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Abstract
We provide the first positive result on the nonsmooth optimization landscape of robust
principal component analysis, to the best of our knowledge. It is the object of sev-
eral conjectures and remains mostly uncharted territory. We identify a necessary and
sufficient condition for the absence of spurious local minima in the rank-one case.
Our proof exploits the subdifferential regularity of the objective function in order to
eliminate the existence quantifier from the first-order optimality condition known as
Fermat’s rule.

1 Introduction

Low-rank matrix factorization has received significant attention in the last decade, ini-
tiated by several seminal papers [7,8,18,29]. It has various applications in data science
and machine learning, which include principal component analysis [4,7], facial recog-
nition [7], video surveillance [5,16], recommender systems [22] and natural language
processing [23]. The number of survey papers [10–12,20,26,28] on the subject in the
last three years is a testament to the amount of research it has spawned.

While the exact recovery of a low-rank matrix via convex optimization is well
understood [7,9], its non-convex counterpart

inf
(X ,Y )∈Rm×r×Rn×r

‖XY T − M‖1 (1)

remains elusive,whereM ∈ R
m×n and‖A‖1 := ∑m

i=1
∑n

j=1 |Ai j | for any A ∈ R
m×n .

Note thatminimizing the Frobenius norm squared instead yields approximate recovery
and is better understood [2,14,32]. For a general data matrix M ∈ R

m×n , finding a
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global minimum to (1) is known to be an NP-hard problem [17, Theorem 3]. However
if M is itself a low-rank matrix, then it is conjectured that the objective function
is sharp [6] in a neighborhood of the global minima (see [25, Equation (2.11)] and
[10, Conjecture 8.7]). At best, this would imply convergence guarantees for local
search algorithms when initialized in a neighborhood of the global minima. In order
to prove convergence to a global minimum from any random initial point, as observed
in [1,15,21,24], it is necessary to analyze the landscape. We do so in the rank-one case
and obtain the following theorem.

Theorem 1 Assume that rank(M) ≤ 1. Then the function defined from R
m ×R

n to R
by

f (x, y) :=
m∑

i=1

n∑

j=1

|xi y j − Mi j | (2)

has no spurious local minima if and only if none or all of the entries of M are equal
to zero.

Spurious local minima are defined as local minima that are not global minima. The
analysis of the landscape of the nonconvex and nonsmooth objective function f poses
a significant challenge. We next explain why several standard tools in optimization
fall short of providing a way forward. As a first approach, one could consider the
following equivalent constrained optimization problem

min
(x,y,z)∈Rm×Rn×Rm×n

m∑

i=1

n∑

j=1

zi j (3a)

subject to − zi j ≤ xi y j − Mi j ≤ zi j , i = 1, . . . ,m, j = 1, . . . , n. (3b)

The advantage of such a formulation is, of course, the fact that it is smooth. One
may then invoke the Karush-Kuhn-Tucker conditions. However, it is not clear how
one should establish constraint qualification. Observe that when M = (0, 1)T , the
gradients of the active constraints are linearly dependent at the origin, which is a
saddle point. Besides, the Karush-Kuhn-Tucker conditions comprise an exponential
numbers of cases as a function of the dimensions m and n, and there is seemingly no
way to avoid treating each case separately.

As a second approach, one could try to approximate the nonconvex and nonsmooth
objective function (2) by a smooth function. This viewpoint underliesmany approaches
for solving nonsmooth optimization problems, notably proximal methods [3] and
Nesterov’s smoothing technique [27]. Along these lines, the first author and co-authors
recently established that the uniform limit of a sequence of functions which are devoid
of spurious localminima is itself devoid of spurious strict localminima [21, Proposition
2.7]. A spurious strict local minimum is a strict local minimum that is not a global
minimum. In our setting, a natural candidate of smooth approximations is given by
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Nonsmooth rank-one matrix factorization landscape 1613

the �p-norm, where p > 1:

f p(x, y) :=
m∑

i=1

n∑

j=1

|xi y j − Mi j |p. (4)

By letting p converge to 1 from above, f p converges uniformly to f on any compact
set. However, this approach fails to deliver any meaningful results for the problem at
hand. Indeed, we know full well that the objective function (2) is devoid of spurious
strict local minima. This follows from the invariance f (θx, θ−1y) = f (x, y) for all
θ ∈ R\{0}, whereby any point different from the origin, itself a saddle point, has
neighbors with identical function values.

