
Autonomous Goal Selection Operation for Agent
Based Architectures

Sravya Kondrakunta and Michael T. Cox

Wright State University, Dayton OH 45435, USA,
kondrakunta.2@wright.edu, michael.cox@wright.edu

Abstract. An intelligent agent has many tasks and goals to achieve
over specific time intervals. The goals may be assigned to it or the agent
may generate its own goals. In either case, the number of goals at any
given time may exceed its capacity to act upon concurrently. Therefore,
an agent must prioritize the goals in chronological order as per their
relative importance or significance. We show how an intelligent agent can
estimate the trade-off between performance gains and resource costs to
make smart choices concerning the goals it intends to achieve as opposed
to selecting them in an arbitrary basis. We illustrate this method within
the context of an intelligent cognitive architecture that supports various
agent models.

Keywords: Goal Operations, Goal Driven Autonomy, Cognitive Archi-
tectures

1 Introduction

It had long been recognized that intelligent systems need to do more than simply
make plans to achieve their goals and then carry them out. Pollack and Horty [12]
claim that much of what intelligent agents require in complex domains is not
just planning for behavior but also that agents should manage their activities,
resources, and their goals. In this spirit, a number of researchers have begun to
examine intelligent and robust behavior from the perspective called goal reason-
ing [1, 8, 11]. In the most general sense, goal reasoning involves complex agents
that can self-manage their desired goal states [15].

To perform such high-level goal management requires many cognitive pro-
cesses and heterogeneous types of explicit knowledge. The kinds of cognitive and
metacognitive processes that relate to this wide scope can be classified into a
number of important categories. This paper examines a taxonomy of goal oper-
ations and looks closer at a particular example. Central to any agent trying to
achieve multiple goals concurrently and/or sequentially is the process of choos-
ing which goal or subset of goals to concentrate upon at any given time. Given
that some goals are more important than others and that these priorities may
change coupled with the fact that in high workload situations, an agent may not
be able to plan or achieve all goals it currently has or may expect to get, hence
goal selection is a crucial goal operation.



2 Sravya Kondrakunta, Michael T. Cox

In the next section, we briefly describe a small set of important goal op-
erations, and in the subsequent section, we examine a cognitive agent-based
architecture within which most of these operations function. The next section
then examines alternative ways to perform the goal selection operation including
one based on expected performance over time. Experimentally we then evaluate
and report results of our approach as compared to an uninformed approach that
simply selects the oldest goal first. The next section, looks at related research,
and we conclude the paper with a summary and future research directions.

2 Goal Operations

Goal reasoning has many characteristics, capabilities, and implications for ad-
vanced cognitive agents. Goals provide focus for inference and interpretation, and
they provide a language for communicating intent to and between humans. To
organize these various functions, we identify a set of principle goal operations
that underlay much of the high-level cognition represented in many cognitive
architectures. A minimal enumeration of operations is as follows.

– Goal Formulation: Generating independent, top level goals rather than
waiting for external direction.

– Goal Selection: Committing to one or a number of goals from the com-
plete set of pending goals by the agent based on some criteria (e.g., method
reported below).

– Goal Change: Transforming the currently active goal or set of goals from
one representation to another given a change of situation.

– Goal Monitoring: Paying attention to developing circumstances to notice
when the reasons and priorities for goal achievement change.

– Goal Delegation: Giving a goal or a set of goals to another agent as cir-
cumstances dictate.

– Goal Achievement: Verifying that the goal state does indeed hold in the
environment.

3 The Metacognitive Integrated Dual-Cycle Architecture

The Metacognitive Integrated Dual Cycle Architecture (MIDCA) is a high-level
agent architecture with two cycles of processing. One is a cognitive cycle, and the
other is metacognitive. Figure 1 shows details in the cognitive layer of MIDCA as
an iterative repetition of processes together with an abstract representation for
the metacognitive layer. The cognitive cycle perceives and interprets the environ-
ment then selects and executes object level actions (i.e., it would directly impact
the physical environment). The metacognitive cycle performs introspective mon-
itoring of the cognitive layer and performs control actions on the cognitive cycle.



