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Abstract

This article proposes the solver-aware system architecting framework for leveraging the
combined strengths of experts, crowds and specialists to design innovative complex systems.
Although system architecting theory has extensively explored the relationship between
alternative architecture forms and performance under operational uncertainty, limited
attention has been paid to differences due to who generates the solutions. The recent rise
in alternative solving methods, from gig workers to crowdsourcing to novel contracting
structures emphasises the need for deeper consideration of the link between architecting and
solver-capability in the context of complex system innovation. We investigate these inter-
actions through an abstract problem-solving simulation, representing alternative decom-
positions and solver archetypes of varying expertise, engaged through contractual structures
that match their solving type. We find that the preferred architecture changes depending on
which combinations of solvers are assigned. In addition, the best hybrid decomposition-
solver combinations simultaneously improve performance and cost, while reducing expert
reliance. To operationalise this new solver-aware framework, we induce two heuristics for
decomposition-assignment pairs and demonstrate the scale of their value in the simulation.
We also apply these two heuristics to reason about an example of a robotic manipulator
design problem to demonstrate their relevance in realistic complex system settings.

Key words: open innovation, systems architecture, modularity, design process, systems
engineering, solver-aware system architecting, crowdsourcing, design heuristics

1. Introduction

This article proposes a theoretical framework for how to organise complex system
design and development activities in a way that actively considers both strategies
for breaking up the technical work and the capabilities of potential solvers — both
inside and outside the organisation. We call this approach the solver-aware system
architecting (SASA) framework, where ‘solvers’ refer to the individuals and groups
who will engage in design and development work and ‘architecting’ refers to the
process of breaking up (decomposing) and coordinating that work. We suggest
that through a joint consideration of technical decomposition and solving capacity,
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organisations can leverage and combine the relative strengths of domain-experts,
crowds and specialists to improve complex system design and innovation. So far,
system architecting theory has focused on optimally grouping tasks or subpro-
blems based on attributes of the technical design space (Browning 2001; Crawley,
Cameron & Selva 2015; Eppinger & Ulrich 2015), and strategies for hedging against
changing operating environments, for example, through modularity (Ulrich 1995),
commonality (Boas, Cameron & Crawley 2013), flexibility and changeability
(Ulrich 1995; Brusoni & Prencipe 2001; Fricke & Schulz 2005; Brusoni et al.
2007). Multiple powerful tools have been created to aid in that process
(Sobieszczanski-Sobieski & Haftka 1997; Browning 2001; Ross, Rhodes & Hastings
2008; Martins & Lambe 2013; Neufville et al. 2019). However, although uncertainty
in the operating environment is core to systems engineering, the literature makes
the implicit assumption that systems will be developed by traditional players using
traditional practices. Here, traditional players are domain experts working in
typical organisational contexts. We contend that this view ignores an important
dimension regarding the players themselves. For example, even one-of-a-kind
satellites are composed of expected subsystems including propulsion, command
and data handling, power, and so on, interacting through traditional interfaces.
Established prime contractors serve as the systems integrator, and let contracts to
lower-tier suppliers. This concentrates potential novelty within the category of
payload, or within-subsystem advances (Szajnfarber & Weigel 2013; Vrolijk &
Szajnfarber 2015), even though there may be opportunities for architectural
innovation (Henderson & Clark 1990) which remain unexplored.

While the assumption of dominant architectures has been valid historically,
the recent rise of complex system innovations originating from outside of
traditional firm structures (Baldwin & Von Hippel 2011; Lakhani, Lifshitz- Assaf
& Tushman 2013) may limit its validity in the future. There is increasing
recognition that architectures developed to support traditional modes of engin-
eering design may be less effective when solutions are incorporated from a wider
range of stakeholders (Kittur et al. 2013; Vrolijk & Szajnfarber 2015). Specific-
ally, ‘Joint’ programs and ‘Systems-of-Systems’ are increasingly popular and
challenge traditional structures of authority, with multiple organisations collab-
orating as peers (Dwyer, Cameron & Szajnfarber 2015). Similarly, the ‘gig’
economy and other forms of ad hoc work are taking off, with nontraditional
players, including crowds of amateurs, increasingly being leveraged through
nontraditional contracting mechanisms, such as open competitions (Poetz &
Schreier 2012; Franzoni & Sauermann 2014; Gustetic et al. 2015; Suh & de Weck
2018; Lifshitz-Assaf, Lebovitz & Zalmanson 2021). Successes in these areas call
into question the notion that talent and expertise only reside within traditional
organisations and professions (Chesbrough 2003; Baldwin & Von Hippel 2011;
Gambardella, Raasch & von Hippel 2016; Lifshitz-Assaf 2018). From an archi-
tecture perspective, whether, and under what conditions, dominant forms are
the best option to leverage these new kinds of contributions.

We contend that traditional architecting practices developed for complex
systems engineering may be less effective when solutions are incorporated from
a wider range of stakeholders from inside and outside traditional firms. To test and
elaborate this idea, this article develops an abstract simulation model to study the
relationship between problem architecture, solver characteristics, and how that
interaction drives solution efficacy. We used this simulation framework to address
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three specific research questions: (a) How do characteristics of the solver (e.g.,
expert versus novice capabilities) affect which architectural form should be pre-
ferred? (b) Can ‘good’ architecting choices enable productive contributions from
nontraditional solvers (e.g., crowds of amateurs)? and more generally (c) How
should solver attributes be considered during the architecting process? With
respect to the first two questions, the simulation enables us to investigate relative
improvements due to decomposition decisions in conjunction with solver assign-
ment. We find that indeed the best alternatives include contributions from non-
traditional solvers working on architectures that would not have been selected
through typical practices (i.e., if these solvers were not considered as part of the
architecting process). Building on these observations, and in response to the third
question, we synthesise preliminary heuristics for ‘good’ module-solver pairs and
suggest strategies for SASA practices. We then discuss the relevance of these
findings to real-world engineering systems design and management.

2. Related literature

Our suggested framework (SASA) draws on, and elaborates, two main lines of
theory bringing together the management and systems engineering bodies of
literatures. Within these bodies of literature, we focus on the increased availability
of, and potential for, nontraditional sources of expertise to contribute to innov-
ation, and the need for correspondence between technical and organisational
structure. The below sections summarise these theoretical building blocks, starting
from the more general to the more specific, and then synthesise the specific gap
addressed by our work in the context of systems architecting.

2.1. The case for nontraditional expertise in the innovation
process

Since Schumpeter’s (1934) seminal work on the process of innovation, researchers
have theorised and analysed ways to organise for the production of scientific and
technological innovation (cf., Baldwin & Von Hippel 2011; Felin & Zenger 2014;
Benner & Tushman 2015). These theories usually assume that innovating on
scientific and technological problems is the sole purview of domain professionals
(i.e., experts). Indeed, as professionals gain experience and expertise, their ability to
solve the typical problems of their domain improves. Solving problems requires
high familiarity with the specific context in which they are situated (Vincenti 1990;
Carlile 2004), as well as with the domain’s tacit knowledge (Nonaka 1994; Argote &
Miron-Spektor 2011). However, the innovation literature has also shown that
professionals’ accumulated depth of knowledge is a double-edged sword. As
professionals gain expertise and socialise within their professional ‘epistemic
cultures’ (Cetina 2009), they often become ‘locked in’ to their professional cogni-
tive frames regarding a problem (Foster & Kaplan 2011), creating an ‘innovation
blindness’ (Leonardi 2011). Moreover, expert time and the availability of expert
labour is increasingly viewed as a scarce resource (Cappelli 2014), leading to many
engineering organisations to consider alternative models, including contractors
and in the extreme, just-in-time workforce (De Stefano 2015).

One way to overcome these challenges is by opening up problems to external,
nondomain, nonexpert solvers. In the last two decades, technological progress in
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information and communication technologies has made many of the tools needed
for the production of technological and scientific innovation widely accessible,
enabling individuals who are not domain professionals to innovate (Baldwin &
Von Hippel 2011; Wiggins & Crowston 2011; Altman, Nagle & Tushman 2014).
Multiple theories have been offered for how external solvers can contribute
‘extreme value solutions’ sampled from multiple solvers (Terwiesch & Xu 2008;
Jeppesen & Lakhani 2010) or by bringing novel perspectives to bear (Chubin 1976;
Collins & Evans 2002; Acar & van den Ende 2016; Szajnfarber & Vrolijk 2018;
Szajnfarber et al. 2020. In addition to bringing outside perspectives, open innov-
ation models can mitigate labour shortfalls by allowing experts to focus on the
issues that most critically need their focus, and tapping into external sources of
talent.

Open innovation approaches have been shown to be effective across multiple
contexts, solving aspects of problems from aerospace (Lifshitz-Assaf 2018; Szajn-
farber & Vrolijk 2018), to medicine (Ben-David 1960; Good & Su 2013; Lakhani
et al. 2013; Kiffner et al. 2015), energy and sustainability (Fayard, Gkeredakis &
Levina 2016), design (Panchal 2015; Chaudhari, Sha & Panchal 2018; Goucher-
Lambert & Cagan 2019), evaluation of tasks (Welinder et al. 2010; Budescu & Chen
2015; Krishna et al. 2017), astronomy (Wiggins & Crowston 2011), to software
engineering (Mao et al. 2017) and robotics (Szajnfarber et al. 2020), among many
other fields of science (Franzoni & Sauermann 2014; Beck et al. 2020). Despite
these successes, many sustain that open innovation only works well for certain
types of problems that match the strengths of external solving (Boudreau &
Lakhani 2009). Even among strong proponents of open and distributed innov-
ation, there is a notion that applying open innovation methods with crowds should
be reserved for modular problems and not complex ones. Complex problems or
systems are typically defined in terms of their high number of parts, the nontrivial
dependencies among those parts, and the contributions they incorporate from
multiple disciplines (De Weck, Roos & Magee 2011). These interdependencies —
both among the technical parts and the deep contextual knowledge associated with
them and their integration — have led scholars to suggest that it is unlikely for
crowds to solve whole complex problems (Lakhani et al. 2013; Felin & Zenger
2014).

2.2. Mirroring: correspondence of technical and organisational
structures

Fundamental to the design of complex systems is the core organisational function
of coordinating interdependent tasks (cf., Galbraith 1974; Thompson 2003).
Interdependent tasks arise when complex systems are partitioned into lower
complexity subproblems (Simon 1962, 1996). However, since most complex
problems are only partially decomposable (Simon 1962), there remains a critical
task of managing those interdependencies (Campagnolo & Camuffo 2010). This
led organisational scholars to conceptualise design as an organisational problem-
solving process where the goal is to place organisational links such that scarce
cognitive resources are conserved (Baldwin & Clark 2000; Colfer & Baldwin 2016)
and to build theory around where such ties should be placed (Parnas 1972;
Hoffman & Weiss 2001; Thompson 2003).
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Working across multiple disciplines and domains, researchers began noticing
that ‘the formal structure of an organisation will (or should) “mirror” the design of
the underlying technical system’ (Conway 1968; Henderson & Clark 1990; Von
Hippel 1990; Sanchez & Mahoney 1996; Chesbrough & Teece 1998; Baldwin &
Clark 2000; Cabigiosu & Camuffo 2012). Colfer & Baldwin (2016) formalised these
ideas as the so-called Mirroring Hypothesis, which states that organisational ties
are more likely to be present in places where technical interdependencies are
present (or dense) and that ‘mirrored” systems perform better.

An extension of this idea is that the relationship between technical and
organisational dependencies can be intentionally designed to be better match
(Ulrich 1995; Hoffman & Weiss 2001; Camuffo & Wilhelm 2016). Since coordin-
ating across dependencies can be so costly, these scholars emphasise minimising
across-module dependencies, managed instead through design rules (Baldwin &
Clark 2000). Specifically, Parnas’s notion of modules as being “characterized by its
knowledge of a design decision that it hides from all others” (Parnas 1972, p. 1056)
emphasises the role and value of information hiding in complex system design
(Baldwin & Clark 2000). This is particularly important when nontraditional
contributors are involved because it opens to door for lower-skilled contributions.
Moreover, it opens the door to consider different modules depending on which
decisions need to be hidden.

2.3. Current focus of system architecting: the technical system
and its environment

At its core, systems engineering aims to architect complex systems such that
subtasks can be completed efficiently in parallel, and later re-integrated to make
a system that delivers value over long lifetimes (Haskins et al. 2006). Upfront
architecting choices are critical because they affect both the process of designing
and later, the system’s ability to sustain value postdeployment over extended
lifetimes. During design, the architecture defines the task units and the need for
coordination among them (Parnas 1972; Baldwin & Clark 2000; Brusoni & Pre-
ncipe 2006). Post deployment that same structure enables (or constrains) which
subsystems can be easily replaced and or upgraded as emergent needs arise (Fricke
& Schulz 2005; Holtta-Otto & de Weck 2007).

Systems Architecting is a process of mapping function to form for a given
design concept (Crawley et al. 2015). It is recognised as both an art and a science
(Maier 1998; Maier & Rechtin 2009) because successful architecting requires a
synergistic combination of both. The science facet describes the necessity to
conform with the relevant engineering principles and the normative standards
(e.g., laws, codes and regulations). Whereas, the art facet represents the informal
skills that are needed for the comprehensive identification of the stakeholders and
incorporation of their conflicting preferences into the design process, along with
the heuristics for facilitating these counterbalancing objectives.

Architecting involves making trade-offs between performance, cost, and sched-
ule, under ambiguity and uncertainty regarding both the characteristics of the
system and its operational environment (Malak et al. 2009; Blanchard & Fabrycky
2011). This incentivizes practicing system architects to adopt an uncertainty
reducing approach, where the abstract concept is iteratively refined by articulating
its inputs, outputs, and processes, along with the interfaces through which these
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interactions will occur (Kossiakoff & Sweet 2003; Larson et al. 2009; Buede & Miller
2016). The concept development is followed by an exploration of the design space
(Hazelrigg 1998; Du & Chen 2002; Ross et al. 2008; Collopy & Hollingsworth 2011;
Topcu & Mesmer 2018).