A third approach, and the one that wewill follow in this paper, is to use a generalized
Fermat rule [13, 2.3.2 Proposition]which holds for locally Lipschitz functions. It states
that if (x, y) ∈ R

m × R
n is a local minimum of f , then 0 ∈ ∂ f (x, y) where ∂ f is

the Clarke subdifferential [13, pp. 25-27]. We will refer to a point satisfying this
set inclusion as a critical point. The Clarke subdifferential of f is defined for all
(x, y) ∈ R

m × R
n by

∂ f (x, y) := {(s, t) ∈ R
m × R

n | f ◦(x, y; h, k) ≥ sT h + tT k, ∀(h, k) ∈ R
m × R

n}
(5)

where one uses the generalized directional derivative

f ◦(x, y; h, k) := lim sup
(x̄, ȳ) → (x, y)

t ↘ 0

f (x̄ + th, ȳ + tk) − f (x̄, ȳ)

t
. (6)

By virtue of [13, 2.3.10 Chain Rule II], we have the simpler form

∂ f (x, y) =
{(

�y
�T x

) ∣
∣
∣
∣ � ∈ sign(xyT − M)

}

(7)

where

sign(t) :=
⎧
⎨

⎩

−1 if t < 0,[ − 1, 1
]
if t = 0,

1 if t > 0.
(8)

Above, [−1, 1] stands for the interval inR that includes−1 and 1, and the sign function
applies to matrices term by term. It follows from (7) that a point is critical if and only
if

∃� ∈ sign(xyT − M) : �y = 0 and �T x = 0. (9)

In order to study the variation of f in the vicinity of its critical points, we seek to
eliminate the quantifier ∃ from (9). The Tarski-Seidenberg theorem [30,31] guarantees
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Fig. 1 Elimination of quantifier with Wolfram Mathematica 12

that this is possible for any M ∈ R
m×n , as long as m and n are fixed. One can thus

recover the set of critical points when M = (0, 1)T using commercial software, as
can be seen in Fig. 1. However, no such result is guaranteed for any sizes m and n.
In order to overcome this, we analyze step functions that arise in the partial Clarke
subdifferentials of f in Lemma 1. (The partial Clarke subdifferential ∂x1 f (x, y) is, by
definition [13, p. 48], the Clarke subdifferential of f (·, x2, . . . , xm, y) at x1.) We are
thus able to eliminate the quantifier from (9) with Lemma 2. The new description of
the critical points is much more amenable to analysis. It yields a full characterization
of the landscape of f in Proposition 1, from which Theorem 1 is deduced.

The reason why we can rely on partial Clarke subdifferentials to analyze the
landscape is because the objective function f is subdifferentially regular [13, 2.3.4
Definition]. By definition, this means that its generalized directional derivative agrees
with the classical directional derivative, that is to say, we have

lim sup
(x̄, ȳ) → (x, y)

t ↘ 0

f (x̄ + th, ȳ + tk) − f (x̄, ȳ)

t
= lim

t↘0

f (x + th, y + tk) − f (x, y)

t

(10)

for all (x, y) ∈ R
m × R

n and (h, k) ∈ R
m × R

n , and the limit on the right hand
side exists. As shown by Clarke [13, 2.5.2 Example], one should not take this prop-
erty for granted. The function in Fig. 2a defined from R

2 to R by ϕ(x1, x2) :=
max{min{x1,−x2}, x2 − x1} is not subdifferentially regular, despite being continuous
and semi-algebraic, just like f , and hence belonging to the class of tame functions [19].
As a result, its partial Clarke subdifferentials at the origin, which is a critical point,
are completely decorrelated from its Clarke subdifferential: ∂x1ϕ(0, 0)×∂x2ϕ(0, 0) �⊂
∂ϕ(0, 0) �⊂ ∂x1ϕ(0, 0) × ∂x2ϕ(0, 0), where �⊂ means “is not a subset of”, as can be
seen in Fig. 2b. The partial Clarke subdifferentials are hence of no use to analyze the
landscape of ϕ. In contrast, since f is subdifferentially regular, we have

∂ f (x, y) ⊂ ∂x1 f (x, y) × . . . × ∂xm f (x, y) × ∂y1 f (x, y) × . . . × ∂yn f (x, y)

(11)
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Nonsmooth rank-one matrix factorization landscape 1615

(a) Graph around the origin.

x1

x2

∂x1ϕ(0, 0) × ∂x2ϕ(0, 0)

∂ϕ(0, 0)

1

1

0

(b) Subdifferentials at the origin.

Fig. 2 Continuous semi-algebraic function that is not subdifferentially regular

where ⊂ means “is a subset of”. The inclusion is strict when

x =
(

1
−1

)

, y =
(
1
1

)

, and M =
(

2 1
−1 −1/2

)

(12)

since 0 /∈ ∂ f (x, y) yet 0 ∈ ∂x1 f (x, y) × ∂x2 f (x, y) × ∂y1 f (x, y) × ∂y2 f (x, y). It
thus yields a necessary but not sufficient condition for being critical. The proof of
Lemma 1 makes extensive use of this necessary condition but ultimately invokes the
critical condition to conclude.

