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Abstract
Coastal wetlands store carbon dioxide (CO2) and emit CO2 andmethane (CH4)making them an
important part of greenhouse gas (GHG) inventorying. In the contiguous United States (CONUS),
a coastal wetland inventory was recently calculated by combiningmaps of wetland type and change
with soil, biomass, and CH4 flux data from a literature review.We assess uncertainty in this
developing carbonmonitoring system to quantify confidence in the inventory process itself and to
prioritize future research.We provide a value-added analysis by defining types and scales of
uncertainty for assumptions, burial and emissions datasets, and wetlandmaps, simulating 10 000
iterations of a simplified version of the inventory, and performing a sensitivity analysis. Coastal
wetlands were likely a source of net-CO2-equivalent (CO2e) emissions from 2006–2011. Although
stable estuarine wetlands were likely a CO2e sink, this effect was counteracted by catastrophic soil
losses in the Gulf Coast, and CH4 emissions from tidal freshwater wetlands. The direction and
magnitude of total CONUSCO2e fluxweremost sensitive to uncertainty in emissions and burial
data, and assumptions about how to calculate the inventory. Critical data uncertainties included
CH4 emissions for stable freshwater wetlands and carbon burial rates for all coastal wetlands.
Critical assumptions included the average depth of soil affected by erosion events, themethod
used to convert CH4 fluxes to CO2e, and the fraction of carbon lost to the atmosphere following
an erosion event. The inventory was relatively insensitive tomapping uncertainties. Future
versions could be improved by collecting additional data, especially the depth affected by loss
events, and by bettermapping salinity and inundation gradients relevant to key GHG fluxes.
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SocialMedia Abstract: US coastal wetlands were a recent and uncertain source of greenhouse
gasses because of CH4 and erosion.

1. Introduction

Managing land to optimize carbon storage and
mitigate degradation is one among many strategies
under consideration to curb anthropogenic green-
house gas emissions (Griscom et al 2017). Coastal
wetlands—defined here as salt marshes, mangroves,
tidal freshwater wetlands, and tidal freshwater forests
—have received some of this attention because they
can act as a net-greenhouse gas sink (Howard et al
2017), and because restoration (Kroeger et al 2017)
and conservation (DeLaune and White 2012) may
reduce or mitigate emissions. Regulation and market
mechanisms can incentivize wetland restoration to
promote emission reduction (Pendleton et al 2012,
Wylie et al 2016) and myriad co-benefits (Barbier
et al 2011, Doughty et al 2017, Griscom et al 2017).

Coastal wetlands can bury carbon (Chmura
et al 2003, Ouyang and Lee 2013, Howard et al 2017)
and form new soil (Morris et al 2002) by adding
organic carbon to the soil column through sub-surface
root addition (Nyman et al 2006). Carbon burial
is a dynamic response to sea-level rise (Kirwan and
Megonigal 2013, Kirwan et al 2016). Carbon removed
from the atmosphere and incorporated into soils and
plant matter is referred to throughout this paper as a
‘removal’. However, wetlands can also be the sources
of emissions when they are eroded (DeLaune and
White 2012), developed (Stein et al 2014), or drained
for agriculture (Drexler et al 2009). Freshwater and
brackish tidal wetlands emit methane (CH4) (Bridg-
ham et al 2006, Poffenbarger et al 2011), a more potent
greenhouse gas than carbon dioxide (CO2) over the
course of its atmospheric lifetime (Frolking and Rou-
let 2006, Neubauer andMegonigal 2015). At a national
scale, in order to estimate total greenhouse gas emis-
sions or removals, researchers need to know the areal
coverage of different wetland types, the areal coverage
of wetland change events, and to assign annualized
CO2 equivalent (CO2e) stock changes to those wetland
classes and change events.

Spatial data, literature review, and expert assump-
tions are all used to inventory greenhouse gas fluxes at
national scales. These inputs introduce uncertainty
(IPCC 2014), which needs to be quantified to establish
both levels of confidence and priorities for future
research. The Intergovernmental Panel on Climate
Change (IPCC) quantifies emissions and removals
with ‘emissions factors’ and ‘activities data’. For agri-
cultural, forested and other lands, emissions factors
are values assigning greenhouse gas fluxes to land
cover types and change events (equation (1)). Activ-
ities data are typically interpreted as the areal coverage
of land cover type and/or land cover change events.

The IPCC published guidance for national-scale
greenhouse gas inventories for coastal wetlands
(IPCC 2014), and the United States incorporated these
for the first time in its 2017 national greenhouse gas
inventory (NGGI) conducted by the Environmental
Protection Agency (EPA) (EPA 2017). Our analysis is
not an official part of that NGGI. Instead, we used the
accounting concepts outlined therein, as well as upda-
ted literature review and spatial data, in order to
improve uncertainty estimates at the national scale
and highlight areas of research that could further
reduce that uncertainty.

=
´

( ) ( )
( )

( )
/

Emissions or Removals flux Activities area
Emissions.Factor flux area .

1

In the NGGI, uncertainties in emissions and
removals were estimated using a basic algebraic
approach (IPCC 2014, EPA 2017). We address five
assumptions and approaches from the previous NGGI
to improve uncertainty estimates in coastal wetlands:
1. The probability distributions of the activities and
emissions data were not explicitly defined; 2. Key vari-
ables such as the uncertainty inherent in tidal-eleva-
tionmaps were not included; 3. Uncertainties inmany
activities data and emissions factors are best described
by non-normal distributions, which could not be
accommodated using the basic algebraic approach; 4.
Key assumptions, such as the depth affected by degra-
dation events, were based on expert assessment and
therefore treated as fixed values, not as probability dis-
tributions; and 5. Some inventory decisions, such as
how to calculate the global warming potential (GWP)
of CH4 emissions and howmuch area to include in the
inventory, have more than one recognized technique,
and uncertainty from choosing among techniques was
not quantified.

