns was minimized
across all plots. Resprouts from clipped vegetation, primarily ferns, were rare and were re-
clipped when they emerged. Next, leaf litter was removed and set aside. A wooden 1m? frame
with grid lines at 20cm intervals, creating a 5x5 grid, was then placed on the ground to serve as
the planting guide (Appendix 1: Figure S2). Using an auger (7.6 cm diameter), we dug holes in
20 locations in each subplot. Removed soil was placed on a tarp and homogenized. The
individually tagged seedlings were then planted and covered by the homogenized soil.

Throughout the planting process, the roots of the seedlings were kept moist with water in spray
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bottles. After the 20 seedlings were planted, the subplot was flagged, watered, and re-covered by
leaf litter.

Within each 10-m radius plot, we also identified and measured the diameter of each tree
> 2.5 cm DBH as well as the distance of each stem to the seedling subplots. To account for
possible differences in light environment that could influence seedling survival, we took a
hemispherical photo using a fisheye lens from the center of each plot to capture the light
environment. Photographs were taken between 07:30 and 09:30 am to avoid overexposure.
Images were analyzed with WINSCANOPY (Regent Instruments Inc., Quebec, Canada) to
calculate the gap fraction (a metric of canopy openness) of each of the 30 plots.

Seedlings were tracked individually throughout the summer. After all seedlings had been
in the ground for two weeks, seedlings were censused for survival and their initial heights were
measured to account for any differences in survival that were due to variation in initial seedling
size. Seedlings were censused again after an additional 10 weeks for their final survival status.
Seedlings were presumed dead if their needles had all turned brown (conifers) and if they had no
remaining leaves (Q. rubra). We continued to monitor all seedlings, regardless of status, for the
full 12 weeks of the experiment.

Statistical analysis of experimental seedling mortality

We removed 17 individual seedlings from the analysis (1 P. strobus, 13 Q. rubra and 3 P.
resinosa) that died within the first two weeks, presumably due to transplant shock rather than as
a result of our experimental treatments. For each seedling species, we calculated the overall odds
ratio of survival under conspecific and heterospecific focal adults, such that an odds ratio < 1
indicates a lower chance of survival beneath a conspecific adult. We then fit a binomial mixed

model using the R package Ime4 (Bates, Maechler, Bolker, & Walker, 2015) to predict seedling
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survival as a function of the adult species identity of the plot (based on whether the focal tree in
the plot was a conspecific or heterospecific), initial seedling height, subplot type (even or
uneven) and canopy gap fraction, with the plot as a random effect. For the P. abies seedlings, we
fit the same model without the adult identity variable as all seedlings were growing in
heterospecific plots.

To account for possible effects of both the focal tree in each plot (our experimental
treatment), and also the effects of neighboring trees, we used the full 314-m2 plot to calculate a
neighborhood competition index (NCI) following Canham, LePage, and Coates (2004) and
modified as in other similar analyses (Zhang et al. 2017; Bai et al. 2012; Magee et al. 2020). For
each plot, we calculated NCI values to compare the effects of conspecific and heterospecific

adults within 10 meters as follows:

DBHconspecific
NCIconspeciﬁc == eql

distance

DBHheterospecific
NCIheterospeciﬁc =2

eq. 2

distance
We then used the results of the first set of models (using the identity of the focal adult tree as our
treatment) to inform which parameters to include in the second set (including the NCI as our
treatment), including any parameter from the first model set with p < 0.1. We ran a second set of
binomial mixed models that did not include adult identity, but did include NClconspecific,
NClheterospecific, and any of the parameters identified from model set 1 with plot ID as a random
variable.

Finally, we tested whether the observed seedling mortality affected the diversity of the
seedling community. To do this, we calculated the overall survival of each seedling subplot. We
then simulated random mortality at that level for each subplot, by randomly assigning a survival

code to each seedling until the overall observed mortality of the plot was met. We ran this
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simulation 1000 times for each subplot. As all our experimental plots were planted with the same
species richness (4), we used the Shannon’s Equitability Index (J) (Begon, Harper and Townsend
1996):

J = ZZiipilog®p)
log(SR)

eq. 3
where p; is the proportion of each species and SR is the species richness. We used this metric to
assess whether the diversity we observed at the end of our experiment differed from what the
diversity would be if mortality had occurred randomly with respect to species identity of the
seedlings.
Observational sapling survival

To determine whether naturally regenerating saplings exhibited a similar pattern to those
we experimentally planted, as well as to quantify density dependence in a wider variety of
naturally occurring saplings, we used the subset of the Harvard Forest ForestGeo plot that has
been re-censused as of 2021. The first census occurred from June 2010 through January 2014.
The re-census occurred from May 2018 to September 2019. Individual trees were revisited and
their survival status was recorded.

Using the initial census, we calculated the same metrics of neighborhood competition as
for our experimental plots (eq.1 and eq. 2) for each individual stem in the forest. We used a
maximum distance of 20 m. We only assessed patterns for species with more than 10 individual
saplings and more than 20 individual adults. To account for differences in average size of each
species as well as maximize the number of species included in our analysis, we defined
individuals as saplings if their DBH was less than the median DBH of that species, up to a

maximum cutoff of 12.7 cm DBH, and individuals greater than the median as “adults” (Table 1).

To confirm that our results were not sensitive to the choice of methods, we re-ran the CNDD

Page 12 of 103
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estimation using 15m maximum distance to neighbors and 25 m maximum distance to neighbors.
We also re-ran the CNDD estimation using an alternative method to distinguish between saplings
and adults: using a DBH cutoff of either 3cm, 8cm or 12.7cm for species with a median DBH
less than 5cm, greater than 5 but less than 12.7cm, and greater than 12.7cm respectively, as a
common concern with CNDD analyses is that the distinction can be arbitrary (Detto et al. 2019).
Results of from these alternative analyses can be found in Appendix 1: Figure S3.

To calculate the overall effect of neighborhood on sapling mortality, we fit a generalized
linear mixed-effects model (GLMM) with binomial errors and a complementary log—log link to
assess the relative importance of factors determining individual sapling mortality using the R
package Ime4 (Bates et al. 2015). To account for differences in the length of time between the
two censuses for individual trees, we used a log(time) offset of the number of years between the
two censuses (range: 5.25 - 9.5 years) for each individual stem as in Johnson et al. (2017). The
diameter at breast height (DBH) of the sapling at the first census was included as a
covariate(Johnson et al. 2017). Both NClcon and NClye were also included in the model to
account for the overall effects of competition as well as the specific effects of conspecific
neighbors. All three variables were scaled by subtracting the overall mean and dividing by two
standard deviations (Gelman 2008). Species was included as a random effect, and both NClcon
and NClpe were estimated with random slopes for each species. The model coefficients for each
species of NClcon and NClpet were used to estimate CNDDecoetr, such that CNDDeoetr was the
difference between the model coefficient for NClcon and NCliet.

To further account for the possibility that our CNDDeoesr estimate could be produced by
underlying spatial or other factors not accounted for in this simple statistical model, we

additionally performed null model testing (LaManna, Mangan, and Myers 2021). Using the same
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model structure as above, we recalculated values of NClcon and NClpet for each sapling after
randomizing the observed proportion of the total NCI that was conspecific: effectively keeping
the total neighborhood density the same as the observed, but randomizing the density of
conspecific neighbors. We also kept the observed values of DBH, and the mortality outcome. We
re-ran this null model 1000 times, and estimated CNDDy,; as the difference between the mean
NCleon and NClpet coefficients using the same model structure as described above. We then
calculated the final estimate of CNDD for each species (CNDDest) as follows
CNDDgst = -(CNDDgoefr - CNDDnyir) eq. 4

where CNDDcoetr 1s the estimate based on the difference between the model coefficients for
NCleon and NCliet using the observed data, and CNDDqyn is the estimate based on the difference
between the model coefficients for NClcon and NClpet using the randomized NCleon. The negative
sign is to make the estimate more interpretable: as all the models were run as hazard functions,
with survival coded as zero and mortality coded as one, taking the inverse of the estimate mreans
that a negative CNDDes: indicates a species exhibited stronger CNDD, while a positive CNDDest
indicates that greater conspecific adult density was associated with a higher likelihood of
survival. For each species, we took the mean across the 1000 iterations of the null model
randomization, and we considered our estimate of CNDD significant if the 95% confidence
interval of CNDDe did not cross 0. We also confirmed that the mean null model coefficients
were significantly different from the coefficients based on the observed values for each species
using a paired t-test. Full visualization of the null model distribution for each species relative to
CNDDyps can be found in Appendix 1: Figure S4.

Finally, we compared this species level estimate of CNDD at this site to species level

plant traits. We assigned each species a dominant mycorrhizal association based on values from
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FungalRoot (Soudzilovskaia et al. 2020) and a shade tolerance value based on Niinemets and
Valladares (2006). We then used a linear model to estimate the effects of mycorrhizal
association, shade tolerance, and local abundance (log transformed) on CNDDeg. Because the
species in this study varied dramatically in their typical and mature size, and because AM species
were generally smaller (Table 1), we also included the median DBH of the species as a predictor
in the model. To ensure that our results were robust to model structure, we also iteratively
checked all possible two-way interactions of the four species level predictors (mycorrhizal
association, shade tolerance, local abundance and median DBH); none were significant, so we
report the results of the additive model. All analyses we performed in R version 4.0.5.
Results
Experimental seedling survival

All seedling species had higher survival rates when planted beneath heterospecific trees
than when planted under conspecific trees (Figure 1, Table 2). Quercus rubra, which had the
lowest overall mortality, also exhibited the least difference in survival (88.5% under
conspecifics, 96.7% under heterospecifics, odds ratio: 0.91). Pinus resinosa had the highest
overall mortality, with only 3.8% seedling survival beneath conspecifics and 15.4% beneath
heterospecifics (odds ratio 0.25). Pinus strobus showed the greatest absolute difference in
survival between conspecifics (73.9%) and heterospecifics (94.4%) and the strongest effect of
the identity of the neighboring adult tree (Table 2).