Autonomous Goal Selection 3

Fig. 1. Metacognitive integrated dual-cycle architecture. The cogni-tive cycle has six
major phases with goal selection in Intend.

3.1 MIDCA Phase Transitions

Each layer in MIDCA has six phases and each phase performs its own unique
functionality. The phases of the cognitive layer are as follows.

– Perceive: The perceive phase processes input from a subset of the environ-
ment ψ ⊂ Ψ and updates changes to memory as a result. Percepts

⇀
pj can

trigger existing perceptual monitor functions that match activation condi-
tions (see below).

– Interpret: The interpret phase integrates percepts into a conceptual model
MΨ of the environment Ψ that constitutes a hypothesis to explain the input,
and it checks the interpretation for discrepancies that do not match expecta-
tions in the model. If discrepancies occur, a new goal gn may be formulated
to remove the discrepancy. Goal formulation adds the goal to a list of pend-
ing goals Ĝ. A perceptual goal monitor is then created that will activate if
the reason for gn no longer holds.

– Evaluate: The evaluate phase checks for the satisfaction of current goal
conditions gc. Whenever the goal state holds in the interpretation of the
environment MΨ , a goal achievement operation removes gc from a MIDCA
knowledge structure called the goal graph.

– Intend: The intend phase chooses a subset of goals from the pending goals
Ĝ to become the new current goal condition gc and inserts it into the goal
graph. This goal selection operation is the main topic of this paper.

– Plan: The plan phase creates a new plan πk for the selected goal gc, unless
a plan for it is already being executed. Although planning is not a goal
operation, the planner generates perceptual plan monitors (similar to goal



4 Sravya Kondrakunta, Michael T. Cox

monitors above) to detect future environmental conditions in ψ that would
require plan adaptation (e.g., exogenous changes that correspond to operator
preconditions).

– Act: The act phase executes individual steps αi of the plan πk. These exe-
cuted actions will change the environment Ψ , and the cycle continues with
Perceive.

The phases of the metacognitive cycle also work similarly to the cognitive
phases, but the difference is that the meta-level phases interpret and act upon
cognitive state rather than on environmental state. As each phase of cognition
executes, MIDCA records an abstract representation of their operations in a
declarative knowledge structure called a cognitive trace. The meta level “Per-
ceive” phase then inputs the trace, passing on portions to interpret and look
for discrepancies that do not meet cognitive expectations. Discrepancies at this
level can result in meta-level goals to control the operations at the layer below.
Execution of such meta-control actions can include the goal change operation.
This directly changes goals in the cognitive cycle and indirectly changes action
in the world.

3.2 The MIDCA Goal Graph

In MIDCA, goals can be classified as current or pending. The current goals
expression (gc) refers to one or more goals which the agent is committed to
achieving. The pending goals list (Ĝ) enumerates all goals including the current
goal. These goals may be states that are externally given to it (e.g., from a user)
or generated during a goal formulation operation. MIDCA represents the goal
condition as a literal or conjunction of literals in first order predicate form such
as the expression on(A,B).

Here the symbol on is a logical predicate, and A and B are instantiated
objects in the world. The literal can be either true or false. Actions change
the value of literals when they execute. In MIDCA, goal formulation is done
whenever an anomaly is detected, for example when a block catches fire, MIDCA
generates a goal to put out the fire in the Interpret phase and immediately
suspends the goal to have A on B. Once the goal to extinguish fire is achieved,
the cognitive system resumes the stacking activity.

Fig. 2. Example goal graph structure

The goal graph is a representational structure for Ĝ. The nodes in the graph
form tree structures with the root node having the highest preference and its



Autonomous Goal Selection 5

child nodes having less. A goal graph might not always contain a single root; it
might have multiple trees. The current goal expression gc is stored in a separate
list representing a subset of the goal graph

Figure 2 depicts a sample goal graph for the problem set of achieving two
towers A and B of height one and two respectively. Here building a tower is
a top-level goal and thus the root node for both goals. A root-level goal takes
precedence over the sub goals on-table and on. The achievement of all the sub
goals listed under the higher level goal indicates the achievement of the higher
level goal.