While earlier research focused on identifying and optimising feasible alterna-
tives within the design space (Chen, Allen & Mistree 1997; Papalambros & Wilde
2000; Brusoni & Prencipe 2001), in the last decades the community has shifted its
attention to decomposition. In the design literature, decomposition focuses on the
technical problem space (Eck, Mcadams & Vermaas 2007), whether it is at the
conceptual design level or at the parametric level. The Pahl and Beitz systematic
design method (Pahl & Beitz 2013), for example, prescribes hierarchical decom-
position of the function structure as a core strategy for conceptual design. Within
the multidisciplinary design and optimization (MDO) literature, the goal is to
concurrently handle the interdependencies among coupled design variables, which
may be shared across different disciplines, in pursuit of a preferred system-level
solution (Martins & Lambe 2013). In MDO, often the complexity of finding an
optimal solution is reduced by decomposing the parametric design space (Kusiak &
Wang 1993; Tribes, Dubé, & Trépanier 2005). MDO techniques including con-
current subspace optimization (Sobieszczanski-Sobieski 1988; Bloebaum, Hajela &
Sobieszczanski-Sobieski 1992), collaborative optimization (Braun et al. 1996), bi-
level integrated system synthesis (Sobieszczanski-Sobieski, Agte & Sandusky
2000), and analytical target cascading (Kim et al. 2003; Bayrak, Kang & Papalam-
bros 2016) use different forms of problem decomposition and coordination
between the subproblems.

In the systems engineering literature, emphasis is placed on the interactions
of the system with its uncertain operational environment and identifying
decomposition strategies that sustain value over uncertain and extended life-
cycles. These design strategies are generally referred to as the “ilities,” includ-
ing, flexibility and changeability (Fricke & Schulz 2005; Ross et al. 2008;
Broniatowski 2017), survivability (Richards 2009), modularity (Sanchez &
Mahoney 1996; Fixson & Park 2008) and commonality (Boas & Crawley
2011). At their core is the insight that alternative decompositions sustain value
in response to different environmental disruptions, including both threats and
opportunities (e.g., changing markets) (Pine 1993; Fogliatto, Da Silveira &
Borenstein 2012; Colombo et al. 2020). These ideas have been applied to both
integrated and distributed systems (Mosleh, Ludlow & Heydari 2016; Mosleh,
Dalili & Heydari 2018).

Overall, the literature recognises decomposition (through modularity or
otherwise) as a key strategy in complexity reduction and management, and to
enable sustained value across long uncertain lifetimes. However, there is also
recognition that too much decomposition can be detrimental to system per-
formance (Ethiraj & Levinthal 2004; Topcu et al. 2021). The need to identify
the right balance is particularly poignant when considering contributions from
nonexpert solvers, as in open innovation. In that context, the desire to reduce
scope and complexity to enable wider participation (Szajnfarber & Vrolijk
2018), while retaining the value that comes from jointly optimising shared
variables (Sobieszczanski-Sobieski & Haftka 1997; Martins & Lambe 2013)
emphasises the need for guidance on achieving the ‘right” level and mode of
decomposition.
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2.4. Research gap: the need to assess solver capabilities early in
the architecting process

So far, these perspectives all emphasise the need to consider downstream uncer-
tainties during the design stage. Here, we introduce a new dimension in the design
process, namely, solver capability. While the notion of decomposing problems to
make solving more tractable is not new (Garud & Kumaraswamy 1995; Baldwin &
Clark 2000; Schilling 2000; Raveendran, Puranam & Warglien 2016); for the first
time, we systematically explore the interaction of architecting choices and how that
enables solvers with different capabilities to contribute. Building on the mirroring
hypothesis ideas that technical and organisational architectures must match, and
wishing to leverage the increased capability and availability of nontraditional
solvers, we explore how new ways of grouping and partitioning design variables
can create new opportunities for nonexpert solving. The contribution is in both the
formulation of a SASA process and specific insights about the relationship between
solvers and decomposing. Fundamentally, we propose a rethinking of system
architecting as a sociotechnical process, allowing for a joint consideration of
problem formulation, organisational knowledge and external expertise to improve
design process outcomes.

3. Model formulation

We wish to explore the relationship between design decomposition and solver
assignment in the context of system architecting. More broadly the goal is to
generate insight about when, under what conditions, nondomain, nonexperts can
contribute high-quality solutions to difficult ‘expert-only’ problems. To do this, we
examine alternative problem decompositions in combination with task assignment
to solvers with differing capabilities, within an abstract simulation model (Kleijnen
2018). The overall model flow is illustrated in Figure 1. The simulation framework
begins by instantiating a reference problem in context; this creates the baseline
values against which every other simulation will be compared. Next, multiple
alternative architectures, operationalised as task structures, for solving that prob-
lem, are defined. Third, alternative solver types are instantiated and assigned
combinatorially to every task structure at the task level. Finally, problem solving
is simulated for each combination, with solvers executing their assigned tasks in the
context of the overall task structure. The model maintains an accounting of
multiple relevant measures of merit: performance, cost and reliance on domain

Instantiate Reference
Problem in Context

Define Alternative Assign Solver(s) to Simulate Problem
Task Structure(s) Task Structure(s) Solving Process

Step 1

Step 2 Step 3 Step 4

Figure 1. An overview of the simulation model. Squares represent task structures and the colours represent
assignment to a different solver archetype.

7/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1017/dsj.2022.7

Design Science

experts. As with any simplified model world, care must be taken to assess to scope
of representativeness, which is discussed in Section 3.6.

3.1. Instantiating a reference problem and context

Problem-solving processes are frequently represented as a sequence of inter-
dependent tasks, where the output of task, defines the input of task, , ; along
with potential feedback from other processes (McNerney et al. 2011; Guan & Chen
2018; Shergadwala et al. 2018; Eletreby et al. 2020). A cartoon of a two-task system
of this form is illustrated in Figure 1. When modelling such task structures, it is also
necessary to represent the underlying ‘physics’ of each task, since it drives the
internal solving processes. Some authors represent the task model in general terms,
typically combining the problem and solver as a solving process (see Terwiesch &
Xu 2008; Meluso, Austin-Breneman & Shaw 2020; Valencia-Romero & Grogan
2020), whereas others adopt a reference system, model the interdependencies
among its elements and use this platform to study the investigated trade-offs
(Sobieszczanski-Sobieski & Haftka 1997; Hazelrigg 1998; Sinha et al. 2001; Topcu
& Mesmer 2018). We chose to adopt a reference system because it enables easier
intuition about the opportunities for feasible alternative task structures and solver
types. Specifically, we adopted the problem of playing a golf tournament as our
reference problem.

Although golf may seem like an unusual choice for a reference problem, it meets
the most relevant criteria, while also enabling intuitive interpretation of results.
Golf is a game dominated by domain experts, even though amateurs and aspir-
ational professionals abound. The tasks associated with playing golf follow the
structure defined above. It includes feedforward dependencies in that the difficulty
of every next stroke is defined by the result of the last. For example, a favourable
green placement makes for an easy putt compared to an approach that lands in the
rough. It also includes shared design variables across subfunctions, in that profes-
sional golfers prefer to ‘set up’ their next shots in accordance with their particular
skills. For example, one golfer might prefer to approach the pin with a short chip off
the fairway, whereas other might have more confidence in their long-putting. In
either case, the subsequent preference influences choices made during the driving
stage.

Additionally, there is variability in both the kinds of tasks associated with
playing golf and the availability of amateurs who are qualified to perform them.
Driving off the tee requires strength and form and is something that some people
specialise in - the longest drivers in the world would not qualify for the Professional
Golf Association (PGA) tour. In contrast, putting requires a lighter touch and an
ability to ‘read’ the green. Every amateur can putt, but few can do so reliably. These
attributes give us the space to define a model world with different decompositions
and different task assignments. Finally, as the problem of golf is decomposed, each
subsystem embodies different objectives, that in some cases are multivariate. For
example, a good approach is defined both by the resulting green placement and the
number of strokes to achieve it. This creates richness in interface choices (e.g.,
picking the closest ball is an easier handoff than weighting both figures of merit)
that are representative of real-world module design challenges.

In the model, we represent the golf context as a nine-hole golf course where
each identical hole measures 700 yards from tee to pin, along a straight line. Solving
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Current
.Hole X Ball

the ‘problem’ requires the player(s) to move the ball from the tee to the pin using a
sequence of generic golf strokes. Most attempts result in the ball sinking in a
reasonable number of strokes, through some runs never converge (we implement a
‘mercy rule’ after 15 strokes). The simulation implements three stroke types -
driving off the tee, shots from the fairway and putting. Within each stroke type, we
include variations that depend on the context of the ball placement. For example,
on the fairway, golfers might aim for the pin if they are within range. These stroke
types are reflective of the major differences in golf club options and techniques,
without some of the subtle variation available in a modern golf set.

Figure 2a shows the flow of each model run for the whole problem: after the first
drive, simulated players pick the stroke type that is most appropriate for the next
shot based on the current ball position. When the model is executed for alternative
decompositions and assignments to solver types, two key changes are made to the
flow. First, the problem formulation changes the boundaries of which modules are
solved and how they are coordinated (see Section 3.2). Second, when alternative
solvers (Section 3.3) participate in a tournament structure, this means that for each
assignment the model is run ‘K’ times, for the size of the tournament, then the
outcomes are judged and only the best of K is retained. Each selection happens on a
per module basis, so for a decomposed problem, there may be more than one
tournament and associated selection.

3.2. Alternative task structures

To define alternative task structures for solving the golf ‘problem’ we follow
established principles from the systems engineering literature on the modulariza-
tion of systems (Ulrich 1995; Eppinger 1997; Browning 2001; Holtta-Otto & de
Weck 2007; Eppinger & Browning 2012). The basic principle is to decompose the
system such that tightly couple tasks with similar functions are grouped together in
modules, and loosely couple tasks are separated (Parnas 1972; Baldwin & Clark
2000; Parnas et al. 2000; Schilling 2000). Since most practical systems can only be
partially decoupled (Simon 1962), once the basic structure has been defined, rules
for how modules interact must be defined in advance. A given system can be
modularized in multiple different ways (Crawley et al. 2015). Importantly, the
process of decomposing generates new subproblems that may rely on, and

distance~— Position

Baseline Simulation Formulation for Whole Hole Simulation Parameters Pro Amateur Specialist
From the Tee
In Hole @cnd Long Drive Stroke N~ (250,15) N~ (150,30) N ~ (450,30)
From the Fairway

Start

On the Tee?

Long
Drive

Distance traveled

From the Fairway

From the Green Long Approach N~ (200,10) N~ (100,20) N ~ (100,20)

Aim Approach N~ (d-Offset,0.05%d) N~ (d-Offset,0.2*d) N~ (d-Offset,0.2*d)
Within range? Coin Toss Sweetspot Approach N~ (d-0.5*Offset,0.03*d) NA NA
From the Green
Probability of Good Putt 0.8 0.2 0.2
Good Putt Good Putt N~ (d,0.01%d) N~ (d,0.05%d) N~ (d,0.05%d)
Bad Putt u~(0,15) U~ (0,15) U ~(0,15)

Constants

Range: 200 Yards from the hole, where players transition to aiming instead of hitting far
Flub Putt d: Distance to the pin from the current ball position
Offset: A fixed distance of 10 yards from the pin, used to control the roll on the green

Long
Approach

Figure 2. (a) Flowchart of the simulation based on field position (Tee, Fairway and Green) and stroke types
(Drive, Approach and Putt) and (b) simulation parameters for strokes per solver type. *‘d’ represents the
remaining distance to the hole, ‘N” denotes normal distribution and ‘U’ represents uniform distribution.
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prioritise, different types of expertise than the original problem, potentially open-
ing the door for external contributions.

In the context of the golf problem, we identified three reasonable modules
based on functional similarity: Tee, where the primary functional objective is
distance; Fairway, which combines a need for both distance and accuracy and
Green, which is almost exclusively focused on accuracy. We then designed the
interfaces and coordination rules that would enable combinations of these
subfunctions to perform the overall golf function. To formally represent the
alternatives, we adopt the widely used DSM N Xx N representation (Steward
1981; Schilling 2000; Browning 2001; Browning 2016) to document the resultant
alternative decompositions in terms of tasks and their interaction rules. In a
DSM representation, each of the rows (and corresponding columns) relate to a
predefined system element (in this case modules) and the off-diagonal x’s
represent dependencies. Below the diagonal dependencies are feedforward, and
above them are feedback.

When modules are decoupled for the purpose of solving, dependencies can be
replaced with design rules (Baldwin & Clark 2000). This is shown by the R’s in the
DSM representation. In golf, as in engineering, the choice of design rule can have
an important impact on overall system performance. In most cases, there is a trade-
off between ease of coordination and optimality of the rule. In the specific instance
of golf, this manifests as two alternative rules for how to pick the best output from
module 7 to pass to module n + 1: (a) pick the shortest remaining distance to the
hole versus (b) of the attempts with the fewest strokes, pick the one with the
shortest distance to the hole. In the first case, the judgement can be made easily on
the whole population, but especially with large numbers of trials, there will be many
instances where a slight improvement in the distance comes with a cost in stroke
count. This can be detrimental to overall performance since, at the system level,
strokes are what matters most. On the other hand, to make the more sophisticated
evaluation that includes both features, the judgement can no longer be made at the
population level. Rather each trial must be tracked to record the stroke count per
ball. This will guarantee a better overall result, but comes at a high coordination
cost. In future work, one could explore the complexities of this trade-off, but since
our present focus is on decomposition, we will adopt the practical design rule
(shortest distance) in the remainder of the discussion.