Our analysis expands upon the scope of the NGGI
uncertainty analysis and explicitly identifies and quan-
tifies uncertainty for key activities data and emissions
factors. We update key datasets with new synthesis
efforts (Windham-Myers and Cai in Revision) (sup-
plemental information is available online at stacks.iop.
org/ERL/13/115005/mmedia) and the results of
NASA CarbonMonitoring Systems projects (Olofsson
et al 2014, Byrd et al 2018, Holmquist et al 2018). Our
research questions are: 1. Howmuch certainty is there
that CONUS coastal wetlands were a net-source or
sink of GHGs from 2006–2011? 2. Which datasets,
assumptions, or mapping categories introduce the
most uncertainty into the coastal wetland category of
theUSnational GHG inventory?
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2.Methods

We addressed our research questions by integrating
multiple spatial and non-spatial datasets, explicitly
defining uncertainty in each step, estimating total
propagated uncertainty using a Monte Carlo analysis
(Ogle et al 2003, IPCC 2006), and by quantifying the
sensitivity of total emissions and removals to each
input.

2.1. Time period and 2006–2011 land cover classes
analyzed
As in the NGGI (EPA 2017) we quantified area using
the Coastal Change Analysis Program (C-CAP;
figure 1; supplemental table 1). C-CAP is a Landsat-
based land cover mapping product with 23 land cover
classes, including six types of intertidal wetlands
defined by two types of salinity (palustrine and
estuarine) and three types of vegetation (emergent,
scrub/shrub, and forested) (McCombs et al2016). We
did not include seagrasses in this analysis because
C-CAP’s ‘estuarine aquatic bed’ category typically
represents nearshore vegetated environments, such as
kelp beds, which are not a net-carbon storing system
(Howard et al 2017). The coastal wetland section of the
NGGI inventory also did not include palustrine
forested wetlands, since they fall under the purview of
forested lands. We include them because information
on their contribution to uncertainty is informative
regardless of their reporting subcategory.

The NGGI inventory is required to report from
1990–2015, so they linearly interpolate C-CAP chan-
ges back to 1990 and forward to 2015 (EPA 2017).
Although C-CAP produces land cover change maps
for five-year intervals for all US coastal states from
1996–2011, for our analysis we focus on the C-CAP
2006–2011 time step because it is currently the only
version with accuracy assessment data. From
2006–2011 we mapped 240 different land cover types
including, six classes of wetlands that had the same
classification in 2006 and 2011, and 234 types of
change to, from, and betweenwetland classes.

2.2.Overview of inventory calculations
We quantified total US GHG emissions and removals
from coastal wetlands bymapping the area of different
classes of stable wetlands and different types of change
events, then multiplying that area by the summed soil,
biomass and methane flux from 2006–2011
(equation (2))

å=

+ +
=

(

)
( )

( )
total.flux estimated.area soil.flux

biomass.flux methane.flux .
2

i

n

i i

i i

1

Inwhich:
i is a 2006–2011 land cover class in n land cover

classes
estimated areai is the total area of land cover class i
Each flux is the mass CO2e emitted or stored per

unit area for land cover class i.

Figure 1.The threemapping layers used in our coastal wetland greenhouse gas inventory viewed for San Francisco Bay. (A) 2011
Coastal Change Analysis Program (C-CAP) LandCover Classifications. (B) 2006–2011C-CAPChangeMap (Basemap usedwith
permission. Copyright © 2018 ESRI, ArcGIS,NOAA, and theGIS user community. All rights reserved.). (C)Aprobabilistic coastal
landsmap, showing the probability elevation is below twice highestmonthly tide level,mean higher highwater for spring tides
(MHHWS).
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As in the US coastal NGGI, we defined the area of
interest as the CONUS and included all C-CAP estuar-
ine wetlands (figure 2) and palustrine wetlands occur-
ing at an elevation below the highest tides. This is
referred to throughout as the coastal lands definition.
Since estuarine wetlands as C-CAP defines them are
driven by oceanic tidal influence, we used mapped
area as represented in C-CAP as fixed values (figure 2).
Since palustrine wetlands can either be tidal or non-
tidal, we used a probabilisticmap of areas falling below
mean higher high water spring (MHHWS) tides to
map palustrine wetland area falling within the coastal
zone. Palustrine wetland mapped areas were not trea-
ted as fixed values; we estimated them as a probability
distribution using a mean (μpal,i) and standard devia-
tion (σpal,i) for each class (i), derived from the prob-
abilisticMHHWSmap (equation (3))

m s~ ( ) ( )mapped.area normal , . 3i i ipal, pal, pal,

Our analysis made a distinction between mapped area
and estimated area. Estimated area can be greater than
or less than mapped area because unequal omission
errors (errors of exclusion) and commission error
(errors of inclusion) can cause a land cover class to be

over-or under-mapped. We scaled mapped area by
taking into account potential errors in 2011 classifica-
tion (Olofsson et al 2014) as well as 2006–2011 change
detection (figure 2). In a simplified version of this
concept, accuracy assessment matrices containing
counts of true classifications and misclassifications,
can be simplified down to a single estimated-to-
mapped area ratio (r) for a classification (i)
(equation (4)). This value will be less than one if a land
cover class is over-mapped, and greater than 1 if a land
cover class is under-mapped