2 Proof of Theorem 1

It will be convenient in our analysis to consider a factorization of M whose rank we
assume to be less than or equal to one. From now on, let u ∈ R

m and v ∈ R
n denote

vectors such that M = uvT . In order to introduce Lemma 1, observe that

f (x, y) =
m∑

i=1

n∑

j=1

|xi y j − uiv j | (13a)

=
∑

ui �=0

n∑

j=1

|xi y j − uiv j | +
∑

ui=0

n∑

j=1

|xi y j | (13b)

=
∑

ui �=0

|ui |
n∑

j=1

|y j (xi/ui ) − v j | +
n∑

j=1

|y j |
∑

ui=0

|xi | (13c)
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1616 C. Josz, L. Lai

where we use the convention that a sum over an index set which is empty is equal to
zero. Similarly,

f (x, y) =
n∑

j=1

m∑

i=1

|xi y j − uiv j | (14a)

=
∑

v j �=0

m∑

i=1

|xi y j − uiv j | +
∑

v j=0

m∑

i=1

|xi y j | (14b)

=
∑

v j �=0

|v j |
m∑

i=1

|xi (y j/v j ) − ui | +
m∑

i=1

|xi |
∑

v j=0

|y j |. (14c)

As a result,

f (x, y) =
∑

ui �=0

|ui |α(xi/ui ) + ‖y‖1
∑

ui=0

|xi |, (15a)

f (x, y) =
∑

v j �=0

|v j |β(y j/v j ) + ‖x‖1
∑

v j=0

|y j |, (15b)

where the functions α and β are defined from R to R by

α(t) :=
n∑

j=1

|y j t − v j | and β(t) :=
m∑

i=1

|xi t − ui | (16)

and ‖ · ‖1 is the �1-norm. The partial Clarke subdifferentials [13, p. 48] of f are

∂xi f (x, y) =
{
sign(ui )∂α(xi/ui ) if ui �= 0,
sign(xi )‖y‖1 if ui = 0,

(17a)

∂y j f (x, y) =
{
sign(v j )∂β(y j/v j ) if v j �= 0,
sign(y j )‖x‖1 if v j = 0,

(17b)

where

∂α(t) =
n∑

j=1

sign(y j t − v j )y j and ∂β(t) =
m∑

i=1

sign(xi t − ui )xi . (18)

Since α and β are convex piecewise affine functions, their subdifferentials ∂α and ∂β

are non-decreasing step functions, as can be seen in Fig. 3. From the expressions of
∂α(t) and ∂β(t) in (18), it follows that the jumps between the steps of ∂α occur at
v j/y j for all index j such that y j �= 0, while those of ∂β occur at ui/xi such that
xi �= 0. Observe that 0 is a root of ∂α and ∂β in Fig. 3. This is true whenever (x, y) is a
critical point of f and it is not a global minimum of f . Such is the object of Lemma 1
below.
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Nonsmooth rank-one matrix factorization landscape 1617

t

∂α(t)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

(a) Subdifferential of α

t

∂β(t)

-3 -2 -1 0 1 2 3

-6

-3

0

3

6

(b) Subdifferential of β

Fig. 3 Step functions at the critical point x = (2, −1,−1, 1, −1)T , y = (−1,−1/2, −1/2)T where
u = (−2, −1, 2, 1, −2)T , v = (−1, 1, 1)T

Lemma 1 0 ∈ ∂ f (x, y) 
⇒ f (x, y) = 0 or 0 ∈ ∂α(0) ∩ ∂β(0).

Proof Assume that 0 ∈ ∂ f (x, y). Since f is the composition of a convex function and
a continuously differentiable function, by virtue of [13, Corollary p. 32], [13, 2.3.6
Proposition (b)], and [13, 2.3.10 Chain Rule II], it is subdifferentially regular [13, 2.3.4
Definition]. It follows from [13, 2.3.15Proposition] that ∂ f (x, y) ⊂ ∂x1 f (x, y)×. . .×
∂xm f (x, y)×∂y1 f (x, y)×. . .×∂yn f (x, y). Hence 0 ∈ ∂xi f (x, y) and 0 ∈ ∂y j f (x, y)
for all indices i and j . Based on the expressions of the partial Clarke subdifferentials
in (17a)–(17b), we get that 0 ∈ ∂α(xi/ui ) ∩ ∂β(y j/v j ) for any indices i and j such
that ui �= 0 and v j �= 0. In other words, whenever they are well-defined, the ratios
xi/ui and y j/v j are roots of ∂α and ∂β, respectively.

We next reason by contradiction and assume that f (x, y) > 0 and 0 /∈ ∂α(0) ∩
∂β(0). If u = 0 and v = 0, then from (18) we get that ∂α(t) = ‖y‖1sign(t) and
∂β(t) = ‖x‖1sign(t), so that 0 ∈ ∂α(0) ∩ ∂β(0). As a result, either u �= 0 or
v �= 0. Assume that u = 0. Based on what was just said, v �= 0. Also, x �= 0 and
y �= 0, otherwise f (x, y) = 0. Since u = 0, from the expression of partial Clarke
subdifferential in (17a) we find that 0 ∈ ∂ fxi (x, y) = sign(xi )‖y‖1 for all index
i . Thus x = 0, which is a contradiction. We deduce that u �= 0, and by the same
reasoning, v �= 0. Assume that x = 0. Then, from (18), we get that ∂β(t) = 0 for all
t ∈ R, and in particular, 0 ∈ ∂β(0). In addition, xi/ui is a root of ∂α whenever ui �= 0,
and sinceu �= 0, 0 is a root of ∂α.As result, 0 ∈ ∂α(0)∩∂β(0),which is a contradiction.
We deduce that x �= 0, and by the same reasoning, y �= 0. In addition, for all indices
i and j such that ui = 0 and v j = 0, we have 0 ∈ ∂ fxi (x, y) = sign(xi )‖y‖1 and
0 ∈ ∂ fy j (x, y) = sign(y j )‖x‖1, whence xi = 0 and y j = 0. To sum up, so far we
have shown that u �= 0, v �= 0, x �= 0, y �= 0, xi = 0 if ui = 0, and y j = 0 if v j = 0.