Results were qualitatively similar when comparing the density of adult trees in the
surrounding community, as measured by NCI, to seedling survival. All four species exhibited
declining survival with increasing conspecific adult density (NClcon), but all but Q. rubra also

exhibited declining survival in response to increasing heterospecific density (NClhet) as well
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(Table 3). When comparing the NCl.on coefficient estimates and standard errors with those of
NClhet, only P. strobus exhibited CNDD: in other words, the coefficient estimate for the negative
effect of conspecific neighbors did not overlap with the weaker negative effect of heterospecific
neighbors (Table 3).

None of the seedling species exhibited survival differences between the even and
unevenly planted plots (Table 2). In the evenly planted seedling subplots, which began the
experiment with perfectly even communities (J=1), observed mortality caused a decline in
seedling diversity; however, this decline in diversity was indistinguishable from simulated
random mortality (Figure 2a). The seedling diversity in the unevenly planted subplots either
stayed the same or, in the case of the unevenly planted subplots beneath P. resinosa adults,
substantially increased (Figure 3b). In those plots, the seedling community had changed from an
equitability index (J) of 0.85 (uneven) to 0.98 at the end of the experiment- almost perfectly
even, and far higher than the diversity predicted if the mortality had been random. These
locations experienced the highest total mortality (59.7%), and also the highest difference
between conspecific seedling mortality (96%) and heterospecific seedling mortality (12.6%).
Experimental seedling survival was also affected by factors other than the local neighborhood.
For example, Pinus strobus and Pinus resinosa seedlings that were initially taller had slightly
lower survival. Picea abies was the only species whose survival increased with increasing light
availability as measured by the gap fraction (Table 2).

Observed sapling survival

Overall, the probability of sapling survival in our observational CNDD analysis

decreased with increasing local density of conspecifics (Table 4). Sapling survival was also

positively associated with sapling DBH and negatively associated with local density of
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366  heterospecifics; however, the effect of these drivers was considerably lower than the effect of
367  conspecific neighbors (Table 4). The strength of CNDD varied substantially among species. In
368  twenty- three of the twenty- eight species used in our analysis, sapling survival decreased

369 significantly with increasing conspecific density, whereas in two species sapling survival

370 increased with increasing conspecific density (Figure 3).

371 Tree species that typically associate with ECM fungi were much more likely to exhibit
372  CNDD than those that typically associate with AM fungi (Figure 3B, Table 5); 12 of the 13
373  ECM-associated species in this analysis exhibited significant CNDD. In contrast, 4 of the 15
374  AM-associated species either did not exhibit significant CNDD or instead were more likely to
375  survive when growing in areas with greater densities of conspecifics (e.g. had significantly
376  positive estimates of CNDD). AM-associated saplings also had a somewhat lower overall

377  survival (61%) than ECM-associated saplings (72%). Although there are a similar number of
378 AM and ECM associating species at this site, ECM species tend to have higher abundance and
379  overall about 66% of saplings are ECM-associating species. In addition, the AM-associating
380 species at this site tend to be smaller (Table 1). However, the median DBH of the species was not
381  associated with stronger CNDD (Table 5).

382 Shade tolerance was also a significant predictor of CNDD at the species level, such that
383  more shade tolerant species generally exhibited stronger, more negative CNDD than shade

384 intolerant speceis (Figure 4). In contrast, local abundance was not a significant predictor of the
385  strength of CNDD (Figure 4).

386 CNDD estimated in naturally occurring saplings generally aligned with the results from
387  the seedling experiment. Quercus rubra, which showed the weakest response to the nearby

388  conspecific adults (Table 2) and no response to neighborhood conspecific density (Table 3) in
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the seedling experiment, showed no significant evidence of CNDD at the sapling stage (Figure
3). Pinus strobus, which exhibited the strongest response to nearby conspecific adults (Table 2)
and neighborhood conspecific densities (Table 3) in the experimental data, showed strong
evidence of CNDD in the analysis of observed sapling survival (Figure 3). Pinus resinosa, which
exhibited intermediate CNDD in the seedling experiment, was also intermediate in the observed
sapling analysis.
Discussion
CNDD and mycorrhizal associations

The results of both our field experiment and our analysis of sapling survival indicate that
sapling mortality is higher beneath conspecific adults in this system. In particular, the agreement
between these two separate analyses for the three tree species common to the two studies
provides strong evidence of CNDD in this temperate forest, particularly in ectomycorrhizal trees.
Indeed, the apparent ubiquity of CNDD among ectomycorrhizal species in this forest came as a
surprise, as previous work has found weaker or positive patterns of density dependence among
ECM associating trees (Bennett et al. 2017; Jiang et al. 2020, 2021; Brown et al. 2019). Notably,
however, several of these studies found these patterns primarily in plant growth rates rather than
in survival (Bennett et al. 2017; Brown et al. 2019). Given that there can be intraspecific
tradeoffs between survival and growth rates (Seiwa 2007), it is possible that CNDD estimates
based on growth and survival may differ within a species (Brown et al, 2019). In addition, the
details of the species included in this study may differ from those in other locations. At this site,
while there is a similar number of species that associate with AM and ECM fungi, ECM-
associating trees are much more abundant. Thus, the availability of mutualists for AM-

associating species is likely lower and/or patchier, and recent evidence shows that AM
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colonization is greater on plants that grow in stands where other AM-associating plants are more
abundant (Griinfeld et al. 2020). This could have the result that regeneration near to conspecifics
comes with greater access to appropriate mutualists, which could dampen the negative effects
typically associated with proximity to conspecific adults for AM-associating species (Liang et al.
2021). In contrast, mutualist availability is likely ubiquitous for ECM-associating species, as
ECM species are well distributed at this site. Finally, estimates of species level CNDD in one
context may not generalize, as there is increasing evidence that the strength of CNDD can
change due to variation in the presence of large mammals (Murphy and Comita 2021), climate
(Liu and He 2021), and along environmental gradients (Brown, White, and Peet 2021; LaManna
et al. 2016; Magee et al. 2020; Record et al. 2016).
CNDD and shade tolerance

We also found evidence that shade tolerance predicted the strength of CNDD: shade
tolerant species tended to show somewhat greater CNDD, although the effect was strongly
driven by a single species (Picea abies). This is consistent with some (Jia et al. 2020; Garcia-
Guzman and Heil 2014) but not other (Brown et al. 2019) studies on shade tolerance and CNDD.
This discrepancy may be because there are conflicting pressures on trees which result in no clear
net effect. Shade tolerant species typically have more conservative life history strategies, which
might make them less sensitive to CNDD (McCarthy-Neumann and Kobe 2008; Song et al.
2021). However, shade intolerant species are less likely to be limited by conspecific-associating
fungal pathogens, and more likely to be limited by herbivorous insects or pathogens with weaker
effects on mortality, perhaps making them less likely to exhibit CNDD (Jia et al. 2020; Garcia-
Guzman and Heil 2014). Taken together with results from this study, it seems that shade

tolerance may not have a consistent effect on strength of CNDD in temperate forests.
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CNDD and other species characteristics

Local abundance is a strong driver of CNDD in tropical trees, where rare species
typically exhibit the strongest CNDD (Comita et al. 2010). In temperate forests, however, the
results have been mixed, with some analyses indicating that rare species exhibit stronger CNDD
(Johnson et al. 2012; Seiwa et al. 2019) and others finding that more abundant species exhibit
stronger CNDD (K. Zhu et al. 2015). Indeed the effect of local abundance may also interact with
other characteristics. For example, rare AM species typically exhibit stronger CNDD than
common AM species, but the same may not hold true for ECM species (Jiang et al. 2020, 2021).
In this study we found that local abundance had no apparent effect on the strength of CNDD,
overall or interacting with mycorrhizal type. This may be important for understanding the effects
of CNDD on diversity in this forest: theoretical work suggests that if variation among species in
CNDD is correlated with abundance, with stronger CNDD for rare species, then diversity may
not be maintained. However, if CNDD is unrelated to abundance, as in our study here, or even
stronger for common species, then CNDD may help promote the maintenance of diversity
(Stump and Comita 2018).

Additional plant characteristics may also influence species susceptibility to CNDD. For
example, species with larger seeds may be more tolerant to conspecific neighbors as their seeds
act as carbohydrate stores, insuring them against biomass losses to herbivores and pathogens
(Lebrija-Trejos et al. 2016; Seiwa et al. 2019). This may help explain why the large-seeded Q.
rubra exhibited either weak or no CNDD in both the experiment and the observational study;
however, the effect of cotyledon reserves is likely larger at younger ages. Notably, naturally
occurring Q. rubra seedlings at this site do exhibit CNDD, but the effect decreases as the size of

the seedling increases (Jevon et al. 2020), which is consistent with what we found here (that the
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evidence of CNDD was stronger in the experiment, which assessed much smaller individuals)
The apparent weakening of CNDD in this species as individuals increase in size in also
consistent with previous work suggesting that CNDD is often strongest at the seed to seedling
transition or at younger age classes (Zhu et al. 2015). We note that as we assessed large seedlings
(2 and 3 years old) in the experiment, and saplings (up to 12.7cm DBH) in the observational
analysis, the overall results of this study are likely conservative with respect to how many
species exhibit CNDD and the apparent strength of the effect relative to the true strength of
CNDD that is experienced by trees in this forest.
CNDD and diversity

The change in diversity in one out of six of our experimental treatments also illustrates
how CNDD mortality can affect community diversity (Figure 3). Importantly, it illustrates that
alone, differences in mortality in seedlings growing near conspecific and heterospecific adults is
not enough to generate greater diversity. The overall mortality must also be relatively high, and
the initial diversity low, to result in meaningful changes to seedling community diversity. This is
consistent with conceptual models suggesting that overall differences in mortality rates among
life stages, alone or in combination with non-random mortality, can be an important determinant
of community diversity (Green, Harms, and Connell 2014). The significant increase in diversity
in even one treatment during this short-term experiment provides clear evidence that CNDD can
act as a mechanism to support local diversity, particularly in systems or situations with high
mortality.
Conclusions