In the baseline problem per Figure 2, solvers begin at the Tee with the problem
statement: sink the ball in the fewest strokes. In practice, when a single golf Pro is
responsible for the whole problem, they can apply system-level strategy to their
solution as desired. For example, one strategic element is a choice to either choke
up on a drive to set up a more ‘favourable’ approach shot or take a (normal) long
drive shot. Favourable here is a ‘sweet spot” on the fairway: typically the ‘sweet spot’
is unique to each pro based on their specific style of play. To simplify, in the model
we assumed Pros always prefer to approach from the (fixed) ‘sweet spot” and that
fairway shots taken from the ‘sweet spot’ are both more accurate and aim for a
closer green position. As a result, they are more likely to result in a better green
position, leading to fewer strokes on the green to sink. In the model, this strategy is
only available to Pros and only when T and F reside in the same module (as in H
and LG shown in Figure 3) because the Pro assigned to T would not be aware of the
preferences of the solver assigned to F, a necessary condition for adopting a system-
level strategy.
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Each of the panels in Figure 3 represents alternative solving architectures,
breaking up the problem through different combinations of the three identified
subtasks: Tee, Fairway and Green. When dependencies are contained within a
subproblem, they are managed internally by the single solver. When decompos-
ition breaks those dependencies, they are replaced by design rules (R1 and R2) or
just removed, in the case of the feedback between T and F. Specifics of each
architecture are as follows:

(i) H:Figure 3a shows the baseline H, which solves the problem: sink the ball in
the fewest strokes, follows the solving process outlined above.

(if) LG: Figure 3b breaks H into two tasks: the long game (L) where the task is
presented as the following: starting from the Tee, reach the green in as few
strokes as possible; and green (G) where the task is: starting from the green, sink
the ball in the hole in as few strokes as possible. To combine L and G into the LG
architecture a coordinator C is introduced to manage a handoff rule (R2). R2
defines which ball initiates the G module, that is: pick the ball that is closest to
the hole.

(iii) TFG: Figure 3c breaks H into three tasks: Tee (T) where the task is: hit the ball
as far as possible; the fairway (F), where the task is: from the fairway get as close
to hole on the green as possible; and green (G) described above. T, F and G are
combined into TFG through a coordinator C managing two handoff rules, R1
and R2. R1: pick the ball closest to the hole. R2 is as above.

(iv) TS: Figure 3d breaks H into two tasks: Tee (T), as above; and the short game
(S), where the task is: from the Fairway, sink the ball in as few strokes as
possible. T and S are combined into TS through the R1 handoff rule.

Even in this relatively simple problem, the act of decomposing creates multiple
subproblems with different primary objectives (e.g., hit far versus traverse with
fewest strokes). These different problem statements have the potential to attract
and enable solvers with different skill sets.

3.3. Solver types

In defining alternative solver types, the goal was to reflect the novel sources of
expertise identified in the open and distributed innovation literature. The open
innovation literature suggests value from external contributions through three
main mechanisms: (a) independent draws over a solution distribution whereby
the value comes from our ability to select right-tailed solutions after the fact

X R1
R2 R2

Hole (H) Long-Green (LG) Tee-Fairway Tee-Short (TS)
Green (TFG)

Figure 3. The baseline undecomposed expert-only problem H (a), LG decomposition (b), TFG decomposition
(c) and TS decomposition (d).
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(Taylor 1995; Terwiesch & Xu 2008); independent draws over a talent distri-
bution whereby the value comes from identifying talented solvers who have
not had the opportunity to reveal their capabilities through normal labour
markets (Fullerton et al. 2002; Afuah & Tucci 2012; Franzoni & Sauermann
2014; Budescu & Chen 2015; Szajnfarber et al. 2020); or (b) distant expert
searches whereby the process of search identifies external disciplines that share
similar underlying skills (Collins & Evans 2002; Szajnfarber & Vrolijk 2018). In
the latter case, the solvers are experts in their own right, but they come from
another discipline and therefore are unlikely to be experts in all aspects of the
domain problem and may not be able to map all of their skills without help
(Szajnfarber et al. 2020.

Here, we define three solver archetypes to cover the above mechanisms and
also the traditional discipline-expert baseline. In the context of golf, these are
Professional golfers (the baseline), Amateur golfers (who represent the random
solution draws) and Specialist long-drivers (which combines the second and
third category where the search is for out-of-discipline, or out-of-domain talent).
These types have meaning in the context of golf, but also reflect the broader
context of expertise in problem solving and innovation. Professionals are
assumed to be good and reliable at all aspects of solving. Amateurs, exhibit
both a lower average capability and much higher variability in their performance
on any given stroke. Specialists represent experts from another domain that
shares one common function. As such, they behave like amateurs in general but
are excellent at the one overlapping task, on which they are specialists. In this
case, we only introduce driving specialists, taking inspiration from the profes-
sional long driving association.

In the model, the different capabilities of these player types are represented
as a function of their relative performance on each of the three facets of
playing golf described above: driving, approach and putting. Each shot is
simulated as a random variable, drawing from a distribution that reflects the
function of that stroke in the game of golf. For example, driving draws from a
normal distribution, putting strokes are represented with a coin flip between a
good putt and a ‘flubbed” putt. Good putts draw from a normal distribution,
while flubbed putts draw from a uniform distribution to better represent the
situation where a poor read of the green can result in a regression from the
hole. Each of the distributions is parameterized differently to match the
specific solver type. Therefore, while professionals and amateurs both use
the same putting function, the former are much more likely to have a good
putt, than the latter. Note that not all the differences between solver types
persist across the different functions. This creates the opportunity for certain
subproblems that do not rely on all the same golf functions to be more
amenable to one type of solver than others.

3.4. Solver assignment

One of the core advantages of decomposition is that it enables tasks to be
conducted independently (Eppinger et al. 1994; Eppinger 1997). Even when a
sequential dependency is preserved (as is the case here) decomposition makes
it possible to assign tasks to different solvers, which enables task specialisation
(Tushman & Nadler 1978; Nonaka 1994). To explore the impact of
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Figure 4. Alternative assignment of solvers to tasks of an LG architecture. The boxes represent the tasks (L and
G shown) where the colours (Blue, Red and Black) represent solver types.

assignment, our model enables every combination of solver assignments to be
simulated for each decomposition. Figure 4 shows how task assignment works
for the two module LG decomposition with the three types of solvers defined
in Figure 2b.

While it is possible that all three solver types could engage through multiple
different mechanisms (e.g., long-term employment, contracts, prize competitions)
(Safarkhani, Bilionis & Panchal 2020), we focus on the most common mode for
each of the three solver archetypes. Specifically, in the model:

(i) Professionals follow an employment contract, wherein a single pro is assigned
the work and they are paid a wage (wp) for the work they do (i.e., for each
stroke, Sp, they take), so cwp=wp X Sp.

(if) Amateurs are paid as if they are participating in a simple winner-takes-all
Crowdsourcing Contest, which allows for an intuitive analogy with amateur
golf tournaments. We assume that the seeker organisation poses a problem or
a Task such as T, F, G, L or S, along with a prize purse (p). This attracts the
amateur solvers who generate solutions to compete for the purse. Then, the
seeker makes an ex-post selection based on the quality distribution of the
solver solutions. Therefore, the only incurred cost of amateur tournaments is
so from the firm’s perspective it is cywa = p. In the baseline model, we define a
crowdsourcing tournament to include 100 participants, which is a moderate
size tournament.

(iii) Specialists are represented as technical contractors. Here, we specify a bidding
phase wherein n competing contractors demonstrate their capability and a
work phase where a single contractor is selected to execute the task. The cost
to the firm is, therefore, cyys = b X (m — 1) + wg X Ss. In the baseline model,
the number of bidders () is always three, and we assume the bidding cost (b)
to be one-tenth of the specialist wage (ws). To reflect differences in wages,
Professionals are paid 10 cost units per stroke, amateurs are paid 1 and
specialists are paid 12.
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3.5. Model execution and accounting

To generate the data for our analysis, we ran a Monte Carlo simulation, with 1000
iterations.' A single run of the model simulates nine holes of golf played in each
task structure (H, LG, TFG and TS) with all combinations of assignment (Pro, Am
and Spec). Since assignment happens at the task level, that constitutes the baseline
(H_Pro) and 47 alternative scenarios.

For each run, we recorded three measures of interest: performance, cost and
expert reliance. We track these attributes separately since in many practical
settings one might expect the seeking organisation to have different relative
preferences among them. For example, if expert bandwidth is extremely scarce,
an organisation might be willing to compromise on the cost to free up time (e.g., by
hiring external specialists).

Performance

In typical problem-solving contexts, system performance considers one or both the
performance of the artefact and schedule performance. For example, in the race for
COVID-19 vaccine development, a key measure of merit was speed to FDA
approval (subject to the threshold performance of adequate safety and effective-
ness). In the context of golf, performance (P) is simply measured as the fewest
strokes to achieve the threshold of completing the course. Schedule is rarely
considered, though fewer strokes are highly correlated to quicker play. Thus, in
the analysis, we adopt the single-dimensional measure of strokes to complete nine
holes, where lower is better, and we compute it following Eq. (1):

P33 M

In Eq. (1), s is the number of strokes, j is tasks and i is holes.

Cost

Product development processes incur costs (C) in three main activities, architect-
ing, execution and integration (Eppinger & Ulrich 2015). Architecting activities
typically involve planning the breakdown of tasks and associated requirements
allocation. Execution is when the development work is done by assigned work
groups. Integration is when the outputs of execution tasks are recombined. In our
formulation of golf - where different player types can be assigned to subtasks with a
hole - costs are incurred in the same generic categories. Therefore, we calculate
costs following Eq. (2):

C= Carchitecting + Cexecution + Cintegration - (2)

Execution costs are a function of the solver assignment and the associated cost
function. Architecting costs are assumed to be constant for modularized architec-
tures and negligible for the undecomposed problem. Assuming that this work is
done by knowledgeable experts, as is typical in the industry, we represent it in our
model with cyrehitecting = Wp- Integration in the context of golf involves coordinat-
ing the defined hand-off rules between modules. Since our rule requires the

'We explored a large number of Monte-Carlo iterations and chose 1 = 1000 to report our results
since it achieves stability of distributions while balancing the computational cost.
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coordinators to know the number of strokes ‘taken’ by each ball, we assume one
low-skilled ball tracker per participant. cintegration = X Wc, where 7 is the number
of participants (e.g., 100 for an amateur tournament) andwc is the wage for each
coordinator.

Expert reliance

Experts are a scarce resource in most fields. Thus, while experts are often better at
most of the specialised tasks in their field, if the goal is to speed up innovation, for
example in the Space Race, the Manhattan project or the race to a COVID-19
vaccine, tracking expert reliance (R) can be a key measure of merit as well. If some
tasks can be removed from the expert’s plate, it gives them more time to focus on
the tasks on which they have the most comparative advantage. Therefore, we also
tracked expert reliance following Eq. (3):

R=—F 3)
Sp+Ss+Sa

It is important to note that lower expert reliance does not necessarily indicate a
good outcome. Among the three outcome measures, some level of performance
must always be maintained. Cost and expert reliance are measures of merit too, but
they are more to provide important balances in the tradespace. For example,
depending on the context, freeing up 50% of the expert time for a 1% penalty in
performance might be a preferable trade-off, since those experts (employees) could
presumably put that freed up time to other valuable uses. These trade-offs will be
explored in the model analysis below.

3.6. Verification, validation and calibration of baseline scenario

In an abstract simulation model, attempting to match model outputs to empir-
ical data is of limited value. Instead, our verification efforts focused on ensuring
that (a) the accounting was executed correctly through unit testing subfunctions
(Zeigler, Muzy & Kofman 2018) and (b) the decomposition and solver assign-
ment processes are self-consistent. For item (b), Figure 5a confirms that the
process of reformulating the model to satisfy the alternative decompositions was
done correctly. Specifically, it shows the results for a single solver (Pro, Am or
Spec) playing each of the alternative decompositions (H, TS, LG and TFG),
where performance is measured as strokes to complete the nine holes (lower is
better). We expect to see the following: (a) since decomposition hurts perform-
ance when the opportunity for strategic overview is removed - in this case, Pros
lose the ability to plan their approach by aiming for the ‘sweet spot’ - in the Pro
facet, H and LG should show better performance than TS and TFG. (b) Since
decomposition improves performance by enabling specialisation, parallel work
or multiple selections at the subproblem level, none of which are present when
single players of a fixed archetype are simulated, all other variants should be
constant within the same solver type. These results verify that the model is
working as intended.

In terms of model validation, the critical question is whether the simulation
adequately represents the research question we wish to explore. We addressed this
both practically and theoretically. Practically, Section 3.1 justified golf as a repre-
sentative interdependent system design problem. The relationship between
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Figure 5. Consistency of solver efficacy for different decompositions (a) and comparison of amateur
tournaments of increasing size (shown in blue confidence intervals) to the performance of a professional
benchmark (shown in horizontal black line) (b). We multiplied confidence intervals with five for ease of
readability.

attributes of the problem structure of golf and other more typical system design
problems are further elaborated in Appendix A, through comparison to the design
of an autonomous robotic manipulator. We argue that golf provides a useful basis
for analytical generalizability (Eisenhardt 1989; Yin 2003) in terms of the focal
impact on decomposition and solver capability. However, we recognise that the
golf context is limited in terms of its representation of aspects like infusion costs.
Moreover, while the specific golf formulation enables variation in both quality and
approach to solving, in the end, most golf attempts result in game completion
(albeit with very poor performance) where not all innovation attempts result in a
functional product. This may lead to an overestimate of the potential for crowd
contributions in the simulation results.

Theoretically, what is most important is that our baseline model replicates an
‘expert-only” innovation problem at the system level - one where, no matter how
large the crowd, experts still provide dominant solutions to H - so that our results
cannot be attributed to the stochastic nature of generating results from a normal
distribution. This is important because a potential criticism of relying on normal
distributions is that it unrealistically advantages tournaments of amateurs, because
(a) the formulation incorrectly assumes that amateur solutions will be correct and
(b) it is over-optimistic about how good the best crowd-derived solutions will be.