We next analyze the roots and jumps of ∂α and ∂β. Neither step function has a
jump at the origin, otherwise there exists i and j such that y j �= 0 yet v j = 0, and
xi �= 0 yet ui = 0. As for the values of the step functions at the origin, they cannot
both be zero otherwise 0 ∈ ∂α(0) ∩ ∂β(0). Without loss of generality, we may thus
assume from now on that ∂α(0) �= 0. If the non-decreasing function ∂α has a negative
and a positive root, then ∂α(0) = 0. As a result, without loss of generality, we may
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t

∂α(t)

vj0
yj0

x1
u1

. . . xm
um

0

(a) Subdifferential of α

t

∂β(t)

yj0
vj0

um
xm

. . . u1
x1

0

(b) Subdifferential of β

Fig. 4 Visualization of the proof of Lemma 1

assume that xi/ui > 0 for all index i such that ui �= 0 (and in particular, xi �= 0 if
ui �= 0). If ∂α has no positive jump point that is less than or equal to each root xi/ui ,
then ∂α(0) = 0. Hence, let v j0/y j0 be such a jump point, where y j0 �= 0. We thus
have 0 < v j0/y j0 ≤ xi/ui for all index i such that ui �= 0, as illustrated in Fig. 4a.

We next discuss the repercussions of the jump point v j0/y j0 of ∂α on the roots
and jumps of ∂β. Inverting yields that 0 < ui/xi ≤ y j0/v j0 for all index i such
that ui �= 0. As was shown in the second paragraph, xi = 0 if ui = 0, hence the
previous sentence is true for all index i such that xi �= 0. Hence all the jump points
of ∂β are less than or equal to one of its roots y j0/v j0 . This is illustrated in Fig. 4b.
Assume that ∂β(y j0/v j0) ⊂ (−∞, 0], which is true if y j0/v j0 is not a jump, as it is
represented in Fig. 4b. Then ∂β(t) = 0 for all t ≥ y j0/v j0 . As remarked in parenthesis
in the previous paragraph, ui = 0 if xi = 0, hence for all t large enough we have
sign(xi t − ui ) = sign(xi t). Thus ∂β(t) = ∑m

i=1 sign(xi t)xi = ∑m
i=1 |xi | for all t

large enough. It follows that x = 0, which is contradiction. As a result, there exists
ε > 0 such that [0, ε] ⊂ ∂β(y j0/v j0), and in particular, y j0/v j0 is a jump point of ∂β.
Since ∂β is a non-decreasing step function, it has no roots greater than y j0/v j0 .

We next consider the case where [−ε, ε] ⊂ ∂β(y j0/v j0), after possibly reducing
ε > 0. Since ∂β is a non-decreasing step function, it has no roots less than y j0/v j0 .
Since y j/v j is a root of ∂β whenever v j �= 0, it follows that y j/v j = y j0/v j0 > 0
for all v j �= 0 (and in particular, we have y j �= 0 if v j �= 0). Inverting yields that
v j/y j = v j0/y j0 for all v j �= 0. As was shown in the second paragraph, if y j �= 0,
then v j �= 0. It follows that v j/y j = v j0/y j0 for all y j �= 0. Hence v j0/y j0 is the
unique jump point of ∂α. Recall that 0 < v j0/y j0 ≤ xi/ui and xi/ui is a root of ∂α for
all index i such that ui �= 0. Assume that there exists an index i0 such that xi0/ui0 such
that v j0/y j0 < xi0/ui0 . Then ∂α(t) = 0 for all t ≥ xi0/ui0 . As remarked in parenthesis
in this paragraph, it holds that v j = 0 if y j = 0, and thus for all t large enough we
have sign(y j t − v j ) = sign(y j t). Hence ∂α(t) = ∑n

j=1 sign(y j t)y j = ∑n
j=1 |y j |

for all t large enough. It follows that y = 0, which is contradiction. As a result,
v j/y j = v j0/y j0 = xi/ui for all indices i and j such that ui �= 0 and y j �= 0, and
hence xi y j − uiv j = 0. Recall that xi = 0 if ui = 0, and v j = 0 if y j = 0. Hence
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Nonsmooth rank-one matrix factorization landscape 1619

xi y j − uiv j = 0 for all indices i and j , which implies that f (x, y) = 0. This is a
contradiction.