Based on these patterns, we suggest that there is strong evidence for CNDD in temperate

tree species. Our results also suggest that tree species associated with ectomycorrhizal fungi



481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

Ecology

exhibit CNDD, which runs counter to previous studies (Bennett et al. 2017; Jiang et al. 2020,
2021; Brown et al. 2019). This suggests caution when generalizing about how plant traits predict
CNDD. Instead, integrating information about multiple plant characteristics, as well as the
environmental context, will help to better predict species-level patterns in CNDD. We found
experimentally that CNDD is capable of increasing seedling community diversity. However,
theoretical work suggests that, in some cases, interspecific variation in the strength of CNDD
decreases its ability to promote coexistence (Stump and Comita 2018), and results from this
study and others show large variation in the strength of CNDD among co-occurring species.
Therefore, although evidence of CNDD in temperate forests is accumulating, the consequences
for diversity remain poorly understood.
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Table 1. Characteristics of species included in the analysis of CNDD for saplings from two
censuses. Species used in the planting experiment are in bold. AM: species that typically
associate with arbuscular mycorrhizae; ECM: species that typically associate with
ectomycorrhizae*. The operational cutoff between saplings and adults was the median DBH for

unshaded species and 12.7 cm for shaded species.

Species Total Mycorrhizal Median DBH Species code
abundance association
Viburnum dentatum 53 AM 1.1 Vibude
Viburnum lantanoides 96 AM 1.2 Vibual
Viburnum cassinoides 1846 AM 1.3 Vibuca
Lindera benzoin 83 AM 1.4 Lindbe
llex verticillata 1266 AM 1.5 llexve
Amelanchier laevis 354 AM 1.4 Amella
Crataegus spp. 259 AM L.5 Cratsp
Acer pennsylvanicum 425 AM 1.8 Acerpe
Nemopanthus mucronatus 377 AM 1.8 Nemomu
Castanea dentata 1020 ECM 2.2 Castde
Hamamelis virginiana 3578 AM 2.45 Hamavi
Fagus grandifolia 4362 ECM 3.0 Fagugr
Sorbus americana 74 AM 3.25 Sorbam
Tsuga canadensis 24,222 ECM 54 Tsugca
Betula alleghaniensis 5015 ECM 5.6 Betula
Betula lenta 1545 ECM 8.6 Betule
Betula populifolia 123 ECM 9.5 Betupo
Fraxinus americana 197 AM 10.1 Fraxam
Nyssa sylvatica 193 AM 10.6 Nysssy
Acer rubrum 12,967 AM 11.9 Acerru
Prunus serotina 266 AM 13.3 Prunse
Betula papyrifera 590 ECM 15.35 Betupa
Picea abies 911 ECM 16.5 Piceab
Picea rubens 106 ECM 18.15 Piceru

Pinus strobus 2149 ECM 22.1 Pinust
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Quercus rubra 4407 ECM 28.6 Querru
Quercus velutina 227 ECM 304 Querve
Pinus resinosa 789 ECM 32.8 Pinure

*Mycorrhizal associations determined according to the FungalRoot database (Soudzilovskaia et al. 2020)
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Table 2. Coefficient estimates (standard error in parentheses) from binomial mixed effects

model of seedling survival for each of the four seedling species. In all models, plot was included

as a random effect. * indicates p< 0.05, Tindicates p <0.1.

Seedling species Conspecific adult Seedling height Gap Fraction Subplot type
(uneven)
Pinus resinosa -1.96 (0.86)* -0.10 (0.04)* 0.18 (0.12) 0.25 (0.46)
Quercus rubra -1.38 (0.57)* -0.01 (0.03) 0.00 (0.09) 0.07 (0.47)
Pinus strobus -2.76 (1.09)* -0.06 (0.03)* -0.11 (0.17) -0.25 (0.41)
Picea abies na -0.05 (0.04) 0.22 (0.13)" -0.43 (0.38)
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Table 3. Coefficient estimates (standard error in parentheses) from binomial mixed effects

model of survival for each of the four experimental seedling species using the quantitative

variables NClcon and NClhet. In all models, plot was included as a random effect. * indicates p<

0.05, Tindicates p <0.1.

Seedling  NClcon NClhet Seedling height Gap Fraction Subplot type
species (uneven)
Pinus -0.032 (0.013)*  -0.016 (0.015) -0.097 (0.042)* 0.145(0.120) 0.282 (0.463)
resinosa

Quercus  -0.015 (0.015) 0.005 (0.010)  -0.009 (0.031)  -0.045 (0.098) 0.029 (0.469)
rubra

Pinus -0.061 (0.021)*  -0.022 (0.016) -0.061 (0.030)* -0.105 (0.152) -0.283 (0.407)
strobus

Picea -0.021 (0.029) -0.023 (0.012)" -0.042(0.040) 0.170 (0.118) -0.426 (0.379)
abies
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Table 4. Overall standardized coefficient estimates from GLMM predicting sapling mortality as

a function of initial size and local tree community. NClconand NClie represent local densities of

conspecific trees, and heterospecific trees, respectively. Species was included as a random effect

with NClcon and NClye both estimated with a random slope for each species. Individual random

effects coefficients for each species can be found in Appendix 1: Table S1.

Predictor Estimate (SE) P
(intercept) -1.867 (0.249) <0.001
DBH -0.805 (0.036) <0.001
NClHet -0.106 (0.147) 0.468
NClcon 0.948 (0.271) <0.001
Random Effects

o? 1.64

T00 species 1.41

T11 species * NClcon 1.20

T11 species * NClhet 0.40

ICC 0.46

N species 28

Observations 24250

Marginal R? / Conditional R? 0.121/0.527
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Table 5. Coefficient estimates from linear model predicting the strength of the species level
estimate of CNDD as a function of four species level characteristics: mycorrhizal association,

shade tolerance, local abundance and median DBH of the species at this site.

Ecology

Predictor Estimate (SE) P

(Intercept) -0.250 (1.00) 0.805
Mycorrhizal type (ECM) -1.111 (0.482) 0.033
Shade tolerance -0.540 (0.240) 0.036
Median DBH 0.001 (0.025) 0.965
Log(abundance) 0.228 (0.130) 0.095

Overall model R?;gjusted = 0.257
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Figure captions

Figure 1. Plot level survival of each of the four seedling species when planted beneath a
conspecific (pale green) or a heterospecific (dark green) adult tree. Seedlings from both subplots
in each 20m diameter plot are included in each point, such that each point represents survival of

40 planted seedlings. N = 30 plots for each species.

Figure 2. Mean Shannon’s equitability index (J), a metric of community evenness, at the end of
the experiment (green) relative to 1000 model simulations of equivalent level of mortality
occurring randomly (black). Values for seedling subplots that were planted with equal numbers
of each seedling species (A) and subplots that were planted with the conspecific seedling
dominating (B), averaged across the 10 replicated adult trees. Error bars represent 95%
confidence intervals. Dashed lines represent Shannon's equitability index of the community as it

was initially planted.

Figure 3. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree
species at the Harvard Forest (A). Error bars represent the total range of estimates using 1000
iterations of the null model (see statistical methods section for details). Blue points represent
species that typically associate with arbuscular mycorrhiza (AM), green points represent species
that typically associate with ectomycorrhizae (ECM). B) Boxplot of all estimates by mycorrhizal
type, showing the significant difference between AM tree species and ECM tree species. Species

used in the seedling experiment are in bold. Species codes as in Table 1.
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Figure 4. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree
species at the Harvard Forest as a function of shade tolerance (A) and local abundance (B). Blue
points represent species that typically associate with arbuscular mycorrhiza (AM), green points
represent species that typically associate with ectomycorrhizae (ECM). Gray line in A) illustrates
significant negative relationship between shade tolerance and CNDD (see Table 5). Vertical
error bars represent 95% confidence intervals (see statistical methods section for details).
Horizontal error bars in A) are standard error from Niinemets and Valladares (2006). Note that
Crataegus sp., Nemopanthus mucronatuso, Viburnum lantanoides and Viburnum cassinoides are

missing from a), as there was no estimate of shade tolerance available.
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Figure 1. Plot level survival of each of the four seedling species when planted beneath a
conspecific (pale green) or a heterospecific (dark green) adult tree. Seedlings from both subplots
in each 20m diameter plot are included in each point, such that each point represents survival of

40 planted seedlings. N = 30 plots for each species.
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Figure 2. Mean Shannon’s equitability index (J), a metric of community evenness, at the end of
the experiment (green) relative to 1000 model simulations of equivalent level of mortality
occurring randomly (black). Values for seedling subplots that were planted with equal numbers
of each seedling species (A) and subplots that were planted with the conspecific seedling
dominating (B), averaged across the 10 replicated adult trees. Error bars represent 95%
confidence intervals. Dashed lines represent Shannon's equitability index of the community as it

was initially planted.
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829  Figure 3. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree
830  species at the Harvard Forest (A). Error bars represent the total range of estimates using 1000
831 iterations of the null model (see statistical methods section for details). Blue points represent
832  species that typically associate with arbuscular mycorrhiza (AM), green points represent species
833 that typically associate with ectomycorrhizae (ECM). B) Boxplot of all estimates by mycorrhizal
834  type, showing the significant difference between AM tree species and ECM tree species. Species
835  used in the seedling experiment are in bold. Species codes as in Table 1.
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840  Figure 4. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree
841  species at the Harvard Forest as a function of shade tolerance (A) and local abundance (B). Blue
842  points represent species that typically associate with arbuscular mycorrhiza (AM), green points
843  represent species that typically associate with ectomycorrhizae (ECM). Gray line in A) illustrates
844  significant negative relationship between shade tolerance and CNDD (see Table 5). Vertical

845  error bars represent 95% confidence intervals (see statistical methods section for details).