With respect to concern (a), the model does not assume the correctness of all
amateur solutions. In practice, to deal with a wide range of solutions types and
qualities, a strong burden is placed on challenge evaluators to weed out inappro-
priate solutions (Gustetic et al. 2015; Acar 2019). This feature is represented in the
model through the choice of selection rules introduced in Section 3.1. The premise
of a crowdsourcing tournament is that the seeker only needs one good solution
(Taylor 1995) and is indifferent to whether many more inappropriate solutions are
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provided, as long as the types can be distinguished. In many of our model runs,
some amateurs overshot substantially and ended up in a worse ball position at
sn+1than they had been for s,,. These runs do not show up in the final results because
they were rarely the best of the 100 entries. In fact, a ‘mercy rule’ was introduced
after 15 putts to handle cases where amateur runs were not making progress.

With respect to criticism (b), the concern about right-tail sampling exaggerat-
ing the performance of crowd solutions is fair. To address this concern, the base
distributions for each solver type were calibrated to be sufficiently different from
each other that even with an inordinately large crowd, experts dominate in the H
architecture. Further, since we are not aiming to predict absolute performance, and
instead of comparing performance changes due to alternative decompositions,
with the H baseline established, any improvements observed in LG, TFG or TS are
due to the architecture not the sampling.

To demonstrate this condition, Figure 5b plots amateur performance on the H
architecture in blue confidence intervals, as a function of tournament size. The
horizontal black ruler line shows the average performance of a single Pro playing
the undecomposed problem H. While increases in tournament size improve
amateur performance, these improvements asymptotically approach a max crowd
performance that is far worse than the Pro performance. Even with a tournament
of 10,000 Ams (much larger than the number of solutions typically received
through a tournament mechanism), the Pro is dominant, satisfying the condition
of an ‘expert-only’ problem at the system levels. This means that any performance
improvements (compared to the H_Pro baseline) presented in the results
section can be attributable to the decomposition-assignment manipulations, and
not the random results of the model due to increased tournament sizes.

4. Model analysis

This section summarises the results from our computer experiment. In all, 48 alter-
native decomposition-assignment pairs were simulated and evaluated in terms of
their performance, cost and expert reliance defined formally in Section 3.4. In all
cases for Pro assignments, a single Pro is retained through an employment
mechanism for each relevant module; for Specs, assignment is made through a
bidding process that picks the best of three attempts for each module; and for Ams,
assignment initiates a crowdsourcing tournament, wherein the best of 100 attempts
is selected after the fact. This section is organised around responses to each of our
first two research questions. The third research question is addressed in Section 5,
generalising beyond golf.

4.1. The ‘best’ architecture changes depending on who solves

We start the discussion of results with our first research question: how does the
choice of solver archetype affect which architecture form is preferred? Figure 6
visualises the performance distribution by solver archetype (Pro, Am or Spec)
playing each of the alternative decompositions (H, TS, LG and TFG). This means
each of the modules would be assigned to the same solver type, but module solving
would still proceed separately, with tournaments for amateurs and bidding for
specialists. For instance, for the three-module decomposition TFG, Pro assignment
represents TFG_ProProPro. In Figure 6, the y-axis shows relative architecture
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Figure 6. Performance of alternative decompositions by solver type.

performance, plotted against the performance of that solver on the undecomposed
problem H - the black line. For example, in the Pro facet, the reference line is for
H_Pro, while in the Am facet, the reference line is for H_Am. The categorical x-axis
is divided by solver type and then architecture. Each point is the mean result for
that architecture-assignment pair, with error bars showing confidence intervals on
the estimate.

The overarching result is that the best architecture - the lowest value on a given
facet - changes depending on which type of solver is assigned: for Pros, it’s H or LG
(since LG crosses the ruler line), for amateurs, it’s TS and for specialists, it’'s TFG
(but not by much). To understand these results, consider the following intuitions:
For Pros, representing the typical internal expert case, architectures that enable
strategic oversight (H and LG) are better than ones that remove it. This is shown in
Figure 6, with the confidence interval of LG_Pro_Pro spanning the reference
H_Pro line, and both of DS_Pro_Pro and TFG_Pro_Pro_Pro above the line
(and therefore worse).

In contrast, in the amateur assignment, the performance across architectures
varies significantly. TS is by far the best because it balances two competing
mechanisms: fine-grained selection and hand-off inefficiency. First, with amateurs
who compete in relatively large tournaments, high performance comes from
extremely valued solutions. While an individual amateur might have a lucky stroke
once every 20 attempts, the odds of getting ‘Tucky’ twice in a row are much smaller.
Therefore, tournaments are more likely to produce excellent results when the
selection is fine-grained. Decomposing the T module is a prime example of this
because it reduces the scope to a single attempt at a long drive. This is in stark
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Design Process Outcomes

contrast to any of the modules that include multiple subfunctions. For example, an
excellent L result would require approximately three excellent strokes in a row,
which has a much lower likelihood than a single one. Second, the reason why the
logic of ‘reduce the scope’ of each module does not extend from TS to TFG is
because of inefficiencies inherent in interface design (or in this case handoff
between modules). Because we chose to implement a low-cost practical interface
rule (pick the closest ball), for larger tournaments, as in the case of amateurs, there
is a performance penalty for decoupling F and G. A similar difference is also seen
comparing H to LG in Figure 6.

For specialists, the relative performance is different again, but the magnitude of
the differences is not as large. As with amateurs, specialists benefit from finer-
grained selection and are also penalised by inefficiencies in the handoff. However,
because bidding only involves three solvers (versus 100) neither effect is very large.
For specialists, the main impact driving the preference for TFG (or nearly as good,
TS) is the ability to isolate T, the particular function that specialists are best at. This
is an instance where decomposition isolates a single function from the rest, making
it possible to identity solvers that are systematically excellent at that one function.

4.2. The ‘best’ hybrid assignments dominate

expert-only approaches
Our second research question asks whether decomposition makes it possible to
improve expert performance through the use of nondomain and or nonexpert

solvers. Recall we calibrated the model to ensure that experts dominate at the full
problem level. Figure 7 summarises the results. In the plot, each dot represents a
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Figure 7. Design process outcomes with respect to the professional benchmark (a), comparison of innovation
outcomes of performance, cost, meaningful reduction of expert reliance and dominance on all attributes, by
problem decomposition (b).
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single scenario (e.g., LG_ProPro). The x-axis captures performance, measured as
mean strokes to play nine holes. The y-axis records the cost to architect, execute
and integrate the process for nine holes. The size of each dot is calibrated to the
expert reliance, with the largest dots corresponding to Pro-only scenarios. The
colours of the dots map to the architecture. The red dot at the centre of
the crosshairs is the reference H_Pro scenario; therefore, everything to the left of
the vertical line corresponds to improved performance, and everything below the
horizontal ruler line is a lower cost.

Our results indicate that external solvers can indeed improve solving outcomes
even on problems that are ‘expert-only” at the system level. The bottom left
quadrant of Figure 7a shows the three scenarios that fared better on all measures.
They are TFG_SpecAmAm, TFG_SpecAmPro, and TS_SpecAm. If the standard of
dominant solutions is relaxed to include solutions that are better on at least one
measure and close on the two others, the list expands to seven, accounting for 15%
of all scenarios. Here close means within 20% of the relevant measure. Importantly,
not all decomposition-assignment pairs improve results — 51% are worse on all
measures — and not all decompositions are equally good for all innovation goals
(cost, performance and expert reliance).

Figure 7b shows how each of the decompositions fairs against each of the
measures. The top facet breaks down the dominant and fuzzy dominant solutions
by architecture. All of the best architectures come from TFG and TS, with the
highest fraction coming from TS. This should not be a surprise given that it both
isolates the specialist modules and minimises handoff costs.

When the focus is on performance, we see 27% of all scenarios yielding
performance improvements. Each of the LP, TFG and TS architectures contributed
to this result, and TS and LG were equally likely to generate high-performing
alternatives with 22% compared to 33% of TFG. These were on average 15% more
expensive than the benchmark. The solution offering the best performance overall,
TS_SpecAm, offers 29% improvement over the benchmark.

A total of 27% of all scenarios reduced costs, though many of these did so with a
high-performance penalty; on average 29% lower than the benchmark. A total of
33% of H, LG and TS architectures led to cost reductions compared to 22% of TFG
decompositions.

As discussed earlier, relieving expert time is not an end in and of itself, so it is
only helpful if it frees up significant time without overly compromising perform-
ance. Therefore, we focused on alternatives that freed up at least 25% of expert time
(a reliance of <75%) and remain within 20% of expert performance and cost. Only
17% of all cases met this standard with no contribution from the LG decompos-
itions. The TS decomposition has the highest fraction with 33% and the TFG has
19%. While few in numbers, these observations reduce the reliance on experts
while offering an average of 12% performance improvement over the benchmark
and cost 6% less.

4.3. Sensitivity analysis

The previous sections established our model-derived results responding to each of
our first two research questions: (a) we demonstrated that the preferred architec-
ture changes depending on which type of solver is assigned and (b) we identified
multiple dominant and fuzzy dominant hybrid architecture-assignment pairs.
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However, since the results are all derived from an abstract simulation, which
embodies multiple modelling assumptions, it is important to understand how
robust the main findings are to these assumptions. Importantly, we are not looking
at specific output values, rather the resultant insights related to the stated research
questions.

Table 1 shows the results of the sensitivity analysis. The overall takeaway is that
our two main results are robust to the alternative assumptions explored. With
respect to RQ1, the architecture preference is consistent in all cases. With respect to
RQ2, there is variation in how many architecture-solver pairs show up as dominant
or fuzzy dominant, but for the most part, the best pairs are always best. As will be
discussed below, there is one extreme condition where there are no dominant pairs,
only fuzzy dominant ones.

To elaborate, we explored three categories of modelling assumptions, with
multiple levels in each. First, since most of the high-performing results include a
specialist driver, we wanted to ensure that we had not just made the Specs too
capable. What is important is their relative capability compared to Pro driving, and
each distribution is loosely based on the capability of Long Driving tournaments
for specialists and PGA tournaments for Pros. We implemented two alternative
specialists drives, one that halves the distance advantage compared to Pros, and a
second that increases it by the same margin. This change had no impact on the

Table 1. Results of the sensitivity analysis

Which architecture is best?

Research Question 1 Research Question 2

Hybrid options dominating H_Pro

Fuzzy
Treatment Pros Ams  Sps Dominant dominant
Baseline LG=H TS TFG TS_SA, TFG_SAA, TFG_SAP 7 total
Capability of the specialists (compared to Pros)
50% worse spec LG=H TS TFG TS_SA 5 total
50% better spec LG=H TS TFG TS_SA, TFG_SAA, TFG_SAP, TFG_SPA, 11 total
TFG_SPP, TS_SP
Use of Gaussian distributions to generate amateur performance
Triangular LG=H TS TFG TS_SA, TFG_SAA, TFG_SAP 9 total
distribution
Skewed triangular LG=H TS TFG No dominant alternatives 3 total
distribution
‘Costs’ of decomposing
Double execution LG=H TS TFG TS_SA 5 total
costs
No execution costs LG =H TS TFG TS_SA, TFG_SAA, TFG_SAP, TFG_SPA, 11 total
TFG_SPP, LG_PA, TFG_APA
Idealised handoffs LG=H TS TFG TS_SA 5 total
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main insights for either research question, but as expected better specialists yielded
more dominant options, while worse specialists yielded fewer.

Second, since the use of Gaussian distributions (or any unbounded distribu-
tion) in a simulation can generate overly optimistic performance results, we
replaced the amateur approach functions with matched triangular distributions.
We chose the Am approach to focus on because it is the situation that sees the most
advantage from a high upside and amateurs are the only solver type that employs a
large enough tournament to take advantage of that upside. The results show no
impact on RQ1 or RQ2, for an equivalent triangular distribution, supporting the
argument that normal distributions are an acceptable simplification given the
implementation. When instead of selecting a comparable triangular distribution,
a highly skewed one, with a much lower mode (of 80 instead of 200) and a negative
lower bound (—20) is used instead. In that extreme case, no dominant nonexpert
solutions exist. This is likely an unrealistic representation, but it does confirm that
the tournament set up does not by itself guarantee a winning crowd solution.

Third, in formulating the model we had the least basis for parameterizing the
cost values associated with decomposing since it is not something that is commonly
done in golf. Therefore, in this sensitivity analysis, we explored the widest variation
of values for cost-contributors. Decomposition introduces ‘costs’ through the need
to coordinate among modules and also the optimality (or lack thereof) in the
handoff. In the baseline model, the costs are associated with the amount of work
(a fixed unit per activity) and an implicit performance penalty due to our choice of
a practical handoff rule. Here, we varied the scale of that cost 100% and also reran
the model with optimal handoff rules (and associated coordination costs). The
results of changing the coordination costs show no impact on either main conclu-
sion, but as expected, lower costs bring more options in the dominant category.
Somewhat counterintuitively the optimal handoff produces less dominant solu-
tions. This is because there is a significant cost penalty to implementing it, as
discussed above.

5. Towards heuristics for including ‘solver-awareness’
in the architecting of complex engineering systems

Having offered an existence proof that the best architecture depends on who is
solving (Section 4.1), shown that even for so-called expert-only problems, ‘good’
decompositions can enable hybrid architectures to perform better than profes-
sionals working alone (Section 4.2), and explored the robustness of these findings
to alternative model choices (Section 4.3), we contend that there is value to
developing architecting heuristics that are ‘solver-aware’. Specifically, we propose
a SASA process that adds a new modelling step to a typical architecture screening
process — the new step includes characterising a variety of archetypal solver
capabilities with respect to different subfunctions - and screening architectures
for performance under different solving configurations, as part of a broader
analysis of alternatives.