It remains to consider the casewhere ∂β(y j0/v j0) = [0, ε], possibly after increasing
ε > 0. Recall that all the jump points of ∂β, i.e. ui/xi for all index i such that xi �= 0,
are less than or equal to y j0/v j0 . Assume that ui/xi = y j0/v j0 for all index i such
that xi �= 0. Hence y j0/v j0 is unique jump point of ∂β. Since ∂β(y j0/v j0) = [0, ε],
we have ∂β(t) = 0 for all t ≤ y j0/v j0 . Since ui = 0 if xi = 0, for all t small
enough (i.e., taking large negative values), we have sign(xi t − ui ) = −sign(xi ).
Hence ∂β(t) = ∑m

i=1 −sign(xi )xi = −∑m
i=1 |xi | for all t small enough. It follows

that x = 0, which is contradiction. As a result, there exists an index i0 such that
0 < ui0/xi0 < y j0/v j0 . Recall that y j/v j is a root of ∂β for all index j such that
v j �= 0. Since ∂β(y j0/v j0) = [0, ε], we have 0 < ui0/xi0 ≤ y j/v j ≤ y j0/v j0
for all index j such that v j �= 0 (and in particular, we have y j �= 0 if v j �= 0).
Inverting yields 0 < v j0/y j0 ≤ v j/y j ≤ xi0/ui0 for all index j such that v j �= 0.
As was shown in the second paragraph, if y j �= 0 then v j �= 0, hence the previous
sentence is true for all index j such that y j �= 0. Since ∂β(y j0/v j0) = [0, ε], y j0/v j0
is a jump point of ∂β, so there exists i1 such that y j0/v j0 = ui1/xi1 . We thus have
0 < xi1/ui1 = v j0/y j0 ≤ v j/y j ≤ xi0/ui0 for all index j such that y j �= 0. If
xi1/ui1 = v j0/y j0 < v j/y j < xi0/ui0 , then v j/y j is a jump point of ∂α located
strictly between two of its roots, which is impossible. Hence for all index j such that
y j �= 0, either v j/y j = μ := xi1/ui1 or v j/y j = ν := xi0/ui0 . If v j/y j �= ν for all
index j such that y j �= 0, then one of the roots of ∂α is greater than all its jump points.
Hence ∂α(t) = 0 for all t large enough. Together with the fact that ui = 0 if xi = 0,
this yields a contradiction. Hence there exists j1 such that v j1/y j1 = xi0/ui0 . We next
show that the dichotomy v j/y j = μ or v j/y j = ν also holds for xi/ui whenever
ui �= 0.

Based on the previous paragraph, we have 0 < xi1/ui1 = v j0/y j0 < v j1/y j1 =
xi0/ui0 . Inverting yields ui0/xi0 = y j1/v j1 < y j0/v j0 = ui1/xi1 . Recall that y j/v j

are roots of ∂β for all index j such that v j �= 0, and the jump points of ∂β are ui/xi
for all index i such that xi �= 0. The non-decreasing function ∂β cannot have a jump
point strictly between two of its roots, hence for all index i such that xi �= 0, it holds
that 0 < ui/xi ≤ ui0/xi0 = y j1/v j1 < y j0/v j0 = ui1/xi1 or 0 < ui0/xi0 = y j1/v j1 <

y j0/v j0 = ui1/xi1 ≤ ui/xi . Inverting yields xi1/ui1 = v j0/y j0 < v j1/y j1 = xi0/ui0 ≤
xi/ui or xi/ui ≤ xi1/ui1 = v j0/y j0 < v j1/y j1 = xi0/ui0 . If the inequality is strict in
the first case, then xi/ui is a root of ∂α that is greater than all of its jump points, of
which there are two according to the previous paragraph, namely v j1/y j1 and v j0/y j0 .
If the inequality is strict in the second case, then xi/ui is a root of ∂α that is less
than all of its jump points. In either case, ∂α(t) = 0 for all t either small or large
enough. Together with the fact that v j = 0 if y j = 0 (as remarked in parenthesis in the
previous paragraph), this yields a contradiction. Hence for all index i such that ui �= 0,
either xi/ui = μ or xi/ui = ν, and each case clearly happens for some index (the
first with i1, the second with i0). In light of the dichotomy exposed above, consider
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1620 C. Josz, L. Lai

(h, k) ∈ R
m × R

n defined by

hi :=
⎧
⎨

⎩

0 if xi/ui = μ,

−uiν if xi/ui = ν,

0 if ui = 0,
and k j :=

⎧
⎨

⎩

0 if y j/v j = 1/μ,

v j/ν if y j/v j = 1/ν,

0 if v j = 0.
(19)

Consider also the function γ defined fromR
m×n toR by γ (Q) := hT Qy+ xT Qk. So

far in the proof,wehaveonly used the necessary condition for being critical providedby
(11).We next invoke the critical condition, as discussed in the introduction. According
to the critical condition (9), there exists � ∈ sign(xyT − uvT ) such that �y = 0 and
�T x = 0. Thus γ (�) = hT�y + xT�k = hT (�y) + (�T x)T k = 0. Yet, observe
that the image γ

(
sign(xyT − uvT )

) = . . .