= ´ ( )restimated.area mapped.area . 4i i i

We estimated total emissions or removals by multi-
plying estimated area by the summed per area flux of
soil and biomass CO2 and CH4 CO2e (figure 2). For
emissions factorswe treatedflux data as it was reported
(either positive or negative), but transformed them
when necessary, so that any emissions were always
represented as a negative value and removals were
always represented as a positive value. For soils, if the
land cover type did not change or changed but did not
result in soil loss (supplemental information 2.3.1),
then soil carbon flux was estimated as the annual soil
carbon burial rate multiplied by the number of years

Figure 2. Flow chart outlining howwe integrated coastal wetlandmaps based on theCoastal ChangeAnalysis Program (C-CAP) land
cover and land cover change products with ground based data on soil, biomass, andmethane flux. Each rounded box shows a stage at
whichwe quantified and propagated uncertainty. 1.Howwe estimated area integrating C-CAP and a probabilisticmap of area falling
belowmean higher highwater spring tide (MHHWS) elevation. 2.Howwe estimated soil carbon burial and losses. 3. Howwe
estimated biomass gains and losses. 4. Howwe estimatedmethane emissions or removals. Colorsmatch later categorization of
different inputs in the later sensitivity analysis (figure 7).

4

Environ. Res. Lett. 13 (2018) 115005



that wetlands were present (equation (5)). If the
2006–2011 class changed and represented a soil loss
event, such as conversion to developed, agricultural
land, or open water, then emissions were estimated to
be the product of mean soil carbon density, depth lost,
and fraction of that returns to the atmosphere
(equation (6)). We quantified biomass using three
vegetation classes: forested, scrub/shrub, and emer-
gent vegetation. We estimated biomass flux if there
was a transition between vegetation types or from
vegetated to unvegetated surfaces between 2006–2011
(equation (7)). We quantified CH4 fluxes using two
salinity classes, since freshwater wetlands (palustrine)
emit more methane than brackish to saline wetlands
(estuarine) (Poffenbarger et al 2011). We calculated
methane flux for a class by determining CH4 emissions
associated with the salinity type in 2006 and 2011,
summing them, and multiplying by 2.5 to normalize
the flux overfive years (equation (8))

= ´ ( )nsoil.flux soil.burial .years, 5no loss.

= - ´
´

(
) ( )

soil.flux soil.carbon depth.lost
fraction.returned , 6

loss

= - ( )biomass.flux biomass biomass , 72011 2006

= - +( )
( )

methane.flux 2.5 methane methane .
8

2011 2006

2.3. Estimating area ofwetland class and change
events
2.3.1. Using tide and elevation data to map coastal
palustrine wetlands
As in the previous NGGI, we mapped a subset of
palustrine wetlands categorized as coastal lands
because their tidal elevation was lower thanMHHWS.
However, uncertainties in digital elevation model
(DEM) elevations and in mapping tidal height were
not previously included in the NGGI uncertainty
analysis (EPA 2017). We enhanced the inventory by
creating a probabilistic coastal landsmap (supplemen-
tal information: section 2.1).

For wetland surface elevation data we used DEMs
that were created using Light Detection and Ranging
(LiDAR) and were aggregated by the National Oceanic
and Atmospheric Association (NOAA) for their Sea-
Level Rise Viewer (supplemental table 1). DEMs were
created to Federal Emergency Management Adminis-
tration accuracy standards (ASPRS 2004, Cove-
ney 2013). DEMs have a nominal root mean square
error (RMSE) of 0.185 m for low-relief areas and
assume no bias (supplemental table 1). However, wet-
land vegetation and soil introduce system-specific bias
and random error (Chassereau et al 2011) not cap-
tured by the nominal accuracy reporting. We cor-
rected for a mean error of 0.173 m and estimate a
RMSE of 0.205 m for wetland surfaces based on a
weighted average of results from multiple US-based
studies (supplemental table 2). We created a map of
MHHWS heights using empirical Bayesian kriging to
interpolate between NOAA tide gauges. We also

created a corresponding uncertainty map incorporat-
ing random error in LiDARmapping, datum transfor-
mations (Schmid et al 2013, Leon et al 2014), and
distance between tide gauges. We combined the
DEMs, the MHHWS map, and the associated uncer-
tainty surfaces into a single spatial layer representing
the probability of elevation being below MHHWS
(figures 1, 2).

For palustrine wetlands, we treated mapped area
as a random variable. For each of 111 palustrine wet-
land categories we extracted pixel counts by prob-
ability class for the coastal lands map intersecting the
C-CAP class and represented mapped area as a nor-
mal distribution approximated from the multiple
binomial distributions (supplemental information:
section 2.1). The means and standard deviations for
all 111 palustrine wetland stable classes and palus-
trine wetland change events are reported in supple-
mental table 2.

2.3.2. Representing uncertainty in land cover
classification and change detection
We calculated an estimated area from mapped area
(Olofsson et al 2014, Byrd et al 2018) by combining
accuracy assessment matrices (McCombs et al 2016)
with area data from C-CAP (supplemental table 1)
(supplemental tables 4–5). C-CAP did not assess
classification accuracy for all individual land cover
change events between 2006–2011. Instead there is an
overall accuracy assessment for 2011 classification and
one for the 2006–2011 generalized ‘change’ or ‘no
change’ categories.