Section 3 serves as a template for how that can be done. However, since these
types of solver models may not exist for many problems, and if not, be difficult to
create, it would be helpful to also develop heuristics guiding which architectures
will advantage different types of solvers more generally. While a complete analysis
of the decomposition-assignment performance space is outside the scope of this
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article, in this section, we take a first step towards the goal of useful heuristics,
focusing on elaborating two potential guidelines that emerged from our analysis.
Specifically, we elaborate two heuristics that could be applied beyond the context of
golf: (a) Isolate subproblems that match an external specialty and (b) Leverage the
benefits of tournaments to explore more of a highly uncertain (but low skill
threshold) problem spaces. In the sections below, we begin by explaining how
the strategy operates in the golf model and then relate it to more general design
practice through analogy to the design of a robotic manipulator.

5.1. Isolate subproblems that match external expertise

Our results suggest that a powerful strategy for leveraging external solvers involves
isolating a subproblem that can be matched to known external expertise. This
requires both that a subproblem be isolate-able and that a source of external
nondomain expertise be identifiable. Note that this heuristic goes beyond the idea
that distant expertise exists (Collins & Evans 2002; Jeppesen & Lakhani 2010;
Afuah & Tucci 2012) and can be leveraged, and focuses on how it can be leveraged
through decomposition.

In the context of golf, only the T and L subproblems can be fully isolated, since
all of F, S and G remain sequentially dependent on other problems. Of T and L, T
only relies on golf function: driving, unlike L, which relies on both driving and
approach. Since the specialist architype models’ external solvers who are excellent
drivers (but quite poor at approach strokes) we would expect that any assignment
that matches specialists to only the T module would dominate. Of course, anytime
a specialist drives will yield a performance improvement, but since specialists are
also more expensive source of labour we would expect other assignments to
negatively impact the cost in some cases.

To understand the impact of just this heuristic, in Figure 8, we illustrate the
scale of improvement when Pros are replaced with Specs for the T module, for
otherwise equivalent architectures. The blue bars show the percentage improve-
ment in performance, for example, XSA captures the difference between SpecSpe-
cAm and ProSpecAm assignments to the TFG architecture. The red bars show the
equivalent delta for cost. In reading this figure it is important to realise that the
change in performance or cost does not necessarily correspond to the highest
quality assignments. Recall that SA, SAP and SAA were dominant and both show
up with very high-performance improvements due to the S-T assignment, but with
cost penalties compared to their PX equivalent, but not the Pro-H baseline.

Figure 8 shows that a Spec-T assignment yields performance benefits across the
board. Although they vary depending on the rest of the decomposition, they are all
positive and significant.” When all else is held constant, on average, replacing a Pro
with a Spec improves performance by ~29% and the range of improvement is
between ~20 and ~33%. In terms of cost, although Specs are more expensive to
utilise than the Pros, on average, the Isolate heuristic results in an 8% reduction of
cost, with results varying from ~14% more expensive to 24% less expensive. The
variability in these results can be explained in terms of the sequential dependency

*For the Isolate heuristic (replacing Pros with a Spec in T), two mutually exclusive Tukey-HSD tests
with 95% confidence interval yield an average performance improvement of 36% and an average cost
improvement of 17%, both with a p-values less than e '°.
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Figure 8. Performance impact of replacing solver drive assignment with a specialist
on different decomposition solver assignment combinations.

of golf, and specifically the impact of a long drive on the remaining solving.
Although Specs always yield a closer ball position than a Pro that assignment
always comes with a higher cost, but does not always result in fewer remaining
strokes. For example, if an amateur tournament can reliably reach the green in one
stroke from anywhere less than 250 yards out, a ball position of 50 is functionally
equivalent to 250. In contrast Specs (and their corresponding three bids) are less
reliable in their approach, so benefit much more from the better fairway position,
which is why the XSX/XS assignments see the most improvement in cost. This
highlights some of the subtleties in the assignment problem that will enable a SASA
approach more broadly.

Having demonstrated how the isolate heuristic can yield useful predictions for
which golf assignments will perform well, we now apply it to seek guidance in the
context of an autonomous robotic manipulator. First, we consider alternative
subproblems, ranging from gripping mechanisms to modular joints, to surface
features. For the most part, robotic arms are tightly coupled, but recent industry
evolution has demonstrated that multiple subcomponents, particularly relating to
gripping can be relatively isolated. Second, we consider potential sources of
expertise outside of core robotics. We recognise that robotics is already highly
interdisciplinary with many roboticists cross-training in, for example, mechatron-
ics and software. Thus, while it is natural to imagine ‘distant experts’ coming from

24/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1017/dsj.2022.7

Design Science

any of the mechanical, electrical or software domains, that is not the kind of
distance this heuristic points to. Roboticists often cross-train in these disciplines
because important insights arise at the intersection of these disciplines, for
example, novel mechanism designs often leverage motion planning capabilities.

Here, we are looking for aspects of the robotics problems, that, when
decomposed, look like the kind of problem that distant experts normally solve.
One area that seems ripe for exploration is material science, and specifically
experts in surface friction. The isolate heuristic could be applied by decoupling
the surface friction aspect of the gripping function so that material scientists can
bring their deep insight to a problem that is familiar to them, and only to that
problem. In addition, their solution to the surface friction problem can be
applied to any robotic manipulator tasked to grab and hold a surface. This
reasoning path suggests that even a simple heuristic, like isolating and assigning
to a distant expert, can inform a solver-aware architecting process in more
realistic settings, like robotics.

5.2. Leverage the tournament mechanism to relieve expert
reliance and broaden search

Our results suggest an opportunity to identify subproblems that embody high
solution uncertainty and relatively few barriers to entry. In such cases, the tour-
nament mechanism is particularly adept at accomplishing two important goals of
reducing expert reliance (and freeing their time for the most productive pursuits)
and also more fully exploring the solution space. The latter aspect has been
discussed extensively in the open innovation literature (cf., Terwiesch & Xu
2008; Afuah & Tucci 2012) but here we connect that idea to the need to adequately
decompose most problems first. Moreover, the combination of expert reliance and
tournaments is new here, building on insights about relative knowledge thresholds
(Szajnfarber & Vrolijk 2018).

In the context of golf, all of F, G and S (as a combination of both) exhibit high
uncertainty in the problem space. However, F also has a high skill threshold with
Pros dominant in the associated approach subfunctions. Only G adequately
isolates a subproblem that is both highly uncertain and accessible (within the
capability of amateurs to perform well). However, since the difficulty of putting
depends strongly on the putting distance, which is a function of the preceding
module, we expect more variability in the performance of an amateur-green
assignment, even within fixed architecture. Specifically, when the ball is relatively
close to the pin, amateurs dominate, but when the initial lie is on the edge of the
Green, Professionals are much better because of the need to string together
multiple strokes. Since that is not a factor that can be controlled through decom-
position and assignment there is a risk in this assignment. There is potential to
mitigate this risk by controlling the preceding shot, for example, by assigningittoa
professional. This is something that can be explored in future work. Nonetheless,
we expect them to match or exceed Pro performance on average with the added
benefit of significant reductions in expert reliance, as well as broader search (less
apparent in our simple model).

To understand the impact of this heuristic in the context of our golf simulation,
Figure 9 shows how the amateur-green assignment performs compared to their
equivalent Pro-Green architectures. There is a small (~2-5%) but significant and
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Figure 9. Performance impact of replacing a solver green assignment with an amateur
on different decomposition solver assignment combinations.

consistent benefit in performance.” The impact on cost (not shown) is very small
(~2.5% on average) and not significant.” There is a large reduction of expert
reliance that varies by architecture, ranging from 15 to 26%, with an average of
~19%. Therefore Am-G assignment can provide significant benefit in cases where
there is a need to relieve expert effort, with limited impact on cost and performance.
As with the Spec-T assignment, there are more nuanced considerations that can be
made to guide which Am-G assignments would be more broadly preferred.
Having shown that the tournament heuristic can yield useful predictions about
which assignments will reduce expert reliance without compromising on perform-
ance, we illustrate how it can be applied to provide guidance in the context of an
autonomous robotic manipulator. As before we consider reasonably decouplable
subproblems, but now, instead of thinking about external sources of expertise, we
focus on the extent of expected solution variation and the skill threshold to
contribute. In the robotics context, one example of a comparable solution space
is the design of a gripper. While some of the most complex grippers mimic a human
hand, the function can also be satisfied by a relatively simple passive clamp,
implementable by a novice. Moreover, the gripping function is highly context-

*For the Tournament heuristic (replacing Pros with an Am in G), Tukey-HSD tests with 95%
confidence interval for performance yields an average improvement of 4.5% with a p-value of 0.004.

“*For the Tournament heuristic (replacing Pros with an Am in G), Tukey-HSD tests with 95%
confidence interval for cost yields an average improvement of 2.4% with a p-value of 0.324.
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specific, and it is sometimes hard to know in advance which approach will be best,
making it valuable to examine multiple options, generated by people coming from
different perspectives. Thus, it is preferable to explore the entire design space.
Given this context, the tendency of the expert designers to gravitate towards
particular solutions could be balanced with an option to work with a ‘crowd’, to
obtain a diverse set of independent attempts (Hong & Page 2004; Fu et al. 2013).
This is reflected in practice, where grippers are often sold separately from manipu-
lators because there are both values to application customization and there are
many more unconventional approaches being explored (e.g., gecko grippers and
electromagnets). We would therefore suggest focusing tournament competition on
a gripping element, as NASA did in their GrabCad competition which yielded
many variable results (Chaudhari et al. 2018).

6. Conclusion

The system architecting process is fundamental to ensuring value delivery over the
lifetime of a system. It is the process that defines how needed functions map to
elements of form. Despite significant prior work clarifying how alternative archi-
tectures perform in different operating contexts (e.g., subject to changing require-
ments or external disruptions) we identified a gap in prior consideration of how
different solvers might (a) affect preferences among architectures and (b) serve as
an underutilised source of innovative potential even in the context of ‘expert-only’
problems. To that end, we developed an abstract simulation to demonstrate the
potential importance of ‘solver-awareness’ and then illustrated how these ideas can
be implemented in this solving process.

Specifically, we outlined preliminary guidance for how to think about archi-
tecting in this new way - identifying opportunities to pair decomposition with
favourable (or available) labour. SASA offers the potential to leverage the capabil-
ities of a much wider range of contributors than typical systems architecting
approaches afford. In most complex system domains, the community has long
settled on a particular dominant architecture, which is now taken for granted. This
results in established relationships with suppliers and traditional contractors.
While efficient, this set up is not particularly agile. By forcing a direct consideration
of alternative decompositions and (nontraditional) solver capabilities upfront we
expect to find many new ways to approach traditional problems.

Our specific findings also contribute to the open innovation literature. Despite
increasing interest and recognition of the potential power of open innovation
methods in general, there is still a widely held expectation that many complex
systems problems are the sole domain of experts (Lakhani et al. 2013; Szajnfarber
etal. 2020). To that end, a core contribution of this article is to demonstrate that if
problems are decomposed in a way that takes advantage of external resources -
either specialised expertise or the sheer availability of human power - there is an
underutilised opportunity to apply open tools to solve expert-only problems. A
critical corollary to our findings is that not all decompositions and certainly not all
decomposition-assignment pairs are equally effective for achieving desired out-
comes. It is therefore important to understand the relationship between decom-
position and solver assignment.

As an initial proof-of-concept, we demonstrated the potential of a SASA
approach in the context of an abstract simulation of a distinctly nontechnology
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problem (golf). So, a relevant question is how this applies to other contexts. To
illustrate why we believe the main concepts hold more generally, we outline how
the ideas apply to a more representative robotics design problem. Overall, we found
the findings to be highly relevant. Nonetheless, we also recognise the limitations of
its generalizability and identified opportunities to extend this framework signifi-
cantly. Future work should explore more complex architectures and a more diverse
capacity for solvers. This will also provide a richer tradespace of potential decom-
position and solver assignment combinations. We expect the mechanisms identi-
fied here to hold, but we also expect to identify new ones, for example, in terms of
the sequence of solver assignments in a particular architecture. This analysis could
be supported by ongoing innovation in mechanism design and learning methods
(Panchal et al. 2019; Safarkhani et al. 2020).

As the world becomes more connected, the competitiveness of firms and the
capacity for engineering organisations to innovate will rely on an ability to leverage
talent where it resides (Chesbrough 2003; Enkel, Gassmann & Chesbrough 2009;
Hung & Chou 2013; Gambardella et al. 2016; Parker & Van Alstyne 2018). At the
same time, many organisations are facing a workforce shortage as demand
increases and many experienced engineers are retiring (Logsdon 2006; Voelpel
& Dous 2006). This makes it increasingly important to focus expertise where it is
specifically needed and effectively leverage the capacity that exists outside one’s
organisation. The proposed style of thinking asks: how do we decompose the
problem to free up more expert time for the things only they can do, while
leveraging external sources of effort for the parts they can do nearly as well? When
you think about systems architecting with distributed, nontraditional, solvers in
mind the ‘best’ architecture might look quite different than the dominant design.
Moving forward, there is a need to theorise about how to formulate problems with
an awareness of external capacity, be it crowds, specialists or even algorithms
(Kittur et al. 2019). If we can do that well, there is an opportunity for huge efficiency
gains across the economy.

Financial support
This study was supported by the NSF under Grant CMMI-1535539.

References

Acar, O. A. 2019 Motivations and solution appropriateness in crowdsourcing challenges for
innovation. Research Policy 48 (8), 103716; doi:10.1016/j.respol.2018.11.010.

Acar, O. A. & van den Ende, J. 2016 Knowledge distance, cognitive-search processes, and
creativity: the making of winning solutions in science contests. Psychological Science
27 (5), 692-699; doi:10.1177/0956797616634665.

Afuah, A. & Tucci, C. L. 2012 Crowdsourcing as a solution to distant search. Academy of
Management Review 37 (3), 355-375.

Altman, E. J., Nagle, F. & Tushman, M. L. 2014 Organizations, Communities, and
Innovation When Information Costs Approach Zero.

Argote, L. & Miron-Spektor, E. 2011 Organizational learning: from experience to know-
ledge. Organization Science 22 (5), 1123-1137; doi:10.1287/orsc.1100.0621.