=
m∑

i=1

n∑

j=1

sign(xi y j − uiv j )(hi y j + xi k j ) (20a)

=
∑

xi
ui

=μ

∑

y j
v j

= 1
μ

sign(xi y j − uiv j )(0 × y j + xi × 0) + (20b)

∑

xi
ui

=μ

∑

y j
v j

= 1
ν

sign(xi y j − uiv j )(0 × y j + xi × v j/ν) + (20c)

∑

xi
ui

=μ

∑

v j=0

sign(xi y j − uiv j )(0 × y j + xi × 0) + (20d)

∑

xi
ui

=ν

∑

y j
v j

= 1
μ

sign(xi y j − uiv j )(−uiν × y j + xi × 0) + (20e)

∑

xi
ui

=ν

∑

y j
v j

= 1
ν

sign(xi y j − uiv j )(−uiν × y j + xi × v j/ν) + (20f)

∑

xi
ui

=ν

∑

v j=0

sign(xi y j − uiv j )(−uiν × y j + xi × 0) + (20g)

∑

ui=0

∑

y j
v j

= 1
μ

sign(xi y j − uiv j )(0 × y j + xi × 0) + (20h)

∑

ui=0

∑

y j
v j

= 1
ν

sign(xi y j − uiv j )(0 × y j + xi × v j/ν) + (20i)

∑

ui=0

∑

v j=0

sign(xi y j − uiv j )(0 × y j + xi × 0) (20j)

=
∑

xi
ui

=μ

∑

y j
v j

= 1
ν

sign((μ/ν − 1)uiv j )(uiμv j/ν) + (20k)
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∑

xi
ui

=ν

∑

y j
v j

= 1
μ

sign((ν/μ − 1)uiv j )(−uiνv j/μ) (20l)

= −μ/ν
∑

xi
ui

=μ

∑

y j
v j

= 1
ν

|uiv j | − ν/μ
∑

xi
ui

=ν

∑

y j
v j

= 1
μ

|uiv j | < 0. (20m)

Above, (20a) follows from the definition of the function γ . We substitute hi and k j
using their definition in (19), which yields (20b)–(20j). We next substitute xi and
y j using their expressions below the summation signs and obtain (20k)–(20l). Note
that all but two terms cancel out: (20b) cancels out for obvious reasons; (20c) yields
(20k); (20d) cancels out for obvious reasons; (20e) yields (20l); (20f) cancels out
because −uiν × y j + xi × v j/ν = −uiν × v j/ν + uiν × v j/ν = 0; (20g) cancels
out because y j = 0 if v j = 0, as shown in the second paragraph; (20h) cancels out
for obvious reasons; (20i) cancels out because xi = 0 if ui = 0, as was shown in
the second paragraph; (20j) cancels out for obvious reasons. To get from (20k)–(20l)
to (20m), we use the fact that μ/ν − 1 < 0 and ν/μ − 1 > 0 since 0 < μ < ν.
We also use the fact that sign(uiv j )uiv j = |uiv j |. The result in (20m) is negative
because the summation takes place over non-empty sets: xi0/ui0 = μ, y j0/v j0 = 1/ν,
xi1/ui1 = ν, and y j1/v j1 = 1/μ. (While it may seem strange at first, the image of the
set sign(xyT −uvT ) via the function γ is actually a singleton.) In particular, γ (�) < 0
whereas we had shown above that γ (�) = 0. This is a contradiction and terminates
the proof. ��

Thanks to Lemma 1, we may now remove the existence quantifier from the critical
condition (9). We obtain a finite number of unions and intersections of polynomial
equations and inequalities, where the number is independent of the dimensions m and
n.

Lemma 2 (x, y) ∈ R
m × R

n is a critical point of f if and only if

xi y j = uiv j for i = 1, . . . ,m, j = 1, . . . , n, or (21a)
∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )xi

∣
∣
∣
∣
∣
∣
≤

∑

ui=0

|xi | and y = 0, or (21b)

x = 0 and

∣
∣
∣
∣
∣
∣

∑

v j �=0

sign(v j )y j

∣
∣
∣
∣
∣
∣
≤

∑

v j=0

|y j |, or (21c)

∑

ui �=0

sign(ui )xi =
∑

v j �=0

sign(v j )y j = 0,
xi y j
uiv j

≤ 1 if uiv j �= 0, (21d)

xi = 0 if ui = 0, and y j = 0 if v j = 0. (21e)

Proof (
⇒) Assume that 0 ∈ ∂ f (x, y). If f (x, y) = 0, then (21a) holds. Otherwise,
we next prove that (21b)–(21e) hold. From the expression of ∂α(t) and ∂β(t) in (18),
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it follows that

∂α(0) = −
n∑

j=1

sign(v j )y j = −
∑

v j �=0

sign(v j )y j −
∑

v j=0

sign(0)y j , (22a)

∂β(0) = −
m∑

i=1

sign(ui )xi = −
∑

ui �=0

sign(ui )xi −
∑

ui=0

sign(0)xi . (22b)