846  Horizontal error bars in A) are standard error from Niinemets and Valladares (2006). Note that
847  Crataegus sp., Nemopanthus mucronatuso, Viburnum lantanoides and Viburnum cassinoides are
848  missing from a), as there was no estimate of shade tolerance available.
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Appendix S1

Supplement to: Experimental and observational evidence of negative conspecific density
dependence in temperate ectomycorrhizal trees

Fiona V. Jevon'2, Dayna De La Cruz?, Joseph A. LaManna*, Ashley K. Lang®, David A. Orwig®,
Sydne Record’, Paige V. Kouba®, Matthew P. Ayres!, Jaclyn Hatala Matthes?
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®Harvard Forest, Harvard University, Petersham, MA 01366, USA
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8Department of Plant Sciences, University of California, Davis, CA, 95616 USA



Table S1. Standardized coefficient estimates from GLMM predicting sapling mortality as a
function of initial size (DBH) and local tree community. NCIL,and NCI,. represent local
densities of conspecific trees, and heterospecific trees, respectively. Species was included as a
random effect with a random intercept, and NCI.,, and NCI,., were both estimated with a random
slope for each species. Note that as the response variable is seedling mortality, positive values of
coefficients represent effects that increase likelihood of mortality and negative values of
coefficients represent effects that increase likelihood of survival (e.g. DBH). Species

abbreviations are as in Table 1.

Ecology

Species Intercept DBH NCl,on NCljet
acerpe -2.317 -0.805 1.547 0.170
acerru -2.638 -0.805 0.382 -0.065
amella -2.260 -0.805 0.644 -0.220
betual -2.716 -0.805 0.842 0.297
betule -2.848 -0.805 1.317 0.730
betupa -1.164 -0.805 0.492 -0.664
betupo -0.165 -0.805 0.806 0.046
castde -1.068 -0.805 2.068 -0.762
cratsp -2.518 -0.805 0.656 -0.048
fagugr -3.122 -0.805 1.279 -0.869
fraxam -1.506 -0.805 1.120 -0.287
hamavi -3.581 -0.805 -0.782 -0.062
ilexve -2.886 -0.805 -0.403 0.406
lindbe -2.062 -0.805 0.682 -0.242
nemomu -2.220 -0.805 -0.246 -0.266
nysssy -1.604 -0.805 1.406 -0.777
piceab 1.092 -0.805 3.896 -1.444
piceru -1.438 -0.805 0.645 -0.184
pinure -0.410 -0.805 0.641 0.044
pinust -1.637 -0.805 1.440 1.249
prunse -1.835 -0.805 0.089 0.186
querru -1.641 -0.805 0.302 0.074
querve -1.575 -0.805 1.307 0.277
sorbam -2.444 -0.805 0.737 0.036
tsugca -4.120 -0.805 1.583 0.325
vibual -2.341 -0.805 1.363 -0.374
vibuca -0.160 -0.805 1.727 -0.555
vibude -1.360 -0.805 0.646 0.222
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Figure S1. Location of the 35 hectare ForestGEO plot (gray rectangle), where censuses took
place, relative to our thirty experimental plots at the Harvard Forest. Open circles represent
experimental plots, with the color corresponding to the identity of the adult beneath which the
seedlings were planted. White circles: Pinus resinosa, Blue circles: Pinus strobus, Orange
circles: Quercus rubra.
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Figure S2. Planting diagrams for the seedling subplots. Red C indicates location of conspecific
seedling. H1, H2 and H3 indicate locations of the three heterospecific seedlings. At each plot,
species were randomly assigned to be heterospecific 1, 2 or 3.
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Figure S3. Species level estimates of CNDD from observed data calculated using different
methods arrive at similar estimates. A) Maximum distance of included neighbors for estimates
were 15m and 20m away from focal saplings, DBH cutoff between saplings and adults was the
median DBH of the species, unless that was greater than 12.7cm in which case 12.7cm was used.
B) Maximum distance of included neighbors for estimates were 25m and 20m away from focal
saplings, DBH cutoff between saplings and adults was the median DBH of the species, unless
that was greater than 12.7cm in which case 12.7cm was used. C) Maximum distance of included
neighbors for estimates were 20m, DBH cutoff between saplings and adults was the median
DBH of the species unless that was greater than 12.7cm in which case 12.7cm was used (median
DBH) or classified by binning into either Scm, 8cm or 12.7cm based on the median DBH of the
species. Blue line indicates 1:1. Species abbreviations are as in Table 1.
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Figure S4. Estimates of CNDD based on observed data relative to the distribution of CNDD
estimates from 1000 runs of a null model. Null model randomly redistributed the proportion of
the neighborhood that was conspecific based on the observed distribution of conspecific
neighborhood densities for that species but kept the total neighborhood density and the DBH of
the sapling the same. Blue lines represent CNDD based on observed data, gray histograms
represent distribution of 1000 runs of the null model. Species abbreviations are as in Table 1.
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Abstract

Conspecific negative density dependence (CNDD) promotes tree species diversity by
reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens,
or eempetitioncompetitors. While this process is well-described in tropical forests, tests of
temperate tree species range from strong positive to strong negative density dependence. To
explain this, several studies have suggested that tree species traits may help predict the strength
and direction of density dependence: for example, ectomycorrhizal-associated tree species

typically exhibit either positive or weaker negative erpesitive-conspecific density dependence.

More generally, the strength of-censpeeifie density dependence may be predictably related to
other species-specific ecological attributes such as shade tolerance, or the relative local
abundance of a species. To test the strength of density dependence and whether it affects

seedling community diversity in a temperate forest, we tracked the survival of seedlings of three

ectomycorrhizal-associated species experimentally planted 1200-seedlings-effour

ectomyeorrhizal-tree-speeies-beneath conspecific and heterospecific adults and-tracked-their

strvivid-and-chanses-to-the-diversitvy-oton the planted-seedhng-community-We-thenProspect Hill

tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always

lower under conspecific adults, which increased seedling community diversity in one of six

treatments. We compared these results to evidence of CNDD from observed sapling

mertalitysurvival patterns of 28 species over approximately 8 years in aan adjacent 35-hectare

forest plot-ir-Massachusetts; USA—-. We alse-tested whether species-specific estimates of CNDD

were associated with mycorrhizal typesassociation, shade tolerance, erand local abundance

predieted. We found evidence of significant, negative conspecific density dependence-
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seedhne-community-diversite-i-one-of six-treatments (CNDD) in 23 of 28 species, aaturathy
occurring-saphng-mortality-increased-with-higherand positive conspecific adult-densities;

ndicating CNDD-AH13density dependence in two species. Contrary to our expectations,

ectomycorrhizal-associated species generally exhibited ENDD;-while-all-5-of the-tree-speecies

conspeeific-adults)-were-trees-species-that-assoectate-withstronger (e.g. more negative) CNDD

than arbuscular myeerrhizae—Shade-tolerance-and-Jocal-abundance-weremycorrhizal- associated

species. CNDD was also stronger in more shade tolerant species but was not associated with

ENDDlocal abundance. Conspecific adult trees often have a negative influence on seedling

survival in temperate forests, particularly for tree species with certain traits. Here we found
strong experimental and observational evidence that ectomycorrhizal-associating species
consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence
from experiments and observations of sapling mortality suggest a mechanistic link between
negative effects of conspecific adults on seedling and sapling survival and local tree species

distributions.

Keywords: conspecific negative density dependence, diversity, saplings, temperate tree

seedlings, mycorrhizal fungi, ectomycorrhizae, shade tolerance

Introduction
Conspecific negative density dependence (CNDD), whereby population growth rates

decline with increasing population density due to a negative feedback on recruitment or survival,
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is a critical mechanism that can support local tree diversity (Chesson 2000). One example of
CNDD is known as the Janzen-Connell hypothesis. This hypothesis suggests that specialized
enemies, such as herbivores or pathogens, reduce the recruitment of offspring nearby parent trees
in highly diverse tropical forests (Janzen 1970;; Connell 1971). This process hinders the
formation and preservation of monodominant stands, and the resulting spatial distribution of
trees supports the coexistence of many species. It is broadly assumed that CNDD can operate as
a stabilizing mechanism to support diverse communities; however, very few studies of density
dependence have quantified the effects of CNDD on diversity. Theoretical work (Chesson 2000)

and observational studies (Johnsen-et-al-2042-LaManna et al. 2017; Johnson et al. 2012) have

linked higher species diversity to stronger CNDD, but experimental evidence of this link remains

rare (Bagchi et al. 2014 Levine and HilleRisLambers 2009;-Bagehi-et-al-2044). In particular,

few studies show whether and how CNDD can produce greater diversity over ecological time.
Strong CNDD is pervasive in the tropics (Ferbergh-2042,-Comita et al. 2014; Terborgh

2012), making it an attractive potential driver of latitudinal patterns of tree diversity. However,

there is also increasing support for CNDD as a mechanism that influences tree communities in

temperate forests (M

204 7)-(Johnson et al. 2014, 2012; McCarthy-Neumann and Kobe 2010; Ramage et al. 2017;

Jiang et al. 2020, 2021). While this work illustrates the potential for CNDD to drive population

dynamics in temperate systems, there is wide variation in the strength of CNDD among tree

species (Johnsen-et-al—2014;-Bennett et al. 2017; Johnson et al. 2014) and along environmental

gradients (LaManna et al. 2016; Smith and Reynolds 2015 LaManna-et-al-2016).

