

Experimental and observational evidence of negative conspecific density dependence in temperate ectomycorrhizal trees

Journal:	Ecology	
Manuscript ID	ECY21-1156.R1	
Wiley - Manuscript type:	Article	
Date Submitted by the Author:	n/a	
Complete List of Authors:	rs: Jevon, Fiona; Dartmouth College Department of Biological Sciences, Biology De La Cruz, Dayna; Wellesley College, Department of Biological Scien Lang, Ashley; Indiana University Bloomington, Department of Biologic Sciences LaManna, Joseph; Marquette University, Biological Sciences Orwig, David; Harvard University, Harvard Forest Record, Sydne; Bryn Mawr College, Biology Kouba, Paige; University of California Davis, Department of Plant Sciences Ayres, Matthew; Dartmouth College, Biological Sciences Matthes, Jaclyn; Wellesley College, Department of Biological Sciences	
Substantive Area:	Community Analysis/Structure/Stability < Community Ecology < Substantive Area	
Organism:	Plants, Conifers < Gymnosperms < Plants, Angiosperms < Plants, Gymnosperms < Plants, Fungi (specify type in field below)	
Habitat:	Deciduous Forest < Temperate Zone < Terrestrial < Habitat, Coniferous Forest < Temperate Zone < Terrestrial < Habitat	
Geographic Area:	Northeast US (CT, MA, ME, NH, NJ, NY, PA, RI, VT) < United States < North America < Geographic Area	
Key words/phrases:	conspecific negative density dependence, diversity, saplings, ectomycorrhizae, mycorrhizal fungi, temperate tree seedlings, survival	
Abstract:	Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence. More generally, the strength of density dependence may be	

predictably related to other species-specific ecological attributes such as shade tolerance, or the relative local abundance of a species. To test the strength of density dependence and whether it affects seedling community diversity in a temperate forest, we tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally planted beneath conspecific and heterospecific adults on the Prospect Hill tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always lower under conspecific adults, which increased seedling community diversity in one of six treatments. We compared these results to evidence of CNDD from observed sapling survival patterns of 28 species over approximately 8 years in an adjacent 35-hectare forest plot. We tested whether species-specific estimates of CNDD were associated with mycorrhizal association, shade tolerance, and local abundance. We found evidence of significant, negative conspecific density dependence (CNDD) in 23 of 28 species, and positive conspecific density dependence in two species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited stronger (e.g. more negative) CNDD than arbuscular mycorrhizalassociated species. CNDD was also stronger in more shade tolerant species but was not associated with local abundance. Conspecific adult trees often have a negative influence on seedling survival in temperate forests, particularly for tree species with certain traits. Here we found strong experimental and observational evidence that ectomycorrhizalassociating species consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence from experiments and observations of sapling mortality suggest a mechanistic link between negative effects of conspecific adults on seedling and sapling survival and local tree species distributions.

> SCHOLARONE™ Manuscripts

Page 2 of 103

1 2 3	ECY21-1156: Revision 1 Running Head: CNDD in ECM trees
4 5	Correspondence to:
6	Fiona V. Jevon
7	Yale School of the Environment
8	Yale University
9	195 Prospect Street
10	New Haven, CT 06511, United States
11	fiona.jevon@yale.edu
12	
13	
14	
15	Title (max 120 char):
16	Experimental and observational evidence of negative conspecific density dependence in
17	temperate ectomycorrhizal trees
18	
19	
20	Authors: Fiona V. Jevon ^{1,2} , Dayna De La Cruz ³ , Joseph A. LaManna ⁴ , Ashley K. Lang ⁵ , David
21	A. Orwig ⁶ , Sydne Record ⁷ , Paige V. Kouba ⁸ , Matthew P. Ayres ¹ , Jaclyn Hatala Matthes ²
22	
23	
24	Author affiliations:
25	Department of Biological Sciences, Dartmouth College, Hanover NH 03755, United States
26	² Current affiliation: Yale School of the Environment, Yale University, New Haven, CT 06511,
27	United States 3 Department of Dialogical Sciences, Wellegley College, Wellegley, MA 02481, USA
28 29	³ Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA ⁴ Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201 USA
29 30	⁵ Department of Biological Sciences, Indiana University, Bloomington, IN, 47405 USA
31	⁶ Harvard Forest, Harvard University, Petersham, MA 01366, USA
32	⁷ Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010 USA
33	⁸ Department of Plant Sciences, University of California, Davis, CA, 95616 USA
34	Department of Franciscioness, Oniversity of Camornia, Bavis, Cri, 93010 Corr
35	
36	
37	
38	
39	Open Research Statement:
10	Data are provided as private-for-peer review: all data and code can be found in the public
11	repository at https://data.mendeley.com/datasets/ws3cdn28n8/4 (3). The only exception is data
12	associated the second seedling census: this dataset is still undergoing moderation but will be
13	posted alongside the first census at
14	https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF253 (4).
15	However, code for all analyses described here can be found in the public repository at
16	https://data.mendeley.com/datasets/ws3cdn28n8/4 (6).

Page 3 of 103 Ecology

Abstract

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence. More generally, the strength of density dependence may be predictably related to other species-specific ecological attributes such as shade tolerance, or the relative local abundance of a species. To test the strength of density dependence and whether it affects seedling community diversity in a temperate forest, we tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally planted beneath conspecific and heterospecific adults on the Prospect Hill tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always lower under conspecific adults, which increased seedling community diversity in one of six treatments. We compared these results to evidence of CNDD from observed sapling survival patterns of 28 species over approximately 8 years in an adjacent 35-hectare forest plot. We tested whether species-specific estimates of CNDD were associated with mycorrhizal association, shade tolerance, and local abundance. We found evidence of significant, negative conspecific density dependence (CNDD) in 23 of 28 species, and positive conspecific density dependence in two species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited stronger (e.g. more negative) CNDD than arbuscular mycorrhizal- associated species. CNDD was also stronger in more shade tolerant species but was not associated with local abundance.

Page 4 of 103

Conspecific adult trees often have a negative influence on seedling survival in temperate forests, particularly for tree species with certain traits. Here we found strong experimental and observational evidence that ectomycorrhizal-associating species consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence from experiments and observations of sapling mortality suggest a mechanistic link between negative effects of conspecific adults on seedling and sapling survival and local tree species distributions.

Keywords: conspecific negative density dependence, diversity, saplings, temperate tree

seedlings, mycorrhizal fungi, ectomycorrhizae, shade tolerance

Introduction

Conspecific negative density dependence (CNDD), whereby population growth rates decline with increasing population density due to a negative feedback on recruitment or survival, is a critical mechanism that can support local tree diversity (Chesson 2000). One example of CNDD is known as the Janzen-Connell hypothesis. This hypothesis suggests that specialized enemies, such as herbivores or pathogens, reduce the recruitment of offspring nearby parent trees in highly diverse tropical forests (Janzen 1970; Connell 1971). This process hinders the formation and preservation of monodominant stands, and the resulting spatial distribution of trees supports the coexistence of many species. It is broadly assumed that CNDD can operate as a stabilizing mechanism to support diverse communities; however, very few studies of density dependence have quantified the effects of CNDD on diversity. Theoretical work (Chesson 2000) and observational studies (LaManna et al. 2017; Johnson et al. 2012) have linked higher species diversity to stronger CNDD, but experimental evidence of this link remains rare (Bagchi et al.

Page 5 of 103 Ecology

2014; Levine and HilleRisLambers 2009). In particular, few studies show whether and how CNDD can produce greater diversity over ecological time.

Strong CNDD is pervasive in the tropics (Comita et al. 2014; Terborgh 2012), making it an attractive potential driver of latitudinal patterns of tree diversity. However, there is also increasing support for CNDD as a mechanism that influences tree communities in temperate forests (Johnson et al. 2014, 2012; McCarthy-Neumann and Kobe 2010; Ramage et al. 2017; Jiang et al. 2020, 2021). While this work illustrates the potential for CNDD to drive population dynamics in temperate systems, there is wide variation in the strength of CNDD among tree species (Bennett et al. 2017; Johnson et al. 2014) and along environmental gradients (LaManna et al. 2016; Smith and Reynolds 2015).

Plant functional traits provide one potential means for predicting differences in the strength of density dependence among species (Bennett et al. 2017; Brown et al. 2019; Jia et al. 2020). In particular, functional traits that confer resistance to attack from herbivores or pathogens, the primary drivers of CNDD, may be associated with the strength of density dependence. For tree species, the type of mycorrhizal association, either arbuscular (AM) or ectomycorrhizal (ECM), has been associated with patterns in CNDD. In previous studies, ectomycorrhizal-associated tree species tend to exhibit weaker or even positive density dependence (Bennett et al. 2017; Jiang et al. 2020, 2021; Chen et al. 2019; Qin et al. 2021), possibly due to the greater protection from soil pathogens that the fungi confer to their tree host (Corrales et al. 2016; Bennett et al. 2017). Indeed, recent work suggests that while both AM and ECM fungal networks may partially counteract conspecific negative density dependent mortality, ECM fungi may be more effective than AM fungi at countering the mortality agents which

Ecology Page 6 of 103

typically drive CNDD patterns (Liang et al. 2021). However, in other studies the strength of CNDD was similar in AM and ECM associated tree species (Jia et al. 2020).

In addition to mycorrhizal association, shade tolerance has been associated with species-specific patterns in CNDD; shade tolerant tree species are less susceptible to microbial attack due to conservative life history strategies, suggesting that they should exhibit weaker CNDD (McCarthy-Neumann and Kobe 2008; Song et al. 2021). However, shade tolerant species are also more likely to be infected by necrotrophic fungal pathogens, which kill their hosts and feed on the decaying tissue, while shade intolerant species are more likely to be infected by biotrophs, which feed on live tissue without killing their hosts (García-Guzmán and Heil 2014). Indeed, low light areas of the forest where shade tolerant seedlings are likely to be found typically contain higher pathogen loads (Augspurger and Kelly 1984). Therefore, despite their conservative allocation strategy, shade tolerant species may be *more* affected by CNDD, if the pathogens driving density dependence are more abundant and virulent. Indeed, the few explicit tests of how shade tolerance relates to CNDD in temperate forests are conflicting: shade tolerant species may be more (Jia et al. 2020) or less (Brown et al. 2019) likely to exhibit CNDD than shade intolerant species within temperate forests.

Additionally, temperate species do not always follow the same patterns as tropical species: in the tropics, rare species typically exhibit stronger CNDD, which helps maintain diverse communities with many rare species (Xu, Wang, and Yu 2015; Comita et al. 2010; Mangan et al. 2010). In temperate forests, the pattern between CNDD and local abundance is less clear: while some studies show that rare species exhibit stronger negative density feedbacks (Johnson et al. 2012), others show the opposite pattern, with more abundant species exhibiting stronger CNDD (Zhu et al. 2015; LaManna et al. 2016). Quantifying the strength of CNDD

Page 7 of 103 Ecology

across multiple co-occurring species can help to detangle sources of variability in CNDD studies and is needed to generalize the importance of CNDD in temperate, as well as tropical, forests. In this study we used a combination of experimental and observational approaches to ask how prevalent CNDD is in a temperate forest, with particular emphasis on whether ectomycorrhizal-associated species commonly exhibit CNDD. We used a seedling planting experiment to test whether the species identity (conspecific versus heterospecific) of neighboring mature trees influences seedling survival in ectomycorrhizal-associating tree species, and whether CNDD effects on ECM seedling mortality alter seedling community diversity. We then used the survival of naturally occurring saplings to quantify the strength of CNDD across 28 co-occurring woody species. Finally, we asked whether mycorrhizal type, shade tolerance, and local abundance predict variation in the strength of CNDD among species.

Materials and methods:

150 Site Description

This study took place on the Prospect Hill tract of the Harvard Forest (HF) located in Petersham, Massachusetts. This forest is in the northern hardwood-hemlock-white-pine transition zone (42.530°'N, 72.190°'W, 300 m elevation above sea level). The mean annual temperature and precipitation are 7.1°C and 1066 mm, respectively. For the observational part of our study, we utilized the 35-hectare HF ForestGEO plot where every woody stem >1 cm diameter at breast height (DBH) has been identified to species, tagged, geolocated and its diameter was measured (Orwig et al. 2022). The experimental portion of our study took place in plots that are adjacent to the ForestGEO plot (Appendix 1: Figure S1).

159 Experimental Methods

Page 8 of 103

We selected three ectomycorrhizal species: *Pinus resinosa, Quercus rubra* and *Pinus strobus* which represent a range in other plant traits, including shade tolerance(Niinemets and Valladares 2006). All three species are common at our study site, although the population of *Pinus resinosa* were planted there in the early 1900s and now consist of both planted and naturally regenerated individuals. In the forest adjacent to the mapped ForestGEO plot, we located 30 experimental plots (Appendix 1: Figure S1). Each circular plot had a diameter of 20 m and was centered on a focal *Pinus resinosa, Quercus rubra*, or *Pinus strobus* with a DBH greater than 28cm such that there were ten plots centered on each of the three species. We chose locations where none of the other study species occurred: e.g., in a plot centered on a *Q. rubra* tree, there were no *Pinus resinosa* or *Pinus strobus*. We used these plots to plant seedlings of each of the three species beneath both conspecific and heterospecific "adult" trees (defined as trees with a DBH greater than 28 cm).

In addition to these three species, we also planted *Picea abies* seedlings. *Picea abies* are present at this site but not native to the area. Like *Pinus resinosa*, *Picea abies* was commonly planted in the early 1900s and now naturally regenerate at this site. We included this species in the seedling planting primarily to increase the diversity of our planted seedling communities. *Picea abies* was chosen as it was available from the same nursery as the three experimental species, was a similar size and age to the other three species, associates with the same type of mycorrhizal fungi, and is a common species at this study site (Table 1). We purchased bare-root seedlings in May 2019 which were grown outdoors at the New Hampshire State Nursery in Boscawen, NH. *Picea abies* and *Quercus rubra* seedlings were two years old at planting while *Pinus strobus* and *Pinus resinosa* were three years old.

Experimental planting

Page 9 of 103 Ecology

Within each plot, we constructed two subplots, 1 m x 1 m, into which the seedlings were planted. Subplots were located approximately 1 meter apart and within 2 meters of the base of the trunk of the focal tree, and subplot type ("even" or "uneven") was randomly assigned. In each subplot, we planted 20 seedlings. To test whether CNDD promotes diversity, and whether the effects of CNDD on diversity were dependent on the initial diversity of the community, in one subplot ("Even"), we planted 5 individuals of each species. In the other ("Uneven"), we planted 11 individuals of the same species as the focal tree (conspecifics), and 3 of each of the heterospecific species. Thus, the two subplots had the same total number of seedlings, but the conspecific seedling was either at the same density as each of the heterospecifics, or at a much higher density, as would be more likely under natural regeneration conditions. We used a standard, randomized planting design such that the spatial arrangement of conspecific seedlings relative to heterospecific seedlings was consistent across all subplots of the same type (Supplementary Fig 2). All 1200 seedlings were planted between May 31st and June 7th, 2019.

Before planting, each subplot was cleared of aboveground stems greater than 20cm in height with hand clippers, so that competition with herbaceous plants and ferns was minimized across all plots. Resprouts from clipped vegetation, primarily ferns, were rare and were reclipped when they emerged. Next, leaf litter was removed and set aside. A wooden 1m² frame with grid lines at 20cm intervals, creating a 5x5 grid, was then placed on the ground to serve as the planting guide (Appendix 1: Figure S2). Using an auger (7.6 cm diameter), we dug holes in 20 locations in each subplot. Removed soil was placed on a tarp and homogenized. The individually tagged seedlings were then planted and covered by the homogenized soil.

Page 10 of 103

bottles. After the 20 seedlings were planted, the subplot was flagged, watered, and re-covered by leaf litter.

Within each 10-m radius plot, we also identified and measured the diameter of each tree > 2.5 cm DBH as well as the distance of each stem to the seedling subplots. To account for possible differences in light environment that could influence seedling survival, we took a hemispherical photo using a fisheye lens from the center of each plot to capture the light environment. Photographs were taken between 07:30 and 09:30 am to avoid overexposure. Images were analyzed with WINSCANOPY (Regent Instruments Inc., Quebec, Canada) to calculate the gap fraction (a metric of canopy openness) of each of the 30 plots.

Seedlings were tracked individually throughout the summer. After all seedlings had been in the ground for two weeks, seedlings were censused for survival and their initial heights were measured to account for any differences in survival that were due to variation in initial seedling size. Seedlings were censused again after an additional 10 weeks for their final survival status. Seedlings were presumed dead if their needles had all turned brown (conifers) and if they had no remaining leaves (*Q. rubra*). We continued to monitor all seedlings, regardless of status, for the full 12 weeks of the experiment.

Statistical analysis of experimental seedling mortality

We removed 17 individual seedlings from the analysis (1 *P. strobus*, 13 *Q. rubra* and 3 *P. resinosa*) that died within the first two weeks, presumably due to transplant shock rather than as a result of our experimental treatments. For each seedling species, we calculated the overall odds ratio of survival under conspecific and heterospecific focal adults, such that an odds ratio < 1 indicates a lower chance of survival beneath a conspecific adult. We then fit a binomial mixed model using the R package lme4 (Bates, Maechler, Bolker, & Walker, 2015) to predict seedling

Page 11 of 103 Ecology

survival as a function of the adult species identity of the plot (based on whether the focal tree in the plot was a conspecific or heterospecific), initial seedling height, subplot type (even or uneven) and canopy gap fraction, with the plot as a random effect. For the *P. abies* seedlings, we fit the same model without the adult identity variable as all seedlings were growing in heterospecific plots.

To account for possible effects of both the focal tree in each plot (our experimental treatment), and also the effects of neighboring trees, we used the full 314-m2 plot to calculate a neighborhood competition index (NCI) following Canham, LePage, and Coates (2004) and modified as in other similar analyses (Zhang et al. 2017; Bai et al. 2012; Magee et al. 2020). For each plot, we calculated NCI values to compare the effects of conspecific and heterospecific adults within 10 meters as follows:

$$NCI_{conspecific} = \sum \frac{DBH conspecific}{distance} \qquad eq.1$$

NCI_{heterospecific} =
$$\Sigma \frac{DBHheterospecific}{distance}$$
 eq. 2

We then used the results of the first set of models (using the identity of the focal adult tree as our treatment) to inform which parameters to include in the second set (including the NCI as our treatment), including any parameter from the first model set with p < 0.1. We ran a second set of binomial mixed models that did not include adult identity, but did include NCI_{conspecific}, NCI_{heterospecific}, and any of the parameters identified from model set 1 with plot ID as a random variable.

Finally, we tested whether the observed seedling mortality affected the diversity of the seedling community. To do this, we calculated the overall survival of each seedling subplot. We then simulated random mortality at that level for each subplot, by randomly assigning a survival code to each seedling until the overall observed mortality of the plot was met. We ran this

Page 12 of 103

simulation 1000 times for each subplot. As all our experimental plots were planted with the same species richness (4), we used the Shannon's Equitability Index (J) (Begon, Harper and Townsend 1996):

$$J = \frac{-\sum_{i=1}^{S} p_i * log(p_i)}{log(SR)}$$
 eq. 3

where p_i is the proportion of each species and SR is the species richness. We used this metric to assess whether the diversity we observed at the end of our experiment differed from what the diversity would be if mortality had occurred randomly with respect to species identity of the seedlings.

Observational sapling survival

To determine whether naturally regenerating saplings exhibited a similar pattern to those we experimentally planted, as well as to quantify density dependence in a wider variety of naturally occurring saplings, we used the subset of the Harvard Forest ForestGeo plot that has been re-censused as of 2021. The first census occurred from June 2010 through January 2014. The re-census occurred from May 2018 to September 2019. Individual trees were revisited and their survival status was recorded.