Since 0 ∈ ∂ f (x, y) and f (x, y) �= 0, from Lemma 1 we get that 0 ∈ ∂α(0) ∩ ∂β(0).
Together with (22a)–(22b), this yields that

∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )xi

∣
∣
∣
∣
∣
∣
≤

∑

ui=0

|xi | and

∣
∣
∣
∣
∣
∣

∑

v j �=0

sign(v j )y j

∣
∣
∣
∣
∣
∣
≤

∑

v j=0

|y j |. (23)

If y = 0, then from the inequality on the left hand side of (23), we obtain (21b).
Likewise, if x = 0, then from the inequality on the right hand side of (23), we obtain
(21c). If neither x = 0 nor y = 0, then for all indices i and j such that ui = 0 and
v j = 0, we have 0 ∈ ∂xi f (x, y) = sign(xi )‖y‖1 and 0 ∈ ∂y j f (x, y) = sign(y j )‖x‖1,
whence xi = 0 and y j = 0. Hence (21e) is true. In light of this, the inequalities in
(23) become equalities and equal to zero, yielding the equalities in (21d). It remains
to show the ratio inequalities in (21d), for which we don’t need to assume that neither
x nor y are equal to zero. Indeed, the ratio inequalities trivially hold in this case. The
ratio inequalities are the object of the next paragraph.

Since0 ∈ ∂xi f (x, y) and0 ∈ ∂y j f (x, y) for all indices i and j , from the expressions
of the partial Clarke sudifferentials in (17a)–(17b), it follows that 0 ∈ ∂α(xi/ui ) ∩
β(y j/v j ) whenever ui �= 0 and v j �= 0. Recall from Lemma 1 that we also have that
0 ∈ ∂α(0) ∩ ∂β(0). Observe that the non-decreasing function ∂α cannot contain a
jump point between the root 0 and any root xi/ui . Hence, for all index j such that
y j �= 0, if the jump point v j/y j is positive, then it is greater than or equal to all the
roots xi/ui , that is to say, v j/y j ≥ xi/ui . If the jump point v j/y j is negative, then it
is less than or equal to all the roots xi/ui , that is to say, v j/y j ≤ xi/ui . Multiplying
both inequalities by y j/v j yields xi y j/(uiv j ) ≤ 1 whenever uiv j �= 0.

(⇐
) If (21a) holds, then (x, y) is global minimum of f and hence a critical point
according to the generalized Fermat rule [13, 2.3.2 Proposition]. If (21b) holds, then
from the expression of ∂β(0) in (22b), it follows that 0 ∈ ∂β(0). From the expression
of ∂y j f (x, y) in (17b) and y = 0, we then get that 0 ∈ ∂y j f (x, y) for all index j . Since
f (x, ·) is subdifferentially regular for all x ∈ R

m , by virtue of [13, 2.3.15 Proposition]
it holds that ∂y f (x, y) ⊂ ∂y1 f (x, y)× . . .×∂yn f (x, y). Using [13, 2.3.10 Chain Rule
II], we actually find that ∂y f (x, y) = ∂y1 f (x, y) × . . . × ∂yn f (x, y) = {�T x | � ∈
sign(xyT −uvT )}. Thus there exists � ∈ sign(xyT −uvT ) such that �T x = 0. Since
y = 0, we naturally also have that �y = 0. Hence the critical condition (9) holds.
The same argument applies when (21c) holds. Assume that (21d)–(21e) hold. In order
to exhibit a matrix � in the critical condition (9), we propose to define the following
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function:

sgn(t) :=
⎧
⎨

⎩

−1 if t < 0,
0 if t = 0,
1 if t > 0.

(24)

Like the sign function, the sgn function applies to matrices term by term. Using this
new function, we may rewrite the equalities in (21d) as

n∑

j=1

sgn(v j )y j = 0, i = 1, . . . ,m, (25a)

m∑

i=1

sgn(ui )xi = 0, j = 1, . . . , n. (25b)

After multiplying the above equations by sgn(ui ) and sgn(v j ) respectively, we obtain
that

n∑

j=1

sgn(uiv j )y j = 0, i = 1, . . . ,m, (26a)

m∑

i=1

sgn(v j ui )xi = 0, j = 1, . . . , n. (26b)

In other words, �y = 0 and �T x = 0 with � := −sgn(uvT ). In order to show
that (x, y) is critical, it remains to show that � ∈ sign(xyT − uvT ). If uiv j = 0,
then from (21e) we get that xi y j = 0. In that case, −sgn(uiv j ) = 0 and sign(xi y j −
uiv j ) = [−1, 1]. Hence −sgn(uiv j ) ∈ sign(xi y j − uiv j ). If uiv j �= 0, then from the
inequalities in (21d) we get that xi y j/(uiv j )−1 ≤ 0. In that case, sign(xi y j −uiv j ) =
sign(uiv j )sign(xi y j/(uiv j ) − 1) � −sign(uiv j ) = −sgn(uiv j ). ��

Thanks to Lemma 2, we may now classify the critical points according to whether
they are global minima, local minima that are not global minima (i.e. spurious local
minima), or not local minima (i.e. saddle points).