Plant functional traits provide one potential means for predicting differences in the

strength of density dependence among species (Bennett et al. 2017;; Brown et al. 2019;; Jia et al.
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2020). In particular, functional traits that confer resistance to attack from herbivores or
pathogens, the primary drivers of CNDD, may be associated with the strength of density
dependence. For tree species, the type of mycorrhizal association, either arbuscular- (AM) or
ectomycorrhizal- (ECM), has been associated with patterns in CNDD. In previous studies,
ectomycorrhizal-associated tree species tend to exhibit weaker or even positive density

dependence (Bennett et al. 2017;-Chen-et-al-2049;; Jiang et al. 2020, 2021;; Chen et al. 2019;

Qin et al. 2021), possibly due to the greater protection from soil pathogens that the fungi confer
to their tree host (Corrales et al. 2016;; Bennett et al. 2017). Indeed, recent work suggests that
while both AM and ECM fungal networks may partially counteract conspecific negative density
dependent mortality, ECM fungi may be more effective than AM fungi at countering the
mortality agents which typically drive CNDD patterns (Liang et al. 2021). However, in other
studies the strength of CNDD was similar in AM and ECM associated tree species (Jia et al.
2020).

In addition to mycorrhizal association, shade tolerance has been associated with species-
specific patterns in CNDD); shade tolerant tree species are less susceptible to microbial attack due
to conservative life history strategies, suggesting that they should exhibit weaker CNDD
(McCarthy-Neumann and Kobe 2008;; Song et al. 2021). However, shade tolerant species are
also more likely to be infected by necrotrophic fungal pathogens, which kill their hosts and feed
on the decaying tissue, while shade intolerant species are more likely to be infected by biotrophs,
which feed on live tissue without killing their hosts (Garcia-Guzman and Heil 2014). Indeed, low
light areas of the forest where shade tolerant seedlings are likely to be found typically contain
higher pathogen loads (Augspurger and Kelly 1984). Therefore, in-spite-efdespite their

conservative allocation strategy, shade tolerant species may be more affected by CNDD, if the
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pathogens driving density dependence are more abundant and virulent. Indeed, the few explicit
tests of how shade tolerance relates to CNDD in temperate forests are conflicting: shade tolerant
species may be more (Jia et al. 2020) or less (Brown et al. 2019) likely to exhibit CNDD than
shade intolerant species within temperate forests.

Additionally, temperate species do not always follow the same patterns as tropical
enesspecies: in the tropics, rare species typically exhibit stronger CNDD, which helps maintain

diverse communities with many rare species (Xu, Wang, and Yu 2015; Comita et al. 2010;;

Mangan et al. 2010;Xu-et-al-2045). In temperate forests, the pattern between CNDD and local
abundance is less clear: while some studies show that rare species exhibit stronger negative
density feedbacks (Johnson et al. 2012), others show the opposite pattern, with more abundant

species exhibiting stronger CNDD (Zhu-et-al-2045)(K. Zhu et al. 2015; LaManna et al. 2016).

Quantifying the strength of CNDD across multiple co-occurring species can help to detangle
sources of variability in CNDD studies and is needed to generalize the importance of CNDD in
temperate, as well as tropical, forests.

In this study we used a combination of experimental and observational approaches to ask how
prevalent CNDD is in a temperate forest, with particular emphasis on whether ectomycorrhizal-
associated species commonly exhibit CNDD. We used a seedling planting experiment to test
whether the species identity (conspecific versus heterospecific) of neighboring mature trees
influences seedling survival in ectomycorrhizal-associating tree species, and whether CNDD
effects on ECM seedling mortality alter seedling community diversity. We then used the survival
of naturally occurring saplings to quantify the strength of CNDD across 2528 co-occurring
woody species. Finally, we asked whether mycorrhizal type, shade tolerance, and local

abundance predict variation in the strength of CNDD among species.
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Methods

Materials and methods:

Site Description

This study took place on the Prospect Hill tract of the Harvard Forest (HF) located in Petersham,
Massachusetts. This forest is in the northern hardwood-hemlock-white-pine transition zone
(42.530°°N, 72.190°°W, 300 m elevation above sea level). The mean annual temperature and
precipitation are 7.1°C and 1066 mm, respectively. For the observational part of our study, we
utilized the 35-hectare HF ForestGEO plot where every woody stem >1 cm diameter at breast
height (DBH) has been identified to species, tagged, geolocated and its diameter was measured

Orwig-et-al 2045 -Anderson-Teixeira-etal2015)(Orwig et al. 2022). The experimental portion

of our study took place in plots that are adjacent to the ForestGEO plot (Appendix S+—Fig:1:

Figure S1).
Experimental Methods
We selected feurthree ectomycorrhizal species: Pinus resinosa, Quercus rubra; and Pinus

strobus;-and-Picea-abies which represent a range in other plant traits, including shade tolerance

shade-toleranee-4-45)-(Niinemets and Valladares 2006). All feurthree species wereare common at
our study site, although the pepulatienspopulation of-Picea-abies-and Pinus resinosa were
planted there in the early 1900s and now consist of both planted and naturally regenerated

individuals. In the forest adjacent to the mapped ForestGEO plot, we located 30 experimental

plots (Appendix 1: Figure S1). Each circular plot had a diameter of 20 m and was centered on a

focal Pinus resinosa, Quercus rubra, or Pinus strobus with a DBH greater than 28cm such that

there were ten plots centered on each of the three species. We chose locations where none of the
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other study species occurred: e.g.. in a plot centered on a Q. rubra tree, there were no Pinus

resinosa or Pinus strobus. We-purchased-bare-rootseedhings-in-May20H9-fromWe used these

plots to plant seedlings of each of the three species beneath both conspecific and heterospecific

“adult” trees (defined as trees with a DBH greater than 28 cm).

In addition to these three species, we also planted Picea abies seedlings. Picea abies are

present at this site but not native to the area. Like Pinus resinosa, Picea abies was commonly

planted in the early 1900s and now naturally regenerate at this site. We included this species in

the seedling planting primarily to increase the diversity of our planted seedling communities.

Picea abies was chosen as it was available from the same nursery as the three experimental

species, was a similar size and age to the other three species, associates with the same type of

mycorrhizal fungi, and is a common species at this study site (Table 1). We purchased bare-root

seedlings in May 2019 which were grown outdoors at the New Hampshire State Nursery in

Boscawen, NH. Picea abies and Quercus rubra seedlings were two years old at planting while

Pinus strobus and Pinus resinosa were three years old.

Experimental planting
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Within each plot, we constructed two subplots, 1 m x 1 m, into which the seedlings were
planted. Subplots were located approximately 1 meter apart and within 2 meters of the base of

the trunk of the focal tree-, and subplot type (“even” or “uneven”) was randomly assigned. In

each subplot, we planted 20 seedlings. To test whether CNDD promotes diversity, and whether
the effects of CNDD on diversity were dependent on the initial diversity of the community, in
one subplot (“Even”), we planted 5 individuals of each species. In the other (“Uneven”), we
planted 11 individuals of the same species as the focal tree (conspecifics), and 3 of each of the
heterospecific species. Thus, the two subplots had the same total number of seedlings, but the
conspecific seedling was either at the same density as each of the heterospecifics, or at a much
higher density, as would be more likely under natural regeneration conditions. We used a
standard, randomized planting design such that the spatial arrangement of conspecific seedlings
relative to heterospecific seedlings was consistent across all subplots of the same type (Appendix

S+:Supplementary Fig S22). All 1200 seedlings were planted between May 31st and June 7th,

2019.

Before planting, each subplot was cleared of aboveground stems greater than 20cm in

height with hand clippers, so that competition with herbaceous plants and ferns was minimized

across all plots. Resprouts from clipped vegetation, primarily ferns, were rare and were re-

clipped when they emerged. Next, leaf litter was removed and set aside. Afrve-by—fiveA wooden

gridlm? frame with grid lines at 20cm intervals, creating a 5x5 grid, was then placed on the

ground to serve as the planting guide- (Appendix 1: Figure S2). Using an auger (7.6 cm

diameter), we dug holes in 20 locations in each subplot. Removed soil was placed on a tarp and
homogenized. The individually tagged seedlings were then planted and covered by the

homogenized soil. Throughout the planting process, the roots of the seedlings were kept moist



33

34

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Ecology

with water in spray bottles-and-afterplanting-all. After the 20 seedlings in-eachwere planted, the
subplot was eompleted;-the-area-was-flagged, watered, and re-covered by leaf litter.

Within each 10-m radius plot, we also identified and measured the diameter of each tree
> 2.5 cm DBH as well as the distance of each stem to the seedling subplots. To account for
possible differences in light environment that could influence seedling survival, we took a
hemispherical photo using a fisheye lens from the center of each plot to capture the light
environment. Photographs were taken between 07:30 and 09:30 am to avoid overexposure.
Images were analyzed with WINSCANOPY (Regent Instruments Inc., Quebec, Canada) to
calculate the gap fraction (a metric of canopy openness) of each of the 30 plots.

Seedlings were tracked individually throughout the summer. After all seedlings had been
in the ground for two weeks, seedlings were censused for survival and their initial heights were
measured to account for any differences in survival that were due to variation in initial seedling
size. Seedlings were censused again after an additional 10 weeks for their final survival status.
Seedlings were presumed dead if their needles had all turned brown (conifers) and if they had no
remaining leaves (Q. rubra). We continued to monitor all seedlings, regardless of status, for the
full 12 weeks of the experiment.

Statistical analysis of experimental seedling mortality

We removed 17 individual seedlings from the analysis (1 P. strobus, 13 Q. rubra and 3 P.

resinosa) that died within the first two weeks, presumably due to transplant shock rather than as
a result of our experimental treatments. For each seedling species, we calculated the overall odds
ratio of survival under conspecific and heterospecific focal adults, such that an odds ratio < 1
indicates a lower chance of survival beneath a conspecific adult. We then fit a binomial mixed

model using the R package Ime4 (Bates, Maechler, Bolker, & Walker, 2015) to predict seedling
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survival as a function of the adult species identity of the plot (based on whether the focal tree in
the plot was a conspecific or heterospecific), initial seedling height, subplot type (even or
uneven) and canopy gap fraction, with the plot as a random effect. For the PiceaP. abies
seedlings, we fit the same model without the adult identity variable as all seedlings were growing
in heterospecific plots.