28/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1016/j.respol.2018.11.010
https://doi.org/10.1177/0956797616634665
https://doi.org/10.1287/orsc.1100.0621
https://doi.org/10.1017/dsj.2022.7

Design Science

Baldwin, C. Y. & Clark, K. B. 2000 Design Rules: The Power of Modularity, pp. 27-62.
(Vol. 1). MIT Press.

Baldwin, C. & Von Hippel, E. 2011 Modeling a paradigm shift: from producer innovation
to user and open collaborative innovation. Organization Science 22 (6), 1399-1417.

Bayrak, A. E., Kang, N. & Papalambros, P.Y. 2016 Decomposition-based design opti-
mization of hybrid electric powertrain architectures: simultaneous configuration and
sizing design. Journal of Mechanical Design 138 (7), 071405; doi:10.1115/1.4033655.

Beck, S., Bergenholtz, C., Bogers, M., Brasseur, T.-M., Conradsen, M. L., Di Marco, D.,
Distel, A. P., Dobusch, L., Dorler, D., Effert, A., Fecher, B., Filiou, D., Frederiksen, L.,
Gillier, T., Grimpe, C., Gruber, M., Haeussler, C., Heigl, F., Hoisl, K., Hyslop, K.,
Kokshagina, O., LaFlamme, M., Lawson, C., Lifshitz-Assaf, H., Lukas, W., Nordberg,
M., Norn, M. T., Poetz, M., Ponti, M., Pruschak, G., Pujol Priego, L., Radziwon, A.,
Rafner, J., Romanova, G., Ruser, A., Sauermann, H., Shah, S. K., Sherson, J. F., Suess-
Reyes, J., Tucci, C. L., Tuertscher, P., Bjorn Vedel, J., Velden, T., Verganti, R.,
Wareham, J., Wiggins A. & Mosangzi Xu, S. 2022 The open innovation in science
research field: a collaborative conceptualisation approach. Industry and Innovation,
29(2), 136-185; doi: 10.1080/13662716.2020.1792274.

Ben-David, J. 1960 Roles and innovations in medicine. American Journal of Sociology
65 (6), 557-568.

Benner, M. J. & Tushman, M. L. 2015 Reflections on the 2013 decade award— ‘exploitation,
exploration, and process management: the productivity dilemma revisited” ten years
later. Academy of Management Review 40 (4), 497-514.

Blanchard, B. S. & Fabrycky, W. J. 2011. Systems Engineering and Analysis, 5th Edn.
Pearson Education.

Bloebaum, C. L., Hajela, P. & Sobieszczanski-Sobieski, J. 1992 Non-hierarchic system
decomposition in structural optimization. Engineering Optimization + A35 19 (3),
171-186.

Boas, R., Cameron, B. G. & Crawley, E. F. 2013 Divergence and lifecycle offsets in product
families with commonality. Systems Engineering 16 (2), 175-192; doi:10.1002/sys.21223.

Boas, R. & Crawley, E. 2011 The Elusive Benefits of Common Parts. Harvard Business
Review, online document (Accessed date for February 5th 2021) https://hbr.org/2011/
10/the-elusive-benefits-of-common-parts.

Boudreau, K. & Lakhani, K. 2009 How to manage outside innovation. MIT Sloan Man-
agement Review 50 (4), 69.

Braun, R., Gage, P., Kroo, I. & Sobieski, I. 1996 Implementation and performance issues in
collaborative optimization. In AIAA 1996-4017. 6th Symposium on Multidisciplinary
Analysis and Optimization.

Broniatowski, D. A. 2017 Flexibility due to abstraction and decomposition. Systems
Engineering 20 (2), 98-117; doi:10.1002/sys.21381.

Browning, T. R. 2001 Applying the design structure matrix to system decomposition and
integration problems: a review and new directions. IEEE Transactions on Engineering
Management 48 (3), 292-306; doi:10.1109/17.946528.

Browning, T. R. 2016 Design structure matrix extensions and innovations: a survey and
new opportunities. IEEE Transactions on Engineering Management 63 (1), 27-52; doi:
10.1109/TEM.2015.2491283.

Brusoni, S., Marengo, L., Prencipe, A. & Valente, M. 2007 The value and costs of
modularity: a problem-solving perspective. European Management Review 4 (2),
121-132; doi:10.1057/palgrave.emr.1500079.

Brusoni, S. & Prencipe, A. 2001 Unpacking the black box of modularity: technologies,
products and organizations. Industrial and Corporate Change 10 (1), 179-205.

29/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1115/1.4033655
https://doi.org/10.1080/13662716.2020.1792274
https://doi.org/10.1002/sys.21223
https://hbr.org/2011/10/the-elusive-benefits-of-common-parts
https://hbr.org/2011/10/the-elusive-benefits-of-common-parts
https://doi.org/10.1002/sys.21381
https://doi.org/10.1109/17.946528
https://doi.org/10.1109/TEM.2015.2491283
https://doi.org/10.1057/palgrave.emr.1500079
https://doi.org/10.1017/dsj.2022.7

Design Science

Brusoni, S. & Prencipe, A. 2006 Making design rules: a multidomain perspective. Organ-
ization Science 17 (2), 179-189.

Budescu, D. V. & Chen, E. 2015 Identifying expertise to extract the wisdom of crowds.
Management Science 61 (2), 267-280; doi:10.1287/mnsc.2014.1909.

Buede, D. M. & Miller, W. D. 2016 The Engineering Design of Systems: Models and Methods.
John Wiley & Sons.

Cabigiosu, A. & Camuffo, A. 2012 Beyond the ‘mirroring” hypothesis: product modularity
and interorganizational relations in the air conditioning industry. Organization Science
23 (3), 686-703; doi:10.1287/orsc.1110.0655.

Campagnolo, D. & Camuffo, A. 2010 The concept of modularity in management studies: a
literature review. International Journal of Management Reviews 12 (3), 259-283; doi:
10.1111/j.1468-2370.2009.00260.x.

Camuffo, A. & Wilhelm, M. 2016 Complementarities and organizational (Mis)fit: a
retrospective analysis of the Toyota recall crisis. Journal of Organization Design 5 (1), 4;
doi:10.1186/541469-016-0006-6.

Cappelli, P. 2014 Skill Gaps, Skill Shortages, and Skill Mismatches: Evidence for the US.
Working Paper w20382. National Bureau of Economic Research; doi:10.3386/w20382.

Carlile, P. R. 2004 Transferring, translating, and transforming: an integrative framework for
managing knowledge across boundaries. Organization Science 15 (5), 555-568.

Cetina, K. K. 2009 Epistemic Cultures: How the Sciences Make Knowledge. Harvard
University Press.

Chaudhari, A. M., Sha, Z. & Panchal, J. H. 2018 Analyzing participant behaviors in design
crowdsourcing contests using causal inference on field data. Journal of Mechanical
Design 140 (9), 091401; doi:10.1115/1.4040166.

Chen, W., Allen, J. K. & Mistree, F. 1997 A robust concept exploration method for
enhancing productivity in concurrent systems design. Concurrent Engineering 5 (3),
203-217.

Chesbrough, H. W. 2003 Open Innovation: The New Imperative for Creating and Profiting
from Technology. Harvard Business Press.

Chesbrough, H. W. & Teece, D. J. 1998 When Is virtual virtuous? Organizing for
innovation. The Strategic Management of Intellectual Capital 27.

Chubin, D. E. 1976 The conceptualization of scientific specialties. The Sociological Quar-
terly 17 (4), 448-476.

Colfer, L. J. & Baldwin, C. Y. 2016 The mirroring hypothesis: theory, evidence, and
exceptions. Industrial and Corporate Change 25 (5), 709-738; doi:10.1093/icc/dtw027.

Collins, H. M. & Evans, R. 2002 The third wave of science studies: studies of expertise and
experience. Social Studies of Science 32 (2), 235-296; doi:
10.1177/0306312702032002003.

Collopy, P. D. & Hollingsworth, P. M. 2011 Value-driven design. Journal of Aircraft 48 (3),
749-759; doi:10.2514/1.C000311.

Colombo, E. F.,, Shougarian, N., Sinha, K., Cascini, G. & de Weck, O. L. 2020 Value
analysis for customizable modular product platforms: theory and case study. Research in
Engineering Design 31 (1), 123-140; doi:10.1007/s00163-019-00326-4.

Conway, M. E. 1968 How do committees invent. Datamation 14 (4), 28-31.

Crawley, E., Cameron, B. & Selva, D. 2015 System Architecture: Strategy and Product
Development for Complex Systems. Prentice Hall Press.

De Stefano, V. 2015 The rise of the just-in-time workforce: on-demand work, crowdwork,
and labor protection in the gig-economy. Comparative Labor Law & Policy Journal 37
(3), 471-504.

30/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1287/mnsc.2014.1909
https://doi.org/10.1287/orsc.1110.0655
https://doi.org/10.1111/j.1468-2370.2009.00260.x
https://doi.org/10.1186/s41469-016-0006-6
https://doi.org/10.3386/w20382
https://doi.org/10.1115/1.4040166
https://doi.org/10.1093/icc/dtw027
https://doi.org/10.1177/0306312702032002003
https://doi.org/10.2514/1.C000311
https://doi.org/10.1007/s00163-019-00326-4
https://doi.org/10.1017/dsj.2022.7

Design Science

De Weck, O. L., Roos, D. & Magee, C. L. 2011 Engineering Systems: Meeting Human Needs
in a Complex Technological World. MIT Press.

Du, X. & Chen, W. 2002 Efficient uncertainty analysis methods for multidisciplinary robust
design. AIAA Journal 40 (3), 545-552.

Dwyer, M., Cameron, B. & Szajnfarber, Z. 2015 A framework for studying cost growth on
complex acquisition programs. Systems Engineering 18 (6), 568-583; doi:10.1002/
sys.21328.

Eck, D. V., Mcadams, D. A. & Vermaas, P. E. 2007 Functional decomposition in
engineering: a survey. In ASME 2007 International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference, Las Vegas.
ASME.

Eisenhardt, K. M. 1989 Building theories from case study research. The Academy of
Management Review 14 (4), 532-550; doi:10.2307/258557.
Eletreby, R., Zhuang, Y., Carley, K. M., Yagan, O. & Poor, H. V. 2020 The effects of

evolutionary adaptations on spreading processes in complex networks. Proceedings of
the National Academy of Sciences 117 (11), 5664-5670; doi:10.1073/pnas.1918529117.

Enkel, E., Gassmann, O. & Chesbrough, H. 2009 Open R&D and open innovation:
exploring the phenomenon. R&D Management 39 (4), 311-316; doi:10.1111/j.1467-
9310.2009.00570.x.

Eppinger, S. D. 1997 A planning method for integration of large-scale engineering systems.
In International Conference on Engineering Design, Vol. 97, pp. 199-204.

Eppinger, S. D. & Browning, T. R. 2012 Design Structure Matrix Methods and Applications.
MIT Press.

Eppinger, S. & Ulrich, K. 2015 Product Design and Development. McGraw-Hill Higher
Education.

Eppinger, S. D., Whitney, D. E., Smith, R. P. & Gebala, D. A. 1994 A model-based method
for organizing tasks in product development. Research in Engineering Design 6 (1), 1-13.

Ethiraj, S. K. & Levinthal, D. 2004 Modularity and innovation in complex systems.
Management Science 50 (2), 159-173; doi:10.1287/mnsc.1030.0145.

Fayard, A.-L., Gkeredakis, E. & Levina, N. 2016 Framing innovation opportunities while
staying committed to an organizational epistemic stance. Information Systems Research
27 (2), 302-323; doi:10.1287/isre.2016.0623.

Felin, T. & Zenger, T. R. 2014 Closed or open innovation? Problem solving and the
governance choice. Research Policy 43 (5), 914-925; doi:10.1016/j.respol.2013.09.006.

Fixson, S. K. & Park, J.-K. 2008 The power of integrality: linkages between product
architecture, innovation, and industry structure. Research Policy 37 (8), 1296-1316; doi:
10.1016/j.respol.2008.04.026.

Fogliatto, F. S., Da Silveira, G. J. C. & Borenstein, D. 2012 The mass customization decade:
an updated review of the literature. International Journal of Production Economics 138
(1), 14-25; doi:10.1016/.ijpe.2012.03.002.

Foster, R. & Kaplan, S. 2011. Creative Destruction: Why Companies That Are Built to Last
Underperform the Market - And How to Success Fully Transform Them. Crown.

Franzoni, C. & Sauermann, H. 2014 Crowd science: the organization of scientific research
in open collaborative projects. Research Policy 43 (1), 1-20; doi:10.1016/j.
respol.2013.07.005.

Fricke, E. & Schulz, A. P. 2005 Design for changeability (DfC): principles to enable changes
in systems throughout their entire lifecycle. Systems Engineering 8 (4), 342-359; doi:
10.1002/sys.20039.

31/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1002/sys.21328
https://doi.org/10.1002/sys.21328
https://doi.org/10.2307/258557
https://doi.org/10.1073/pnas.1918529117
https://doi.org/10.1111/j.1467-9310.2009.00570.x
https://doi.org/10.1111/j.1467-9310.2009.00570.x
https://doi.org/10.1287/mnsc.1030.0145
https://doi.org/10.1287/isre.2016.0623
https://doi.org/10.1016/j.respol.2013.09.006
https://doi.org/10.1016/j.respol.2008.04.026
https://doi.org/10.1016/j.ijpe.2012.03.002
https://doi.org/10.1016/j.respol.2013.07.005
https://doi.org/10.1016/j.respol.2013.07.005
https://doi.org/10.1002/sys.20039
https://doi.org/10.1017/dsj.2022.7

Design Science

Fu, K., Chan, J., Cagan, J., Kotovsky, K., Schunn, C. & Wood, K. 2013 The meaning of
‘near’ and ‘far’: the impact of structuring design databases and the effect of distance of
analogy on design output. Journal of Mechanical Design 135 (2), 021007; doi:
10.1115/1.4023158.

Fullerton, R. L., Linster, B. G., McKee, M. & Slate, S. 2002 Using auctions to reward
tournament winners: theory and experimental investigations. The Rand Journal of
Economics 33 (1), 62-84; doi:10.2307/2696375.