The accuracy assessment matrix records counts
for all instances of mapped classes—what a datapoint
was mapped as—and reference classes—what it actu-
ally was (supplemental tables 4–5). We converted the
accuracy assessment matrix from counts to propor-
tional areas (Olofsson et al 2014, Byrd et al 2018), and
calculated the estimated proportional area for each
class as the reference class’ column sum in the propor-
tional area matrix. We used estimated and mapped
area at the full map scale to calculate an estimated to
mapped area ratio (r). For each 2006–2011 C-CAP
class, we used the appropriate r to scale mapped area
by the 2011 class. We then used a second r value from
the ‘change’ and ‘no change’ matrix to scale again
based on change detection. Additional detail on how
we calculated proportional area accuracy assessment
matrices and class-specific scaling factors are available
in the supplemental information: section 2.2).

We represented uncertainty in estimated to map-
ped area ratio by representing eachmapped class in the
accuracy assessment count matrix as a multiple multi-
nomial distributions, a distribution that describes
counts falling into two ormore categories as a random
variable (supplemental information: section 2.2).
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2.4. Carbon storage and emissions data
As in the NGGI we calculated emissions factors for
soils, and CH4 based on literature review and synth-
esis. Unlike theNGGIwe include carbon fluxes related
to biomass because data is now available as part of a
remote sensing calibration and validation effort (Byrd
et al 2018), and a literature review that is part of
continued inventory development (supplemental
information: section 2.3). We did not include N2O
emissions.

2.4.1. Soil flux data
We estimated soil carbon stock change in wetlands
remaining wetlands and lands converted to wetlands
as annual carbon burial rate from a literature review of
lead-210 (210Pb) dated cores (supplemental informa-
tion; section 2.3.1). 210Pb-based measurements typi-
cally integrate carbon burial over a century, compared
to cesium-137 (137Cs)- and artificial plot-based mea-
surements, which integrate carbon burial over multi-
decadal to annual time scales; therefore we assumed
210Pb-based rates are more representative of long-
term storage rates. We described soil carbon burial
using a lognormal distribution because observed
removals can not be negative when strictly relying on
dated sediment profiles, observed values were always
greater than zero, and the data show a positively
skewed distribution (figure 3; table 1).

For soil carbon stock change associated with wet-
land loss, we used average soil carbon density values
reported by Holmquist et al (2018) to characterize the
CO2 emission rate (table 1). Holmquist et al (2018)
determined that soil carbon density did not vary sig-
nificantly by depth, and that the probability distribu-
tion of soil carbon density was described well by a
normal distribution, truncated so that values could
not be less than zero. They also determined utilizing a
single average value for all wetlands was more parsi-
monious and precise than stock estimates based on
availablemaps of soil carbon.

The previous NGGI (EPA 2017) made two
assumptions about carbon changes during wetland
conversion events that were not considered in the
error propagation. First, the depth of soil lost to con-
version was based on a range of values reported for
aquaculture and salt production pond construction
(0.5–2.5 m; IPCC 2014) but was fixed to 1 m. In the
NGGI, this value was applied to wetland areas that
converted to open water as indicated by C-CAP.
Because wetland to openwater conversion events were
dominant in our accounting and the IPCC depth
intervals for degradation were largely not applicable,
we represented uncertainty regarding this assumption
by using a uniform distribution ranging from 0.5–1.5
m (table 1) to represent a wide distribution centered
on 1 m. This uncertainty reflected a consensus from
our coauthor group and reflected an expert assump-
tion rather than data, as we could not readily locate or
ingest any relevant data. The NGGI also assumed that

100% of the carbon released by conversion from
coastal wetlands to open water is lost to the atmos-
phere. However (Lovelock et al 2017) reviewed avail-
able studies and estimated 25%–50% of terrestrial
carbon delivered to the marine environment was bur-
ied in ocean sediments (Baldock et al 2004, Cai 2011,
Blair and Aller 2012). Therefore we represented the
fraction lost back to the atmosphere as a uniform dis-
tribution ranging from50%–75% (table 1).

2.4.2. Biomass flux data
We utilized biomass data from (Byrd et al 2018) to
generate emissions factors for emergent wetlands. We
accounted for forested wetland biomass using a
synthesis of tree diameter at breast height (DBH) for
mangrove and tidal freshwater forested plots, then
converting DBH to above ground biomass using
allometric equations cited within the data source, or
originating from a similar representative study (sup-
plemental information: section 2.3.2). We represented
scrub/shrub data using a subset of the Byrd et al (2018)
biomass data, plots that were dominated by the shrub
Iva frutescens, and a subset of the forested biomass
dataset, plots in which average tree heights were lower
than 5 m. We converted biomass to organic carbon
using a conversion factor of 0.441 (Byrd et al 2018).
We represented above-ground biomass with lognor-
mal distributions because the data exhibited skewed
positive distributions (table 1; supplemental figure 2).

2.4.3.Methane flux data
For CH4 fluxes, we utilized a synthesis of annual CH4

fluxes compiled by (Poffenbarger et al 2011) and
further developed as part of the 2nd State of the
Carbon Cycle Report (Windham-Myers and Cai in
Revision) (supplemental information: section 2.3.3).
Although IPCC guidance recommends separating
CH4 emissions by salinity class using an 18 ppt
threshold (IPCC 2014), C-CAP’s two salinity cate-
gories are not optimized for this purpose. We instead
had to represent CH4 emissions with separate estuar-
ine and palustrine emissions factors based on a 5 ppt
salinity threshold (Dobson et al 1995) (figure 4).