To account for possible effects of both the focal tree in each plot (our experimental
treatment), and also the effects of neighboring trees, we used the full 314-m2 plot to calculate a

neighborhood competition index (NCI) following {Canham-et-al-, LePage, and Coates (2004)

and modified as in other similar analyses (Bat-et-al-2642,-Zhang et al. 2017;; Bai et al. 2012;

Magee et al. 2020). For each plot, we calculated NCI values to compare the effects of

conspecific and heterospecific adults within 10 meters as follows:

DBHconspecific

NCIconSpeciﬁc =J distance eql
DBHheterospecific
NCIheterospeciﬁc =3 distance €q. 2

We then used the results of the first set of models (using the identity of the focal adult tree as our
treatment) to inform which parameters to include in the second set (including the NCI as our
treatment), including any parameter from the first model set with p <0.1. We ran a second set of
binomial mixed models that did not include adult identity, but did include NCl qnspecifics
NClheterospecific; and any of the parameters identified from model set 1 with plot ID as a random
variable.

Finally, we tested whether the observed seedling mortality affected the diversity of the
seedling community. To do this, we calculated the overall survival of each seedling subplot. We
then simulated random mortality at that level for each subplot, by randomly assigning a survival

code to each seedling until the overall observed mortality of the plot was met. We ran this
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simulation 1000 times for each subplot. As all-ef our experimental plots were planted with the
same species richness (4), we used the Shannon’s Equitability Index (J) (Begon, Harper and
Townsend 1996):

— 3 pi*log(p)
J = log(SR)

eq. 3
where p; is the proportion of each species and SR is the species richness. We used this metric to
assess whether the diversity we observed at the end of our experiment differed from what the
diversity would be if mortality had occurred randomly with respect to species identity of the
seedlings.
Observational sapling survival

To determine whether naturally regenerating saplings exhibited a similar pattern to those
we experimentally planted, as well as to quantify density dependence in a wider variety of
naturally occurring saplings, we used the subset of the Harvard Forest ForestGeo plot that has
been re-censused as of 2021. The first census occurred from June 2010 through January 2014.
The re-census occurred from May 2018 to September 2019. Individual trees were revisited; and
their survival status was recorded.

Using the initial census, we calculated the same metrics of neighborhood competition as
for our experimental plots (eq.1 and eq. 2) for each individual stem in the forest. We used a
maximum distance of 20 m. We only assessed patterns for species with more than 10 individual
saplings and more than 20 individual adults. To account for differences in average size of each
species as well as maximize the number of species included in our analysis, we defined

individuals as saplings if their DBH was less than the median DBH of that species, up to a

maximum cutoff of 12.7 cm DBH, and individuals greater than the median as “adults™ (Table 1).

To confirm that our results were not sensitive to the choice of methods, we re-ran the CNDD
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estimation using 15m maximum distance to neighbors and 25 m maximum distance to neighbors.
Simtlarby-weWe also re-ran the CNDD estimation using 2an alternative methedsmethod to

distinguish between saplings and adults: using a DBH cutoff of either 3cm, 8cm or 12.7cm for

species with a median DBH less than 5cm, greater than 5 but less than 12.7cm, and greater than

12.7cm respectively, as a common concern with CNDD analyses is that the distinction can be

arbitrary (Detto et al. 2019). Results of bethfrom these alternative analyses can be found in

Appendix St-Figl: Figure S3.

To calculate the overall effect of neighborhood on sapling mortality, we fit a generalized
linear mixed-effects model (GLMM) with binomial errors and a complementary log—log link to
assess the relative importance of factors determining individual sapling mortality using the R
package Ime4 (Bates et al. 2015). To account for differences in the length of time between the
two censuses for individual trees, we used a log(time) offset of the number of years between the
two censuses (range: 5.25 - 9.5 years) for each individual stem as in {Johnson et al. (2017). The
diameter at breast height (DBH) of the sapling at the first census was included as a
covariate(Johnson et al. 2017). Both NCI,, and NCI;; were also included in the model to
account for the overall effects of competition as well as the specific effects of conspecific
neighbors. All three variables were scaled by subtracting the overall mean and dividing by two
standard deviations (Gelman 2008). Species was included as a random effect, and both NCl,,,

was-and NCl,. were estimated with random slopes for each species. The model coefficients for

each species of NCl,,, and NCI;,.; were used to estimate ENDD:therefore-amere

negativeCNDD,q.s, such that CNDD..¢s was the difference between the model coefficient
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al-for NCl,,, and

To further account for the possibility that asseciations-between NCl, -and-sapling

mertalityour CNDD, . estimate could be produced by underlying spatial or other factors not

accounted for in this simple statistical model, we additionally performed null model testing

(LaManna-et-al-, Mangan, and Myers 2021). Using the same model structure as above, we

randemlyreassignedrecalculated values of NCl,,, amengsaphngsand NCl,, for each sapling

after randomizing the observed proportion of the total NCI that was conspecific: effectively

keeping the total neighborhood density the same speeies;-while-holding NCl,.zas the observed,

but randomizing the density of conspecific neighbors. We also kept the observed values of DBH,

and the mortality outcome-the-same. We re-ran this null model 1000 times-and-used, and

estimated CNDD,,;; as the difference between the mean aull-medel NCl,,,, and NCl,¢¢

coefficients ferNCl ,,-using the same model structure as described above. We then calculated

the final estimate of CNDD for each species te-cerreet(CNDD,) as follows

CNDDggt = -(CNDDgoefr - CNDD 1) eq. 4

where CNDD...¢+ is the estimate based on the difference between the model coefficients for these

patterns—FirstNCl,, and NCI;,.; using the observed data, and CNDD,, is the estimate based on

the difference between the model coefficients for NCI,,, and NCl, using the randomized

NCl,.n. The negative sign is to make the estimate more interpretable: as all the models were run

as hazard functions, with survival coded as zero and mortality coded as one, taking the inverse of

the estimate mreans that a negative CNDD.; indicates a species exhibited stronger CNDD, while

a positive CNDD. indicates that greater conspecific adult density was associated with a higher

likelihood of survival. For each species, we took the mean across the 1000 iterations of the null
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model randomization, and we considered our estimate of CNDD significant if the 95%

confidence interval of CNDD, did not cross 0. We also confirmed that the mean null model

coefficients were significantly different from the coefficients based on the observed values using

coeffictents(eq—4)-—for each species using a paired t-test. Full visualization of the null model

distribution for each species relative to CNDD,,s can be found in Appendix 1: Figure S4.

CNDDest = CNDBDeoell - meantCNDDnulhy - cg. 4

Finally, we compared this species level estimate of CNDD at this site to species level
plant traits. We assigned each species a dominant mycorrhizal association based on values from
FungalRoot (Soudzilovskaia et al. 2020) and a shade tolerance value based on (Niinemets and
Valladares (2006). We then used a linear model to estimate the effects of mycorrhizal
association, shade tolerance, and local abundance (log transformed) on CNDD... Because the
species in this study varied dramatically in their typical and mature size, and because AM species
were generally smaller (Table 1), we also included the median DBH of the species as a predictor
in the model. To ensure that our results were robust to model structure, we also iteratively
checked all possible two-way interactions of the four species level predictors (mycorrhizal
association, shade tolerance, local abundance and median DBH); none were significant, so we
report the results of the additive model. All analyses we performed in R version 4.0.5.
Results

Experimental seedling survival
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All seedling species had higher survival rates when planted beneath heterospecific trees

than when planted under conspecific trees (Figure 13-&-, Table 2). Quercus rubra, which had the

lowest overall mortality, also exhibited the least difference in survival (88.5% under
conspecifics, 96.7% under heterospecifics, odds ratio: 0.91). Pinus resinosa had the highest
overall mortality, with only 3.8% seedling survival beneath conspecifics and 15.4% beneath
heterospecifics (odds ratio 0.25). Pinus strobus showed the greatest absolute difference in
survival between conspecifics (73.9%) and heterospecifics (94.4%):though-the-relative

78Y%) and the strongest effect

of the identity of the neighboring adult tree (Table 2).

Results were qualitatively similar when comparing the density of adult trees in the

surrounding community, as measured by NCI, to seedling survival-(Fable-3).- Both-P-strobus-and

P—resinosa. All four species exhibited declining survival with increasing conspecific adult

density (NCl,,,), whereas-P—abiesbut all but Q. rubra also exhibited declining survival deelined

stgnifteanthy-in response to increasing heterospecific density (NClye-—G—+ubra-survival-wasneot

affected-by) as well (Table 3). When comparing the densityNCl,,, coefficient estimates and

standard errors with those of eitherNCly,, only P. strobus exhibited CNDD: in other words, the

coefficient estimate for the negative effect of conspecific erneighbors did not overlap with the

weaker negative effect of heterospecific adult-trees-neighbors (Table 3).