The MIDCA phases interact with the goal graph in memory. Table 1 enu-
merates the kinds of ways each phase in the cognitive layer uses or manipulates
the goal graph.

Table 1. Interactions between cognitive phases and the goal graph

Module Interaction with Goal Graph
Perceive No interaction.
Interpret Gets the goals from the user and inserts them into goal graph.
Evaluate Checks to see if the current goal or goals are achieved and if so removes the goal or goals

and its corresponding plan from the goal graph.
Intend Checks to see if the goal graph is empty, if yes skips else checks if current goal is empty,

if yes then selects the goal based on strategies like FIFO or information measures and
inserts into current goal. If no, then skips. Intend also inserts the formulated goal when
an anomaly is detected and places it above the root node to give it highest priority.

Plan Checks the goal graph for a matching plan, if exists, it checks validity. If no matching
plans or plans are not valid, generates a new plan and inserts into goal graph.

Act Iterates over the plan for current goals in order to achieve it.

4 Goal Selection with a Selection Criterion

Goal selection with a selection criterion has been motivated by goal reasoning
with Information measures [9]. The search goal is implemented in surveillance
of three different regions, airport and two office buildings to locate an official
in which the author uses distance traversed and time taken to calculate the in-
formation gain. To implement the goal selection in MIDCA we have considered
two factors, score and limiting factor which are domain specific. The score is
used as an estimate of performance or benefit and the limiting factor is used as
an estimate of cost. The goal selection operation is achieved through process-
ing information obtained from the factors considered. The information might be
something which the user thinks to be appropriate for the selection procedure, in
the described domain a scoring or performance function and time has been used
for performing the selection operation. Rather than selecting the goals randomly
or by a First-In-First-Out (FIFO) basis, the selection of goals by using some fac-
tors from the domain appears more sensible, intelligent and shows improvement
in performance. If we have all the amount of time or no limitation on time then
the goal selection would not have been an operation to consider and implement,



6 Sravya Kondrakunta, Michael T. Cox

as all the goals would have been achieved by any of the methods, but in the real
world that surely is not the case as we do not have all the time. To understand
the functioning of the algorithm the domain description is presented in the next
section and then algorithm is explained with an example in experimental method
and finally the results are evaluated.

5 Domain Description

The goal selection operation has been implemented in a construction domain.
The domain is named so because the goals generated are to build towers. This
domain is an extension to the simple blocks world domain. The goals to construct
the towers are generated randomly, number of towers in each problem set will
be a random number between one to seven and the height of the towers vary
from one block to seven blocks as well. All the goals in a single random set might
or might not be distinct in height but would be distinct in objects i.e., towers
of same height will can be generated in a single random set but say if a block
named ‘A’ is used in one tower then it would not be used in a different tower of
the same problem set. The above is implemented in order avoid the process of
demolition to construct a new tower within the same set of goals.

Initially all the blocks are kept at the warehouse and the construction site
would be empty, the user can see the construction site but the warehouse is
invisible. So whenever a problem set is generated, the agent selects all goals to
be achieved by calculating the ratio of the estimates of factors considered for the
domain. The objects related to the relevant goals will be fetched one at a time
from the warehouse and a corresponding operation will be performed on each
object. The problem set is generated every time when MIDCA is initialized and
the selection process is performed on every problem set, the towers constructed
previously would be erased each time when a new problem set arrives.

The operators described in this domain include stack, stack mortared, un-
stack, unstack mortared, pickup, put down, get from warehouse, put out fire. Each
operator is unique and performs different actions. The stack operator places one
block over the other block. The unstack operator removes one block from the
other block. The operator stack mortared does the same action as stack but
with mortar, the operator pickup block is functional only when the block is on
ground/table. The putdown operator is executed when the block selected should
be placed on ground/table and finally the get from warehouse operator is used
to get the objects from warehouse to site.