We represented CH4 fluxes using a normal dis-
tribution for estuarine wetlands because while the vast
majority of sites indicated a net emissions scenario,
one oligohaline site in New Jersey displayed net-
uptake of CH4 for much of the two years reported
(Weston et al 2014) (figure 3). We represented palus-
trine CH4 emissions using a lognormal distribution
because flux values had a skewed positive distribution
and there were no instances of net-uptake of CH4

(figure 3; table 1).We estimated the GWP of CH4 as 25
CO2e -CH4

1 for consistency with the NGGI (IPCC
1997, EPA 2017) even though IPCC 5th Assessment
Report recommends updated conversions (28 CO2e

-CH4
1 or 34 CO2e -CH4

1 with feedbacks; table 1)
(Pachauri et al 2014).
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2.5. Uncertainty and sensitivity analysis
2.5.1.Monte carlo analysis
We propagated uncertainty using a Monte Carlo
analysis (Ogle et al 2003, IPCC 2006, Metsaranta

et al 2017). We calculated the inventory (equation (2))
10 000 times, simulating the underlying data using
random draws from the probability distributions for
145 random variables (supplemental information:

Figure 3.Histograms and probability distributions ofmethane emission. factors (converted toCO2e using 25x global warming
potentials) and soil carbon burial rates.

Table 1. Summary of probability distributions and dataset sizes used to simulate emissions factors in theMonte Carlo analysis:μ=mean,
σ=standard deviation,α=mean of the natural log-transformed data,β=standard deviation of the natural log-transformed data, and
min andmax are theminimumandmaximumvalues of a uniformdistribution.

Emissions factor or emission factor component Probability distribution n Moment 1 Moment 2

CarbonBurial (gCO2m
−2 yr−1) Lognormal 109 α=5.98 β=1.05

Soil carbon density (gCO2m
−3) Truncated normal 8280 μ=99000 σ=47667

Depth of soil affected by loss events (m) Uniform 1 Min=0.5 Max=1.5
Soil carbon fraction returned to atmosphere (fraction) Uniform 1 Min=0.5 Max=0.75
Emergent biomass change (gCO2m

−2) Lognormal 2345 α=6.36 β=1.04
Scrub/shrub biomass change (gCO2m

−2) Lognormal 33 α=8.21 β=1.97
Forested biomass change (gCO2m

−2) Lognormal 79 α=10.57 β=0.75
Estuarine CH4 emissions (GWP; gCO2em

−2 yr−1) Normal 31 μ=292.10 σ=558.21
Palustrine CH4 emissions (GWP; gCO2em

−2 yr−1) Lognormal 24 α=6.10 β=1.80
Estuarine CH4 emissions (SGWP/SGCP; gCO2em

−2 yr−1) Normal 31 μ=477.87 σ=1061.80
Palustrine CH4 emissions (SGWP/SGCP; gCO2em

−2 yr−1) Lognormal 24 α=6.69 β=1.80
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section 2.3.4): including normal distributions for the
mapped area for each of 111 possible palustrine stable
and change classes (supplemental table 2) and multi-
nomial distributions used to randomly draw accuracy
assessment matrices for twenty-three 2011 C-CAP
land cover classifications (supplemental table 4), and
2006–2011 change and no change categories (supple-
mental table 5).

We also propagated uncertainty for nine emissions
factors or emission factor components (table 2). For
normally distributed variables we randomly drew the
same number of datapoints from literature review
from the probability distribution then represented the
emissions factor or component as themean of the ran-
domly drawn data. For uniform distributions, we ran-
domly drew a single value. For emissions factors that
were lognormally distributed we randomly redrew the
underlying data as in normal distributions but repre-
sented the central tendency of using the exponentiated
logmean. This choice is consistent with IPCC Wet-
lands Supplement guidance, however arithmeticmeans
are often used for lognormally distributed emissions
factors (Levy et al 2017). Because the goal of this paper

is to quantify the effect of assumptions on the inven-
tory, we repeated the uncertainty analysis using the
arithmetic mean of lognormally distributed values
(supplemental information: section 3.2; supplemental
figure 4).

2.5.2. Sensitivity analysis
We performed a one-at-a-time sensitivity analysis
(Metsaranta et al 2017), meaning we categorized
sensitivity of the US scale emissions and removals to
assumptions, datasets, and mapping accuracies by
manipulating one input at a time and recording the
effect. For each random variable we re-calculated the
coastal wetland total GHG emissions and removals
using the 0.025 quantile and 0.975 quantile values
from Monte Carlo analysis, while fixing all others at
their median value. We reported sensitivity of the
inventory to each input as the difference in the total
flux between using the input’s minimal and maximal
settings.

The sensitivity analysis also helped test the effect of
some of the fundamental assumptions. For example,
CH4 fluxes need to be converted to CO2e, and there is

Figure 4.The two available salinity classes defined by the 5 ppt threshold in C-CAP are not ideal formapping differences inmethane
emissions, especially when compared to the 18 ppt threshold recommended by IPCC.Data (Windham-Myers andCai in Revision)
originate fromboth static chamber and eddy flux covariancemeasurements.

Table 2.Medians and confidence intervals for CONUS coastal wetland emissions (−) and storage (+) from2006–2011 inmillion tonnes
(Teragrams) of CO2-equivalent (CO2e) per year.