Using the initial census, we calculated the same metrics of neighborhood competition as for our experimental plots (eq.1 and eq. 2) for each individual stem in the forest. We used a maximum distance of 20 m. We only assessed patterns for species with more than 10 individual saplings and more than 20 individual adults. To account for differences in average size of each species as well as maximize the number of species included in our analysis, we defined individuals as saplings if their DBH was less than the median DBH of that species, up to a maximum cutoff of 12.7 cm DBH, and individuals greater than the median as "adults" (Table 1). To confirm that our results were not sensitive to the choice of methods, we re-ran the CNDD

Page 13 of 103 Ecology

estimation using 15m maximum distance to neighbors and 25 m maximum distance to neighbors. We also re-ran the CNDD estimation using an alternative method to distinguish between saplings and adults: using a DBH cutoff of either 3cm, 8cm or 12.7cm for species with a median DBH less than 5cm, greater than 5 but less than 12.7cm, and greater than 12.7cm respectively, as a common concern with CNDD analyses is that the distinction can be arbitrary (Detto et al. 2019). Results of from these alternative analyses can be found in Appendix 1: Figure S3.

To calculate the overall effect of neighborhood on sapling mortality, we fit a generalized linear mixed-effects model (GLMM) with binomial errors and a complementary log—log link to assess the relative importance of factors determining individual sapling mortality using the R package lme4 (Bates et al. 2015). To account for differences in the length of time between the two censuses for individual trees, we used a log(time) offset of the number of years between the two censuses (range: 5.25 - 9.5 years) for each individual stem as in Johnson et al. (2017). The diameter at breast height (DBH) of the sapling at the first census was included as a covariate(Johnson et al. 2017). Both NCI_{con} and NCI_{het} were also included in the model to account for the overall effects of competition as well as the specific effects of conspecific neighbors. All three variables were scaled by subtracting the overall mean and dividing by two standard deviations (Gelman 2008). Species was included as a random effect, and both NCI_{con} and NCI_{het} were estimated with random slopes for each species. The model coefficients for each species of NCI_{con} and NCI_{het} were used to estimate CNDD_{coeff}, such that CNDD_{coeff} was the difference between the model coefficient for NCI_{con} and NCI_{het}.

To further account for the possibility that our CNDD_{coeff} estimate could be produced by underlying spatial or other factors not accounted for in this simple statistical model, we additionally performed null model testing (LaManna, Mangan, and Myers 2021). Using the same

Page 14 of 103

model structure as above, we recalculated values of NCI_{con} and NCI_{het} for each sapling after randomizing the observed proportion of the total NCI that was conspecific: effectively keeping the total neighborhood density the same as the observed, but randomizing the density of conspecific neighbors. We also kept the observed values of DBH, and the mortality outcome. We re-ran this null model 1000 times, and estimated CNDD_{null} as the difference between the mean NCI_{con} and NCI_{het} coefficients using the same model structure as described above. We then calculated the final estimate of CNDD for each species (CNDD_{est}) as follows

 $CNDD_{est} = -(CNDD_{coeff} - CNDD_{null})$ eq. 4

where CNDD_{coeff} is the estimate based on the difference between the model coefficients for NCI_{con} and NCI_{het} using the observed data, and CNDD_{null} is the estimate based on the difference between the model coefficients for NCI_{con} and NCI_{het} using the randomized NCI_{con}. The negative sign is to make the estimate more interpretable: as all the models were run as hazard functions, with survival coded as zero and mortality coded as one, taking the inverse of the estimate mreans that a negative CNDD_{est} indicates a species exhibited stronger CNDD, while a positive CNDD_{est} indicates that greater conspecific adult density was associated with a higher likelihood of survival. For each species, we took the mean across the 1000 iterations of the null model randomization, and we considered our estimate of CNDD significant if the 95% confidence interval of CNDD_{est} did not cross 0. We also confirmed that the mean null model coefficients were significantly different from the coefficients based on the observed values for each species using a paired t-test. Full visualization of the null model distribution for each species relative to CNDD_{obs} can be found in Appendix 1: Figure S4.

Finally, we compared this species level estimate of CNDD at this site to species level plant traits. We assigned each species a dominant mycorrhizal association based on values from

Page 15 of 103 Ecology

FungalRoot (Soudzilovskaia et al. 2020) and a shade tolerance value based on Niinemets and Valladares (2006). We then used a linear model to estimate the effects of mycorrhizal association, shade tolerance, and local abundance (log transformed) on CNDD_{est}. Because the species in this study varied dramatically in their typical and mature size, and because AM species were generally smaller (Table 1), we also included the median DBH of the species as a predictor in the model. To ensure that our results were robust to model structure, we also iteratively checked all possible two-way interactions of the four species level predictors (mycorrhizal association, shade tolerance, local abundance and median DBH); none were significant, so we report the results of the additive model. All analyses we performed in R version 4.0.5.

Results

Experimental seedling survival

All seedling species had higher survival rates when planted beneath heterospecific trees than when planted under conspecific trees (Figure 1, Table 2). *Quercus rubra*, which had the lowest overall mortality, also exhibited the least difference in survival (88.5% under conspecifics, 96.7% under heterospecifics, odds ratio: 0.91). *Pinus resinosa* had the highest overall mortality, with only 3.8% seedling survival beneath conspecifics and 15.4% beneath heterospecifics (odds ratio 0.25). *Pinus strobus* showed the greatest absolute difference in survival between conspecifics (73.9%) and heterospecifics (94.4%) and the strongest effect of the identity of the neighboring adult tree (Table 2).

Results were qualitatively similar when comparing the density of adult trees in the surrounding community, as measured by NCI, to seedling survival. All four species exhibited declining survival with increasing conspecific adult density (NCI_{con}), but all but *Q. rubra* also exhibited declining survival in response to increasing heterospecific density (NCI_{het}) as well

Page 16 of 103

(Table 3). When comparing the NCI_{con} coefficient estimates and standard errors with those of NCI_{het}, only *P. strobus* exhibited CNDD: in other words, the coefficient estimate for the negative effect of conspecific neighbors did not overlap with the weaker negative effect of heterospecific neighbors (Table 3).

None of the seedling species exhibited survival differences between the even and unevenly planted plots (Table 2). In the evenly planted seedling subplots, which began the experiment with perfectly even communities (J=1), observed mortality caused a decline in seedling diversity; however, this decline in diversity was indistinguishable from simulated random mortality (Figure 2a). The seedling diversity in the unevenly planted subplots either stayed the same or, in the case of the unevenly planted subplots beneath P. resinosa adults, substantially increased (Figure 3b). In those plots, the seedling community had changed from an equitability index (J) of 0.85 (uneven) to 0.98 at the end of the experiment- almost perfectly even, and far higher than the diversity predicted if the mortality had been random. These locations experienced the highest total mortality (59.7%), and also the highest difference between conspecific seedling mortality (96%) and heterospecific seedling mortality (12.6%). Experimental seedling survival was also affected by factors other than the local neighborhood. For example, *Pinus strobus* and *Pinus resinosa* seedlings that were initially taller had slightly lower survival. Picea abies was the only species whose survival increased with increasing light availability as measured by the gap fraction (Table 2).

Observed sapling survival

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

Overall, the probability of sapling survival in our observational CNDD analysis decreased with increasing local density of conspecifics (Table 4). Sapling survival was also positively associated with sapling DBH and negatively associated with local density of

Page 17 of 103

heterospecifics; however, the effect of these drivers was considerably lower than the effect of conspecific neighbors (Table 4). The strength of CNDD varied substantially among species. In twenty- three of the twenty- eight species used in our analysis, sapling survival decreased significantly with increasing conspecific density, whereas in two species sapling survival increased with increasing conspecific density (Figure 3).

Tree species that typically associate with ECM fungi were much more likely to exhibit CNDD than those that typically associate with AM fungi (Figure 3B, Table 5); 12 of the 13 ECM-associated species in this analysis exhibited significant CNDD. In contrast, 4 of the 15 AM-associated species either did not exhibit significant CNDD or instead were more likely to survive when growing in areas with greater densities of conspecifics (e.g. had significantly positive estimates of CNDD). AM-associated saplings also had a somewhat lower overall survival (61%) than ECM-associated saplings (72%). Although there are a similar number of AM and ECM associating species at this site, ECM species tend to have higher abundance and overall about 66% of saplings are ECM-associating species. In addition, the AM-associating species at this site tend to be smaller (Table 1). However, the median DBH of the species was not associated with stronger CNDD (Table 5).

Shade tolerance was also a significant predictor of CNDD at the species level, such that more shade tolerant species generally exhibited stronger, more negative CNDD than shade intolerant species (Figure 4). In contrast, local abundance was not a significant predictor of the strength of CNDD (Figure 4).

CNDD estimated in naturally occurring saplings generally aligned with the results from the seedling experiment. *Quercus rubra*, which showed the weakest response to the nearby conspecific adults (Table 2) and no response to neighborhood conspecific density (Table 3) in

Page 18 of 103

the seedling experiment, showed no significant evidence of CNDD at the sapling stage (Figure 3). *Pinus strobus*, which exhibited the strongest response to nearby conspecific adults (Table 2) and neighborhood conspecific densities (Table 3) in the experimental data, showed strong evidence of CNDD in the analysis of observed sapling survival (Figure 3). *Pinus resinosa*, which exhibited intermediate CNDD in the seedling experiment, was also intermediate in the observed sapling analysis.

Discussion

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

CNDD and mycorrhizal associations

The results of both our field experiment and our analysis of sapling survival indicate that sapling mortality is higher beneath conspecific adults in this system. In particular, the agreement between these two separate analyses for the three tree species common to the two studies provides strong evidence of CNDD in this temperate forest, particularly in ectomycorrhizal trees. Indeed, the apparent ubiquity of CNDD among ectomycorrhizal species in this forest came as a surprise, as previous work has found weaker or positive patterns of density dependence among ECM associating trees (Bennett et al. 2017; Jiang et al. 2020, 2021; Brown et al. 2019). Notably, however, several of these studies found these patterns primarily in plant growth rates rather than in survival (Bennett et al. 2017; Brown et al. 2019). Given that there can be intraspecific tradeoffs between survival and growth rates (Seiwa 2007), it is possible that CNDD estimates based on growth and survival may differ within a species (Brown et al, 2019). In addition, the details of the species included in this study may differ from those in other locations. At this site, while there is a similar number of species that associate with AM and ECM fungi, ECMassociating trees are much more abundant. Thus, the availability of mutualists for AMassociating species is likely lower and/or patchier, and recent evidence shows that AM

Page 19 of 103 Ecology

colonization is greater on plants that grow in stands where other AM-associating plants are more abundant (Grünfeld et al. 2020). This could have the result that regeneration near to conspecifics comes with greater access to appropriate mutualists, which could dampen the negative effects typically associated with proximity to conspecific adults for AM-associating species (Liang et al. 2021). In contrast, mutualist availability is likely ubiquitous for ECM-associating species, as ECM species are well distributed at this site. Finally, estimates of species level CNDD in one context may not generalize, as there is increasing evidence that the strength of CNDD can change due to variation in the presence of large mammals (Murphy and Comita 2021), climate (Liu and He 2021), and along environmental gradients (Brown, White, and Peet 2021; LaManna et al. 2016; Magee et al. 2020; Record et al. 2016).

CNDD and shade tolerance

We also found evidence that shade tolerance predicted the strength of CNDD: shade tolerant species tended to show somewhat greater CNDD, although the effect was strongly driven by a single species (*Picea abies*). This is consistent with some (Jia et al. 2020; García-Guzmán and Heil 2014) but not other (Brown et al. 2019) studies on shade tolerance and CNDD. This discrepancy may be because there are conflicting pressures on trees which result in no clear net effect. Shade tolerant species typically have more conservative life history strategies, which might make them less sensitive to CNDD (McCarthy-Neumann and Kobe 2008; Song et al. 2021). However, shade intolerant species are less likely to be limited by conspecific-associating fungal pathogens, and more likely to be limited by herbivorous insects or pathogens with weaker effects on mortality, perhaps making them less likely to exhibit CNDD (Jia et al. 2020; García-Guzmán and Heil 2014). Taken together with results from this study, it seems that shade tolerance may not have a consistent effect on strength of CNDD in temperate forests.

Ecology Page 20 of 103

CNDD and other species characteristics

Local abundance is a strong driver of CNDD in tropical trees, where rare species typically exhibit the strongest CNDD (Comita et al. 2010). In temperate forests, however, the results have been mixed, with some analyses indicating that rare species exhibit stronger CNDD (Johnson et al. 2012; Seiwa et al. 2019) and others finding that more abundant species exhibit stronger CNDD (K. Zhu et al. 2015). Indeed the effect of local abundance may also interact with other characteristics. For example, rare AM species typically exhibit stronger CNDD than common AM species, but the same may not hold true for ECM species (Jiang et al. 2020, 2021). In this study we found that local abundance had no apparent effect on the strength of CNDD, overall or interacting with mycorrhizal type. This may be important for understanding the effects of CNDD on diversity in this forest: theoretical work suggests that if variation among species in CNDD is correlated with abundance, with stronger CNDD for rare species, then diversity may not be maintained. However, if CNDD is unrelated to abundance, as in our study here, or even stronger for common species, then CNDD may help promote the maintenance of diversity (Stump and Comita 2018).

Additional plant characteristics may also influence species susceptibility to CNDD. For example, species with larger seeds may be more tolerant to conspecific neighbors as their seeds act as carbohydrate stores, insuring them against biomass losses to herbivores and pathogens (Lebrija-Trejos et al. 2016; Seiwa et al. 2019). This may help explain why the large-seeded *Q. rubra* exhibited either weak or no CNDD in both the experiment and the observational study; however, the effect of cotyledon reserves is likely larger at younger ages. Notably, naturally occurring *Q. rubra* seedlings at this site do exhibit CNDD, but the effect decreases as the size of the seedling increases (Jevon et al. 2020), which is consistent with what we found here (that the

Page 21 of 103 Ecology

evidence of CNDD was stronger in the experiment, which assessed much smaller individuals)

The apparent weakening of CNDD in this species as individuals increase in size in also consistent with previous work suggesting that CNDD is often strongest at the seed to seedling transition or at younger age classes (Zhu et al. 2015). We note that as we assessed large seedlings (2 and 3 years old) in the experiment, and saplings (up to 12.7cm DBH) in the observational analysis, the overall results of this study are likely conservative with respect to how many species exhibit CNDD and the apparent strength of the effect relative to the true strength of CNDD that is experienced by trees in this forest.

CNDD and diversity

The change in diversity in one out of six of our experimental treatments also illustrates how CNDD mortality can affect community diversity (Figure 3). Importantly, it illustrates that alone, differences in mortality in seedlings growing near conspecific and heterospecific adults is not enough to generate greater diversity. The overall mortality must also be relatively high, and the initial diversity low, to result in meaningful changes to seedling community diversity. This is consistent with conceptual models suggesting that overall differences in mortality rates among life stages, alone or in combination with non-random mortality, can be an important determinant of community diversity (Green, Harms, and Connell 2014). The significant increase in diversity in even one treatment during this short-term experiment provides clear evidence that CNDD can act as a mechanism to support local diversity, particularly in systems or situations with high mortality.

Conclusions

Based on these patterns, we suggest that there is strong evidence for CNDD in temperate tree species. Our results also suggest that tree species associated with ectomycorrhizal fungi

exhibit CNDD, which runs counter to previous studies (Bennett et al. 2017; Jiang et al. 2020, 2021; Brown et al. 2019). This suggests caution when generalizing about how plant traits predict CNDD. Instead, integrating information about multiple plant characteristics, as well as the environmental context, will help to better predict species-level patterns in CNDD. We found experimentally that CNDD is capable of increasing seedling community diversity. However, theoretical work suggests that, in some cases, interspecific variation in the strength of CNDD decreases its ability to promote coexistence (Stump and Comita 2018), and results from this study and others show large variation in the strength of CNDD among co-occurring species. Therefore, although evidence of CNDD in temperate forests is accumulating, the consequences for diversity remain poorly understood.

Acknowledgements

The authors thank our funding sources, including the Smithsonian Institute and CTFS ForestGEO for supporting the mapped plot, the National Science Foundation's LTER program (DEB 06-20443, DEB 12-37491, DEB 18-32210), Harvard University, the Harvard Forest REU program (National Science Foundation DBI-1459519 & DBI-1950364 to Record), the National Science Foundation (award number 1638406 to Matthes and DEB-2024903 to LaManna), the National Aeronautic and Space Administration (award number 20-BIODIV20-0024 to Record), and the New England Botanical Club Graduate Student Research Award. This work would not have been possible without the 22 technicians who collected the adult tree census data in the CTFS-ForestGEO plot. The authors would also like to thank Manisha Patel and everyone involved in the Harvard Forest REU program for supporting this project.

Page 23 of 103

504	References
505	Augspurger, Carol K., and Colleen K. Kelly. 1984. "Pathogen Mortality of Tropical Tree
506	Seedlings: Experimental Studies of the Effects of Dispersal Distance, Seedling Density, and
507	Light Conditions." Oecologia 61 (2): 211–17.
508	Bagchi, Robert, Rachel E. Gallery, Sofia Gripenberg, Sarah J. Gurr, Lakshmi Narayan, Claire E.
509	Addis, Robert P. Freckleton, and Owen T. Lewis. 2014. "Pathogens and Insect Herbivores
510	Drive Rainforest Plant Diversity and Composition." Nature 506 (7486): 85–88.
511	Bai, Xuejiao, Simon A. Queenborough, Xugao Wang, Jian Zhang, Buhang Li, Zuoqiang Yuan,
512	Dingliang Xing, Fei Lin, Ji Ye, and Zhanqing Hao. 2012. "Effects of Local Biotic
513	Neighbors and Habitat Heterogeneity on Tree and Shrub Seedling Survival in an Old-
514	Growth Temperate Forest." Oecologia 170 (3): 755–65.
515	Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. "Fitting Linear Mixed-Effects Models
516	Using lme4." Journal of Statistical Software 67 (1): 1-48.
517	Bennett, Jonathan A., Hafiz Maherali, Kurt O. Reinhart, Ylva Lekberg, Miranda M. Hart, and
518	John Klironomos. 2017. "Plant-Soil Feedbacks and Mycorrhizal Type Influence Temperate
519	Forest Population Dynamics." Science 355 (6321): 181–84.
520	Brown, Alissa J., Christopher J. Payne, Peter S. White, and Robert K. Peet. 2019. "Shade
521	Tolerance and Mycorrhizal Type May Influence Sapling Susceptibility to Conspecific
522	Negative Density Dependence." Edited by Pierre Mariotte. The Journal of Ecology 4 (July):
523	103.
524	Brown, Alissa J., Peter S. White, and Robert K. Peet. 2021. "Environmental Context Alters the
525	Magnitude of Conspecific Negative Density Dependence in a Temperate Forest."
526	Ecosphere 12 (3). https://doi.org/10.1002/ecs2.3406.