Some of the predicates include clear, on, on-table, in-warehouse, stable-on.

– clear(X): nothing above object X
– on(X,Y): object X is on Y
– stable on(X,Y): object X is on Y with mortar
– in warehouse(X): X is in warehouse

There are a total of twenty eight objects named A-Z, Z1, and Z2. All the
objects are clear and in warehouse at the beginning, based on the goal set



Autonomous Goal Selection 7

generated the blocks are transported from warehouse to the location using the
get from warehouse operator.

5.1 Experimental Method

Each time MIDCA is initialized, a random goal set to construct some n number
of towers is given, and MIDCA performs goal selection from the input goals
using a FIFO or the selection criterion. Under FIFO for a randomly generated
list of towers, the first goal is selected and achieved and then the next and so
on. For the method using factors from the domain, MIDCA chooses based on a
decision ratio between estimated score and time.

Performance Function A scoring function assigns each tower a performance
number when the construction of a tower is completed within the time con-
straints. Each tower would be constructed by stacking n number of blocks, for a
tower of height h constructed successfully within the deadline the score achieved
would be h. And the score for constructing m number of towers whose height
ranging from h1, h2, . . . hm, the score would be P = Σm

n=1hn. The towers which
exceed the deadline will receive a score of zero. No partial scores are assigned
for the towers which are constructed partially within the deadline.

Cost Function The construction of any tower takes time, and the time taken
would increase as the height of the tower increases. There will not just be an
increase in overall time, but there will also be an increase in the time for each
stack as the height of the tower is increased. As such, the increase would be
a nonlinear function. In the implementation, the time values are provided as
estimates for the agent. As the height of the towers vary from one to seven, for
each tower an estimate of time is provided as shown in Table 2.

Table 2. Estimated times t̂ to construct each tower and estimated time to place upper
block in each tower

Tower height Overall Time Time to place upper block
1 1 1
2 2.2 1.2
3 3.4 1.2
4 5.4 2
5 8.4 3
6 13.4 5
7 22.4 9

Now the ratio C of the performance function P̂ over the estimated time t̂ is
calculated for all the goals in the random problems, and it acts as a selection
criterion for goals. In this manner, the tower with the maximum C criterion is
chosen first.



8 Sravya Kondrakunta, Michael T. Cox

C = P̂ /t̂ (1)

This goal is achieved, then the goal with the second highest ratio is selected
and achieved and so on. In this particular domain, it does not matter if we
start the construction with either a maximum or a minimum ratio of tower.
The maximum ratio indicates a tower with the minimum height in the problem
set, and the maximum ratio indicates the tower of lowest height. we choose to
start with maximum ratio because, it yields best output per unit time. To check
the performance of the above function for various scenarios the deadline can be
varied dynamically. The variation can be in either smaller or large amounts, if
the variation is least then choosing minimum ratio would be good as towers with
smaller height can be dropped but if the deadline is varied by large amounts,
then the agent can drop the goal it is currently working on and go with the small
towers when the time is sufficient.

The evaluation method functions by taking into consideration four cases. One
is with no deadline, and the others are with a particular deadline. Let D indicate
the overall deadline or deadline for a particular problem.

Case 1: No Deadline In this case, as there is no deadline (i.e., D = ∞), all
the towers in each random problem will be constructed one after the other. The
agent would achieve all of its goals, and therefore the score achieved would be
100%.

Case 2: Deadline of D=X In this case, as there exists a deadline of X,
all the towers within the problem set may or may not be constructed before
the deadline. The algorithm must be able to choose the best possible subset of
goals which can be achieved from the problem set within the deadline of X. The
combination of all the goals within X is listed, the summation of scores within
each combination is also listed and the one with maximum score is selected.