Land cover change type analyzed Lower confidence interval (0.025) Median (0.5) Upper confidence interval (0.975)

Estuarine losses −13.3 −8.1 −4.1
Estuarine stable and gains −2.3 2.2 6.7
Palustrine losses −3.7 −2.4 −1.3
Palustrine stable and gains −9.6 −1.5 2
Total −21.3 −10.3 −1.3
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controversy about whether to use the GWP (25 CO2e
-CH4

1) (IPCC 2014) or the Sustained Global Warm-
ing Potential (SGWP; 45 CO2e -CH4

1) and Sustained
Global Cooling Potentials (SGCP; 203 CO2e g -CH4

1)
whichmore effectively represent the system (Neubauer
and Megonigal 2015). We quantified the effect of
that choice by calculating the inventory using a
GWP and median values for all other inputs and then
recalculated changing only the GWP to SGW/CP
(Neubauer and Megonigal 2015). Also, we tested the
assumption of relying on the coastal lands definition
for determining how much palustrine wetland area to
include in the inventory compared to a tidal wetlands
definition from the National Wetlands Inventory
(NWI) (Hinson et al 2017, Holmquist et al 2018, Najjar
et al 2018). For this alternative analysis, we included all
C-CAP palustrine wetlands intersecting anNWI-based
tidal wetlands map (Holmquist et al 2018) and treated
all palustrine mapped areas as fixed. In the sensitivity
analysis we calculated the difference in total inventory
between the default settings and the NWI based map-
ping strategy.We alsowe repeated the sensitivity analy-
sis using the arithmetic mean of lognormally
distributed values, and discuss the results further in the
supplemental information (section 3.2; supplemental
figure 5).

3. Results and discussion

3.1. Initial assessment of estimated area
The Monte Carlo analysis combining C-CAP and
LiDAR DEMs define a total area of interest with a
median of 3.56million hectares (Mha; figure 5). Stable
wetlands were the largest category (figure 5) with
estuarine emergent wetlands dominating (1.82 M ha),
followed by palustrine forested wetlands (0.68 M ha),
palustrine emergent wetlands (0.54M ha), and estuar-
ine forested wetlands (0.19Mha). Of the wetlands that
changed to or from other categories, loss of emergent
wetlands to open water was the most dominant
classification. Conversion from open water to emer-
gent wetlands was the nextmost important conversion
but only made up for one third of the area converted
from emergent wetlands to open water. The NWI-
based strategy mapped fewer palustrine wetlands,
especially palustrine forested wetlands, defining a total
area of interest of 2.86Mha.

3.2. Uncertainty in theCONUS 2006–2011 coastal
wetland inventory
Coastal wetlands were likely to have acted as a net-
source of GHG from 2006 to 2011 (figure 6; table 1;
supplemental table 7). Across the 10 000 Monte Carlo
iterations median total net-emission was −10.3 mil-
lion tonnes (M tonnes) of CO2e per year (yr−1) over
five years with a confidence interval ranging from
−1.6 to −21.3 M tonnes CO2e yr−1. Although the
confidence intervals were wide they were strictly

negative, which support the conclusion of net-emis-
sions from2006–2011.

Separating estuarine wetlands, which have lower
CH4 emissions, and palustrine wetlands, which have
higher CH4 emissions, indicates that both classes are
more likely to have acted as net-emitters (table 2).
However, estuarine wetlands emissions were more
likely occurring due to wetland conversion events
(figure 6). While overall stable and gaining estuarine
wetlands acted as a net-sink and stable and gaining
palustrine wetlands a net-source according to their
median values, both categories had uncertainties
spanning both net-emissions and net-storage
scenarios.

3.3. The dominant contributions to national-scale
uncertainty
CONUS-scale total fluxwasmost sensitive to inputs in
fourmajor classes: uncertainty in emissions and burial
data, assumptions about how to calculate the inven-
tory, C-CAP 2006–2011 change detection accuracy,
and C-CAP 2011 classification accuracy (figure 7;
supplemental table 7). Overall the inventory was most
sensitive to uncertainty in the underlying emissions
and storage data, and to assumptions made. Uncer-
tainty arising from the probabilistic coastal lands
mapping was not a dominant contributor to total
uncertainty in this framework.

Uncertainty in palustrine CH4 emissions, had the
greatest effect on the inventory estimates for CONUS
coastal wetlands, 11.6 M tonne CO2e yr

−1 (figure 7;
supplemental table 7). The average depth of soils lost
to erosion, extraction, or drainage, was second most
impactful and had a 9.4 M tonne CO2 yr

−1. Estuarine
CH4 emissions were also important and had a 8.5 M
tonne CO2e yr

−1 effect. Soil carbon burial rate had a
5.2 M tonne CO2e yr

−1 effect and assumptions made
about the fraction of soil carbon lost to the atmosphere
had a 3.9M tonneCO2e yr

−1 effect.
The decision to use GWP over SGWP/CP had a

median effect of 8.8M tonnes of CO2e yr
−1. The alter-

nate choice moved the estuarine stable and gains sec-
tor from net-storing (+2.2M tonnes CO2e yr

−1) using
GWP to net-emitting (−2.0 M tonnes CO2e yr−1)
using SGW/CP (figure 7; supplemental table 8). Emis-
sions from stable palustrine wetlands overtook palus-
trine soil and biomass losses when using SGW/CP.
The SGW/CP choice increased the estimate of total
CO2e emissions 89%over the traditional GWPmodel.

Uncertainty in mapping also contributed to
uncertainty in the inventory. 2006–2011 change detec-
tion was the most uncertain mapping category. Nota-
bly, we drew a different conclusion regarding the
2006–2011 change than the official C-CAP accuracy
assessment (McCombs et al 2016). We concluded that
change was under-mapped while McCombs et al con-
cluded change was over-mapped (supplemental infor-
mation: section 3.1; supplemental figure 3). This
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occurred because McCombs et al raw counts for the
accuracy assessment matrix and we used a propor-
tional areamatrix (Olofsson et al 2014).

Sensitivity of the inventory to input uncertainty
dropped precipitously for the remaining inputs. These
include the decision between using a coastal lands
definition to identify palustrine wetlands and the stric-
tor NWI-based definition (2.0 M tonne CO2e yr−1

effect) (figure 7; supplemental table 7). The effect of
uncertainty in fluxes associated with changes in fores-
ted and scrub/shrub biomass and carbon density for
eroded soils range from 0.6 to 0.1M tonnes CO2e yr

−1.
Classification accuracy introduced uncertainty for
estuarine aquatic beds, open water, unconsolidated
shore and palustrine aquatic beds. In our accounting,
these all indicate soil loss events.