Page 24 of 103

527	Canham, Charles D., Philip T. LePage, and K. Dave Coates. 2004. "A Neighborhood Analysis of				
528	Canopy Tree Competition: Effects of Shading versus Crowding." Canadian Journal of				
529	Forest Research. Journal Canadien de La Recherche Forestiere 34 (4): 778–87.				
530	Chen, Lei, Nathan G. Swenson, Niuniu Ji, Xiangcheng Mi, Haibao Ren, Liangdong Guo, and				
531	Keping Ma. 2019. "Differential Soil Fungus Accumulation and Density Dependence of				
532	Trees in a Subtropical Forest." Science 366 (6461): 124–28.				
533	Chesson, Peter. 2000. "Mechanisms of Maintenance of Species Diversity." Annual Review of				
534	Ecology and Systematics. https://doi.org/10.1146/annurev.ecolsys.31.1.343.				
535	Comita, Liza S., Helene C. Muller-Landau, Salomón Aguilar, and Stephen P. Hubbell. 2010.				
536	"Asymmetric Density Dependence Shapes Species Abundances in a Tropical Tree				
537	Community." Science 329 (5989): 330–32.				
538	Comita, Liza S., Simon A. Queenborough, Stephen J. Murphy, Jenalle L. Eck, Kaiyang Xu,				
539	Meghna Krishnadas, Noelle Beckman, and Yan Zhu. 2014. "Testing Predictions of the				
540	JanzenConnell Hypothesis: A Meta-Analysis of Experimental Evidence for Distance-and				
541	Density-Dependent Seed and Seedling Survival." The Journal of Ecology 102 (4): 845-56.				
542	Connell, J. H. 1971. "On the Role of Natural Enemies in Preventing Competitive Exclusion in				
543	Some Marine Animals and in Rain Forests." In Dynamics of Populations, edited by P. J.				
544	Den Boer G. R. Gradwell, 298–312. Center for Agricultural Publishing and Documentation.				
545	Corrales, Adriana, Scott A. Mangan, Benjamin L. Turner, and James W. Dalling. 2016. "An				
546	Ectomycorrhizal Nitrogen Economy Facilitates Monodominance in a Neotropical Forest."				
547	Ecology Letters 19 (4): 383–92.				
548	Detto, Matteo, Marco D. Visser, S. Joseph Wright, and Stephen W. Pacala. 2019. "Bias in the				
549	Detection of Negative Density Dependence in Plant Communities." Ecology Letters 22				

Page 25 of 103 Ecology

550	(11): 1923–39.
551	García-Guzmán, Graciela, and Martin Heil. 2014. "Life Histories of Hosts and Pathogens Predict
552	Patterns in Tropical Fungal Plant Diseases." The New Phytologist 201 (4): 1106–20.
553	Gelman, Andrew. 2008. "Scaling Regression Inputs by Dividing by Two Standard Deviations."
554	Statistics in Medicine 27 (15): 2865–73.
555	Green, Peter T., Kyle E. Harms, and Joseph H. Connell. 2014. "Nonrandom, Diversifying
556	Processes Are Disproportionately Strong in the Smallest Size Classes of a Tropical Forest."
557	Proceedings of the National Academy of Sciences of the United States of America 111 (52):
558	18649–54.
559	Grünfeld, Leonie, Monika Wulf, Matthias C. Rillig, Annette Manntschke, and Stavros D.
560	Veresoglou. 2020. "Neighbours of Arbuscular-Mycorrhiza Associating Trees Are
561	Colonized More Extensively by Arbuscular Mycorrhizal Fungi than Their Conspecifics in
562	Ectomycorrhiza Dominated Stands." The New Phytologist 227 (1): 10-13.
563	Janzen, Daniel H. 1970. "Herbivores and the Number of Tree Species in Tropical Forests." The
564	American Naturalist 104 (940): 501–28.
565	Jevon, Fiona V., Sydne Record, John Grady, Ashley K. Lang, David A. Orwig, Matthew P.
566	Ayres, and Jaclyn Hatala Matthes. 2020. "Seedling Survival Declines with Increasing
567	Conspecific Density in a Common Temperate Tree." Ecosphere 11 (11): e03292.
568	Jiang, Feng, James A. Lutz, Qingxi Guo, Zhanqing Hao, Xugao Wang, Gregory S. Gilbert,
569	Zikun Mao, et al. 2021. "Mycorrhizal Type Influences Plant Density Dependence and
570	Species Richness across 15 Temperate Forests." Ecology 102 (3): e03259.
571	Jiang, Feng, Kai Zhu, Marc W. Cadotte, and Guangze Jin. 2020. "Tree Mycorrhizal Type
572	Mediates the Strength of Negative Density Dependence in Temperate Forests." The Journal

Ecology Page 26 of 103

573	of Ecology, May. https://doi.org/10.1111/1365-2745.13413.
574	Jia, Shihong, Xugao Wang, Zuoqiang Yuan, Fei Lin, Ji Ye, Guigang Lin, Zhanqing Hao, and
575	Robert Bagchi. 2020. "Tree Species Traits Affect Which Natural Enemies Drive the Janzen
576	Connell Effect in a Temperate Forest." Nature Communications 11 (1): 286.
577	Johnson, Daniel J., Wesley T. Beaulieu, James D. Bever, and Keith Clay. 2012. "Conspecific
578	Negative Density Dependence and Forest Diversity." Science 336 (6083): 904-7.
579	Johnson, Daniel J., Norman A. Bourg, Robert Howe, William J. McShea, Amy Wolf, and Keith
580	Clay. 2014. "Conspecific Negative Density-Dependent Mortality and the Structure of
581	Temperate Forests." <i>Ecology</i> 95 (9): 2493–2503.
582	Johnson, Daniel J., Richard Condit, Stephen P. Hubbell, and Liza S. Comita. 2017. "Abiotic
583	Niche Partitioning and Negative Density Dependence Drive Tree Seedling Survival in a
584	Tropical Forest." Proceedings of the Royal Society B: Biological Sciences 284 (1869):
585	20172210.
586	LaManna, Joseph A., Scott A. Mangan, Alfonso Alonso, Norman A. Bourg, Warren Y.
587	Brockelman, Sarayudh Bunyavejchewin, Li-Wan Chang, et al. 2017. "Plant Diversity
588	Increases with the Strength of Negative Density Dependence at the Global Scale." Science
589	356 (6345): 1389–92.
590	LaManna, Joseph A., Scott A. Mangan, and Jonathan A. Myers. 2021. "Conspecific Negative
591	Density Dependence and Why Its Study Should Not Be Abandoned." Ecosphere 12 (1).
592	https://doi.org/10.1002/ecs2.3322.
593	LaManna, Joseph A., Maranda L. Walton, Benjamin L. Turner, and Jonathan A. Myers. 2016.
594	"Negative Density Dependence Is Stronger in Resource-Rich Environments and Diversifies
595	Communities When Stronger for Common but Not Rare Species." Edited by Marcel

Page 27 of 103 Ecology

596	Rejmanek. Ecology Letters 19 (6): 657–67.
597	Lebrija-Trejos, Edwin, Peter B. Reich, Andres Hernández, and S. Joseph Wright. 2016. "Species
598	with Greater Seed Mass Are More Tolerant of Conspecific Neighbours: A Key Driver of
599	Early Survival and Future Abundances in a Tropical Forest." <i>Ecology Letters</i> 19 (9): 1071–
600	80.
601	Levine, Jonathan M., and Janneke HilleRisLambers. 2009. "The Importance of Niches for the
602	Maintenance of Species Diversity." Nature 461 (7261): 254–57.
603	Liang, Minxia, Liuqing Shi, David F. R. P. Burslem, David Johnson, Miao Fang, Xinyi Zhang,
604	and Shixiao Yu. 2021. "Soil Fungal Networks Moderate Density-Dependent Survival and
605	Growth of Seedlings." The New Phytologist, no. nph.17237 (January).
606	https://doi.org/10.1111/nph.17237.
607	Liu, Yu, and Fangliang He. 2021. "Warming Intensifies Soil Pathogen Negative Feedback on a
608	Temperate Tree." <i>The New Phytologist</i> , April. https://doi.org/10.1111/nph.17409.
609	Magee, Lukas, Amy Wolf, Robert Howe, Jonathan Schubbe, Kari Hagenow, and Benjamin
610	Turner. 2020. "Density Dependence and Habitat Heterogeneity Regulate Seedling Survival
611	in a North American Temperate Forest." Forest Ecology and Management, November,
612	118722.
613	Mangan, Scott A., Stefan A. Schnitzer, Edward A. Herre, Keenan M. L. Mack, Mariana C.
614	Valencia, Evelyn I. Sanchez, and James D. Bever. 2010. "Negative Plant-Soil Feedback
615	Predicts Tree-Species Relative Abundance in a Tropical Forest." Nature 466 (7307): 752-
616	55.
617	McCarthy-Neumann, Sarah, and Richard K. Kobe. 2008. "Tolerance of Soil Pathogens Co-
618	Varies with Shade Tolerance across Species of Tropical Tree Seedlings." <i>Ecology</i> 89 (7):

Page 28 of 103

619	1883–92.
620	——. 2010. "Conspecific and Heterospecific Plant-Soil Feedbacks Influence Survivorship and
621	Growth of Temperate Tree Seedlings." <i>The Journal of Ecology</i> 98 (2): 408–18.
622	Murphy, Stephen J., and Liza S. Comita. 2021. "Large Mammalian Herbivores Contribute to
623	Conspecific Negative Density Dependence in a Temperate Forest." The Journal of Ecology
624	109 (3): 1194–1209.
625	Niinemets, Ülo, and Fernando Valladares. 2006. "Tolerance to Shade, Drought, and
626	Waterlogging of Temperate Northern Hemisphere Trees and Shrubs." Ecological
627	Monographs 76 (4): 521–47.
628	Orwig, David A., Jason A. Aylward, Hannah L. Buckley, Bradley S. Case, and Aaron M.
629	Ellison. 2022. "Land-Use History Impacts Spatial Patterns and Composition of Woody
630	Plant Species across a 35-Hectare Temperate Forest Plot." PeerJ 10 (January): e12693.
631	Qin, Jianghuan, Yan Geng, Xiaoyu Li, Chunyu Zhang, Xiuhai Zhao, and Klaus von Gadow.
632	2021. "Mycorrhizal Type and Soil Pathogenic Fungi Mediate Tree Survival and Density
633	Dependence in a Temperate Forest." Forest Ecology and Management 496 (September):
634	119459.
635	Ramage, Benjamin S., Daniel J. Johnson, Erika Gonzalez-Akre, William J. McShea, Kristina J.
636	Anderson-Teixeira, Norman A. Bourg, and Keith Clay. 2017. "Sapling Growth Rates
637	Reveal Conspecific Negative Density Dependence in a Temperate Forest." Ecology and
638	Evolution 7 (19): 7661–71.
639	Record, Sydne, Richard K. Kobe, Corine F. Vriesendorp, and Andrew O. Finley. 2016.
640	"Seedling Survival Responses to Conspecific Density, Soil Nutrients, and Irradiance Vary
641	with Age in a Tropical Forest." Ecology 97 (9): 2406–15.

Page 29 of 103 Ecology

642	Seiwa, Kenji. 2007. "Trade-Offs between Seedling Growth and Survival in Deciduous
643	Broadleaved Trees in a Temperate Forest." Annals of Botany 99 (3): 537-44.
644	Seiwa, Kenji, Kazuhiko Masaka, Miki Konno, and Susumu Iwamoto. 2019. "Role of Seed Size
645	and Relative Abundance in Conspecific Negative Distance-Dependent Seedling Mortality
646	for Eight Tree Species in a Temperate Forest" 453 (117537).
647	https://doi.org/10.1016/j.foreco.2019.117537.
648	Smith, Lauren M., and Heather L. Reynolds. 2015. "Plant-soil Feedbacks Shift from Negative to
649	Positive with Decreasing Light in Forest Understory Species." <i>Ecology</i> 96 (9): 2523–32.
650	Song, Xiaoyang, Jie Yang, Min Cao, Luxiang Lin, Zhenhua Sun, Handong Wen, and Nathan G.
651	Swenson. 2021. "Traits Mediate a Trade-off in Seedling Growth Response to Light and
652	Conspecific Density in a Diverse Subtropical Forest." The Journal of Ecology 109 (2): 703-
653	13.
654	Soudzilovskaia, Nadejda A., Stijn Vaessen, Milagros Barcelo, Jinhong He, Saleh Rahimlou,
655	Kessy Abarenkov, Mark C. Brundrett, Sofia I. F. Gomes, Vincent Merckx, and Leho
656	Tedersoo. 2020. "FungalRoot: Global Online Database of Plant Mycorrhizal Associations."
657	The New Phytologist 227 (3): 955–66.
658	Stump, Simon Maccracken, and Liza S. Comita. 2018. "Interspecific Variation in Conspecific
659	Negative Density Dependence Can Make Species Less Likely to Coexist." Ecology Letters
660	21 (10): 1541–51.
661	Terborgh, John. 2012. "Enemies Maintain Hyperdiverse Tropical Forests." The American
662	Naturalist 179 (3): 303–14.
663	Xu, Meng, Yongfan Wang, and Shixiao Yu. 2015. "Conspecific Negative Density Dependence
664	Decreases with Increasing Species Abundance." https://doi.org/10.1890/ES15-00144.1.

Zhang, Zhaochen, Michael J. Papaik, Xugao Wang, Zhanqing Hao, Ji Ye, Fei Lin, and Zuoqiang
Yuan. 2017. "The Effect of Tree Size, Neighborhood Competition and Environment on
Tree Growth in an Old-Growth Temperate Forest." Journal of Plant Ecology 10 (6): 970-
80.
Zhu, Kai, Christopher W. Woodall, Joao V. D. Monteiro, and James S. Clark. 2015. "Prevalence
and Strength of Density-Dependent Tree Recruitment." Ecology 96 (9): 2319–27.
Zhu, Yan, Liza S. Comita, Stephen P. Hubbell, and Keping Ma. 2015. "Conspecific and
Phylogenetic Density-Dependent Survival Differs across Life Stages in a Tropical Forest."
Edited by Richard Shefferson. The Journal of Ecology 103 (4): 957–66.
Edited by Richard Shefferson. The Journal of Ecology 103 (4): 957–66.

Page 31 of 103 Ecology

Table 1. Characteristics of species included in the analysis of CNDD for saplings from two censuses. Species used in the planting experiment are in bold. AM: species that typically associate with arbuscular mycorrhizae; ECM: species that typically associate with ectomycorrhizae*. The operational cutoff between saplings and adults was the median DBH for unshaded species and 12.7 cm for shaded species.

Species	Total abundance	Mycorrhizal association	Median DBH	Species code
Viburnum dentatum	53	AM	1.1	Vibude
Viburnum lantanoides	96	AM	1.2	Vibual
Viburnum cassinoides	1846	AM	1.3	Vibuca
Lindera benzoin	83	AM	1.4	Lindbe
Ilex verticillata	1266	AM	1.5	Ilexve
Amelanchier laevis	354	AM	1.4	Amella
Crataegus spp.	259	AM	1.5	Cratsp
Acer pennsylvanicum	425	AM	1.8	Acerpe
Nemopanthus mucronatus	377	AM	1.8	Nemomu
Castanea dentata	1020	ECM	2.2	Castde
Hamamelis virginiana	3578	AM	2.45	Hamavi
Fagus grandifolia	4362	ECM	3.0	Fagugr
Sorbus americana	74	AM	3.25	Sorbam
Tsuga canadensis	24,222	ECM	5.4	Tsugca
Betula alleghaniensis	5015	ECM	5.6	Betula
Betula lenta	1545	ECM	8.6	Betule
Betula populifolia	123	ECM	9.5	Betupo
Fraxinus americana	197	AM	10.1	Fraxam
Nyssa sylvatica	193	AM	10.6	Nysssy
Acer rubrum	12,967	AM	11.9	Acerru
Prunus serotina	266	AM	13.3	Prunse
Betula papyrifera	590	ECM	15.35	Betupa
Picea abies	911	ECM	16.5	Piceab
Picea rubens	106	ECM	18.15	Piceru
Pinus strobus	2149	ECM	22.1	Pinust

Quercus rubra	4407	ECM	28.6	Querru
Quercus velutina	227	ECM	30.4	Querve
Pinus resinosa	789	ECM	32.8	Pinure

*Mycorrhizal associations determined according to the FungalRoot database (Soudzilovskaia et al. 2020)

TO ROLLING ONLY

Page 33 of 103

Table 2. Coefficient estimates (standard error in parentheses) from binomial mixed effects model of seedling survival for each of the four seedling species. In all models, plot was included as a random effect. * indicates p < 0.05, †indicates p < 0.1.

Ecology

Seedling species	Conspecific adult	Seedling height	Gap Fraction	Subplot type (uneven)
Pinus resinosa	-1.96 (0.86)*	-0.10 (0.04)*	0.18 (0.12)	0.25 (0.46)
Quercus rubra	-1.38 (0.57)*	-0.01 (0.03)	0.00 (0.09)	0.07 (0.47)
Pinus strobus	-2.76 (1.09)*	-0.06 (0.03)*	-0.11 (0.17)	-0.25 (0.41)
Picea abies	na	-0.05 (0.04)	$0.22 (0.13)^{\dagger}$	-0.43 (0.38)

Table 3. Coefficient estimates (standard error in parentheses) from binomial mixed effects model of survival for each of the four experimental seedling species using the quantitative variables NCI_{con} and NCI_{het} . In all models, plot was included as a random effect. * indicates p< 0.05, †indicates p < 0.1.

Seedling species	NCI_{con}	NCI _{het}	Seedling height	Gap Fraction	Subplot type (uneven)
Pinus resinosa	-0.032 (0.013)*	-0.016 (0.015)	-0.097 (0.042)*	0.145 (0.120)	0.282 (0.463)
Quercus rubra	-0.015 (0.015)	0.005 (0.010)	-0.009 (0.031)	-0.045 (0.098)	0.029 (0.469)
Pinus strobus	-0.061 (0.021)*	-0.022 (0.016)	-0.061 (0.030)*	-0.105 (0.152)	-0.283 (0.407)
Picea abies	-0.021 (0.029)	-0.023 (0.012) [†]	-0.042 (0.040)	0.170 (0.118)	-0.426 (0.379)

745

746

747

748

749

Table 4. Overall standardized coefficient estimates from GLMM predicting sapling mortality as a function of initial size and local tree community. NCIcon and NCIhet represent local densities of conspecific trees, and heterospecific trees, respectively. Species was included as a random effect with NCI_{con} and NCI_{het} both estimated with a random slope for each species. Individual random effects coefficients for each species can be found in Appendix 1: Table S1.

Predictor	Estimate (SE)	P
(intercept)	-1.867 (0.249)	< 0.001
DBH	-0.805 (0.036)	< 0.001
NCI_{Het}	-0.106 (0.147)	0.468
NCI_{Con}	0.948 (0.271)	< 0.001
Random Effects		
2		

750

Random Effects

σ^2	1.64
τ ₀₀ species	1.41
τ ₁₁ species * NCIcon	1.20
τ ₁₁ species * NCIhet	0.40
ICC	0.46
N species	28
Observations	24250
Marginal R ² / Conditional R ²	0.121 / 0.527

751

752

753

Table 5. Coefficient estimates from linear model predicting the strength of the species level estimate of CNDD as a function of four species level characteristics: mycorrhizal association, shade tolerance, local abundance and median DBH of the species at this site.

Figure captions

Figure 1. Plot level survival of each of the four seedling species when planted beneath a conspecific (pale green) or a heterospecific (dark green) adult tree. Seedlings from both subplots in each 20m diameter plot are included in each point, such that each point represents survival of 40 planted seedlings. N = 30 plots for each species.

Figure 2. Mean Shannon's equitability index (J), a metric of community evenness, at the end of the experiment (green) relative to 1000 model simulations of equivalent level of mortality occurring randomly (black). Values for seedling subplots that were planted with equal numbers of each seedling species (A) and subplots that were planted with the conspecific seedling dominating (B), averaged across the 10 replicated adult trees. Error bars represent 95% confidence intervals. Dashed lines represent Shannon's equitability index of the community as it was initially planted.

Figure 3. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree species at the Harvard Forest (A). Error bars represent the total range of estimates using 1000 iterations of the null model (see statistical methods section for details). Blue points represent species that typically associate with arbuscular mycorrhiza (AM), green points represent species that typically associate with ectomycorrhizae (ECM). B) Boxplot of all estimates by mycorrhizal type, showing the significant difference between AM tree species and ECM tree species. Species used in the seedling experiment are in bold. Species codes as in Table 1.

Ecology

Page 38 of 103

Figure 4. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree species at the Harvard Forest as a function of shade tolerance (A) and local abundance (B). Blue points represent species that typically associate with arbuscular mycorrhiza (AM), green points represent species that typically associate with ectomycorrhizae (ECM). Gray line in A) illustrates significant negative relationship between shade tolerance and CNDD (see Table 5). Vertical error bars represent 95% confidence intervals (see statistical methods section for details). Horizontal error bars in A) are standard error from Niinemets and Valladares (2006). Note that Crataegus sp., Nemopanthus mucronatuso, Viburnum lantanoides and Viburnum cassinoides are nate of si. missing from a), as there was no estimate of shade tolerance available.

796

797

798

799

800

801

802

803

804

805

806

807

808

Page 39 of 103 Ecology

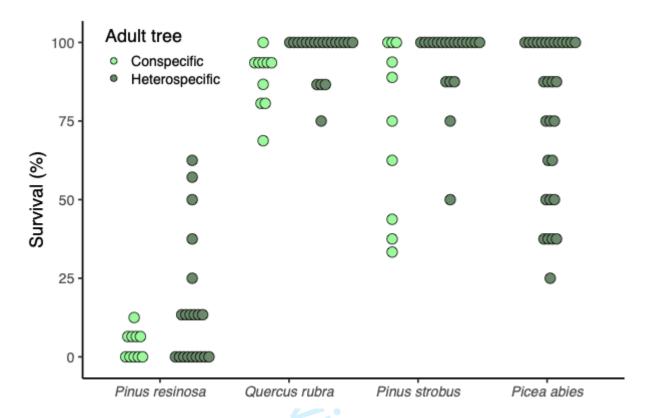


Figure 1. Plot level survival of each of the four seedling species when planted beneath a conspecific (pale green) or a heterospecific (dark green) adult tree. Seedlings from both subplots in each 20m diameter plot are included in each point, such that each point represents survival of 40 planted seedlings. N = 30 plots for each species.