Consider a simple problem set of three towers B1, B2, B3 with the estimated
scores P̂1, P̂2, P̂3 and estimated times being t̂1, t̂2, t̂3 respectively, the deadline
being the same X. Assume that t̂1 ≤ X, t̂2 ≤ X, andt̂3 ≤ X. The tower B3

is eliminated in the first place itself as the time taken to construct the tower
exceeds the limit. Now consider the other two towers and check if t̂1 + t̂2 ≤ Xif
yes then the possible combinations of towers would be B1, B2, B1 +B2 and their
respective scores are either P̂1, P̂2, P̂1 + P̂2 the greatest among the three is surely
P̂1 + P̂2. So the two towers B1 and B2 are constructed. Among those, as only
one tower can be constructed at a time the one with highest P̂ /t̂ is selected.
Else if t̂1 + t̂2 > X then the possible combinations are B1, B2 and the tower with
maximum score among the two is selected and constructed.

Case 3: Deadline of D=X and varying t and P In the previous case,
construction strictly follows the expected score and estimated time but in reality
the situation is never the same, it varies, so a random function is introduced



Autonomous Goal Selection 9

into the scenario, a seed is programmed to the random function to make the
randomness of FIFO and selection method uniform. This random function would
vary the score, time obtained at each action within ±20%, ±50% range of the
defined score and time values or expected values. For example, assume that the
score assigned for a successful operation is one then ±20% variation in score
refers that the score might be any random value between ±20% of one, or it can
be any random value between 0.8 to 1.2.

Case 4: Varying the Deadline, t and P In this case, the deadline varies
within the range of ±50% of D i.e., the deadline can be further increased or
decreased dynamically as the construction is in progress or while the goal is
being achieved. Along with the deadline, the score and the time are also varied
in the range ± 20%, ±50%.

6 Evaluation Results

The evaluation of the goal selection operation has been done by comparing the
percentage of the scores achieved by FIFO and the goal selection based on the
ratio of factors considered. Even this evaluation has been split into the same
two cases. For the first case i.e., the one with no deadline, even if both methods
choose the goals in different orders, the graphs coincide as 100% is achieved by
both methods. For the second case which is when a deadline is introduced, the
evaluation is performed for two different deadlines 5 and 10. The normalized
cumulative score is calculated for both the scenarios and is plotted against each
problem set. On the X-axis each problem set is the average of three different
problem sets and the Y-axis presents theirs normalized cumulative score. So as
a whole 30 problem sets are considered and represented in the graphical format.
The normalized cumulative score is calculated by comparing the ratio of score
achieved against the overall score i.e., consider the case with D = 10 and the
problem set is to construct the towers of height 4, 2, 5, 3. In the mentioned
problem set the score obtained by FIFO is 6 (as FIFO constructs the towers of
height 4 and 2)and the score achieved using the selection method is 7 (as the
Selection Method constructs the towers of height 4 and 3). Now their respective
score percentages would be 6/14=0.428 and 7/14=0.5. The percentages obtained
for 3 problem sets are taken and averaged to represent as a single problem set.

Figures 3 and 4 depict the difference in the performances of FIFO and the
goal selection with the selection method, in both the cases it is very clear that
the method using factors from domain outperforms FIFO, even with a larger
deadline the two methods might obtain same percentage in some cases but the
FIFO never yielded a better result than the selection method when every problem
set follows the expected values.

There exist some problems like problem set 3 in Figure 3 and problem set 8
in Figure 4 where the performance of both the selection method and the FIFO
coincide i.e., a parallel line indicates the value to be same but this coincidence
does not necessarily mean that all the result of all the three problem sets coincide.



10 Sravya Kondrakunta, Michael T. Cox

Fig. 3. Cumulative SM and FIFO scores
with D = 5

Fig. 4. Cumulative SM and FIFO scores
with D = 10

There are also cases like a problem set has two towers to construct then both
the goals exceed the deadline and nothing would be selected by intend. In that
case the score achieved would be zero. When the graphs in Figure 3 and Figure
4 are compared it can be easily observed that the percentage of goals achieved
when the deadline is increased is higher, this is because of the fact that there is
sufficient amount of time present to achieve more goals.