None of the seedling species exhibited survival differences between the even and
unevenly planted plots (Table 2). In the evenly planted seedling subplots, which began the
experiment with perfectly even communities (J=1), observed mortality caused a decline in
seedling diversity; however, this decline in diversity was indistinguishable from simulated

random mortality (Figure 2a). The seedling diversity in the unevenly planted subplots either
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stayed the same or, in the case of the unevenly planted subplots beneath P. resinosa adults,
substantially increased (Figure 3b). In those plots, the seedling community had changed from an
equitability index (J) of 0.85 (uneven) to 0.98 at the end of the experiment- almost perfectly
even, and far higher than the diversity predicted if the mortality had been random. These
locations experienced the highest total mortality (59.7%), and also the highest difference
between conspecific seedling mortality (96%) and heterospecific seedling mortality (12.6%).
Experimental seedling survival was also affected by factors other than the local neighborhood.
For example, Pinus strobus and Pinus resinosa seedlings that were initially taller had slightly
lower survival. Picea abies was the only species whose survival increased with increasing light
availability as measured by the gap fraction (Table 2).
Observed sapling mertalitysurvival

Overall, the probability of sapling mertalitysurvival in our observational CNDD analysis
inereaseddecreased with increasing local density of conspecifics (Table 4). Sapling survival was
also positively associated with sapling DBH and negatively associated with local density of
heterospecifics; however, the effect of these drivers was considerably lower than the effect of
conspecific neighbors (Table 4). The strength of CNDD varied substantially among species. In
twenty- three of the twenty-five eight species used in our analysis, sapling mertality

inereasedsurvival decreased significantly with increasing conspecific density, whereas in fivetwo

species sapling survival increased with increasing conspecific density (Figure 3).

Tree species that typically associate with ECM fungi were much more likely to exhibit
CNDD than those that typically associate with AM fungi (Figure 3B, Table 5); all12 of the 13
ECM-associated species in this analysis exhibited significant CNDD. In contrast, 54 of the 15

AM-associated species either did not exhibit significant CNDD andor instead were more likely
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15  to survive when growing in areas with greater densities of conspecifics- (e.g. had significantly

16  positive estimates of CNDD). AM-associated saplings_also had a somewhat lower overall

417  survival (61%) than ECM-associated saplings (72%). Although there are a similar number of
418 AM and ECM associating species at this site, ECM species tend to have higher abundance and
419  overall about 66% of saplings are ECM-associating species. In addition, the AM-associating

420  species at this site tend to be smaller (Table 1). However, the median DBH of the species was not
421  associated with stronger CNDD (Table 5). Neithershade-tolerance-norlocal-abundance-were

422

423

424 Shade tolerance was also a significant predictor of CNDD at the species level, such that

425  more shade tolerant species generally exhibited stronger, more negative CNDD than shade

426  intolerant speceis (Figure 4). In contrast, local abundance was not a significant predictor of the

427  strength of CNDD (Figure 4).

428 CNDD estimated in naturally occurring saplings generally aligned with the ENDD
429  estimated-by-eddsratiosresults from the seedling experiment. Quercus rubra, which showed

430  significantbut-weak CNDDthe weakest response to the nearby conspecific adults (Table 2) and

431  no response to neighborhood conspecific density (Table 3) in the seedling experiment-(eddsratio

432 ot 0.9b);alse-, showed relativelyweakno significant evidence of CNDD at the sapling stage

433  (Figure 3). Pinnsresinosa—whieh-Pinus strobus, which exhibited the strongest response to

434  nearby conspecific adults (Table 2) and neighborhood conspecific densities (Table 3) in the

435  experimental data, showed strong evidence of CNDD in the seedling-experiment{oddsratio-of

A36

he-analysis of observed

437  sapling survival (Figure 3). Pinus strobus-wasresinosa, which exhibited intermediate CNDD in




Page 67 of 103

‘438

439
440
441
442

‘443

444
‘445
446
447
148
449

450

451
452
‘453
454
455
456
457
458
459

460

Ecology

beth-the seedling experiment-and-observational, was also intermediate in the observed sapling

analysis.
Discussion
CNDD and mycorrhizal associations

The results of both our field experiment and our analysis of sapling survival indicate that
yvoung-treesapling mortality is higher beneath conspecific adults in this system. In particular, the
agreement between these two separate analyses for the three tree species common to the two

studies provides strong evidence of CNDD in this temperate forest, particularly in

ectomycorrhizal trees. Indeed, the apparent ubiquity of CNDD among ectomycorrhizal species in
this forest came as a surprise, as previous work has found weaker or positive patterns of density
dependence among ECM associating trees (Bennett et al. 2017;-Brown-et-al-2049;; Jiang et al.

2020, 2021; Brown et al. 2019). Notably, however, several of these studies haverelied-enfound

these patterns primarily in plant growth rates rather than in survival (Bennett et al. 2017;; Brown

et al. 2019). Given that there can be intraspecific tradeoffs between survival and growth rates
(Seiwa 2007), it is possible that CNDD estimates based on growth and survival may differ within

a species: (Brown et al, 2019). In addition, the details of the species included in this study may

differ from those in other locations. At this site, while there is a similar number of species that
associate with AM and ECM fungi, ECM-associating trees are much more abundant. Thus, the
availability of mutualists for AM-associating species is likely lower and/or patchier, and recent
evidence shows that AM colonization is greater on plants that grow in stands where other AM-
associating plants are more abundant (Griinfeld et al. 2020). This could have the result that
regeneration near to conspecifics comes with greater access to appropriate mutualists, which

could dampen the negative effects typically associated with proximity to conspecific adults for
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AM-associating species (Liang et al. 2021). In contrast, mutualist availability is likely ubiquitous
for ECM-associating species, as ECM species are well distributed at this site. Finally, estimates
of species level CNDD in one context may not generalize, as there is increasing evidence that the
strength of CNDD can change due to variation in the presence of large mammals (Murphy and

Comita 2021), climate (Liu and He 2021), and along environmental gradients (Brown, White,

and Peet 2021; LaManna et al. 2016;; Magee et al. 2020; Record et al. 2016, Magee-et-al-2020;

Brown-etal-2021).

CNDD and shade tolerance

We also found evidence that shade tolerance predicted the strength of CNDD: shade

tolerant species tended to show somewhat greater CNDD., although the effect was strongly

driven by a single species (Picea abies). This is consistent with some (Jia et al. 2020:; Garcia-

Guzman and Heil 2014) but not other (Brown et al. 2019) studies on shade tolerance and CNDD.

This discrepancy may be because there are conflicting pressures on trees which result in no clear

net effect. Shade tolerant species typically have more conservative life history strategies, which

might make them less sensitive to CNDD (McCarthy-Neumann and Kobe 2008: Song et al.

2021). However, shade intolerant species are less likely to be limited by conspecific-associating

fungal pathogens, and more likely to be limited by herbivorous insects or pathogens with weaker

effects on mortality, perhaps making them less likely to exhibit CNDD (Jia et al. 2020; Garcia-

Guzman and Heil 2014). Taken together with results from this study, it seems that shade

tolerance may not have a consistent effect on strength of CNDD in temperate forests.

CNDD and other species characteristics

Local abundance is a strong driver of CNDD in tropical trees, where rare species

typically exhibit the strongest CNDD (Comita et al. 2010). In temperate forests, however, the
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results have been mixed, with some analyses indicating that rare species exhibit stronger CNDD
(Johnson et al. 2012;; Seiwa et al. 2019) and others finding that more abundant species exhibit
stronger CNDD (K. Zhu et al. 2015). Indeed the effect of local abundance may also interact with
other characteristics. For example, rare AM species typically exhibit stronger CNDD than
common AM species, but the same may not hold true for ECM species (Jiang et al. 2020, 2021).
In this study we found that local abundance had no apparent effect on the strength of CNDD,
overall or interacting with mycorrhizal type. This may be important for understanding the effects
of CNDD on diversity in this forest: theoretical work suggests that if variation among species in
CNDD is correlated with abundance, with stronger CNDD for rare species, then diversity may
not be maintained. However, if CNDD is unrelated to abundance, as in our study here, or even

stronger for common species, then CNDD may help promote the maintenance of diversity

(Stump and Comita 2018).
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-Additional plant characteristics may also influence species susceptibility to CNDD. For
example, species with larger seeds may be more tolerant to conspecific neighbors as their seeds
act as carbohydrate stores, insuring them against biomass losses to herbivores and pathogens

(Lebrija-Trejos et al. 20165; Seiwa et al. 2019)—Fhis-may-help-explain-why-the large-seeded-G-

v—. This

may help explain why the large-seeded O. rubra exhibited either weak or no CNDD in both the

experiment and the observational study; however, the effect of cotyledon reserves is likely larger

at younger ages. Notably, naturally occurring Q. rubra seedlings at this site do exhibit CNDD,

but the effect decreases as the size of the seedling increases (Jevon et al. 2020), which is

consistent with what we found here (that the evidence of CNDD was stronger in the experiment,

which assessed much smaller individuals) The apparent weakening of CNDD in this species as

individuals increase in size in also consistent with previous work suggesting that CNDD is often

strongest at the seed to seedling transition or at younger age classes (Zhu et al. 2015). We note

that as we assessed large seedlings (2 and 3 vears old) in the experiment, and saplings (up to

12.7cm DBH) in the observational analysis, the overall results of this study are likely

conservative with respect to how many species exhibit CNDD and the apparent strength of the

effect relative to the true strength of CNDD that is experienced by trees in this forest.

CNDD and diversity
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The change in diversity in one out of-the six of our experimental treatments also
illustrates how CNDD mortality can affect community diversity (Figure 3). Importantly, it
illustrates that alone, differences in mortality in seedlings growing near conspecific and
heterospecific adults is not enough to generate greater diversity. The overall mortality must also
be relatively high, and the initial diversity low, to result in meaningful changes to seedling

community diversity. Howewver;This is consistent with conceptual models suggesting that overall

differences in mortality rates among life stages. alone or in combination with non-random

mortality, can be an important determinant of community diversity (Green, Harms, and Connell

2014). The significant increase in diversity in even one treatment during this short-term
experiment provides clear evidence that CNDD can act as a mechanism to support local
diversity, particularly in systems or situations with high mortality.
Conclusions

Based on these patterns, we suggest that there is strong evidence for CNDD in temperate
tree species. Our results also suggest that tree species associated with ectomycorrhizal fungi
exhibit CNDD, which runs counter to previous studies (Bennett et al. 2017, Brown-et-al2049;;

Jiang et al. 2020, 2021; Brown et al. 2019). This suggests caution when generalizing about how

plant traits predict CNDD. Instead, integrating information about multiple plant characteristics,
as well as the environmental context, will help to better predict species-level patterns in CNDD.
We found experimentally that CNDD is capable of increasing seedling community diversity.