Ecology Page 40 of 103

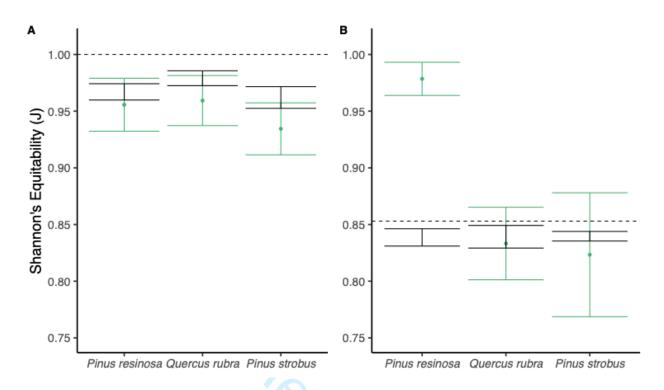


Figure 2. Mean Shannon's equitability index (J), a metric of community evenness, at the end of the experiment (green) relative to 1000 model simulations of equivalent level of mortality occurring randomly (black). Values for seedling subplots that were planted with equal numbers of each seedling species (A) and subplots that were planted with the conspecific seedling dominating (B), averaged across the 10 replicated adult trees. Error bars represent 95% confidence intervals. Dashed lines represent Shannon's equitability index of the community as it was initially planted.

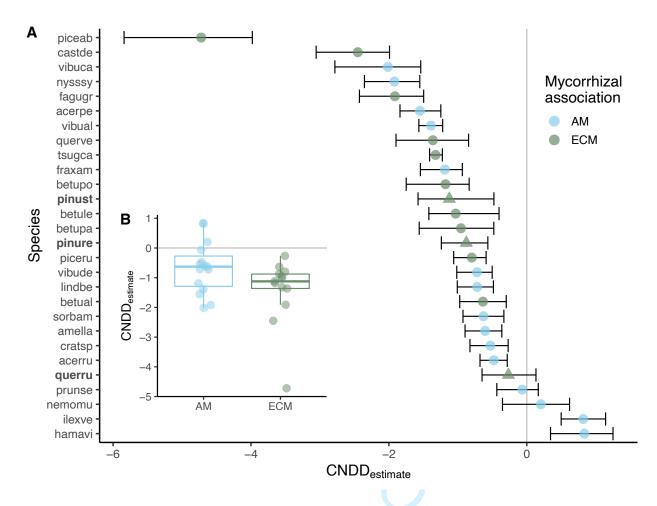


Figure 3. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree species at the Harvard Forest (A). Error bars represent the total range of estimates using 1000 iterations of the null model (see statistical methods section for details). Blue points represent species that typically associate with arbuscular mycorrhiza (AM), green points represent species that typically associate with ectomycorrhizae (ECM). B) Boxplot of all estimates by mycorrhizal type, showing the significant difference between AM tree species and ECM tree species. Species used in the seedling experiment are in bold. Species codes as in Table 1.

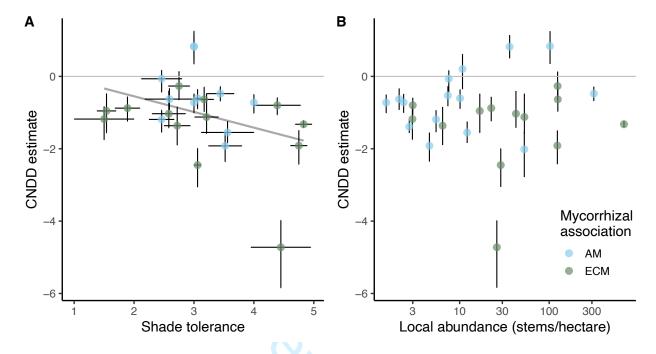


Figure 4. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree species at the Harvard Forest as a function of shade tolerance (A) and local abundance (B). Blue points represent species that typically associate with arbuscular mycorrhiza (AM), green points represent species that typically associate with ectomycorrhizae (ECM). Gray line in A) illustrates significant negative relationship between shade tolerance and CNDD (see Table 5). Vertical error bars represent 95% confidence intervals (see statistical methods section for details). Horizontal error bars in A) are standard error from Niinemets and Valladares (2006). Note that *Crataegus sp., Nemopanthus mucronatuso, Viburnum lantanoides* and *Viburnum cassinoides* are missing from a), as there was no estimate of shade tolerance available.

Page 43 of 103 Ecology

Appendix S1

Supplement to: Experimental and observational evidence of negative conspecific density dependence in temperate ectomycorrhizal trees

Fiona V. Jevon^{1,2}, Dayna De La Cruz³, Joseph A. LaManna⁴, Ashley K. Lang⁵, David A. Orwig⁶, Sydne Record⁷, Paige V. Kouba⁸, Matthew P. Ayres¹, Jaclyn Hatala Matthes²

¹Department of Biological Sciences, Dartmouth College, Hanover NH 03755, United States ²Current affiliation: Yale School of the Environment, Yale University, New Haven, CT 06511, United States

³Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA

⁴Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201 USA

⁵Department of Biological Sciences, Indiana University, Bloomington, IN, 47405 USA

⁶Harvard Forest, Harvard University, Petersham, MA 01366, USA

⁷Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010 USA

⁸Department of Plant Sciences, University of California, Davis, CA, 95616 USA

Ecology Page 44 of 103

Table S1. Standardized coefficient estimates from GLMM predicting sapling mortality as a function of initial size (DBH) and local tree community. NCI_{con} and NCI_{het} represent local densities of conspecific trees, and heterospecific trees, respectively. Species was included as a random effect with a random intercept, and NCI_{con} and NCI_{het} were both estimated with a random slope for each species. Note that as the response variable is seedling mortality, positive values of coefficients represent effects that increase likelihood of mortality and negative values of coefficients represent effects that increase likelihood of survival (e.g. DBH). Species abbreviations are as in Table 1.

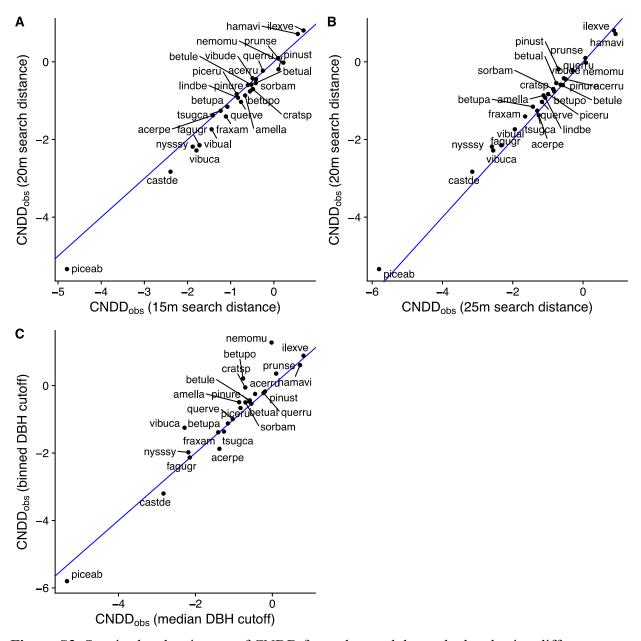
Species	Intercept	DBH	NCI_{con}	NCI _{het}
acerpe	-2.317	-0.805	1.547	0.170
acerru	-2.638	-0.805	0.382	-0.065
amella	-2.260	-0.805	0.644	-0.220
betual	-2.716	-0.805	0.842	0.297
betule	-2.848	-0.805	1.317	0.730
betupa	-1.164	-0.805	0.492	-0.664
betupo	-0.165	-0.805	0.806	0.046
castde	-1.068	-0.805	2.068	-0.762
cratsp	-2.518	-0.805	0.656	-0.048
fagugr	-3.122	-0.805	1.279	-0.869
fraxam	-1.506	-0.805	1.120	-0.287
hamavi	-3.581	-0.805	-0.782	-0.062
ilexve	-2.886	-0.805	-0.403	0.406
lindbe	-2.062	-0.805	0.682	-0.242
nemomu	-2.220	-0.805	-0.246	-0.266
nysssy	-1.604	-0.805	1.406	-0.777
piceab	1.092	-0.805	3.896	-1.444
piceru	-1.438	-0.805	0.645	-0.184
pinure	-0.410	-0.805	0.641	0.044
pinust	-1.637	-0.805	1.440	1.249
prunse	-1.835	-0.805	0.089	0.186
querru	-1.641	-0.805	0.302	0.074
querve	-1.575	-0.805	1.307	0.277
sorbam	-2.444	-0.805	0.737	0.036
tsugca	-4.120	-0.805	1.583	0.325
vibual	-2.341	-0.805	1.363	-0.374
vibuca	-0.160	-0.805	1.727	-0.555
vibude	-1.360	-0.805	0.646	0.222

Page 45 of 103 Ecology

Figure S1. Location of the 35 hectare ForestGEO plot (gray rectangle), where censuses took place, relative to our thirty experimental plots at the Harvard Forest. Open circles represent experimental plots, with the color corresponding to the identity of the adult beneath which the seedlings were planted. White circles: *Pinus resinosa*, Blue circles: *Pinus strobus*, Orange circles: *Quercus rubra*.

Ecology Page 46 of 103

EVEN


	C	H1	H2	
H2	H1	Н3	C	Н3
НЗ	H2		H1	H2
C	НЗ	H1	H2	C
	H1	C	Н3	

UNEVEN

	H1	Н3	C	
C	H2	C	C	C
НЗ	C		H1	C
С	С	H2	Н3	C
	H1	С	H2	


Figure S2. Planting diagrams for the seedling subplots. Red C indicates location of conspecific seedling. H1, H2 and H3 indicate locations of the three heterospecific seedlings. At each plot, species were randomly assigned to be heterospecific 1, 2 or 3.

Page 47 of 103 Ecology

Figure S3. Species level estimates of CNDD from observed data calculated using different methods arrive at similar estimates. A) Maximum distance of included neighbors for estimates were 15m and 20m away from focal saplings, DBH cutoff between saplings and adults was the median DBH of the species, unless that was greater than 12.7cm in which case 12.7cm was used. B) Maximum distance of included neighbors for estimates were 25m and 20m away from focal saplings, DBH cutoff between saplings and adults was the median DBH of the species, unless that was greater than 12.7cm in which case 12.7cm was used. C) Maximum distance of included neighbors for estimates were 20m, DBH cutoff between saplings and adults was the median DBH of the species unless that was greater than 12.7cm in which case 12.7cm was used (median DBH) or classified by binning into either 5cm, 8cm or 12.7cm based on the median DBH of the species. Blue line indicates 1:1. Species abbreviations are as in Table 1.

Ecology Page 48 of 103

Figure S4. Estimates of CNDD based on observed data relative to the distribution of CNDD estimates from 1000 runs of a null model. Null model randomly redistributed the proportion of the neighborhood that was conspecific based on the observed distribution of conspecific neighborhood densities for that species but kept the total neighborhood density and the DBH of the sapling the same. Blue lines represent CNDD based on observed data, gray histograms represent distribution of 1000 runs of the null model. Species abbreviations are as in Table 1.

Page 49 of 103 Ecology

1	<i>ECY21-1156</i> : Revision 1
2 3	Running Head: CNDD in ECM trees
4	
5 6	Correspondence to: Fiona V. Jevon
7	Yale School of the Environment
8	Yale University
9	195 Prospect Street
10	New Haven, CT 06511, United States
11	fiona.jevon@yale.edu
12 13	
14	
15	Title (max 120 char):
16	Experimental and observational evidence of negative conspecific density dependence in
17	temperate ectomycorrhizal trees
18	
19	Anthony Figure V. Lorent 2. Danie De La Const. A. La Manuel A. Anthony V. Laur 5. Daniel
20 21	Authors: Fiona V. Jevon ^{1,2} , Dayna De La Cruz ³ , Joseph A. LaManna ⁴ , Ashley K. Lang ⁵ , David A. Orwig ⁶ , Sydne Record ⁷ , Paige V. Kouba ⁸ , Matthew P. Ayres ¹ , Jaclyn Hatala Matthes ²
22	A. Of wig, Syuffe Record, Targe V. Rouba, Watthew T. Ayres, Jaciyii Hatara Watthes
23	
24	Author affiliations:
25	¹ Department of Biological Sciences, Dartmouth College, Hanover NH 03755, United States
26	² Current affiliation: Yale School of the Environment, Yale University, New Haven, CT 06511, United States
27 28	³ Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
29	⁴ Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201 USA
30	⁵ Department of Biological Sciences, Indiana University, Bloomington, IN, 47405 USA
31	⁶ Harvard Forest, Harvard University, Petersham, MA 01366, USA
32	⁷ Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010 USA
33	⁸ Department of Plant Sciences, University of California, Davis, CA, 95616 USA
34 35	
36	
37	
38	
39	Open Research Statement:
40	Data are provided as private-for-peer review: all data and code can be found in the public
41 42	repository at https://data.mendeley.com/datasets/ws3cdn28n8/3 (3).https://data.mendeley.com/datasets/ws3cdn28n8/4 (3). The only exception is data associated
43	the second seedling census: this dataset is still undergoing moderation but will be posted along
44	sidealongside the first census at
45	https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF253https://harvard
46	dforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF253 (4). However, code for all

Ecology Page 50 of 103

analyses described here can be found in the public repository at

https://data.mendeley.com/datasets/ws3cdn28n8/3https://data.mendeley.com/datasets/ws3cdn28n

49 8/4 (6).

47

48

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Abstract

Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competition competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative or positive conspecific density dependence. More generally, the strength of conspecific density dependence may be predictably related to other species-specific ecological attributes such as shade tolerance, or the relative local abundance of a species. To test the strength of density dependence and whether it affects seedling community diversity in a temperate forest, we tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally planted 1200 seedlings of four ectomycorrhizal tree species beneath conspecific and heterospecific adults and tracked their survival and changes to the diversity of on the planted seedling community. We then Prospect Hill tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always lower under conspecific adults, which increased seedling community diversity in one of six treatments. We compared these results to evidence of CNDD from observed sapling mortalitysurvival patterns of 28 species over approximately 8 years in aan adjacent 35-hectare forest plot in Massachusetts, USA. We also tested whether species-specific estimates of CNDD were associated with mycorrhizal typesassociation, shade tolerance, orand local abundance predicted. We found evidence of significant, negative conspecific density dependencePage 51 of 103 Ecology

Experimental seedling mortality was always higher under conspecific adults, which increased seedling community diversity in one of six treatments. (CNDD) in 23 of 28 species, naturally occurring sapling mortality increased with higher and positive conspecific adult densities, indicating CNDD. All 13density dependence in two species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited CNDD, while all 5 of the tree species that exhibited the opposite pattern (with greater sapling survival occurring at higher densities of conspecific adults) were trees species that associate withstronger (e.g. more negative) CNDD than arbuscular mycorrhizae. Shade tolerance and local abundance were mycorrhizal- associated species. CNDD was also stronger in more shade tolerant species but was not associated with CNDDlocal abundance. Conspecific adult trees often have a negative influence on seedling survival in temperate forests, particularly for tree species with certain traits. Here we found strong experimental and observational evidence that ectomycorrhizal-associating species consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence from experiments and observations of sapling mortality suggest a mechanistic link between negative effects of conspecific adults on seedling and sapling survival and local tree species distributions.

88

89

90

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

Keywords: conspecific negative density dependence, diversity, saplings, temperate tree seedlings, mycorrhizal fungi, ectomycorrhizae, shade tolerance

91

92

93

94

Introduction

Conspecific negative density dependence (CNDD), whereby population growth rates decline with increasing population density due to a negative feedback on recruitment or survival,

Page 52 of 103

strength of density dependence among species (Bennett et al. 2017; Brown et al. 2019; Jia et al.

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Page 53 of 103 Ecology

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

2020). In particular, functional traits that confer resistance to attack from herbivores or pathogens, the primary drivers of CNDD, may be associated with the strength of density dependence. For tree species, the type of mycorrhizal association, either arbuscular- (AM) or ectomycorrhizal- (ECM), has been associated with patterns in CNDD. In previous studies, ectomycorrhizal-associated tree species tend to exhibit weaker or even positive density dependence (Bennett et al. 2017, Chen et al. 2019; Jiang et al. 2020, 2021; Chen et al. 2019; Qin et al. 2021), possibly due to the greater protection from soil pathogens that the fungi confer to their tree host (Corrales et al. 2016; Bennett et al. 2017). Indeed, recent work suggests that while both AM and ECM fungal networks may partially counteract conspecific negative density dependent mortality, ECM fungi may be more effective than AM fungi at countering the mortality agents which typically drive CNDD patterns (Liang et al. 2021). However, in other studies the strength of CNDD was similar in AM and ECM associated tree species (Jia et al. 2020). In addition to mycorrhizal association, shade tolerance has been associated with speciesspecific patterns in CNDD; shade tolerant tree species are less susceptible to microbial attack due to conservative life history strategies, suggesting that they should exhibit weaker CNDD

specific patterns in CNDD; shade tolerant tree species are less susceptible to microbial attack due to conservative life history strategies, suggesting that they should exhibit weaker CNDD (McCarthy-Neumann and Kobe 2008; Song et al. 2021). However, shade tolerant species are also more likely to be infected by necrotrophic fungal pathogens, which kill their hosts and feed on the decaying tissue, while shade intolerant species are more likely to be infected by biotrophs, which feed on live tissue without killing their hosts (García-Guzmán and Heil 2014). Indeed, low light areas of the forest where shade tolerant seedlings are likely to be found typically contain higher pathogen loads (Augspurger and Kelly 1984). Therefore, in spite ofdespite their conservative allocation strategy, shade tolerant species may be *more* affected by CNDD, if the

Ecology

Page 54 of 103

pathogens driving density dependence are more abundant and virulent. Indeed, the few explicit tests of how shade tolerance relates to CNDD in temperate forests are conflicting: shade tolerant species may be more (Jia et al. 2020) or less (Brown et al. 2019) likely to exhibit CNDD than shade intolerant species within temperate forests.

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

Additionally, temperate species do not always follow the same patterns as tropical onesspecies: in the tropics, rare species typically exhibit stronger CNDD, which helps maintain diverse communities with many rare species (Xu, Wang, and Yu 2015; Comita et al. 2010₅; Mangan et al. 2010, Xu et al. 2015). In temperate forests, the pattern between CNDD and local abundance is less clear: while some studies show that rare species exhibit stronger negative density feedbacks (Johnson et al. 2012), others show the opposite pattern, with more abundant species exhibiting stronger CNDD (Zhu et al. 2015).(K. Zhu et al. 2015; LaManna et al. 2016). Quantifying the strength of CNDD across multiple co-occurring species can help to detangle sources of variability in CNDD studies and is needed to generalize the importance of CNDD in temperate, as well as tropical, forests. In this study we used a combination of experimental and observational approaches to ask how prevalent CNDD is in a temperate forest, with particular emphasis on whether ectomycorrhizalassociated species commonly exhibit CNDD. We used a seedling planting experiment to test whether the species identity (conspecific versus heterospecific) of neighboring mature trees influences seedling survival in ectomycorrhizal-associating tree species, and whether CNDD effects on ECM seedling mortality alter seedling community diversity. We then used the survival of naturally occurring saplings to quantify the strength of CNDD across 2528 co-occurring woody species. Finally, we asked whether mycorrhizal type, shade tolerance, and local abundance predict variation in the strength of CNDD among species.

Page 55 of 103 Ecology

164 Methods 165 Materials

Materials and methods:

166 Site Description

This study took place on the Prospect Hill tract of the Harvard Forest (HF) located in Petersham, Massachusetts. This forest is in the northern hardwood-hemlock-white-pine transition zone (42.530°'N, 72.190°'W, 300 m elevation above sea level). The mean annual temperature and precipitation are 7.1°C and 1066 mm, respectively. For the observational part of our study, we utilized the 35-hectare HF ForestGEO plot where every woody stem >1 cm diameter at breast height (DBH) has been identified to species, tagged, geolocated and its diameter was measured (Orwig et al. 2015, Anderson Teixeira et al. 2015).(Orwig et al. 2022). The experimental portion of our study took place in plots that are adjacent to the ForestGEO plot (Appendix S1: Fig.1: Figure S1).