3.4. Implications for future research
Uncertainty estimates are important components of
complete and transparent GHG inventories
(EPA 2017). Uncertainty information is not intended
to dispute the validity of the estimates, but rather to
help prioritize efforts to improve accuracy and guide
future decisions. We recommend improving process
models for CH4 emissions and soil carbon burial,
increasing the number of observations for key inputs,
and developing more detailed and accurate maps for

categories relevant to coastal wetland carbon cycling
and inventory estimates.

3.4.1. Improving process models for CH4 emissions and
soil carbon burial
The uncertainty and sensitivity analysis presented
herein suggest that uncertainty could be reduced at the
scale of the contiguous US primarily by improving
data availability and process-based models for CH4

emissions, CH4 radiative forcing, and carbon burial
rates. Net-wetland CH4 emission combines CH4

production bymethanogenic archaea under anaerobic
conditions, CH4 oxidation and consumption by
methanotrophic bacteria mainly under aerobic condi-
tions, and CH4 transport to the atmosphere (Conrad
1989,Whalen 2005). Major controls of these processes
include: water table position; soil temperature; sulfate
supply and potential production of hydrogen sulfide, a
methanogen toxin, for which salinity is a proxy for;
vegetation, including both biomass and species compo-
sition, which may facilitate CH4 transport from soil
production sites to the atmosphere; and primary
production of vegetation, since newphotosynthatemay
be a substrate for methanogenesis (Wang et al 1996,
Walter and Heimann 2000). Large discrepancies have
also been noted between chamber and eddy covariance
measurements of CH4 fluxes (Hendriks et al 2010,

Figure 5.Medians and confidence intervals for areas of wetland change classes. There are two definitions of palustrinewetlands. the
probabilistic coastal lands definition (yellow bars) and the tidal wetlands definition based onNationalWetlands Inventory (purple
bars). EEM= estuarine emergent wetland, PFW= palustrine forestedwetland, PEM= palustrine emergent wetland,
EFW= estuarine forestedwetland, PSS= palustrine scrub/shrub, ESS= estuarine scrub/shrub,OW= openwater.

10

Environ. Res. Lett. 13 (2018) 115005



Krauss et al 2016), suggesting the need for additional
comparisons between these twomethods.

The use of GWPs serves an important policy need
because GWPs are transparent and tractable. How-
ever, GWPs are an oversimplification because model-
ingCO2e in power units (Wm−2) that relate directly to
radiative forcing is several steps removed from actual
climate impacts such as changes in temperature, pre-
cipitation, and sea level. The SGW/CP model is
equally transparent and tractable, but more closely
represents reality by acknowledging that changes in
GHG emissions persist over several years (Neubauer
and Megonigal 2015). Therefore we recommend that
SCW/CP’s should be considered for adoption by the
IPCC. When considering the consequences of GHG
inventory data beyond the IPCC context, ecosystem
scientists and policy analysts should discuss metrics

that are independent of time frames, such as switch-
over time, as they are more informative of the long-
term impacts (Frolking and Roulet 2006). Our uncer-
tainty analysis is focused on variables that are inputs to
GWP and SGW/CP models, but there is an ongoing
need to address the uncertainty introduced by using
thesemodels to underpin climate policy.

Currently, IPCC guidance recommends applying
separate carbon burial rates to different wetland types
and ecoregions to increase accuracy. However, multi-
ple studies suggest other relevant geographic and
methodological factors need to be considered in the
US inventory. In some locations, accelerating sea-level
rise is expanding the area conducive to carbon burial,
potentially increasing carbon burial rates (Kirwan and
Mudd 2012, Hill and Anisfeld 2015). A sensitivity ana-
lysis of the marsh equilibrium model highlighted

Figure 6.CONUS inventory results of 10 000Monte Carlo simulations, shaded to distinguish simulations resulting in a net-emission
(orange) or a net-storage (blue) scenario. The thick gray vertical line at 0 separates these scenarios. Points indicatemedians, and black
horizontal lines the upper and lower 95% confidence intervals. Top panels separatefluxes from estuarine and palustrine wetlands, and
fromwetlands that were lost from those that were stable or gained area. The bottompanel shows net-annualized emissions from
2006–2011.
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relative sea-level rise, plant productivity and relative
tidal elevation as dominant drivers of carbon seques-
tration in stable wetlands (Morris and Callaway in
Press). Elevation/inundation gradients were corre-
lated with sediment accretion dynamics in San
Francisco Bay (Callaway et al 2012). Finally, there are
many ways to measure carbon burial that integrate
different time scales: decades- 137Cs, centuries- 210Pb,
or millennia- 14C (Turetsky et al 2004). We recom-
mend that future studies rectify the complex interac-
tions between regional variability in relative sea-level
rise, plant productivity, local elevation/inundation
dynamics, and the potential effects of measuring this
carbon burial using differingmethods.

3.4.2. Increasing data availability for key inputs
Some inputs in the inventory could be improved by
targeted studies and additional data collection, includ-
ing soil depth affected by conversion to open water,
and percent carbon returned to the atmosphere
upon loss.