However, theoretical work suggests that, in some cases, interspecific variation in the strength of

CNDD decreases its ability to promote coexistence (Stump and Comita 2018), and results from

this study and others show large variation in the strength of CNDD among co-occurring species.
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Therefore, although evidence of CNDD in temperate forests is accumulating, the consequences
for diversity remain poorly understood.
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Table 1. Characteristics of species included in the analysis of CNDD for saplings from two
censuses. Species used in the planting experiment are in bold. AM: species that typically
associate with arbuscular mycorrhizae; ECM: species that typically associate with
ectomycorrhizae*. The operational cutoff between saplings and adults was the median DBH for

unshaded species and 12.7 cm for shaded species.

Species Total Mycorrhizal Median DBH Species
abundance association abbreviationc
ode
Viburnum dentatum 53 AM 1.1 Vibude
Viburnum lantanoides 96 AM 1.2 Vibual
Viburnum cassinoides 1846 AM 1.3 Vibuca
Lindera benzoin 83 AM 1.4 Lindbe
llex verticillata 1266 AM 1.5 Ilexve
Amelanchier laevis 354 AM 1.4 Amella
Crataegus spp. 259 AM 1.5 Cratsp
Acer pennsylvanicum 425 AM 1.8 Acerpe
Nemopanthus mucronatus 377 AM 1.8 Nemomu
Castanea dentata 1020 ECM 2.2 Castde
Hamamelis virginiana 3578 AM 2.45 Hamavi
Fagus grandifolia 4362 ECM 3.0 Fagugr
Sorbus americana 74 AM 3.25 Sorbam
Tsuga canadensis 24,222 ECM 5.4 Tsugca
Betula alleghaniensis 5015 ECM 5.6 Betula
Betula lenta 1545 ECM 8.6 Betule
Betula populifolia 123 ECM 9.5 Betupo
Fraxinus americana 197 AM 10.1 Fraxam
Nyssa sylvatica 193 AM 10.6 Nysssy
Acer rubrum 12,967 AM 11.9 Acerru
Prunus serotina 266 AM 13.3 Prunse
Betula papyrifera 590 ECM 15.35 Betupa
Picea abies 911 ECM 16.5 Piceab
Picea rubens 106 ECM 18.15 Piceru

Pinus strobus 2149 ECM 22.1 Pinust
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Quercus rubra 4407 ECM 28.6 Querru
Quercus velutina 227 ECM 30.4 Querve
Pinus resinosa 789 ECM 32.8 Pinure

925  *Mycorrhizal associations determined according to the FungalRoot database (Soudzilovskaia et al. 2020)
926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944  Table 2. Coefficient estimates (standard error in parentheses) from binomial mixed effects
945  model of seedling survival for each of the four seedling species. In all models, plot was included

946  as arandom effect. * indicates p< 0.05, Tindicates p <0.1.
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961
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Seedling species Conspecific adult Seedling height Gap Fraction Uneven
subpletSubplot
type (uneven)
Pinus resinosa -1.96 (0.86)* -0.10 (0.04)* 0.18 (0.12) 0.25 (0.46)
Quercus rubra -1.38 (0.57)* -0.01 (0.03) 0.00 (0.09) 0.07 (0.47)
Pinus strobus -2.76 (1.09)* -0.06 (0.03)* -0.11 (0.17) -0.25(0.41)
Picea abies na -0.05 (0.04) 0.22 (0.13)7 -0.43 (0.38)

Table 3. Coefficient estimates (standard error in parentheses) from binomial mixed effects

model of survival for each of the four experimental seedling species using the quantitative

variables NClI,, and NCl. In all models, plot was included as a random effect. * indicates p<
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978
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0.05, Tindicates p < 0.1;na-indicatesthat parameter was-not-included-inthe model for that

spectes-.

Seedling  NClo, NClje Seedling height Gap Fraction Subplot type
species (uneven)
Pinus -0.029032 -0.020016 -0.093097 na0.145 0.282 (0.463)
resinosa  (0.013)* (0.015) (0.641042)* 0.120

Quercus  -0.042015 0.005 (0.010) -0.667009 -aa -0.045 7a0.029

rubra (0.634015) (0.609031) 0.098 (0.469)

Pinus -0.057061 -0.021022 -0.064061 aa -0.105 -0.283 (0.407)
strobus (0.649021)* (0.016) (0.030)* (0.152)

Picea -0.021 (0.628029) -0.622023 na-0.042 0.+7170 -0.426 (0.379)
abies (0.04D%012)"  (0.040) (0.11118)

Table 4. Overall standardized coefficient estimates(standard-error-in-parentheses) from GLMM

predicting sapling mortality as a function of initial size and local tree community. NCl,and

NCI,, represent local densities of conspecific trees, and heterospecific trees, respectively.
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082  Species was included as a random effect with NCI,,, and NCI;, both estimated with a random

083  slope for each species. Individual random effects coefficients for each species can be found in

084  Appendix 1: Table S1.

Predictor Estimate (SE) P
| (intercept) -1.55867 (0.486249) <0.001
| DBH -0.78805 (0.635036) <0.001
| NClye -0.2+106 (0.036147) <0.00+468
| NClcon —+.5340.570948 (0.271) <0.607001
985
Random Effects
o2 1.64
‘ T00 species 4711.41
‘ T11 species * NClcon 6:331.20
| P01T11 species * NClhet 0.9240
\ ICC 0.6846
N species 28
\ Observations 2644324250
| Marginal R2 / Conditional R? 0.09+121/0.707527
086
087
088
989

FQO Table 5. Coefficient estimates-(standard-error-in-parentheses) from linear model predicting the

991  strength of the species level estimate of CNDD as a function of four species level characteristics:
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992  myecorrhizal association, shade tolerance, local abundance and median DBH of the species at this

993  site.
Predictor Estimate (SE) P
(Intercept) -0.48-¢2-68250 0.82805
(1.00)
Mycorrhizal type (ECM) -2271.111 0.028033
(0.95482)
| Shade tolerance -0.84540 (0.240) 0.609036
Median DBH -0.663001 0.95965
(0.648025)
Log(abundance) 0.44228 0.13095
(0.26130)
994  Overall model R?,gjysieq = 0.24257
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Figure captions

Figure 1. Plot level survival of each of the four seedling species when planted beneath a

conspecific (bluepale green) or a heterospecific (dark green) adult tree. Seedlings from both
subplots in each 20m diameter plot are included in each point, such that each point represents

survival of 40 planted seedlings. N = 30 plots for each species.

Figure 2. Mean Shannon’s equitability index (J), a metric of community evenness, at the end of
the experiment (green) relative to 1000 model simulations of equivalent level of mortality
occurring randomly (black). Values for seedling subplots that were planted with equal numbers
of each seedling species (A) and subplots that were planted with the conspecific seedling
dominating (B), averaged across the 10 replicated adult trees. Error bars represent 95%
confidence intervals. Dashed lines represent Shannon's equitability index of the community as it

was initially planted.

Figure 3. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree

species at the Harvard Forest (A). Error bars represent the total range of estimates using 1000

iterations of the null model (see statistical methods section for details). Blue points represent
species that typically associate with arbuscular mycorrhiza (AM), green points represent species

that typically associate with ectomycorrhizae (ECM). B) Boxplot of all estimates by mycorrhizal

type, showing the significant difference between AM tree species and ECM tree species. Species

used in the seedling experiment are in bold. Species codes as in Table 1.
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Figure 4. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree

species at the Harvard Forest as a function of shade tolerance (A) and local abundance (B). Blue

oints represent species that typically associate with arbuscular mycorrhiza (AM), green points
represent species that typically associate with ectomycorrhizae (ECM). Gray line in A) illustrates

significant negative relationship between shade tolerance and CNDD (see Table 5). Vertical

error bars represent 95% confidence intervals (see statistical methods section for details).

Horizontal error bars in A) are standard error from Niinemets and Valladares (2006). Note that

Crataegus sp., Nemopanthus mucronatuso, Viburnum lantanoides and Viburnum cassinoides are

missing from a), as there was no estimate of shade tolerance available.
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Figure 1. Plot level survival of each of the four seedling species when planted beneath a

conspecific (pale green) or a heterospecific (dark green) adult tree. Seedlings from both subplots

in each 20m diameter plot are included in each point, such that each point represents survival of

40 planted seedlings. N = 30 plots for each species.
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Figure 2. Mean Shannon’s equitability index (J), a metric of community evenness, at the end of
the experiment (green) relative to 1000 model simulations of equivalent level of mortality
occurring randomly (black). Values for seedling subplots that were planted with equal numbers
of each seedling species (A) and subplots that were planted with the conspecific seedling
dominating (B), averaged across the 10 replicated adult trees. Error bars represent 95%
confidence intervals. Dashed lines represent Shannon's equitability index of the community as it

was initially planted.
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that typically associate with ectomycorrhizae (ECM). B) Boxplot of all estimates by mycorrhizal
type, showing the significant difference between AM tree species and ECM tree species. Species

used in the seedling experiment are in bold. Species codes as in Table 1.
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local abundance (B). Blue points represent species that typically associate with arbuscular

mycorrhiza (AM), green points represent species that typically associate with ectomycorrhizae

A) illustrates significant negative relationship between shade tolerance and CNDD (see Table 5).

Vertical error bars represent the-total-range-of-CNDB-estimates-usine-H00-tterations-of the-nul

medel95% confidence intervals (see statistical methods section for details). Horizontal error bars

in A) are standard error from ¢(Niinemets and Valladares (2006). Note that Crataegus sp.,
Nemopanthus mucronatuso, Viburnum lantanoides and Viburnum cassinoides are missing from

a), as there was no estimate of shade tolerance available.
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