Galbraith, J. R. 1974 Organization design: an information processing view. Interfaces 4 (3),
28-36.

Gambardella, A., Raasch, C. & von Hippel, E. 2016 The user innovation paradigm: impacts
on markets and welfare. Management Science 63 (5), 1450-1468; doi:10.1287/
mnsc.2015.2393.

Garud, R. & Kumaraswamy, A. 1995 Technological and organizational designs for real-
izing economies of substitution. Strategic Management Journal 16 (S1), 93-109; doi:
1().1()02/5111j.4250 160919.

Good, B. M. & Su, A. I. 2013 Crowdsourcing for bioinformatics. Bioinformatics 29 (16),
1925-1933; doi:10.1093/bioinformatics/btt333.

Goucher-Lambert, K. & Cagan, J. 2019 Crowdsourcing inspiration: using crowd generated
inspirational stimuli to support designer ideation. Design Studies 61, 1-29.

Guan, X. & Chen, C. 2018 General methodology for inferring failure-spreading dynamics in
networks. Proceedings of the National Academy of Sciences 115 (35), E8125-E8134; doi:
10.1073/pnas.1722313115.

Gustetic, J. L., Crusan, J., Rader, S. & Ortega, S. 2015 Outcome-driven open innovation at
NASA. Space Policy 34, 11-17; doi:10.1016/j.spacepol.2015.06.002.

Haskins, C., Forsberg, K., Michael Krueger, D. W. & Hamelin, D. 2006 Systems engin-
eering handbook. INCOSE 9, 13-16.

Hazelrigg, G. 1998 A framework for decision-based engineering design. Journal of Mech-
anical Design 120 (4), 653-658; doi:10.1115/1.2829328.

Henderson, R. M. & Clark, K. B. 1990 Architectural innovation: the reconfiguration of
existing product technologies and the failure of established firms. Administrative Science
Quarterly 35 (1), 9-30; doi:10.2307/2393549.

Hoffman, D. M. & Weiss, D. M. 2001 Software Fundamentals: Collected Papers by David
L. Parnas. Addison-Wesley Longman.

Holttid-Otto, K. & de Weck, O. 2007 Degree of modularity in engineering systems and
products with technical and business constraints. Concurrent Engineering 15 (2),
113-126; doi:10.1177/1063293X07078931.

Hong, L. & Page, S. E. 2004 Groups of diverse problem solvers can outperform groups of
high-ability problem solvers. Proceedings of the National Academy of Sciences 101 (46),
16385-16389; doi:10.1073/pnas.0403723101.

Hung, K.-P. & Chou, C. 2013 The impact of open innovation on firm performance: the
moderating effects of internal R&D and environmental turbulence. Technovation 33
(10), 368-380; doi:10.1016/j.technovation.2013.06.006.

Jeppesen, L. B. & Lakhani, K. R. 2010 Marginality and problem-solving effectiveness in
broadcast search. Organization Science 21 (5), 1016-1033; doi:10.1287/0rsc.1090.0491.

Kim, H. M., Michelena, N. F., Papalambros, P. Y. & Jiang, T. 2003 Target cascading in
optimal system design. Journal of Mechanical Design 125 (3), 474-480.

Kittur, A., Nickerson, J. V., Bernstein, M., Gerber, E., Shaw, A., Zimmerman, J., Lease,
M. & Horton, J. 2013 The future of crowd work. In Proceedings of the 2013 Conference
on Computer Supported Cooperative Work, pp. 1301-1318. ACM Digital Library.

32/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1115/1.4023158
https://doi.org/10.2307/2696375
https://doi.org/10.1287/mnsc.2015.2393
https://doi.org/10.1287/mnsc.2015.2393
https://doi.org/10.1002/smj.4250160919
https://doi.org/10.1093/bioinformatics/btt333
https://doi.org/10.1073/pnas.1722313115
https://doi.org/10.1016/j.spacepol.2015.06.002
https://doi.org/10.1115/1.2829328
https://doi.org/10.2307/2393549
https://doi.org/10.1177/1063293X07078931
https://doi.org/10.1073/pnas.0403723101
https://doi.org/10.1016/j.technovation.2013.06.006
https://doi.org/10.1287/orsc.1090.0491
https://doi.org/10.1017/dsj.2022.7

Design Science

Kittur, A., Yu, L., Hope, T., Chan, J., Lifshitz-Assaf, H., Gilon, K., Ng, F., Kraut, R. E. &
Shahaf, D. 2019 Scaling up analogical innovation with crowds and Al Proceedings of the
National Academy of Sciences 116 (6), 1870-1877; doi:10.1073/pnas.1807185116.

Kleijnen, J. P. C. 2018 Design and analysis of simulation experiments. In Statistics and
Simulation, Springer Proceedings in Mathematics & Statistics (ed. J. Pilz, D. Rasch, V. B.
Melas & K. Moder), pp. 3-22. Springer International Publishing; doi:10.1007/978-3-
319-76035-3_1.

Kossiakoff, A. & Sweet, W. N. 2003 Systems Engineering: Principles and Practices. Wiley
Online Library.

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y.,
Li, L.-]., Shamma, D. A., Bernstein, M. S. & Fei-Fei, L. 2017 Visual genome: con-
necting language and vision using crowdsourced dense image annotations. Inter-
national Journal of Computer Vision 123 (1), 32-73; doi:10.1007/s11263-016-0981-7.

Kiiffner, R., Zach, N., Norel, R., Hawe, J., Schoenfeld, D., Wang, L., Li, G., Fang, L.,
Mackey, L., Hardiman, O., Cudkowicz, M., Sherman, A., Ertaylan, G., Grosse-
Wentrup, M., Hothorn, T., van Ligtenberg, J., Macke, J. H., Meyer, T., Schilkopf, B.,
Tran, L., Vaughan, R., Stolovitzky, G. & Leitner, M.L. 2015 Crowdsourced analysis of
clinical trial data to predict amyotrophic lateral sclerosis progression. Nature Biotech-
nology 33 (1), 51-57; doi:10.1038/nbt.3051.

Kusiak, A. & Wang, J. 1993 Decomposition of the design process. Journal of Mechanical
Design 115 (4), 687-695; doi:10.1115/1.2919255.

Lakhani, K. R., Boudreau, K. J., Loh, P.-R., Backstrom, L., Baldwin, C., Lonstein, E.,
Lydon, M., MacCormack, A., Arnaout, R. A. & Guinan, E. C. 2013 Prize-based
contests can provide solutions to computational biology problems. Nature Biotechnol-
ogy 31 (2), 108-111; doi:10.1038/nbt.2495.

Lakhani, K. R., Lifshitz-Assaf, H. & Tushman, M. L. 2013 Open innovation and organ-
izational boundaries: task decomposition, knowledge distribution and the locus of
innovation. In Handbook of Economic Organization. Edward Elgar.

Larson, W., Kirkpatrick, D., Sellers, J., Thomas, L. & Verma, D. 2009 Applied Space
Systems Engineering. McGraw-Hill Education.

Leonardi, P. M. 2011 Innovation blindness: culture, frames, and cross-boundary problem
construction in the development of new technology concepts. Organization Science 22
(2), 347-369; doi:10.1287/orsc.1100.0529.

Lifshitz-Assaf, H. 2018 Dismantling knowledge boundaries at NASA: the critical role of
professional identity in open innovation. Administrative Science Quarterly 63 (4),
746-782; doi:10.1177/0001839217747876.

Lifshitz-Assaf, H., Lebovitz, S. & Zalmanson, L. 2021 Minimal and adaptive coordination:
how hackathons’ projects accelerate innovation without killing it. Academy of Man-
agement Journal 64, 3; doi:10.5465/am;j.2017.0712.

Logsdon, D. 2006 America’s aerospace workforce at a crossroads essay. Brown Journal of
World Affairs 13 (1), 243-254.

Maier, M. W. 1998 Architecting principles for systems-of-systems. Systems Engineering 1
(4), 267-284; doi:10.1002/(SICI)1520-6858(1998)1:4<267::ATD-SYS3>3.0.CO;2-D.

Maier, M. W. & Rechtin, E. 2009 The Art of Systems Architecting. CRC Press.

Malak, R. J., Aughenbaugh, J. M. & Christiaan, J. J. P. 2009 Multi-attribute utility analysis
in set-based conceptual design. Computer-Aided Design, 41 (3), 214-227; doi:10.1016/j.
cad.2008.06.004.

Mao, K., Capra, L., Harman, M. & Jia, Y. 2017 A survey of the use of crowdsourcing in
software engineering. Journal of Systems and Software 126, 57-84.

33/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1073/pnas.1807185116
https://doi.org/10.1007/978-3-319-76035-3_1
https://doi.org/10.1007/978-3-319-76035-3_1
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1038/nbt.3051
https://doi.org/10.1115/1.2919255
https://doi.org/10.1038/nbt.2495
https://doi.org/10.1287/orsc.1100.0529
https://doi.org/10.1177/0001839217747876
https://doi.org/10.5465/amj.2017.0712
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4&e_x003C;267::AID-SYS3&e_x003E;3.0.CO;2-D
https://doi.org/10.1016/j.cad.2008.06.004
https://doi.org/10.1016/j.cad.2008.06.004
https://doi.org/10.1017/dsj.2022.7

Design Science

Martins, J. R. R. A. & Lambe, A. B. 2013 Multidisciplinary design optimization: a survey of
architectures. AIAA Journal 51 (9), 2049-2075.

McNerney, J., Farmer, J. D., Redner, S. & Trancik, J. E. 2011 Role of design complexity in
technology improvement. Proceedings of the National Academy of Sciences 108 (22),
9008-9013.

Meluso, J., Austin-Breneman, J. & Shaw, L. 2020 An agent-based model of miscommu-
nication in complex system engineering organizations. IEEE Systems Journal 14 (3),
3463-3474; doi:10.1109/JSYST.2019.2940864.

Mosleh, M., Dalili, K. & Heydari, B. 2018 Distributed or monolithic? A computational
architecture decision framework. IEEE Systems Journal 12 (1), 125-136; doi:10.1109/
JSYST.2016.2594290.

Mosleh, M., Ludlow, P. & Heydari, B. 2016 Distributed resource management in systems of
systems: an architecture perspective. Systems Engineering 19 (4), 362-374; doi:10.1002/
sys.21342.

Neufville, R. D., Smet, K., Cardin, M. A. & Ranjbar-Bourani, M. 2019 Engineering
options analysis (EOA): applications. In Decision Making Under Deep Uncertainty,
pp. 223-252. Springer.

Nonaka, I. 1994 A dynamic theory of organizational knowledge creation. Organization
Science 5 (1), 14-37.

Pahl, G. & Beitz, W. 2013 Engineering Design: A Systematic Approach. Springer Science &
Business Media.

Panchal, J. H. 2015 Using crowds in engineering design — towards a holistic framework. In
DS 80-8 Proceedings of the 20th International Conference on Engineering Design (ICED
15) (Vol. 8), pp. 41-50. The Design Society.

Panchal, J. H., Fuge, M., Liu, Y., Missoum, S. & Tucker, C. 2019 Machine learning for
engineering design. Journal of Mechanical Design 141 (11), 110301.

Papalambros, P. Y. & Wilde, D. J. 2000 Principles of Optimal Design: Modeling and
Computation, 2nd Edn. Cambridge University Press.

Parker, G. & Van Alstyne, M. 2018 Innovation, openness, and platform control. Man-
agement Science 64 (7), 3015-3032; doi:10.1287/mnsc.2017.2757.

Parnas, D. L. 1972 On the criteria to be used in decomposing systems into modules. Pioneers
and Their Contributions to Software Engineering 15 (12), 1053-1058.

Parnas, D., Branch, S., Washington, C., Clements, P. & Weiss, D. 2000 The Modular
Structure of Complex Systems. University of Victoria.

Pine, B. J. 1993 Making mass customization happen: strategies for the new competitive
realities. Planning Review 21 (5), 23-24; doi:10.1108/eb054435.

Poetz, M. K. & Schreier, M. 2012 The value of crowdsourcing: can users really compete with
professionals in generating new product ideas? Journal of Product Innovation Man-
agement 29 (2), 245-256; doi:10.1111/j.1540-5885.2011.00893 x.

Raveendran, M., Puranam, P. & Warglien, M. 2016 Object salience in the division of labor:
experimental evidence. Management Science 62 (7), 2110-2128; doi:10.1287/
mnsc.2015.2216.

Richards, M. G. 2009 Multi-Attribute Tradespace Exploration for Survivability. Massa-
chusetts Institute of Technology; doi:10.2514/1.A32789.

Ross, A. M., Rhodes, D. H. & Hastings, D. E. 2008 Defining changeability: reconciling
flexibility, adaptability, scalability, modifiability, and robustness for maintaining system
lifecycle value. Systems Engineering 11 (3), 246-262; doi:10.1002/sys.20098.

34/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1109/JSYST.2019.2940864
https://doi.org/10.1109/JSYST.2016.2594290
https://doi.org/10.1109/JSYST.2016.2594290
https://doi.org/10.1002/sys.21342
https://doi.org/10.1002/sys.21342
https://doi.org/10.1287/mnsc.2017.2757
https://doi.org/10.1108/eb054435
https://doi.org/10.1111/j.1540-5885.2011.00893.x
https://doi.org/10.1287/mnsc.2015.2216
https://doi.org/10.1287/mnsc.2015.2216
https://doi.org/10.2514/1.A32789
https://doi.org/10.1002/sys.20098
https://doi.org/10.1017/dsj.2022.7

Design Science

Safarkhani, S., Bilionis, I. & Panchal, J. H. 2020 Modeling the system acquisition using
deep reinforcement learning. IEEE Access 8, 124894-124904; doi:10.1109/
ACCESS.2020.3008083.

Sanchez, R. & Mahoney, J. T. 1996 Modularity, flexibility, and knowledge management in
product and organization design. Strategic Management Journal 17 (S2), 63-76; doi:
10.1002/smj.4250171107.