Experimental Methods

We selected fourthree ectomycorrhizal species: *Pinus resinosa, Quercus rubra*; and *Pinus strobus*, and *Picea abies* which represent a range in other plant traits, including shade tolerance from highly intolerant (*Pinus resinosa*; shade tolerance 1.89) to highly tolerant (*Picea abies*; shade tolerance 4.45) (Niinemets and Valladares 2006). All fourthree species wereare common at our study site, although the populationspopulation of *Picea abies* and *Pinus resinosa* were planted there in the early 1900s and now consist of both planted and naturally regenerated individuals. In the forest adjacent to the mapped ForestGEO plot, we located 30 experimental plots (Appendix 1: Figure S1). Each circular plot had a diameter of 20 m and was centered on a focal *Pinus resinosa*, *Quercus rubra*, or *Pinus strobus* with a DBH greater than 28cm such that there were ten plots centered on each of the three species. We chose locations where none of the

Ecology

Page 56 of 103

other study species occurred: e.g., in a plot centered on a *Q. rubra* tree, there were no *Pinus* resinosa or *Pinus strobus*. We purchased bare-root seedlings in May 2019 from We used these plots to plant seedlings of each of the three species beneath both conspecific and heterospecific "adult" trees (defined as trees with a DBH greater than 28 cm).

In addition to these three species, we also planted *Picea abies* seedlings. *Picea abies* are present at this site but not native to the area. Like *Pinus resinosa*, *Picea abies* was commonly planted in the early 1900s and now naturally regenerate at this site. We included this species in the seedling planting primarily to increase the diversity of our planted seedling communities. *Picea abies* was chosen as it was available from the same nursery as the three experimental species, was a similar size and age to the other three species, associates with the same type of mycorrhizal fungi, and is a common species at this study site (Table 1). We purchased bare-root seedlings in May 2019 which were grown outdoors at the New Hampshire State Nursery in Boscawen, NH. *Picea abies* and *Quercus rubra* seedlings were two years old at planting while *Pinus strobus* and *Pinus resinosa* were three years old.

In the forest adjacent to the mapped ForestGEO plot, we located 30 experimental plots (Appendix S1: Fig S1). Each circular plot had a diameter of 20 m and was centered on a focal *Pinus resinosa, Quercus rubra*, or *Pinus strobus* that was greater than 28 cm DBH, such that there were ten plots centered on each of the three species. We chose locations where none of the other study species occurred: e.g., in a plot centered on a *Q. rubra* tree, there were no *Pinus resinosa* or *Pinus strobus*. We did not center any plots on adult *Picea abies*, which are present at this site but not native to the area, but we included this species in the seedling planting as a common heterospecific to increase the diversity of our planted seedling communities.

Experimental planting

Page 57 of 103 Ecology

Within each plot, we constructed two subplots, 1 m x 1 m, into which the seedlings were planted. Subplots were located approximately 1 meter apart and within 2 meters of the base of the trunk of the focal tree-, and subplot type ("even" or "uneven") was randomly assigned. In each subplot, we planted 20 seedlings. To test whether CNDD promotes diversity, and whether the effects of CNDD on diversity were dependent on the initial diversity of the community, in one subplot ("Even"), we planted 5 individuals of each species. In the other ("Uneven"), we planted 11 individuals of the same species as the focal tree (conspecifics), and 3 of each of the heterospecific species. Thus, the two subplots had the same total number of seedlings, but the conspecific seedling was either at the same density as each of the heterospecifics, or at a much higher density, as would be more likely under natural regeneration conditions. We used a standard, randomized planting design such that the spatial arrangement of conspecific seedlings relative to heterospecific seedlings was consistent across all subplots of the same type (Appendix SH:Supplementary Fig S22). All 1200 seedlings were planted between May 31st and June 7th, 2019.

Before planting, each subplot was cleared of aboveground stems greater than 20cm in height with hand clippers, so that competition with herbaceous plants and ferns was minimized across all plots. Resprouts from clipped vegetation, primarily ferns, were rare and were reclipped when they emerged. Next, leaf litter was removed and set aside. A five by five wooden grid 1m² frame with grid lines at 20cm intervals, creating a 5x5 grid, was then placed on the ground to serve as the planting guide. (Appendix 1: Figure S2). Using an auger (7.6 cm diameter), we dug holes in 20 locations in each subplot. Removed soil was placed on a tarp and homogenized. The individually tagged seedlings were then planted and covered by the

Ecology

Page 58 of 103

with water in spray bottles and after planting all. After the 20 seedlings in each were planted, the subplot was completed, the area was flagged, watered, and re-covered by leaf litter.

Within each 10-m radius plot, we also identified and measured the diameter of each tree > 2.5 cm DBH as well as the distance of each stem to the seedling subplots. To account for possible differences in light environment that could influence seedling survival, we took a hemispherical photo using a fisheye lens from the center of each plot to capture the light environment. Photographs were taken between 07:30 and 09:30 am to avoid overexposure. Images were analyzed with WINSCANOPY (Regent Instruments Inc., Quebec, Canada) to calculate the gap fraction (a metric of canopy openness) of each of the 30 plots.

Seedlings were tracked individually throughout the summer. After all seedlings had been in the ground for two weeks, seedlings were censused for survival and their initial heights were measured to account for any differences in survival that were due to variation in initial seedling size. Seedlings were censused again after an additional 10 weeks for their final survival status. Seedlings were presumed dead if their needles had all turned brown (conifers) and if they had no remaining leaves (*Q. rubra*). We continued to monitor all seedlings, regardless of status, for the full 12 weeks of the experiment.

Statistical analysis of experimental seedling mortality

We removed 17 individual seedlings from the analysis (1 *P. strobus*, 13 *Q. rubra* and 3 *P. resinosa*) that died within the first two weeks, presumably due to transplant shock rather than as a result of our experimental treatments. For each seedling species, we calculated the overall odds ratio of survival under conspecific and heterospecific focal adults, such that an odds ratio < 1 indicates a lower chance of survival beneath a conspecific adult. We then fit a binomial mixed model using the R package lme4 (Bates, Maechler, Bolker, & Walker, 2015) to predict seedling

Page 59 of 103 Ecology

survival as a function of the adult species identity of the plot (based on whether the focal tree in the plot was a conspecific or heterospecific), initial seedling height, subplot type (even or uneven) and canopy gap fraction, with the plot as a random effect. For the *PiceaP*. abies seedlings, we fit the same model without the adult identity variable as all seedlings were growing in heterospecific plots.

To account for possible effects of both the focal tree in each plot (our experimental treatment), and also the effects of neighboring trees, we used the full 314-m2 plot to calculate a neighborhood competition index (NCI) following (Canham-et al., LePage, and Coates (2004) and modified as in other similar analyses (Bai et al. 2012, Zhang et al. 2017; Bai et al. 2012; Magee et al. 2020). For each plot, we calculated NCI values to compare the effects of conspecific and heterospecific adults within 10 meters as follows:

NCI_{conspecific} =
$$\Sigma \frac{DBH conspecific}{distance}$$
 eq. 1

268
$$NCI_{heterospecific} = \Sigma \frac{DBHheterospecific}{distance}$$
 eq. 2

We then used the results of the first set of models (using the identity of the focal adult tree as our treatment) to inform which parameters to include in the second set (including the NCI as our treatment), including any parameter from the first model set with p < 0.1. We ran a second set of binomial mixed models that did not include adult identity, but did include NCI_{conspecific}, NCI_{heterospecific}, and any of the parameters identified from model set 1 with plot ID as a random variable.

Finally, we tested whether the observed seedling mortality affected the diversity of the seedling community. To do this, we calculated the overall survival of each seedling subplot. We then simulated random mortality at that level for each subplot, by randomly assigning a survival code to each seedling until the overall observed mortality of the plot was met. We ran this

Page 60 of 103

simulation 1000 times for each subplot. As all-of our experimental plots were planted with the same species richness (4), we used the Shannon's Equitability Index (J) (Begon, Harper and Townsend 1996):

$$J = \frac{-\sum_{i=1}^{S} p_i * log(p_i)}{log(SR)} \qquad \text{eq. 3}$$

where p_i is the proportion of each species and SR is the species richness. We used this metric to assess whether the diversity we observed at the end of our experiment differed from what the diversity would be if mortality had occurred randomly with respect to species identity of the seedlings.

Observational sapling survival

To determine whether naturally regenerating saplings exhibited a similar pattern to those we experimentally planted, as well as to quantify density dependence in a wider variety of naturally occurring saplings, we used the subset of the Harvard Forest ForestGeo plot that has been re-censused as of 2021. The first census occurred from June 2010 through January 2014. The re-census occurred from May 2018 to September 2019. Individual trees were revisited, and their survival status was recorded.

Using the initial census, we calculated the same metrics of neighborhood competition as for our experimental plots (eq.1 and eq. 2) for each individual stem in the forest. We used a maximum distance of 20 m. We only assessed patterns for species with more than 10 individual saplings and more than 20 individual adults. To account for differences in average size of each species as well as maximize the number of species included in our analysis, we defined individuals as saplings if their DBH was less than the median DBH of that species, up to a maximum cutoff of 12.7 cm DBH, and individuals greater than the median as "adults" (Table 1). To confirm that our results were not sensitive to the choice of methods, we re-ran the CNDD

Page 61 of 103 Ecology

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

estimation using 15m maximum distance to neighbors and 25 m maximum distance to neighbors. Similarly, weWe also re-ran the CNDD estimation using 2an alternative methodsmethod to distinguish between saplings and adults: using a DBH cutoff of either 3cm, 8cm or 12.7cm for species with a median DBH less than 5cm, greater than 5 but less than 12.7cm, and greater than 12.7cm respectively, as a common concern with CNDD analyses is that the distinction can be arbitrary (Detto et al. 2019). Results of bothfrom these alternative analyses can be found in Appendix S1: Fig1: Figure S3.

To calculate the overall effect of neighborhood on sapling mortality, we fit a generalized linear mixed-effects model (GLMM) with binomial errors and a complementary log-log link to assess the relative importance of factors determining individual sapling mortality using the R package lme4 (Bates et al. 2015). To account for differences in the length of time between the two censuses for individual trees, we used a log(time) offset of the number of years between the two censuses (range: 5.25 - 9.5 years) for each individual stem as in (Johnson et al. (2017). The diameter at breast height (DBH) of the sapling at the first census was included as a covariate(Johnson et al. 2017). Both NCI_{con} and NCI_{het} were also included in the model to account for the overall effects of competition as well as the specific effects of conspecific neighbors. All three variables were scaled by subtracting the overall mean and dividing by two standard deviations (Gelman 2008). Species was included as a random effect, and both NCI_{con} was and NCI_{het} were estimated with random slopes for each species. The model coefficients for each species of NCI_{con} and NCI_{het} were used to estimate CNDD: therefore, a more negative CNDD coeff, such that CNDD coeff was the difference between the model coefficient indicates a species exhibited stronger CNDD, while a positive coefficient indicates that greater

Ecology Page 62 of 103

eonspecific adult density was associated with a higher likelihood of survival. for NCI_{con} and NCI_{het}.

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

To further account for the possibility that associations between NCIcon and sapling mortalityour CNDD_{coeff} estimate could be produced by underlying spatial or other factors not accounted for in this simple statistical model, we additionally performed null model testing (LaManna et al., Mangan, and Myers 2021). Using the same model structure as above, we randomly reassigned recalculated values of NCI_{con} among saplings and NCI_{het} for each sapling after randomizing the observed proportion of the total NCI that was conspecific: effectively keeping the total neighborhood density the same species, while holding NCI_{het} as the observed, but randomizing the density of conspecific neighbors. We also kept the observed values of DBH, and the mortality outcome the same. We re-ran this null model 1000 times and used, and estimated CNDD_{null} as the difference between the mean null model NCI_{con} and NCI_{het} coefficients for NCI_{con}-using the same model structure as described above. We then calculated the final estimate of CNDD for each species to correct (CNDD_{est}) as follows $CNDD_{est} = -(CNDD_{coeff} - CNDD_{null})$ eq. 4 where CNDD_{coeff} is the estimate based on the difference between the model coefficients for these patterns. FirstNCI_{con} and NCI_{het} using the observed data, and CNDD_{null} is the estimate based on the difference between the model coefficients for NCI_{con} and NCI_{het} using the randomized NCI_{con}. The negative sign is to make the estimate more interpretable: as all the models were run as hazard functions, with survival coded as zero and mortality coded as one, taking the inverse of the estimate mreans that a negative CNDD_{est} indicates a species exhibited stronger CNDD, while a positive CNDD_{est} indicates that greater conspecific adult density was associated with a higher likelihood of survival. For each species, we took the mean across the 1000 iterations of the null

Page 63 of 103 Ecology

model randomization, and we considered our estimate of CNDD significant if the 95% confidence interval of CNDD_{est} did not cross 0. We also confirmed that the mean null model coefficients were significantly different from the coefficients based on the observed values using a simple linear model with tree species and model type (observed or null) as predictors and estimated CNDD coefficient as the response. We then calculated the final estimate of CNDD for each species (CNDD_{est}) is the initial model coefficient, minus the mean of the null model coefficients (eq. 4). for each species using a paired t-test. Full visualization of the null model distribution for each species relative to CNDD_{obs} can be found in Appendix 1: Figure S4.

CNDDest = CNDDcoeff - mean(CNDDnull) eq. 4

Finally, we compared this species level estimate of CNDD at this site to species level plant traits. We assigned each species a dominant mycorrhizal association based on values from FungalRoot (Soudzilovskaia et al. 2020) and a shade tolerance value based on (Niinemets and Valladares (2006). We then used a linear model to estimate the effects of mycorrhizal association, shade tolerance, and local abundance (log transformed) on CNDD_{est}. Because the species in this study varied dramatically in their typical and mature size, and because AM species were generally smaller (Table 1), we also included the median DBH of the species as a predictor in the model. To ensure that our results were robust to model structure, we also iteratively checked all possible two-way interactions of the four species level predictors (mycorrhizal association, shade tolerance, local abundance and median DBH); none were significant, so we report the results of the additive model. All analyses we performed in R version 4.0.5.

Results

Experimental seedling survival

Ecology

Page 64 of 103

All seedling species had higher survival rates when planted beneath heterospecific trees than when planted under conspecific trees (Figure 1). Q., Table 2). Quercus rubra, which had the lowest overall mortality, also exhibited the least difference in survival (88.5% under conspecifics, 96.7% under heterospecifics, odds ratio: 0.91). Pinus resinosa had the highest overall mortality, with only 3.8% seedling survival beneath conspecifics and 15.4% beneath heterospecifics (odds ratio 0.25). Pinus strobus showed the greatest absolute difference in survival between conspecifics (73.9%) and heterospecifics (94.4%); though the relative difference in likelihood of survival was intermediate (odds ratio: 0.78)%) and the strongest effect of the identity of the neighboring adult tree (Table 2).

Results were qualitatively similar when comparing the density of adult trees in the surrounding community, as measured by NCI, to seedling survival (Table 3). Both *P. strobus* and *P. resinosa*. All four species exhibited declining survival with increasing conspecific adult density (NCI_{con}), whereas *P. abies* but all but *Q. rubra* also exhibited declining survival declined significantly in response to increasing heterospecific density (NCI_{het}). *Q. rubra* survival was not affected by) as well (Table 3). When comparing the density NCI_{con} coefficient estimates and standard errors with those of either NCI_{het}, only *P. strobus* exhibited CNDD: in other words, the coefficient estimate for the negative effect of conspecific orneighbors did not overlap with the weaker negative effect of heterospecific adult trees.neighbors (Table 3).

None of the seedling species exhibited survival differences between the even and unevenly planted plots (Table 2). In the evenly planted seedling subplots, which began the experiment with perfectly even communities (J=1), observed mortality caused a decline in seedling diversity; however, this decline in diversity was indistinguishable from simulated random mortality (Figure 2a). The seedling diversity in the unevenly planted subplots either

Page 65 of 103 Ecology

stayed the same or, in the case of the unevenly planted subplots beneath *P. resinosa* adults, substantially increased (Figure 3b). In those plots, the seedling community had changed from an equitability index (J) of 0.85 (uneven) to 0.98 at the end of the experiment- almost perfectly even, and far higher than the diversity predicted if the mortality had been random. These locations experienced the highest total mortality (59.7%), and also the highest difference between conspecific seedling mortality (96%) and heterospecific seedling mortality (12.6%). Experimental seedling survival was also affected by factors other than the local neighborhood. For example, *Pinus strobus* and *Pinus resinosa* seedlings that were initially taller had slightly lower survival. *Picea abies* was the only species whose survival increased with increasing light availability as measured by the gap fraction (Table 2).

Observed sapling mortalitysurvival

Overall, the probability of sapling mortalitysurvival in our observational CNDD analysis increaseddecreased with increasing local density of conspecifics (Table 4). Sapling survival was also positively associated with sapling DBH and negatively associated with local density of heterospecifics; however, the effect of these drivers was considerably lower than the effect of conspecific neighbors (Table 4). The strength of CNDD varied substantially among species. In twenty- three of the twenty-five_eight species used in our analysis, sapling mortality increasedsurvival decreased significantly with increasing conspecific density, whereas in fivetwo species sapling survival increased with increasing conspecific density (Figure 3).

Tree species that typically associate with ECM fungi were much more likely to exhibit CNDD than those that typically associate with AM fungi (Figure 3B, Table 5); all 12 of the 13 ECM-associated species in this analysis exhibited significant CNDD. In contrast, 54 of the 15 AM-associated species either did not exhibit significant CNDD and instead were more likely

Ecology

Page 66 of 103

to survive when growing in areas with greater densities of conspecifics- (e.g. had significantly positive estimates of CNDD). AM-associated saplings also had a somewhat lower overall survival (61%) than ECM-associated saplings (72%). Although there are a similar number of AM and ECM associating species at this site, ECM species tend to have higher abundance and overall about 66% of saplings are ECM-associating species. In addition, the AM-associating species at this site tend to be smaller (Table 1). However, the median DBH of the species was not associated with stronger CNDD (Table 5). Neither shade tolerance nor local abundance were significant predictors of CNDD at the species level (Figure 4), although the effect of shade tolerance was marginally significant (Table 5).

Shade tolerance was also a significant predictor of CNDD at the species level, such that more shade tolerant species generally exhibited stronger, more negative CNDD than shade intolerant species (Figure 4). In contrast, local abundance was not a significant predictor of the strength of CNDD (Figure 4).

estimated by odds ratiosresults from the seedling experiment. *Quercus rubra*, which showed significant but weak CNDDthe weakest response to the nearby conspecific adults (Table 2) and no response to neighborhood conspecific density (Table 3) in the seedling experiment (odds ratio of 0.91), also, showed relatively weakno significant evidence of CNDD at the sapling stage (Figure 3). *Pinus resinosa*, which *Pinus strobus*, which exhibited the strongest response to nearby conspecific adults (Table 2) and neighborhood conspecific densities (Table 3) in the experimental data, showed strong evidence of CNDD in the seedling experiment (odds ratio of 0.25), was among the species exhibiting the strongest CNDD patterns in the analysis of observed sapling survival (Figure 3). *Pinus strobus* wasresinosa, which exhibited intermediate CNDD in

Page 67 of 103 Ecology

both the <u>seedling</u> experiment and observational, was also intermediate in the observed sapling analysis.