Fig. 5. Cumulative SM and FIFO scores
with D = 10 and both P and t varies by
±20%

Fig. 6. Cumulative SM and FIFO scores
with D = 10 and both P and t varies by
±50%

Figure 5 describes case 3 where the score and time varies by either ±20% or
±50% and the deadline remains constant and the actual scores with the selection
method and FIFO are plotted. In this case the time and score are varied within
±20% range of the expected values and the deadline is 10 and it remains 10
throughout, if for an action say the time taken would be 1, then the range of the
actual time would be within 0.8 to 1.2 and any number between the range could
be the time taken/actual time to complete the action. The variation is similar
with the scoring function as well. The problem sets 3 and 8 have the same actual
scores for the selection method and FIFO. The actual efficiency obtained in this
case using the selection method is around 60% whereas for FIFO it is around
50%. Even in this scenario FIFO is either lesser than or equal to the selection
method because the variation in the actual values from the actual values is
around 20%.



Autonomous Goal Selection 11

Figure 6 describes the case where the deadline is constant value 10 but there
is a variation in score, time values by ±50%. The actual scores for both the
methods are plotted in Figure 6. As we can notice the method using the selection
criterion yielded better results than the FIFO but if we take a closer look there
are also some cases where the FIFO performed better than the selection method.
Examples include problem sets 4 and 8.

Consider problem set 8. It is the set of three different problems generated
randomly and they are problem set 1: Towers of height 3, 2; problem set 2:
Towers of height 4, 1, 2; and problem set 3: Towers of height 2, 2, 3, 6. For
the above problem sets the selection method constructed the following towers:
problem set 1: 2, 3; problem set 2: 1, 2; and problem set 3: 2, 2; whereas the
FIFO constructed: problem set 1: 3, 2; problem set 2: 4, 1; and problem set 3:
2, 2. The time and performance in this case is varied by ±50% of the expected
time, the values for of actual time and scores for the above problem sets for
FIFO and selection method are as following: For FIFO: t, P for problem set 1:
(7.48, 5.412); problem set 2: (7.95, 5.516); and problem set 3: (5.75, 3.956); For
selection method: t, P for problem set 1: (7.48, 5.412); problem set 2: (4.133,
3.322); and problem set 3: (5.75, 3.956). There is a lot of variation in problem
set 2 than the other cases as the selection method started off by constructing
the tower with maximum ratio but the actual time and score varied drastically
than expected and it failed, whereas the FIFO started with the tallest tower as
it is generated first in the problem set and got a highest score irrespective of
the variation. So, when the variation in the performance measures is very high
than the expected the selection method might not work as best as expected. If
we take a look at the overall efficiency, then selection method is a little greater
than 45% and the FIFO is around 40%.

Fig. 7. Cumulative SM and FIFO scores
with D = 10(but varies by ±50%) and
both P and t varies by ±20%

Fig. 8. Cumulative SM and FIFO scores
with D = 10(but varies by ±50%) and
both P and t varies by ±50%

Figure 7 describes the case where the score and time vary with a varying
deadline. The actual scores with selection method and FIFO are plotted. In this
case the time and score are varied within ±20% range of the expected values. As
we can observe the variation of the deadline is also introduced in this case and
it is with ±50% range of the expected values. The efficiency using the selection



12 Sravya Kondrakunta, Michael T. Cox

method is around 55% and for FIFO it is a little less than 45%. Even in this case
FIFO beats the selection method at problem sets 3, 4 and 8, but the amount is
very small. Even in this case the reason for the selection method not performing
as good as expected is similar to the previous, i.e., if the variation in actual
values is very high than expected then the selection method might not work
good for some cases.

Figure 8 depicts the case for varying the deadline, score and time by ±50%.
Even in this case selection method yielded better results than the FIFO but in
some cases like problem set 4 and problem set 10 the FIFO yielded better results
than selection method. The efficiency of selection method is greater than 50%
and for the FIFO it is a little greater than 40%.