Schilling, M. A. 2000 Toward a general modular systems theory and its application to
interfirm product modularity. Academy of Management Review 25 (2), 312-334.

Schumpeter, J. A. 1934 Theorie Der Wirtschaftlichen Entwicklung. The Theory of Economic
Development. An Inquiry into Profits, Capital, Credit, Interest, and the Business Cycle
(trans. R. Opie). New Brunswick, USA and London, UK.

Shergadwala, M., Bilionis, I., Kannan, K. N. & Panchal, J. H. 2018 Quantifying the impact
of domain knowledge and problem framing on sequential decisions in engineering
design. Journal of Mechanical Design 140 (10), 101402; doi:10.1115/1.4040548.

Simon, H. A. 1962 The architecture of complexity. Proceedings of the American Philo-
sophical Society 106, 468—-482.

Simon, H. A. 1996 The Sciences of the Artificial. MIT Press, online document (Accessed date
for November 17th 2017) https://books.google.com/books?hl=en&lr=&
id=k5SrOnFw7psC&oi=fnd&pg=PRI&dq=simon-+science+of+the-artificial&
ots=-wXMhGFMIA&sig=te-IN1_4w4]_hf2vNWx-GcKrOWA.

Sinha, R., Christiaan, J. J. P., Liang, V.-C. & Khosla, P. K. 2001 Modeling and simulation
methods for design of engineering systems. Journal of Computing and Information
Science in Engineering 1 (1), 84-91; doi:10.1115/1.1344877.

Sobieszczanski-Sobieski, J. 1988 Optimization by Decomposition: A Step from Hierarchic to
Non-Hierarchic Systems. National Aeronautics and Space Administration, Langley
Research Center.

Sobieszczanski-Sobieski, J., Agte, J. S. & Sandusky, R. R. 2000 Bilevel integrated system
synthesis. AIAA Journal 38 (1), 164-172; doi:10.2514/2.937.

Sobieszczanski-Sobieski, J. & Haftka, R. T. 1997 Multidisciplinary aerospace design
optimization: survey of recent developments. Structural Optimization 14 (1), 1-23.

Steward, D. V. 1981 The design structure system: a method for managing the design of
complex systems. IEEE Transactions on Engineering Management 3, 71-74.

Suh, E. S. & de Weck, O. L. 2018 Modeling prize-based open design challenges: general
framework and FANG-1 case study. Systems Engineering 21 (4), 295-306; doi:10.1002/
sys.21434.

Szajnfarber, Z., Grogan, P. T., Panchal, J. H. & Gralla, E. L. 2020 A call for consensus on
the use of representative model worlds in systems engineering and design. Systems
Engineering 23 (4), 436-442; doi:10.1002/sys.21536.

Szajnfarber, Z. & Vrolijk, A. 2018 A facilitated expert-based approach to architecting
‘openable’ complex systems. Systems Engineering 21 (1), 47-58; doi:10.1002/sys.21419.

Szajnfarber, Z. & Weigel, A. L. 2013 A process model of technology innovation in
governmental agencies: insights from NASA’s science directorate. Acta Astronautica 84,
56-68; doi:10.1016/j.actaastro.2012.10.039.

Szajnfarber, Z., Zhang, L., Mukherjee, S., Crusan, J., Hennig, A. & Vrolijk, A. 2020 Who
is in the crowd? Characterizing the capabilities of prize competition competitors. I[EEE
Transactions on Engineering Management, 1-15; doi:10.1109/TEM.2020.2991370.

Taylor, C. R. 1995 Digging for golden carrots: an analysis of research tournaments. The
American Economic Review 85, 872-890.

35/39

https://doi.org/10.1017/dsj.2022.7 Published online by Cambridge University Press


https://doi.org/10.1109/ACCESS.2020.3008083
https://doi.org/10.1109/ACCESS.2020.3008083
https://doi.org/10.1002/smj.4250171107
https://doi.org/10.1115/1.4040548
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://books.google.com/books?hl=en&e_x0026;lr=&e_x0026;id=k5Sr0nFw7psC&e_x0026;oi=fnd&e_x0026;pg=PR9&e_x0026;dq=simon+science+of+the+artificial&e_x0026;ots=-wXMhGFMIA&e_x0026;sig=te-lN1_4w4J_hf2vNWx-GcKrOWA
https://doi.org/10.1115/1.1344877
https://doi.org/10.2514/2.937
https://doi.org/10.1002/sys.21434
https://doi.org/10.1002/sys.21434
https://doi.org/10.1002/sys.21536
https://doi.org/10.1002/sys.21419
https://doi.org/10.1016/j.actaastro.2012.10.039
https://doi.org/10.1109/TEM.2020.2991370
https://doi.org/10.1017/dsj.2022.7

Design Science

Terwiesch, C. & Xu, Y. 2008 Innovation contests, open innovation, and multiagent problem
solving. Management Science 54 (9), 1529-1543; doi:10.1287/mnsc.1080.0884.

Thompson, J. D. 2003. Organizations in Action: Social Science Bases of Administrative
Theory. Transaction.

Topcu, T. G. & Mesmer, B. L. 2018 Incorporating end-user models and associated
uncertainties to investigate multiple stakeholder preferences in system design. Research
in Engineering Design 29 (3), 411-431; doi:10.1007/s00163-017-0276-1.

Topcu, T. G., Mukherjee, S., Hennig, A. I. & Szajnfarber, Z. 2021 The dark side of
modularity: how decomposing problems can increase system complexity. Journal of
Mechanical Design 144 (3), 031403; doi:10.1115/1.4052391.

Tribes, C., Dubé, J.-F. & Trépanier, J.-Y. 2005 Decomposition of multidisciplinary
optimization problems: formulations and application to a simplified wing design.
Engineering Optimization 37 (8), 775-796; doi:10.1080/03052150500289305.

Tushman, M. L. & Nadler, D. A. 1978 Information processing as an integrating concept in
organizational design. Academy of Management Review 3 (3), 613-624; doi:10.5465/
amr.1978.4305791.

Ulrich, K. 1995 The role of product architecture in the manufacturing firm. Research Policy
24 (3), 419-440; doi:10.1016/0048-7333(94)00775-3.

Valencia-Romero, A. & Grogan, P. T. 2020 Structured to succeed? Strategy dynamics in
engineering systems design and their effect on collective performance. Journal of
Mechanical Design 142 (12), 121404; doi:10.1115/1.4048115.

Vincenti, W. G. 1990 What Engineers Know and How They Know It: Analytical Studies from
Aeronautical History. Johns Hopkins University Press.

Voelpel, S. C. & Dous, M. 2006 Lost knowledge: confronting the threat of an aging
workforce. Academy of Management Perspectives 20 (4), 125-126; doi:10.5465/
amp.2006.23270317.

Von Hippel, E. 1990. Task partitioning: an innovation process variable. Research Policy 19
(5), 407-418.

Vrolijk, A. & Szajnfarber, Z. 2015 When policy structures technology: balancing upfront
decomposition and in-process coordination in Europe’s decentralized space technology
ecosystem. Acta Astronautica 106, 33-46; doi:10.1016/j.actaastro.2014.10.017.

Welinder, P., Branson, S., Perona, P. & Belongie, S. 2010 The multidimensional wisdom of
crowds. Advances in Neural Information Processing Systems 23, 2424-2432.

Wiggins, A. & Crowston, K. 2011 From conservation to crowdsourcing: a typology of
citizen science. In 2011 44th Hawaii International Conference on System Sciences,
pp. 1-10; doi:10.1109/HICSS.2011.207.

Yin, R. K. 2003. Case Study Research: Design and Methods. Sage.

Zeigler, B. P., Muzy, A. & Kofman, E. 2018 Theory of Modeling and Simulation: Discrete
Event & Iterative System Computational Foundations. Academic Press.

Appendix A. Is golf representative of complex
systems design?

Although we made the case in Section 3.1 for why an abstract simulation inspired
by the game of golf can provide insight into complex system architecture, we revisit
that assertion here, analysing whether the features of how the simulation was
formulated reflect key attributes of a more representative engineering system, and
consequently whether specific results are likely to generalise (Szajnfarber et al.
2020). We chose a robotic arm as the reference system for this comparison because
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it a reasonably complex interdisciplinary system and also one that we have
explored extensively in the context of decomposing for open innovation through
a recent open innovation field experiment (Szajnfarber et al. 2020).

In the golf model, there are four key features of system representation: problem
architecture(s), solver types and associated capabilities, innovative solving and
coordination costs. Below we assess the extent to which each is representative of a
robotic arm, and more generally, a complex system.

A.1. Problem architecture

In golf, the problem was conceptualised in terms of three subfunctions driving,
approach and putting. Alternative architectures were considered in terms of
alternative groupings of these functions. In golf, order matters, so three subfunc-
tions translate to four alternative grouping structures. In the context of the robotic
arm design problem, the core functions involved, positioning, gripping and
orienting (a payload). Similar to golf, order matters since gripping of a perching
handrail cannot precede posting the gripper near said handrail. In the same way,
these three subfunctions translate to four alternative architectures. Of course, these
subfunctions can be further decomposed into more elementary functions or could
have been architected in a different way. Regardless, the overall representation of
interdependent functions of golf closely mirrors the interdependence of a real-
world system.

A.2. Solver types and their associated capabilities

In golf, we represented three canonical solver types: professional players, amateurs
and driving specialists. We could have represented many other variants including
gradients of amateurs, or specialists in different aspects of the game (e.g., putting).
However, we chose these three to explore different mappings of solver capabilities
to aspects of the game. Specifically, professionals were represented as similarly
capable at all aspects of the game. Amateurs were less capable and also more
variable in each aspect. Specialists were highly capable at one golf function -
driving - and otherwise behaved like amateurs. In the context of the robotic arm,
there is similarly a rich distribution of capabilities in different disciplines that are
relevant to robotics, spanning across software, electrical engineering, mechanical
engineering and design, among others. Nonetheless, the abstraction of a represen-
tative professional roboticist who is capable of each aspect of robotics is relevant.
For example, most engineers with the title roboticist have some cross-training in
multiple underlying disciplines and over the course of their careers have gained
additional cross-capability. In the same way, there are many capable experts who
specialise in specific functions relevant to robotics, but not others. For example,
many of the exotic grippers being envisioned today rely on deep knowledge of
material science, not typically possessed by traditional roboticists. Therefore, the
representation of a specialist excellent at one function but otherwise a veritable
amateur, tracks. Similarly, many engineering undergraduates take at least one
course in industrial robotics, making it reasonable to expect that a large population
of amateur roboticists exists. Thus, while it is certainly reasonable to consider much
more nuanced representations of contrasting solver expertise, the simplified
archetypes represented in the model are relevant to the real-world system.
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A.3. Innovative solving

In golf ‘solving’ the whole involves moving a golf ball from the Tee to the hole, with
the goal of minimising the number of strokes required to do so. Golf players
develop their own techniques for, for example, driving long and straight, reading
the green or how to set up their approach. In the simulation, this variation was
represented by a generative model that drew each next stroke from normal or
uniform distributions, parameterized to match the capabilities of the solver type on
each stroke type. As a result, different solving types tended to take different paths
through the hole, with specialists often reaching the green on the first stroke, and
generally requiring more tries to sink, whereas professionals generally took two
strokes to the green, but often sunk the ball in at most two putts. In the context of a
robotic arm, there are many more design parameters in play. Here, solving means
designing a robotic arm that meets all the requirements and minimises mass (per
the challenge rules; Szajnfarber et al. 2020). Looking across the system, engineers
can find many approaches to doing so. For example, a talented mechanism
designer might find ways to traverse the workspace with fewer degrees of freedom.
Reducing the actuators and the associated wiring and electronics required to drive
them, saves mass. Other engineers might explore low power solutions or the
potential for wireless power beaming to save wiring and the structure needed to
support local electronics. While the full space of this solution and solving variety is
not represented in a stochastic golf model, the same principles that enable different
best solving paths as a function of solver capabilities and task structure constraints
are highly relevant to understanding solving in the real-world context too.

A.4. Integration costs

In golf, we replaced two kinds of dependencies with coordination rules and applied
a cost to implement each. First, to coordinate the handoff of ball placement of the
best solution to module n to define the initial conditions of module n 4 1, we
defined selection rules. These involved balancing a desire for a closer ball place-
ment and minimal total strokes. Therefore, for some of the handoffs evaluation
required an assessment of each of the attempts individually, while others simply
required a review of the aggregate result. We costed this coordination burden as a
function of the number of evaluations (see Section 3.4). This reflects a difference in
evaluation burden experienced by prime contractors who let subawards to different
types of entities. They tend to include less oversight and shared testing for
established suppliers (when the type of product is held constant). Second, to
decouple shared variables, as in the choice of how far to drive to set up an easier
approach, we transformed the objective into a decoupled one: drive as far down the
fairway as possible. While this mode of decoupling does not introduce any
additional integration costs, it does introduce a performance penalty (illustrated
clearly in Figure 5a).

Both types of decoupling choices and their associated integration costs and
performance penalties are relevant to robotic design as well. For example, if a
gripping module and manipulator arm must share a power source, it is easier to
write an allocated requirement that cleanly divides the budget. However, that tends
to force both systems into a particular operating regime, which can prematurely
close off parts of the design space. New gripping mechanisms that rely on
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electromagnetism would not be considered even though their functionality might
make it worth developing a low-powered manipulator or choosing to sequence
operations to share power over time versus across modules. Rather than a clean
division of the power budget, a more sophisticated design rule might focus globally
and create a coordination function that only picks pairs of solutions that meet the
overall requirement. Therefore, while the specific coordination costs will be unique
to each setting, golf is a sufficiently rich example to bring up the key tradeoffs that
are relevant to practical settings.

Opverall, while golfis simpler in several ways, it embodies all of the key structural
features of the robotic arm problem as an example of other complex systems. We,
therefore, believe that the insights gained here are analytically generalizable to
other settings, relevant to the design community.
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