Discussion

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

CNDD and mycorrhizal associations

The results of both our field experiment and our analysis of sapling survival indicate that young treesapling mortality is higher beneath conspecific adults in this system. In particular, the agreement between these two separate analyses for the three tree species common to the two studies provides strong evidence of CNDD in this temperate forest, particularly in ectomycorrhizal trees. Indeed, the apparent ubiquity of CNDD among ectomycorrhizal species in this forest came as a surprise, as previous work has found weaker or positive patterns of density dependence among ECM associating trees (Bennett et al. 2017, Brown et al. 2019; Jiang et al. 2020, 2021; Brown et al. 2019). Notably, however, several of these studies have relied on found these patterns primarily in plant growth rates rather than in survival (Bennett et al. 2017; Brown et al. 2019). Given that there can be intraspecific tradeoffs between survival and growth rates (Seiwa 2007), it is possible that CNDD estimates based on growth and survival may differ within a species. (Brown et al., 2019). In addition, the details of the species included in this study may differ from those in other locations. At this site, while there is a similar number of species that associate with AM and ECM fungi, ECM-associating trees are much more abundant. Thus, the availability of mutualists for AM-associating species is likely lower and/or patchier, and recent evidence shows that AM colonization is greater on plants that grow in stands where other AMassociating plants are more abundant (Grünfeld et al. 2020). This could have the result that regeneration near to conspecifics comes with greater access to appropriate mutualists, which could dampen the negative effects typically associated with proximity to conspecific adults for

Ecology Page 68 of 103

AM-associating species (Liang et al. 2021). In contrast, mutualist availability is likely ubiquitous for ECM-associating species, as ECM species are well distributed at this site. Finally, estimates of species level CNDD in one context may not generalize, as there is increasing evidence that the strength of CNDD can change due to variation in the presence of large mammals (Murphy and Comita 2021), climate (Liu and He 2021), and along environmental gradients (Brown, White, and Peet 2021; LaManna et al. 2016; Magee et al. 2020; Record et al. 2016, Magee et al. 2020, Brown et al. 2021). CNDD and shade tolerance We also found evidence that shade tolerance predicted the strength of CNDD: shade tolerant species tended to show somewhat greater CNDD, although the effect was strongly driven by a single species (Picea abies). This is consistent with some (Jia et al. 2020; García-Guzmán and Heil 2014) but not other (Brown et al. 2019) studies on shade tolerance and CNDD. This discrepancy may be because there are conflicting pressures on trees which result in no clear net effect. Shade tolerant species typically have more conservative life history strategies, which might make them less sensitive to CNDD (McCarthy-Neumann and Kobe 2008; Song et al. 2021). However, shade intolerant species are less likely to be limited by conspecific-associating fungal pathogens, and more likely to be limited by herbivorous insects or pathogens with weaker effects on mortality, perhaps making them less likely to exhibit CNDD (Jia et al. 2020; García-Guzmán and Heil 2014). Taken together with results from this study, it seems that shade tolerance may not have a consistent effect on strength of CNDD in temperate forests. CNDD and other species characteristics Local abundance is a strong driver of CNDD in tropical trees, where rare species

typically exhibit the strongest CNDD (Comita et al. 2010). In temperate forests, however, the

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

Page 69 of 103 Ecology

results have been mixed, with some analyses indicating that rare species exhibit stronger CNDD (Johnson et al. 2012₅₂ Seiwa et al. 2019) and others finding that more abundant species exhibit stronger CNDD (K. Zhu et al. 2015). Indeed the effect of local abundance may also interact with other characteristics. For example, rare AM species typically exhibit stronger CNDD than common AM species, but the same may not hold true for ECM species (Jiang et al. 2020, 2021). In this study we found that local abundance had no apparent effect on the strength of CNDD, overall or interacting with mycorrhizal type. This may be important for understanding the effects of CNDD on diversity in this forest: theoretical work suggests that if variation among species in CNDD is correlated with abundance, with stronger CNDD for rare species, then diversity may not be maintained. However, if CNDD is unrelated to abundance, as in our study here, or even stronger for common species, then CNDD may help promote the maintenance of diversity (Stump and Comita 2018).

CNDD and other species characteristics

We also found little evidence that shade tolerance predicted the strength of CNDD: shade tolerant species tended to show somewhat greater CNDD, but the effect was marginally significant and seemingly driven by a single species (*Picea abies*). This may be because there are conflicting pressures on trees which result in no clear net effect. Shade tolerant species typically have more conservative life history strategies, which might make them less sensitive to CNDD (McCarthy-Neumann and Kobe 2008, Song et al. 2021). However, shade intolerant species are less likely to be limited by conspecific associating fungal pathogens, and more likely to be limited by herbivorous insects or pathogens with weaker effects on mortality, perhaps making them less likely to exhibit CNDD (García-Guzmán and Heil 2014, Jia et al. 2020). Even among temperate species, there is conflicting evidence for the relationship between shade tolerance and

Ecology Page 70 of 103

CNDD. For example, CNDD effects on survival are greater in shade intolerant species, but CNDD effects on growth are greater in shade tolerant species (Brown et al. 2019). Taken together with results from this study, it seems that shade tolerance does not have a consistent effect on strength of CNDD in temperate trees.

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

CNDD and diversity

-Additional plant characteristics may also influence species susceptibility to CNDD. For example, species with larger seeds may be more tolerant to conspecific neighbors as their seeds act as carbohydrate stores, insuring them against biomass losses to herbivores and pathogens (Lebrija-Trejos et al. 2016; Seiwa et al. 2019). This may help explain why the large-seeded Q. rubra exhibited relatively weak CNDD in both the experiment and the observational study. This may help explain why the large-seeded Q. rubra exhibited either weak or no CNDD in both the experiment and the observational study; however, the effect of cotyledon reserves is likely larger at younger ages. Notably, naturally occurring *Q. rubra* seedlings at this site do exhibit CNDD, but the effect decreases as the size of the seedling increases (Jevon et al. 2020), which is consistent with what we found here (that the evidence of CNDD was stronger in the experiment, which assessed much smaller individuals) The apparent weakening of CNDD in this species as individuals increase in size in also consistent with previous work suggesting that CNDD is often strongest at the seed to seedling transition or at younger age classes (Zhu et al. 2015). We note that as we assessed large seedlings (2 and 3 years old) in the experiment, and saplings (up to 12.7cm DBH) in the observational analysis, the overall results of this study are likely conservative with respect to how many species exhibit CNDD and the apparent strength of the effect relative to the true strength of CNDD that is experienced by trees in this forest.

Page 71 of 103 Ecology

The change in diversity in one out of the six of our experimental treatments also illustrates how CNDD mortality can affect community diversity (Figure 3). Importantly, it illustrates that alone, differences in mortality in seedlings growing near conspecific and heterospecific adults is not enough to generate greater diversity. The overall mortality must also be relatively high, and the initial diversity low, to result in meaningful changes to seedling community diversity. However, This is consistent with conceptual models suggesting that overall differences in mortality rates among life stages, alone or in combination with non-random mortality, can be an important determinant of community diversity (Green, Harms, and Connell 2014). The significant increase in diversity in even one treatment during this short-term experiment provides clear evidence that CNDD can act as a mechanism to support local diversity, particularly in systems or situations with high mortality.

Conclusions

Based on these patterns, we suggest that there is strong evidence for CNDD in temperate tree species. Our results also suggest that tree species associated with ectomycorrhizal fungi exhibit CNDD, which runs counter to previous studies (Bennett et al. 2017, Brown et al. 2019, Jiang et al. 2020, 2021; Brown et al. 2019). This suggests caution when generalizing about how plant traits predict CNDD. Instead, integrating information about multiple plant characteristics, as well as the environmental context, will help to better predict species-level patterns in CNDD. We found experimentally that CNDD is capable of increasing seedling community diversity. However, theoretical work suggests that, in some cases, interspecific variation in the strength of CNDD decreases its ability to promote coexistence (Stump and Comita 2018), and results from this study and others show large variation in the strength of CNDD among co-occurring species.

Ecology

Page 72 of 103

551	Therefore, although evidence of CNDD in temperate forests is accumulating, the consequences
552	for diversity remain poorly understood.
553	Acknowledgements
554	The authors thank our funding sources, including the Smithsonian Institute and CTFS
555	ForestGEO for supporting the mapped plot, the National Science Foundation's LTER program
556	(DEB 06-20443, DEB 12-37491, DEB 18-32210), Harvard University, the Harvard Forest REU
557	program (National Science Foundation DBI-1459519 & DBI-1950364 to Record), the National
558	Science Foundation (award number 1638406 to Matthes and DEB-2024903 to LaManna), the
559	National Aeronautic and Space Administration (award number 20-BIODIV20-0024 to Record),
560	and the New England Botanical Club Graduate Student Research Award. This work would not
561	have been possible without the 22 technicians who collected the adult tree census data in the
562	CTFS-ForestGEO plot. The authors would also like to thank Manisha Patel and everyone
563	involved in the Harvard Forest REU program for supporting this project.
564	
565	Open Research Statement
566	All code for the analysis and experimental data is available on Mendeley Data (DOI:
567	10.17632/ws3cdn28n8.1). Census data is available on the Harvard Forest data archive
568	https://harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=HF253.
569	
570	References
571	Anderson-Teixeira, K. J., S. J. Davies, A. C. Bennett, E. B. Gonzalez-Akre, H. C. Muller-
572	Landau, S. J. Wright, K. Abu Salim, A. M. Almeyda Zambrano, A. Alonso, J. L. Baltzer, Y.
573	Basset, N. A. Bourg, E. N. Broadbent, W. Y. Brockelman, S. Bunyavejchewin, D. F. R. P.

Page 73 of 103 Ecology

74	Burslem, N. Butt, M. Cao, D. Cardenas, G. B. Chuyong, K. Clay, S. Cordell, H. S.
75	Dattaraja, X. Deng, M. Detto, X. Du, A. Duque, D. L. Erikson, C. E. N. Ewango, G. A.
76	Fischer, C. Fletcher, R. B. Foster, C. P. Giardina, G. S. Gilbert, N. Gunatilleke, S.
77	Gunatilleke, Z. Hao, W. W. Hargrove, T. B. Hart, B. C. H. Hau, F. He, F. M. Hoffman, R.
78	W. Howe, S. P. Hubbell, F. M. Inman-Narahari, P. A. Jansen, M. Jiang, D. J. Johnson, M.
79	Kanzaki, A. R. Kassim, D. Kenfack, S. Kibet, M. F. Kinnaird, L. Korte, K. Kral, J. Kumar,
80	A. J. Larson, Y. Li, X. Li, S. Liu, S. K. Y. Lum, J. A. Lutz, K. Ma, D. M. Maddalena, JR.
81	Makana, Y. Malhi, T. Marthews, R. Mat Serudin, S. M. McMahon, W. J. McShea, H. R.
82	Memiaghe, X. Mi, T. Mizuno, M. Morecroft, J. A. Myers, V. Novotny, A. A. de Oliveira, P
83	S. Ong, D. A. Orwig, R. Ostertag, J. den Ouden, G. G. Parker, R. P. Phillips, L. Sack, M. N.
84	Sainge, W. Sang, K. Sri-Ngernyuang, R. Sukumar, IF. Sun, W. Sungpalee, H. S. Suresh,
85	S. Tan, S. C. Thomas, D. W. Thomas, J. Thompson, B. L. Turner, M. Uriarte, R. Valencia,
86	M. I. Vallejo, A. Vicentini, T. Vrška, X. Wang, X. Wang, G. Weiblen, A. Wolf, H. Xu, S.
87	Yap, and J. Zimmerman. 2015. CTFS-ForestGEO: a worldwide network monitoring forests
88	in an era of global change. Global Change Biology 21:528–549.
89	Augspurger, Carol K., and Colleen K. Kelly. 1984. "Pathogen Mortality of Tropical Tree
90	Seedlings: Experimental Studies of the Effects of Dispersal Distance, Seedling Density, and
91	<u>Light Conditions."</u> Augspurger, C. K., and C. K. Kelly. 1984. Pathogen mortality of tropical
92	tree seedlings: experimental studies of the effects of dispersal distance, seedling density,
93	and light conditions. Oecologia 61:211–217. Oecologia
94	Bagchi, R., R. E. Gallery, S. Gripenberg, S. J. Gurr, L. Narayan, C. E. Addis, R. P. Freckleton,
95	and O. T. Lewis. 2014. Pathogens and insect herbivores drive rainforest plant diversity and
96	composition Nature 506:85–88

Ecology Page 74 of 103

597	Bai, X., S. A. Queenborough, X. Wang, J. Zhang, B. Li, Z. Yuan, D. Xing, F. Lin, J. Ye, and Z.
598	Hao. 2012. Effects of local biotic neighbors and habitat heterogeneity on tree and shrub
599	seedling survival in an old-growth temperate forest. Oecologia 170:755-765.
600	Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting Linear Mixed-Effects Models
601	Using Ime4. Journal of Statistical Software 67:1–48.
602	Bennett, J. A., H. Maherali, K. O. Reinhart, Y. Lekberg, M. M. Hart, and J. Klironomos. 2017.
603	Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics.
604	Science 355:181—184.
605	Brown, A. J., C. J. Payne, P. S. White, and R. K. Peet. 2019. Shade tolerance and mycorrhizal
606	type may influence sapling susceptibility to conspecific negative density dependence. The
607	Journal of Ecology 4:103.
808	Brown, A. J., P. S. White, and R. K. Peet. 2021. Environmental context alters the magnitude of
609	conspecific negative density dependence in a temperate forest. Ecosphere 12.
610	Canham, C. D., P. T. LePage, and K. D. Coates. 2004. A neighborhood analysis of canopy tree
611	competition: effects of shading versus crowding. Canadian Journal of Forest Research.
612	Journal Canadien de La Recherche Forestiere 34:778-787.
613	Chen, L., N. G. Swenson, N. Ji, X. Mi, H. Ren, L. Guo, and K. Ma. 2019. Differential soil
614	fungus accumulation and density dependence of trees in a subtropical forest. Science
615	366:124-128.
616	Chesson, P. 2000. Mechanisms of Maintenance of Species Diversity.
617	Comita, L. S., H. C. Muller-Landau, S. Aguilar, and S. P. Hubbell. 2010. Asymmetric density
618	dependence shapes species abundances in a tropical tree community. Science 329:330-332.
619	Comita, L. S., S. A. Queenborough, S. J. Murphy, J. L. Eck, K. Xu, M. Krishnadas, N. Beckman

Page 75 of 103 Ecology

620	and Y. Zhu. 2014. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of
621	experimental evidence for distance-and density-dependent seed and seedling survival. The
622	Journal of Ecology 102:845–856.
623	Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some
624	marine animals and in rain forests. Pages 298–312 in P. J. Den Boer G. R. Gradwell, editor.
625	Dynamics of Populations. Center for Agricultural Publishing and Documentation.
626	Corrales, A., S. A. Mangan, B. L. Turner, and J. W. Dalling. 2016. An ectomycorrhizal nitrogen
627	economy facilitates monodominance in a neotropical forest. Ecology Letters 19:383-392.
628	Detto, M., M. D. Visser, S. J. Wright, and S. W. Pacala. 2019. Bias in the detection of negative
629	density dependence in plant communities. Ecology Letters 22:1923-1939.
630	García-Guzmán, G., and M. Heil. 2014. Life histories of hosts and pathogens predict patterns in
631	tropical fungal plant diseases. The New Phytologist 201:1106–1120.
632	Gelman, A. 2008. Scaling regression inputs by dividing by two standard deviations. Statistics in
633	Medicine 27:2865 2873.
634	Grünfeld, L., M. Wulf, M. C. Rillig, A. Manntschke, and S. D. Veresoglou. 2020. Neighbours of
635	arbuscular-mycorrhiza associating trees are colonized more extensively by arbuscular
636	mycorrhizal fungi than their conspecifics in ectomycorrhiza dominated stands. The New
637	Phytologist 227:10-13.
638	Janzen, D. H. 1970. Herbivores and the Number of Tree Species in Tropical Forests. The
639	American Naturalist 104:501–528.
640	Jiang, F., J. A. Lutz, Q. Guo, Z. Hao, X. Wang, G. S. Gilbert, Z. Mao, D. A. Orwig, G. G.
641	Parker, W. Sang, Y. Liu, S. Tian, M. W. Cadotte, and G. Jin. 2021. Mycorrhizal type
642	influences plant density dependence and species richness across 15 temperate forests.

Ecology Page 76 of 103

643	Ecology 102:e03259.
644	Jiang, F., K. Zhu, M. W. Cadotte, and G. Jin. 2020. Tree mycorrhizal type mediates the strength
645	of negative density dependence in temperate forests. The Journal of Ecology.
646	Jia, S., X. Wang, Z. Yuan, F. Lin, J. Ye, G. Lin, Z. Hao, and R. Bagehi. 2020. Tree species traits
647	affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature
648	Communications 11:286.
649	Johnson, D. J., W. T. Beaulieu, J. D. Bever, and K. Clay. 2012. Conspecific negative density
650	dependence and forest diversity. Science 336:904-907.
651	Johnson, D. J., N. A. Bourg, R. Howe, W. J. McShea, A. Wolf, and K. Clay. 2014. Conspecific
652	negative density-dependent mortality and the structure of temperate forests. Ecology
653	95:2493–2503.
654	Johnson, D. J., R. Condit, S. P. Hubbell, and L. S. Comita. 2017. Abiotic niche partitioning and
655	negative density dependence drive tree seedling survival in a tropical forest. Proceedings of
656	the Royal Society B: Biological Sciences 284:20172210.
657	LaManna, J. A., S. A. Mangan, A. Alonso, N. A. Bourg, W. Y. Brockelman, S. Bunyavejchewin
658	LW. Chang, JM. Chiang, G. B. Chuyong, K. Clay, R. Condit, S. Cordell, S. J. Davies, T.
659	J. Furniss, C. P. Giardina, I. A. U. N. Gunatilleke, C. V. S. Gunatilleke, F. He, R. W. Howe
660	S. P. Hubbell, CF. Hsieh, F. M. Inman-Narahari, D. Janík, D. J. Johnson, D. Kenfack, L.
661	Korte, K. Král, A. J. Larson, J. A. Lutz, S. M. McMahon, W. J. McShea, H. R. Memiaghe,
662	A. Nathalang, V. Novotny, P. S. Ong, D. A. Orwig, R. Ostertag, G. G. Parker, R. P.
663	Phillips, L. Sack, IF. Sun, J. S. Tello, D. W. Thomas, B. L. Turner, D. M. Vela Díaz, T.
664	Vrška, G. D. Weiblen, A. Wolf, S. Yap, and J. A. Myers. 2017. Plant diversity increases
665	with the strength of negative density dependence at the global scale. Science 356:1389

Page 77 of 103 Ecology

666	1392.
67	LaManna, J. A., S. A. Mangan, and J. A. Myers. 2021. Conspecific negative density dependence
868	and why its study should not be abandoned. Ecosphere 12.
669	LaManna, J. A., M. L. Walton, B. L. Turner, and J. A. Myers. 2016. Negative density
670	dependence is stronger in resource-rich environments and diversifies communities when
671	stronger for common but not rare species. Ecology Letters 19:657-667.
672	Lebrija-Trejos, E., P. B. Reich, A. Hernández, and S. J. Wright. 2016. Species with greater seed
373	mass are more tolerant of conspecific neighbours: a key driver of early survival and future
674	abundances in a tropical forest. Ecology Letters 19:1071 1080.
375	Levine, J. M., and J. HilleRisLambers. 2009. The importance of niches for the maintenance of
676	species diversity. Nature 461:254–257.
677	Liang, M., L. Shi, D. F. R. P. Burslem, D. Johnson, M. Fang, X. Zhang, and S. Yu. 2021. Soil
678	fungal networks moderate density-dependent survival and growth of seedlings. The New
679	Phytologist.
880	Liu, Y., and F. He. 2021. Warming intensifies soil pathogen negative feedback on a temperate
81	tree. The New Phytologist.
82	Magee, L., A. Wolf, R. Howe, J. Schubbe, K. Hagenow, and B. Turner. 2020. Density
883	dependence and habitat heterogeneity regulate seedling survival in a North American
84	temperate forest. Forest Ecology and Management:118722.
85	Mangan, S. A., S. A. Schnitzer, E. A. Herre, K. M. L. Mack, M. C. Valencia, E. I. Sanchez, and
886	J. D. Bever. 2010. Negative plant-soil feedback predicts tree-species relative abundance in a
887	tropical forest. Nature 466:752–755.
888	McCarthy-Neumann, S., and R. K. Kobe. 2008. Tolerance of soil pathogens co-varies with shade