7 Related Research

Goal selection from a given set of goals by assigning priority values to each goal
has been presented in the ICARUS architecture [3]. The range of the priority
values vary from zero to ten with zero being the minimum and ten a maximum
value. Goal Reasoning with Informative Measures (GRIM) [9] is the system in
which some selection metrics like distance traversed and time are used to solve
the goal selection problem in a specific domain. This work is taken and has
been modified to fit in the blocks world domain in MIDCA architecture. In [16],
Goal Driven Autonomy is applied to underwater unmanned vehicles where the
vehicle is left to explore places that are undesirable for humans, in such places
it is very important for the vehicle to formulate prioritize and assign the goals
in a dynamic environment. All the works states above perform the goal selection
using various different methods.

The goal operations work is not only limited to the cognitive systems but
it is also useful in other applications like space research [2], here the new goals
are triggered based on the outcomes of the previous goals. This work has moti-
vated Rabideau et al. [14] in which they develop a goal selection algorithm with
oversubscribed resources by considering the constraints and priorities to choose
a goal.

The works of Klenk et al. [10], Cox [4] and Dannenhauer and Munoz-Avila [6]
on goal driven agents generation of new goals when a discrepancy is detected has
been a good motivation for the goal formulation described in the paper. Work
on T-ARTUE [13] learns the knowledge of goal selection from a user and the
criticism provided by the user for wrong selection, through interactive learning.
Harland et al. [7] provides various semantics for the goal life cycle in BDI agents,
and different types of goal states are described. It specifies the goal management
in an agent and also verifies for its correctness, this paper does not focus on multi
agents. Cox et al. [5] discusses the idea of goal transformations and provides a
formalism for several goal operations including goal selection.



Autonomous Goal Selection 13

8 Future Work and Conclusion

Goal selection is an action which humans perform on a regular basis. For ex-
ample, selecting the type of food, clothes and so on. Everyone performs those
operations based on their own preferences, resources available and expectations.
However, in this paper the goal selection is implemented using an intelligent
selection criterion on a simple scenario. This work can be further extended when
the construction is implemented with an extra resource called mortar. The pur-
pose of the mortar is to make the tower sturdy, i.e., if a tower is constructed
with mortared blocks then the stability of the tower would increase and the
score increases for each block while stacking as opposed to the regular stacking
(presented in the paper) which would be useful when there are not enough mor-
tar, and the constructed tower will not be as sturdy as mortar tower hence the
score would remain the same. As mentioned in the paper, anomalies like fire can
occur while construction, in such a scenario when an arsonist sets up a block on
fire, the priority should be given to the goal that puts the fire out rather than
continuing with the construction. The selection strategy should be extended to
include anomalous scenarios.

The work can be further generalized to other domains. For example, the
restaurant domain where the score can be an estimate of satisfaction of the
customer and the limiting factor can be money. The actual vs expected scores
can be compared by introducing a variation similar to the construction domain.
The goals presented in the paper are currently static and do not change, there is
also scope for the work to improve when the agent is encountered with scenarios
where the goals change dynamically. Complexity analysis on the work is not done
yet but can be worked on in future. The goal selection and goal transformation
can be applied together when the agent is out of mortar, then it can either quit
or the goal of “stable-on” can be transformed to “on” and then continue with
the construction. The work shows a clear improvement than the previous FIFO
method.

Acknowledgements

This research was supported by NSF under grant 1849131 and by ONR under
grant number N00014-18-1-2009. We thank the reviewers for the comments and
suggestions.