Available data on elevation loss due to the diking of
wetlands for agriculture (Drexler et al 2009), and the
mass lost to 50 cm depth following vegetation die off
(Lane et al 2016), are not suitable proxies for the vast
majority of losses occurring from2006 to 2011, estuar-
ine emergent to open water conversions resulting
from hurricane impacts and erosion in the Gulf of
Mexico (Couvillion et al 2011 ). Although average car-
bon mass at depth in wetland soils is well constrained
for coastal wetlands (Holmquist et al 2018, Sanderman
et al 2018), the sensitivity of this carbon stock to differ-
ent disturbances across regions, relative elevations,
and time is not well known.

Uncertainty in assumptions about carbon loss is
not unique to this study and was discussed explicitly in
a recent global analysis of soil and biomass loss from
mangrove conversions (Sanderman et al 2018), which

report that the rate and forms of carbon loss may
depend on soil type and depth (Donato et al 2011).
Because assumptions about loss events vary from
study to study, and because of the fact that these
assumptions are dominant contributors to uncer-
tainty (figure 7), future research should prioritize
empirical and modeling studies that constrain depth
and percent carbon loss due to wetland conversion
events.

3.4.3. Improving mapping capacity of tidal carbon
relevant gradients
The wetlands supplement of the IPCC report provides
two CH4 emissions factors for wetlands, one for fresh
to brackish conditions and another for higher salinity
(18 ppt threshold) (Poffenbarger et al 2011, Bridgham
et al 2013). However, C-CAP salinity categories do not
match these categories, insteadmapping estuarine and
palustrine (5 ppt threshold; figure 3). This inconsis-
tency limits our ability to confidently assess the true
GHG balance for saline wetlands at the national scale.
We propose developing maps and data to support at
least three categories of salinity—saline (>18 ppt),
brackish (0.5–18 ppt), and fresh (<0.5 ppt)—in order
to reduce uncertainty in landscape scale CH4 emis-
sions from coastal wetlands (figure 4).

Existing remote sensing approaches for vegetation
and inundation dynamics could improve mapping
both CH4 emissions and carbon burial rates. Recent
strides in mapping coastal wetland vegetation biomass
(Byrd et al 2018), vegetation species classification
(Immitzer et al 2016) and seasonal dynamics (Mo
et al 2015) could provide more detailed vegetation
descriptions that would be a proxy for salinity zones.
For inundation/elevation regimes, extensive coastal
DEMs are available, but lack the accuracy to ade-
quately map tidal flooding depth and inundation time
at relevant scales and could be improved by integrating

Figure 7.Thesefifteen inputs introduced themost uncertainty into theCoastalWetlandNational GreenhouseGas Inventory (NGGI)
according to a one-at-a-time sensitivity analysis. GWP: global warming potential, SGWP: sustainedGWP, SGCP: sustained global
cooling potential, NWI:NationalWetlands Inventory, EAB: estuarine aquatic bed,OW: openwater, UCS: unconsolidated shore,
PAB: palustrine aquatic bed.
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additional remote sensing and modeling (Hladik
et al 2013, Parrish et al 2014, Buffington et al 2016).
Future studies should quantify the precision needed
for DEMs in the tidal zone. Currently soil emissions
factors are calculated using tabular data, however
improvements inmapping should be leveraged to sup-
port spatially-explicit approaches in future versions of
the inventory incorporating trends in productivity and
seasonality (Knox et al 2017), variation in carbon
mineralization rates (Mueller et al 2018), edaphic fac-
tors and geomorphology (Rovai et al 2018). Many
improvements may be forward-looking and hindcast-
ing may not be appropriate (Byrd et al 2018), and spa-
tially-explicit approaches should only be utilized only
if they actually do improve precision and accuracy
of inventorying compared to simpler approaches
(Holmquist et al 2018).

Biomass changes were not a top contributor to
uncertainty, but changes in forested and scrub/shrub
biomass were the ninth and fifteenth contributors to
uncertainty respectively. This study quantified the
effect of uncertainty by upscaling means and uncer-
tainties from multiple field studies, however remote
sensing approaches using LiDAR, RADAR, object
based image detection, and optical remote sensing,
can all be used to characterize biomass changes on
local to regional scales (Byrd et al 2018). Future studies
could expand the uncertainty and sensitivity analysis
to capture the effect that uncertainties in genus-spe-
cific assessments of wood density (Jenkins et al 2003),
biomass carbon content (Byrd et al 2018), and the con-
tributions and decay rates of downed wood (Krauss
et al 2018).

C-CAP’s accuracy was not a dominant contributor
to the overall uncertainty in the inventory, but wewere
only able to quantify this from 2006– 2011. C-CAP is
available for the entire CONUS coastal zone from
1996–2011, and trends were extrapolated out back to
1990 and forward to 2015 for the NGGI inventory.
Future studies are needed to assess accuracy for earlier
time steps.

4. Conclusions

Uncertainty in CONUS coastal wetland greenhouse
gas inventory estimates comes mostly from lack of
knowledge on CH4 emission variability, the fate of soil
carbon post-conversion, and an inability to extrapo-
late trends to available map products. Switching from
GWP to SGW/CP increases the overall calculation of
CO2e impacts from 2006–2011 by 89%. The under-
lying mapping products, C-CAP, and the probabilistic
coastal lands layer for mapping tidal freshwater wet-
land extent, were not dominant contributors to
uncertainty. However, the inventory development
could benefit from improved change detection,

accuracy assessments that go back further in time, and
improved mapping of intermediate salinities and
inundation gradients. Our analysis provides a frame-
work to track improvements to the coastal wetland
GHG inventory as more data and improved process
knowledge become available. The data used here were
not collected for the purpose of the inventory; future
improvements will demand targeted investment in
data collection, model improvements, spatial product
development, andmore extensive, independent accur-
acy assessments.
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