Ecology Page 78 of 103

689	tolerance across species of tropical tree seedlings. Ecology 89:1883-1892.
690	McCarthy-Neumann, S., and R. K. Kobe. 2010. Conspecific and heterospecific plant-soil
691	feedbacks influence survivorship and growth of temperate tree seedlings. The Journal of
692	Ecology 98:408-418.
693	Murphy, S. J., and L. S. Comita. 2021. Large mammalian herbivores contribute to conspecific
694	negative density dependence in a temperate forest. The Journal of Ecology 109:1194-1209.
695	Niinemets, Ü., and F. Valladares. 2006. Tolerance to shade, drought, and waterlogging of
696	temperate northern hemisphere trees and shrubs. Ecological Monographs 76:521–547.
697	Orwig, D., D. Foster, and A. Ellison. 2015. Harvard Forest CTFS-ForestGEO Mapped Forest
698	Plot since 2014. Harvard Forest Data Archive: HF253.
699	Qin, J., Y. Geng, X. Li, C. Zhang, X. Zhao, and K. von Gadow. 2021. Mycorrhizal type and soil
700	pathogenic fungi mediate tree survival and density dependence in a temperate forest. Forest
701	Ecology and Management 496:119459.
702	Ramage, B. S., D. J. Johnson, E. Gonzalez-Akre, W. J. McShea, K. J. Anderson-Teixeira, N. A.
703	Bourg, and K. Clay. 2017. Sapling growth rates reveal conspecific negative density
704	dependence in a temperate forest. Ecology and Evolution 7:7661-7671.
705	Record, S., R. K. Kobe, C. F. Vriesendorp, and A. O. Finley. 2016. Seedling survival responses
706	to conspecific density, soil nutrients, and irradiance vary with age in a tropical forest.
707	Ecology 97:2406 2415.
708	Seiwa, K. 2007. Trade-offs between seedling growth and survival in deciduous broadleaved trees
709	in a temperate forest. Annals of Botany 99:537-544.
710	Seiwa, K., K. Masaka, M. Konno, and S. Iwamoto. 2019. Role of seed size and relative
711	abundance in conspecific negative distance-dependent seedling mortality for eight tree

712	species in a temperate forest 453.
713	Smith, L. M., and H. L. Reynolds. 2015. Plant-soil feedbacks shift from negative to positive
714	with decreasing light in forest understory species. Ecology 96:2523-2532.
715	Song, X., J. Yang, M. Cao, L. Lin, Z. Sun, H. Wen, and N. G. Swenson. 2021. Traits mediate a
716	trade-off in seedling growth response to light and conspecific density in a diverse
717	subtropical forest. The Journal of Ecology 109:703-713.
718	Soudzilovskaia, N. A., S. Vaessen, M. Barcelo, J. He, S. Rahimlou, K. Abarenkov, M. C.
719	Brundrett, S. I. F. Gomes, V. Merckx, and L. Tedersoo. 2020. FungalRoot: global online
720	database of plant mycorrhizal associations. The New Phytologist 227:955–966.
721	Stump, S. M., and L. S. Comita. 2018. Interspecific variation in conspecific negative density
722	dependence can make species less likely to coexist. Ecology Letters 21:1541–1551.
723	Terborgh, J. 2012. Enemies maintain hyperdiverse tropical forests. The American Naturalist
724	179:303 314.
725	Xu, M., Y. Wang, and S. Yu. 2015, December. Conspecific negative density dependence
726	decreases with increasing species abundance.
727	Zhang, Z., M. J. Papaik, X. Wang, Z. Hao, J. Ye, F. Lin, and Z. Yuan. 2017. The effect of tree
728	size, neighborhood competition and environment on tree growth in an old-growth temperate
729	forest. Journal of Plant Ecology 10:970–980.
730	Zhu, K., C. W. Woodall, J. V. D. Monteiro, and J. S. Clark. 2015. Prevalence and strength of
731	density-dependent tree recruitment. Ecology 96:2319-2327.
732	
733	
734	
735	

Page 80 of 103

736	
737	
738	
739	
740	<u>61 (2): 211–17.</u>
741	Bagchi, Robert, Rachel E. Gallery, Sofia Gripenberg, Sarah J. Gurr, Lakshmi Narayan, Claire E.
742	Addis, Robert P. Freckleton, and Owen T. Lewis. 2014. "Pathogens and Insect Herbivores
743	Drive Rainforest Plant Diversity and Composition." Nature 506 (7486): 85–88.
744	Bai, Xuejiao, Simon A. Queenborough, Xugao Wang, Jian Zhang, Buhang Li, Zuoqiang Yuan,
745	Dingliang Xing, Fei Lin, Ji Ye, and Zhanqing Hao. 2012. "Effects of Local Biotic
746	Neighbors and Habitat Heterogeneity on Tree and Shrub Seedling Survival in an Old-
747	Growth Temperate Forest." Oecologia 170 (3): 755–65.
748	Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. "Fitting Linear Mixed-Effects Models
749	Using lme4." Journal of Statistical Software 67 (1): 1–48.
750	Bennett, Jonathan A., Hafiz Maherali, Kurt O. Reinhart, Ylva Lekberg, Miranda M. Hart, and
751	John Klironomos. 2017. "Plant-Soil Feedbacks and Mycorrhizal Type Influence Temperate
752	Forest Population Dynamics." Science 355 (6321): 181–84.
753	Brown, Alissa J., Christopher J. Payne, Peter S. White, and Robert K. Peet. 2019. "Shade
754	Tolerance and Mycorrhizal Type May Influence Sapling Susceptibility to Conspecific
755	Negative Density Dependence." Edited by Pierre Mariotte. The Journal of Ecology 4 (July)
756	<u>103.</u>
757	Brown, Alissa J., Peter S. White, and Robert K. Peet. 2021. "Environmental Context Alters the
758	Magnitude of Conspecific Negative Density Dependence in a Temperate Forest."
759	Ecosphere 12 (3). https://doi.org/10.1002/ecs2.3406.

Page 81 of 103 Ecology

760	Canham, Charles D., Philip T. LePage, and K. Dave Coates. 2004. "A Neighborhood Analysis of
761	Canopy Tree Competition: Effects of Shading versus Crowding." Canadian Journal of
762	Forest Research. Journal Canadien de La Recherche Forestiere 34 (4): 778–87.
763	Chen, Lei, Nathan G. Swenson, Niuniu Ji, Xiangcheng Mi, Haibao Ren, Liangdong Guo, and
764	Keping Ma. 2019. "Differential Soil Fungus Accumulation and Density Dependence of
765	Trees in a Subtropical Forest." Science 366 (6461): 124–28.
766	Chesson, Peter. 2000. "Mechanisms of Maintenance of Species Diversity." Annual Review of
767	Ecology and Systematics. https://doi.org/10.1146/annurev.ecolsys.31.1.343.
768	Comita, Liza S., Helene C. Muller-Landau, Salomón Aguilar, and Stephen P. Hubbell. 2010.
769	"Asymmetric Density Dependence Shapes Species Abundances in a Tropical Tree
770	Community." Science 329 (5989): 330–32.
771	Comita, Liza S., Simon A. Queenborough, Stephen J. Murphy, Jenalle L. Eck, Kaiyang Xu,
772	Meghna Krishnadas, Noelle Beckman, and Yan Zhu. 2014. "Testing Predictions of the
773	JanzenConnell Hypothesis: A Meta-Analysis of Experimental Evidence for Distance-and
774	Density-Dependent Seed and Seedling Survival." <i>The Journal of Ecology</i> 102 (4): 845–56.
775	Connell, J. H. 1971. "On the Role of Natural Enemies in Preventing Competitive Exclusion in
776	Some Marine Animals and in Rain Forests." In Dynamics of Populations, edited by P. J.
777	Den Boer G. R. Gradwell, 298–312. Center for Agricultural Publishing and Documentation.
778	Corrales, Adriana, Scott A. Mangan, Benjamin L. Turner, and James W. Dalling. 2016. "An
779	Ectomycorrhizal Nitrogen Economy Facilitates Monodominance in a Neotropical Forest."
780	Ecology Letters 19 (4): 383–92.
781	Detto, Matteo, Marco D. Visser, S. Joseph Wright, and Stephen W. Pacala. 2019. "Bias in the
782	Detection of Negative Density Dependence in Plant Communities." Ecology Letters 22

Ecology Page 82 of 103

783	<u>(11): 1923–39.</u>
784	García-Guzmán, Graciela, and Martin Heil. 2014. "Life Histories of Hosts and Pathogens Predict
785	Patterns in Tropical Fungal Plant Diseases." The New Phytologist 201 (4): 1106–20.
786	Gelman, Andrew. 2008. "Scaling Regression Inputs by Dividing by Two Standard Deviations."
787	Statistics in Medicine 27 (15): 2865–73.
788	Green, Peter T., Kyle E. Harms, and Joseph H. Connell. 2014. "Nonrandom, Diversifying
789	Processes Are Disproportionately Strong in the Smallest Size Classes of a Tropical Forest."
790	Proceedings of the National Academy of Sciences of the United States of America 111 (52):
791	<u>18649–54.</u>
792	Grünfeld, Leonie, Monika Wulf, Matthias C. Rillig, Annette Manntschke, and Stavros D.
793	Veresoglou. 2020. "Neighbours of Arbuscular-Mycorrhiza Associating Trees Are
794	Colonized More Extensively by Arbuscular Mycorrhizal Fungi than Their Conspecifics in
795	Ectomycorrhiza Dominated Stands." The New Phytologist 227 (1): 10–13.
796	Janzen, Daniel H. 1970. "Herbivores and the Number of Tree Species in Tropical Forests." The
797	<u>American Naturalist 104 (940): 501–28.</u>
798	Jevon, Fiona V., Sydne Record, John Grady, Ashley K. Lang, David A. Orwig, Matthew P.
799	Ayres, and Jaclyn Hatala Matthes. 2020. "Seedling Survival Declines with Increasing
800	Conspecific Density in a Common Temperate Tree." Ecosphere 11 (11): e03292.
801	Jiang, Feng, James A. Lutz, Qingxi Guo, Zhanqing Hao, Xugao Wang, Gregory S. Gilbert,
802	Zikun Mao, et al. 2021. "Mycorrhizal Type Influences Plant Density Dependence and
803	Species Richness across 15 Temperate Forests." Ecology 102 (3): e03259.
804	Jiang, Feng, Kai Zhu, Marc W. Cadotte, and Guangze Jin. 2020. "Tree Mycorrhizal Type
805	Mediates the Strength of Negative Density Dependence in Temperate Forests." The Journal

Page 83 of 103 Ecology

806	of Ecology, May. https://doi.org/10.1111/1365-2745.13413.
807	Jia, Shihong, Xugao Wang, Zuoqiang Yuan, Fei Lin, Ji Ye, Guigang Lin, Zhanqing Hao, and
808	Robert Bagchi. 2020. "Tree Species Traits Affect Which Natural Enemies Drive the Janzen-
809	Connell Effect in a Temperate Forest." Nature Communications 11 (1): 286.
810	Johnson, Daniel J., Wesley T. Beaulieu, James D. Bever, and Keith Clay. 2012. "Conspecific
811	Negative Density Dependence and Forest Diversity." Science 336 (6083): 904–7.
812	Johnson, Daniel J., Norman A. Bourg, Robert Howe, William J. McShea, Amy Wolf, and Keith
813	Clay. 2014. "Conspecific Negative Density-Dependent Mortality and the Structure of
814	Temperate Forests." <i>Ecology</i> 95 (9): 2493–2503.
815	Johnson, Daniel J., Richard Condit, Stephen P. Hubbell, and Liza S. Comita. 2017. "Abiotic
816	Niche Partitioning and Negative Density Dependence Drive Tree Seedling Survival in a
817	Tropical Forest." Proceedings of the Royal Society B: Biological Sciences 284 (1869):
818	<u>20172210.</u>
819	LaManna, Joseph A., Scott A. Mangan, Alfonso Alonso, Norman A. Bourg, Warren Y.
820	Brockelman, Sarayudh Bunyavejchewin, Li-Wan Chang, et al. 2017. "Plant Diversity
821	Increases with the Strength of Negative Density Dependence at the Global Scale." Science
822	<u>356 (6345): 1389–92.</u>
823	LaManna, Joseph A., Scott A. Mangan, and Jonathan A. Myers. 2021. "Conspecific Negative
824	Density Dependence and Why Its Study Should Not Be Abandoned." Ecosphere 12 (1).
825	https://doi.org/10.1002/ecs2.3322.
826	LaManna, Joseph A., Maranda L. Walton, Benjamin L. Turner, and Jonathan A. Myers. 2016.
827	"Negative Density Dependence Is Stronger in Resource-Rich Environments and Diversifies
828	Communities When Stronger for Common but Not Rare Species." Edited by Marcel

Ecology

Page 84 of 103

829	Rejmanek. Ecology Letters 19 (6): 657–67.
830	Lebrija-Trejos, Edwin, Peter B. Reich, Andres Hernández, and S. Joseph Wright. 2016. "Species
831	with Greater Seed Mass Are More Tolerant of Conspecific Neighbours: A Key Driver of
832	Early Survival and Future Abundances in a Tropical Forest." Ecology Letters 19 (9): 1071-
833	<u>80.</u>
834	Levine, Jonathan M., and Janneke HilleRisLambers. 2009. "The Importance of Niches for the
835	Maintenance of Species Diversity." Nature 461 (7261): 254–57.
836	Liang, Minxia, Liuqing Shi, David F. R. P. Burslem, David Johnson, Miao Fang, Xinyi Zhang,
837	and Shixiao Yu. 2021. "Soil Fungal Networks Moderate Density-Dependent Survival and
838	Growth of Seedlings." The New Phytologist, no. nph.17237 (January).
839	https://doi.org/10.1111/nph.17237.
840	Liu, Yu, and Fangliang He. 2021. "Warming Intensifies Soil Pathogen Negative Feedback on a
841	Temperate Tree." The New Phytologist, April. https://doi.org/10.1111/nph.17409.
842	Magee, Lukas, Amy Wolf, Robert Howe, Jonathan Schubbe, Kari Hagenow, and Benjamin
843	Turner. 2020. "Density Dependence and Habitat Heterogeneity Regulate Seedling Survival
844	in a North American Temperate Forest." Forest Ecology and Management, November,
845	<u>118722.</u>
846	Mangan, Scott A., Stefan A. Schnitzer, Edward A. Herre, Keenan M. L. Mack, Mariana C.
847	Valencia, Evelyn I. Sanchez, and James D. Bever. 2010. "Negative Plant-Soil Feedback
848	Predicts Tree-Species Relative Abundance in a Tropical Forest." Nature 466 (7307): 752-
849	<u>55.</u>
850	McCarthy-Neumann, Sarah, and Richard K. Kobe. 2008. "Tolerance of Soil Pathogens Co-
851	Varies with Shade Tolerance across Species of Tropical Tree Seedlings." <i>Ecology</i> 89 (7):
1	

Page 85 of 103 Ecology

852	<u>1883–92.</u>
853	2010. "Conspecific and Heterospecific Plant-Soil Feedbacks Influence Survivorship and
854	Growth of Temperate Tree Seedlings." <i>The Journal of Ecology</i> 98 (2): 408–18.
855	Murphy, Stephen J., and Liza S. Comita. 2021. "Large Mammalian Herbivores Contribute to
856	Conspecific Negative Density Dependence in a Temperate Forest." The Journal of Ecology
857	<u>109 (3): 1194–1209.</u>
858	Niinemets, Ülo, and Fernando Valladares. 2006. "Tolerance to Shade, Drought, and
859	Waterlogging of Temperate Northern Hemisphere Trees and Shrubs." Ecological
860	Monographs 76 (4): 521–47.
861	Orwig, David A., Jason A. Aylward, Hannah L. Buckley, Bradley S. Case, and Aaron M.
862	Ellison. 2022. "Land-Use History Impacts Spatial Patterns and Composition of Woody
863	Plant Species across a 35-Hectare Temperate Forest Plot." PeerJ 10 (January): e12693.
864	Qin, Jianghuan, Yan Geng, Xiaoyu Li, Chunyu Zhang, Xiuhai Zhao, and Klaus von Gadow.
865	2021. "Mycorrhizal Type and Soil Pathogenic Fungi Mediate Tree Survival and Density
866	Dependence in a Temperate Forest." Forest Ecology and Management 496 (September):
867	<u>119459.</u>
868	Ramage, Benjamin S., Daniel J. Johnson, Erika Gonzalez-Akre, William J. McShea, Kristina J.
869	Anderson-Teixeira, Norman A. Bourg, and Keith Clay. 2017. "Sapling Growth Rates
870	Reveal Conspecific Negative Density Dependence in a Temperate Forest." Ecology and
871	Evolution 7 (19): 7661–71.
872	Record, Sydne, Richard K. Kobe, Corine F. Vriesendorp, and Andrew O. Finley. 2016.
873	"Seedling Survival Responses to Conspecific Density, Soil Nutrients, and Irradiance Vary
874	with Age in a Tropical Forest." Ecology 97 (9): 2406–15.

Ecology

Page 86 of 103

375	Seiwa, Kenji. 2007. "Trade-Offs between Seedling Growth and Survival in Deciduous
376	Broadleaved Trees in a Temperate Forest." Annals of Botany 99 (3): 537–44.
377	Seiwa, Kenji, Kazuhiko Masaka, Miki Konno, and Susumu Iwamoto. 2019. "Role of Seed Size
378	and Relative Abundance in Conspecific Negative Distance-Dependent Seedling Mortality
379	for Eight Tree Species in a Temperate Forest" 453 (117537).
880	https://doi.org/10.1016/j.foreco.2019.117537.
881	Smith, Lauren M., and Heather L. Reynolds. 2015. "Plant-soil Feedbacks Shift from Negative to
882	Positive with Decreasing Light in Forest Understory Species." Ecology 96 (9): 2523–32.
883	Song, Xiaoyang, Jie Yang, Min Cao, Luxiang Lin, Zhenhua Sun, Handong Wen, and Nathan G.
884	Swenson. 2021. "Traits Mediate a Trade-off in Seedling Growth Response to Light and
885	Conspecific Density in a Diverse Subtropical Forest." The Journal of Ecology 109 (2): 703–
886	<u>13.</u>
887	Soudzilovskaia, Nadejda A., Stijn Vaessen, Milagros Barcelo, Jinhong He, Saleh Rahimlou,
888	Kessy Abarenkov, Mark C. Brundrett, Sofia I. F. Gomes, Vincent Merckx, and Leho
889	Tedersoo. 2020. "FungalRoot: Global Online Database of Plant Mycorrhizal Associations."
389 390	Tedersoo. 2020. "FungalRoot: Global Online Database of Plant Mycorrhizal Associations." The New Phytologist 227 (3): 955–66.
390	<u>The New Phytologist 227 (3): 955–66.</u>
390 391	The New Phytologist 227 (3): 955–66. Stump, Simon Maccracken, and Liza S. Comita. 2018. "Interspecific Variation in Conspecific
390 391 392	The New Phytologist 227 (3): 955–66. Stump, Simon Maccracken, and Liza S. Comita. 2018. "Interspecific Variation in Conspecific Negative Density Dependence Can Make Species Less Likely to Coexist." Ecology Letters
390 391 392 393	The New Phytologist 227 (3): 955–66. Stump, Simon Maccracken, and Liza S. Comita. 2018. "Interspecific Variation in Conspecific Negative Density Dependence Can Make Species Less Likely to Coexist." Ecology Letters 21 (10): 1541–51.
390 391 392 393	The New Phytologist 227 (3): 955–66. Stump, Simon Maccracken, and Liza S. Comita. 2018. "Interspecific Variation in Conspecific Negative Density Dependence Can Make Species Less Likely to Coexist." Ecology Letters 21 (10): 1541–51. Terborgh, John. 2012. "Enemies Maintain Hyperdiverse Tropical Forests." The American

898	Zhang, Zhaochen, Michael J. Papaik, Xugao Wang, Zhanqing Hao, Ji Ye, Fei Lin, and Zuoqiang
899	Yuan. 2017. "The Effect of Tree Size, Neighborhood Competition and Environment on
900	Tree Growth in an Old-Growth Temperate Forest." Journal of Plant Ecology 10 (6): 970-
901	<u>80.</u>
902	Zhu, Kai, Christopher W. Woodall, Joao V. D. Monteiro, and James S. Clark. 2015. "Prevalence
903	and Strength of Density-Dependent Tree Recruitment." Ecology 96 (9): 2319–27.
904	Zhu, Yan, Liza S. Comita, Stephen P. Hubbell, and Keping Ma. 2015. "Conspecific and
905	Phylogenetic Density-Dependent Survival Differs across Life Stages in a Tropical Forest."
906	Edited by Richard Shefferson. The Journal of Ecology 103 (4): 957–66.
907	Edited by Richard Shefferson. The Journal of Ecology 103 (4): 957–66.
908	
909	
910	
911	
912	
913	
914	
915	
916	
917	
918	
919	

Ecology Page 88 of 103

Table 1. Characteristics of species included in the analysis of CNDD for saplings from two censuses. Species used in the planting experiment are in bold. AM: species that typically associate with arbuscular mycorrhizae; ECM: species that typically associate with ectomycorrhizae*. The operational cutoff between saplings and adults was the median DBH for unshaded species and 12.7 cm for shaded species.