References

1. Aha, D. W., Cox, M. T., Muñoz-Avila, H.: Goal Reasoning: Papers from the ACS
Workshop (Technical Report CS-TR-5029).University of Maryland, Department of
Computer Science (2013)

2. Chien, S., Cichy, B., Davies, A.: An autonomous earth-observing sensorweb. IEEE
Intelligent Systems 20(3)16 – 24 (2005)

3. Choi, D.: Reactive goal management in a cognitive archi-tecture. Cognitive Systems
Research 12(3): 293-308 (2011)



14 Sravya Kondrakunta, Michael T. Cox

4. Cox, M. T.: Goal-Driven Autonomy and Question-Based Problem Recognition. In
Proceedings of the second Annual Conference on Advances in Cognitive Systems,
29-45. Palo Alto, CA: Cognitive Systems Foundation (2013)

5. Cox, M. T., Dannenhauer, D., Kondrakunta, S.: Goal operations for cognitive sys-
tems. In Proceedings of the Thir-ty-first AAAI Conference on Artificial Intelligence,
2501–2507. Palo Alto, California: Association for the Advancement of Artificial In-
telligence (2017)

6. Dannenhauer, D., Munoz-Avila, H.: Raising Expec-tations in GDA Agents Acting
in Dynamic Environments. In Proceedings of the International Joint Conference
on Artificial Intelligence. Palo Alto, CA: AAAI Press (2015)

7. Harland, J., Morley, D. N., Thangarajah, J., Smith, N.Y.: An operational semantics
for the goal life-cycle in BDI agents. Autonomous Agents and Multi-Agent Systems
28(4):682-719 (2014)

8. Hawes, N.: A Survey of Motivation Frameworks for In-telligent Systems. Artificial
Intelligence 175(5): 1020-1036 (2011)

9. Johnson, B., Roberts, M., Apker, T., Aha, D.W.: Goal reasoning with informa-
tion measures. In Proceedings of the Fourth Conference on Advances in Cognitive
Systems. Evans-ton, IL: Cognitive Systems Foundation (2016)

10. Klenk, M., Molineaux, M., Aha, D.W.: Goal-Driven Autonomy for Responding
to Unexpected Events in Strategy Simulations. Computational Intelligence 29(2):
187-206 (2013)

11. Paisner, M., Maynord, M., Cox, M. T., Perlis, D.: Goal-Driven Autonomy in Dy-
namic Environments. In D. W. Aha, M. T. Cox, H. Munoz-Avila (Eds.), Goal Rea-
soning: Papers from the ACS Workshop, 79-94. Tech. Rep. No. CS-TR-5029, De-
partment of Computer Science, University of Mary-land, College Park, MD (2013)

12. Pollack, M., Horty, J.F.: There’s More to Life Than Making Plans: Plan Manage-
ment in Dynamic, Multiagent En-vironments. AI Magazine 20(4): 71-83 (1999)

13. Powell, J., Molineaux, M., Aha, D.W.: Active and Interactive Discovery of Goal
Selection Knowledge. In Pro-ceedings of Twenty-Fourth International Florida Ar-
tificial Intelligence Research Society Conference, 413–418. Palm Beach, Florida:
Association for the Advancement of Artificial Intelligence (2011)

14. Rabideau, G., Chien. S.: Runtime Goal Selection with Oversubscribed Resources.
In Proceedings of Interna-tional Joint Conference Artificial Intelligence Workshop
on Oversubscribed Planning. Chicago, Illinois: Association for the Advancement
of Artificial Intelligence (2008)

15. Vattam, S., Klenk, M., Molineaux, M., Aha, D.W.: Breadth of Approaches to
Goal Reasoning: A Research Survey. In D. W. Aha, M. T. Cox, H. Munoz-Avila
(Eds.), Goal Reasoning: Papers from the ACS Workshop, 111-126. Tech. Rep. No.
CS-TR-5029, Department of Computer Science, Uni-versity of Maryland, College
Park, MD (2013)

16. Wilson, M., Auslander, B., Johnson, B., Apker, T., McMahon, J., Aha, D.W.:
Towards Applying Goal Autonomy for Vehicle Control. Goal Reasoning: Papers
from the ACS Workshop, 127–142. Department of Computer Science, Uni-versity
of Maryland, College Park, MD (2013)