Species	Total abundance	Mycorrhizal association	Median DBH	Species abbreviationc ode
Viburnum dentatum	53	AM	1.1	Vibude
Viburnum lantanoides	96	AM	1.2	Vibual
Viburnum cassinoides	1846	AM	1.3	Vibuca
Lindera benzoin	83	AM	1.4	Lindbe
Ilex verticillata	1266	AM	1.5	Ilexve
Amelanchier laevis	354	AM	1.4	Amella
Crataegus spp.	259	AM	1.5	Cratsp
Acer pennsylvanicum	425	AM	1.8	Acerpe
Nemopanthus mucronatus	377	AM	1.8	Nemomu
Castanea dentata	1020	ECM	2.2	Castde
Hamamelis virginiana	3578	AM	2.45	Hamavi
Fagus grandifolia	4362	ECM	3.0	Fagugr
Sorbus americana	74	AM	3.25	Sorbam
Tsuga canadensis	24,222	ECM	5.4	Tsugca
Betula alleghaniensis	5015	ECM	5.6	Betula
Betula lenta	1545	ECM	8.6	Betule
Betula populifolia	123	ECM	9.5	Betupo
Fraxinus americana	197	AM	10.1	Fraxam
Nyssa sylvatica	193	AM	10.6	Nysssy
Acer rubrum	12,967	AM	11.9	Acerru
Prunus serotina	266	AM	13.3	Prunse
Betula papyrifera	590	ECM	15.35	Betupa
Picea abies	911	ECM	16.5	Piceab
Picea rubens	106	ECM	18.15	Piceru
Pinus strobus	2149	ECM	22.1	Pinust

Page 89 of 103 Ecology

Quercus rubra	4407	ECM	28.6	Querru	
Quercus velutina	227	ECM	30.4	Querve	
Pinus resinosa	789	ECM	32.8	Pinure	

*Mycorrhizal associations determined according to the FungalRoot database (Soudzilovskaia et al. 2020)

Table 2. Coefficient estimates (standard error in parentheses) from binomial mixed effects model of seedling survival for each of the four seedling species. In all models, plot was included as a random effect. * indicates p< 0.05, †indicates p< 0.1.

Seedling species	Conspecific adult	Seedling height	Gap Fraction	Uneven subplotSubplot type (uneven)
Pinus resinosa	-1.96 (0.86)*	-0.10 (0.04)*	0.18 (0.12)	0.25 (0.46)
Quercus rubra	-1.38 (0.57)*	-0.01 (0.03)	0.00 (0.09)	0.07 (0.47)
Pinus strobus	-2.76 (1.09)*	-0.06 (0.03)*	-0.11 (0.17)	-0.25 (0.41)
Picea abies	na	-0.05 (0.04)	0.22 (0.13)†	-0.43 (0.38)

Table 3. Coefficient estimates (standard error in parentheses) from binomial mixed effects model of survival for each of the four <u>experimental</u> seedling species using the quantitative variables NCI_{con} and NCI_{het}. In all models, plot was included as a random effect. * indicates p<

Page 91 of 103 Ecology

0.05, †indicates p < 0.1, na indicates that parameter was not included in the model for that species.

Seedling species	NCI _{con}	NCI _{het}	Seedling height	Gap Fraction	Subplot type (uneven)
Pinus resinosa	-0. 029<u>032</u> (0.013)*	-0. 020 <u>016</u> (0.015)	-0. 093 <u>097</u> (0. 041 <u>042</u>)*	na <u>0.145</u> (0.120)	0.282 (0.463)
Quercus rubra	-0. 012 <u>015</u> (0. 014 <u>015</u>)	0.005 (0.010)	-0. 007 <u>009</u> (0. 009 <u>031</u>)	na <u>-0.045</u> (0.098)	na <u>0.029</u> (<u>0.469</u>)
Pinus strobus	-0. 057<u>061</u> (0. 019<u>021</u>)*	-0. 021 <u>022</u> (0.016)	-0. 064<u>061</u> (0.030)*	na0.105 (0.152)	-0.283 (0.407)
Picea abies	-0.021 (0. 028 <u>029</u>)	-0. 022 <u>023</u> (0. 011)* <u>012)</u> †	na-0.042 (0.040)	0. 17 <u>170</u> (0. 11 <u>118</u>)	-0.426 (0.379)

Table 4. Overall standardized coefficient estimates (standard error in parentheses) from GLMM predicting sapling mortality as a function of initial size and local tree community. NCI_{con} and NCI_{het} represent local densities of conspecific trees, and heterospecific trees, respectively.

Species was included as a random effect with NCI_{con} and NCI_{het} both estimated with a random slope for each species. Individual random effects coefficients for each species can be found in Appendix 1: Table S1.

Predictor	Estimate (SE)	P
(intercept)	<u>-</u> 1. 55 <u>867</u> (0.4 80 <u>249</u>)	≤0.001
DBH	<u>-</u> 0.78 <u>805</u> (0. 035 <u>036</u>)	< 0.001
NCI_{Het}	-0. 21 <u>106</u> (0. 036 <u>147</u>)	<0. 001 468
NCI_{Con}	-1.53 (0. 570 <u>948 (0.271</u>)	≤0. 007 <u>001</u>

Random Effects

σ^2	1.64
τ _{00 species}	4 .71 1.41
τ ₁₁ species * NCIcon	6.331.20
P01 <u>T11</u> species * NCIhet	0.9240
ICC	0.6846
N species	28
Observations	26443 <u>24250</u>
Marginal R ² / Conditional R ²	0. 091 121 / 0. 707 <u>527</u>

Table 5. Coefficient estimates (standard error in parentheses) from linear model predicting the strength of the species level estimate of CNDD as a function of four species level characteristics:

Page 93 of 103

mycorrhizal association, shade tolerance, local abundance and median DBH of the species at this site.

Ecology

1008 1009 Figure captions 1010 1011 Figure 1. Plot level survival of each of the four seedling species when planted beneath a 1012 conspecific (bluepale green) or a heterospecific (dark green) adult tree. Seedlings from both 1013 subplots in each 20m diameter plot are included in each point, such that each point represents 1014 survival of 40 planted seedlings. N = 30 plots for each species. 1015 1016 Figure 2. Mean Shannon's equitability index (J), a metric of community evenness, at the end of 1017 the experiment (green) relative to 1000 model simulations of equivalent level of mortality 1018 occurring randomly (black). Values for seedling subplots that were planted with equal numbers 1019 of each seedling species (A) and subplots that were planted with the conspecific seedling 1020 dominating (B), averaged across the 10 replicated adult trees. Error bars represent 95% 1021 confidence intervals. Dashed lines represent Shannon's equitability index of the community as it 1022 was initially planted. 1023 1024 Figure 3. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree 1025 species at the Harvard Forest (A). Error bars represent the total range of estimates using 1000 1026 iterations of the null model (see statistical methods section for details). Blue points represent 1027 species that typically associate with arbuscular mycorrhiza (AM), green points represent species 1028 that typically associate with ectomycorrhizae (ECM). B) Boxplot of all estimates by mycorrhizal 1029 type, showing the significant difference between AM tree species and ECM tree species. Species 1030 used in the seedling experiment are in bold. Species codes as in Table 1.

1031	
1032	Figure 4. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree
1033	species at the Harvard Forest as a function of shade tolerance (A) and local abundance (B). Blue
1034	points represent species that typically associate with arbuscular mycorrhiza (AM), green points
1035	represent species that typically associate with ectomycorrhizae (ECM). Gray line in A) illustrates
1036	significant negative relationship between shade tolerance and CNDD (see Table 5). Vertical
1037	error bars represent 95% confidence intervals (see statistical methods section for details).
1038	Horizontal error bars in A) are standard error from Niinemets and Valladares (2006). Note that
1039	Crataegus sp., Nemopanthus mucronatuso, Viburnum lantanoides and Viburnum cassinoides are
1040	missing from a), as there was no estimate of shade tolerance available.
1041	
1042	
1043	
1044	
1045	
- 1	

Ecology Page 96 of 103

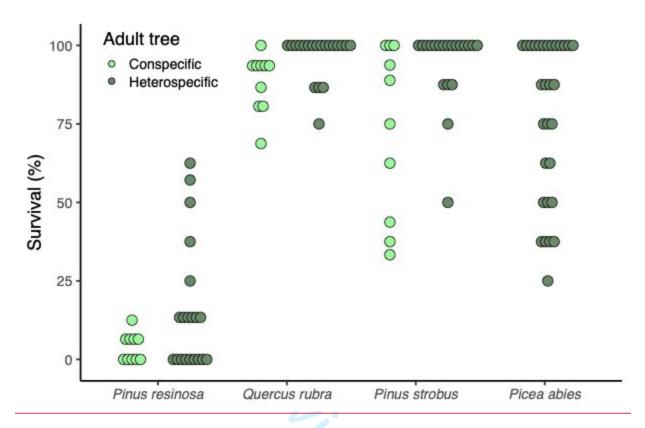


Figure 1. Plot level survival of each of the four seedling species when planted beneath a conspecific (pale green) or a heterospecific (dark green) adult tree. Seedlings from both subplots in each 20m diameter plot are included in each point, such that each point represents survival of 40 planted seedlings. N = 30 plots for each species.

Page 97 of 103 Ecology

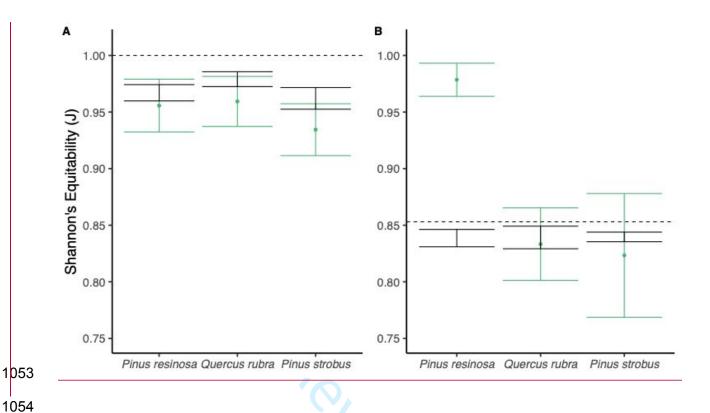


Figure 2. Mean Shannon's equitability index (J), a metric of community evenness, at the end of the experiment (green) relative to 1000 model simulations of equivalent level of mortality occurring randomly (black). Values for seedling subplots that were planted with equal numbers of each seedling species (A) and subplots that were planted with the conspecific seedling dominating (B), averaged across the 10 replicated adult trees. Error bars represent 95% confidence intervals. Dashed lines represent Shannon's equitability index of the community as it was initially planted.

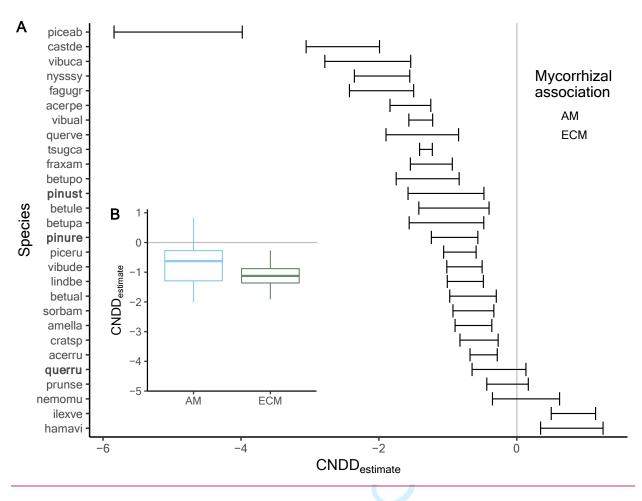


Figure 3. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree species at the Harvard Forest (A). Error bars represent the total range of estimates using 100 iterations of the null model (see statistical methods section for details). Blue points represent species that typically associate with arbuscular mycorrhiza (AM), green points represent species that typically associate with cetomycorrhizae (ECM). B) Boxplot of all estimates by mycorrhizal type, showing the significant difference between AM tree species and ECM tree species. Species used in the seedling experiment are in bold. Species codes as in Table 1.

Figure 4. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree

species at the Harvard Forest are not predicted by shade tolerance (A) or local abundance (B).

Page 99 of 103

1074

1075

1076

1077

1078

1079

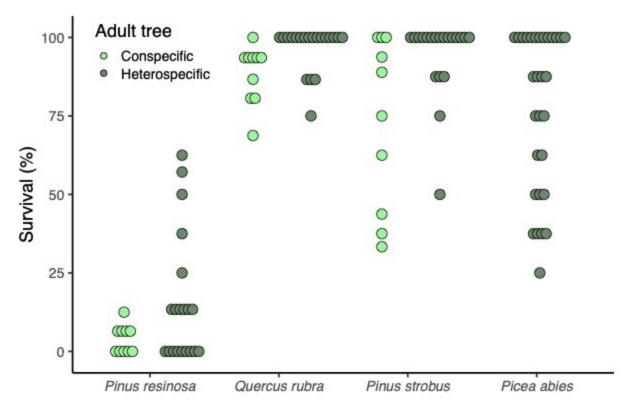
1080

1081

1082

1083

1084


1085

1086

1087

Ecology

Blue points represent species that typically associate with arbuscular mycorrhiza (AM), green points represent species that typically associate with ectomycorrhizae (ECM). Vertical error bars represent the total range of CNDD estimates using 100 iterations of the null model (see statistical methods section for details). Horizontal error bars in A) are standard error from (Niinemets and Valladares 2006). Note that Crataegus sp., Nemopanthus mucronatuso, Viburnum lantanoides Aissing and Viburnum cassinoides are missing from a), as there was no estimate of shade tolerance available.

Figure 1. Plot level survival of each of the four seedling species when planted beneath a conspecific (blue) or a heterospecific (green) adult tree. Seedlings from both subplots in each 20m diameter plot are included in each point, such that each point represents survival of 40 planted seedlings. N = 30 plots for each species.

Page 101 of 103

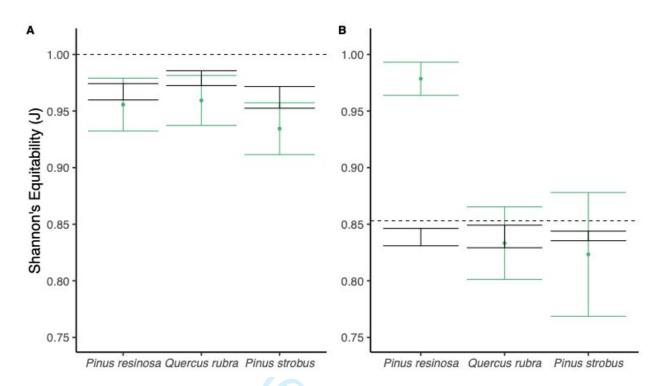
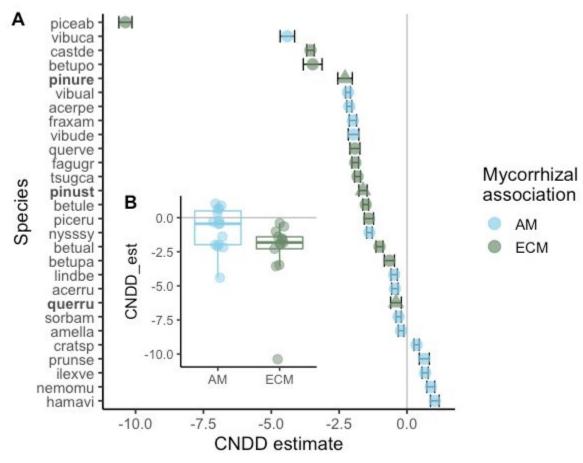
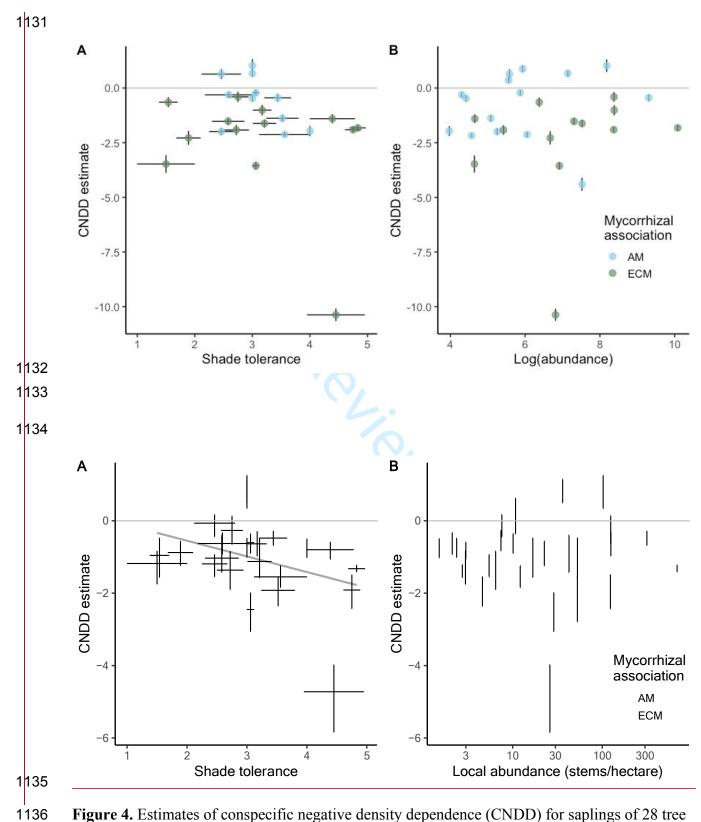




Figure 2. Mean Shannon's equitability index (J), a metric of community evenness, at the end of the experiment (green) relative to 1000 model simulations of equivalent level of mortality occurring randomly (black). Values for seedling subplots that were planted with equal numbers of each seedling species (A) and subplots that were planted with the conspecific seedling dominating (B), averaged across the 10 replicated adult trees. Error bars represent 95% confidence intervals. Dashed lines represent Shannon's equitability index of the community as it was initially planted.

Figure 3. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree species at the Harvard Forest (A). Error bars represent the total range of estimates using 1001000 iterations of the null model (see statistical methods section for details). Blue points represent species that typically associate with arbuscular mycorrhiza (AM), green points represent species that typically associate with ectomycorrhizae (ECM). B) Boxplot of all estimates by mycorrhizal type, showing the significant difference between AM tree species and ECM tree species. Species used in the seedling experiment are in bold. Species codes as in Table 1.

Page 103 of 103 Ecology

Figure 4. Estimates of conspecific negative density dependence (CNDD) for saplings of 28 tree species at the Harvard Forest are not predicted by as a function of shade tolerance (A) orand

Page 104 of 103

Ecology

local abundance (B). Blue points represent species that typically associate with arbuscular
mycorrhiza (AM), green points represent species that typically associate with ectomycorrhizae
(ECM). Blue points represent species that typically associate with arbuscular mycorrhiza (AM),
green points represent species that typically associate with ectomycorrhizae (ECM). Gray line in
A) illustrates significant negative relationship between shade tolerance and CNDD (see Table 5)
Vertical error bars represent the total range of CNDD estimates using 100 iterations of the null
model 95% confidence intervals (see statistical methods section for details). Horizontal error bars
in A) are standard error from (Niinemets and Valladares (2006). Note that Crataegus sp.,
Nemopanthus mucronatuso, Viburnum lantanoides and Viburnum cassinoides are missing from
a), as there was no estimate of shade tolerance available.
a), as there was no estimate of shade tolerance available.