Proposition 1 f has the following properties when u �= 0 and v �= 0.

(1) The global minima are all (x, y) ∈ R
m × R

n such that

∃θ ∈ R\{0} : (x, y) = (uθ, v/θ) (27)

(2) The spurious local minima are all (x, y) ∈ R
m × R

n such that

∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )xi

∣
∣
∣
∣
∣
∣
<

∑

ui=0

|xi | and y = 0, or (28a)
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x = 0 and

∣
∣
∣
∣
∣
∣

∑

v j �=0

sign(v j )y j

∣
∣
∣
∣
∣
∣
<

∑

v j=0

|y j |. (28b)

(3) The saddle points are all (x, y) ∈ R
m × R

n such that

∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )xi

∣
∣
∣
∣
∣
∣
=

∑

ui=0

|xi | and y = 0, or (29a)

x = 0 and

∣
∣
∣
∣
∣
∣

∑

v j �=0

sign(v j )y j

∣
∣
∣
∣
∣
∣
=

∑

v j=0

|y j |, or (29b)

∑

ui �=0

sign(ui )xi =
∑

v j �=0

sign(v j )y j = 0,
xi y j
uiv j

≤ 1 if uiv j �= 0, (29c)

xi = 0 if ui = 0, and y j = 0 if v j = 0. (29d)

In addition, for all saddle point (x, y), there exists a global minimum (x∗, y∗) such
that (x∗, y∗) − (x, y) is a direction of descent.

Proof Lemma 2 implies that (27), (28a)–(28b), and (29a)–(29d) form a partition of
the set of critical points. It thus suffices to check in each case that the desired property
about the local variation of f holds true. (1) Observe that (21a) and (27) are equivalent
because u �= 0 and v �= 0. (2) Consider x ∈ R

m and y = 0. For all (h, k) ∈ R
m ×R

n

small enough, we have f (x + h, y + k) = . . .

=
m∑

i=1

n∑

j=1

|(xi + hi )k j − uiv j | (30a)

=
∑

uiv j=0

|(xi + hi )k j | +
∑

uiv j �=0

|(xi + hi )k j − uiv j | (30b)

=
∑

uiv j=0

|(xi + hi )k j | +
∑

uiv j �=0

|uiv j | − sign(uiv j )(xi + hi )k j (30c)

= f (x, y) +
∑

uiv j=0

|(xi + hi )k j | −
∑

uiv j �=0

sign(uiv j )(xi + hi )k j (30d)

= f (x, y) +
∑

uiv j=0

|(xi + hi )k j | −
∑

v j �=0

k j sign(v j )
∑

ui �=0

sign(ui )(xi + hi ) (30e)

≥ f (x, y) +
∑

uiv j=0

|(xi + hi )k j | −
∑

v j �=0

|k j |
∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )(xi + hi )

∣
∣
∣
∣
∣
∣

(equality holds if sign(k j ) = sign

⎛

⎝v j

∑

ui �=0

sign(ui )(xi + hi )

⎞

⎠ when v j �= 0)

(30f)
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= f (x, y) +
∑

v j=0

|k j |
n∑

i=1

|xi + hi | + · · · (30g)

∑

v j �=0

|k j |
⎛

⎝
∑

ui=0

|xi + hi | −
∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )(xi + hi )

∣
∣
∣
∣
∣
∣

⎞

⎠ (30h)

≥ f (x, y) +
∑

v j �=0

|k j |
⎛

⎝
∑

ui=0

|xi + hi | −
∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )(xi + hi )

∣
∣
∣
∣
∣
∣

⎞

⎠

(equality holds if k j = 0 when v j = 0). (30i)

Above, (30a) is a consequence of the definition of f and y = 0. (30b) is obtained
by splitting the sum according to whether the product uiv j is equal to zero. (30c)
is valid since k j is small and |a + b| = |a| − sign(a)b if |a| > |b|. (30d) is due to
f (x, 0) = ∑

uiv j �=0 |uiv j | and y = 0. (30e) is obtained bywriting that sign(uiv j )(xi+
hi )k j = sign(ui )(xi + hi )sign(v j )k j , then factorizing the sum. (30f) is obtained by
observing that the last sum in (30e) is less than or equal to its absolute value. We then
apply the triangular inequality and the fact that |k j sign(v j )| = |k j |. Equality in the
inequality in (30f) is then obtained by taking k j to be of the same sign as the term
it multiplies in the summation over v j �= 0 in (30e). (30g)–(30h) are obtained by
splitting the first sum in (30f) according to whether the v j is equal to zero. Finally,
inequality (30i) holds since

∑
v j=0 |k j | ∑n

i=1 |xi + hi | ≥ 0. This term is equal to zero
if k j when v j = 0, in which case we get equality in the inequality in (30i).

Assume that (28a) holds. For all (h, k) ∈ R
m × R

n small enough, (30i) yields

f (x + h, y + k) ≥ f (x, y) + 1

2

∑

v j �=0

|k j |
⎛

⎝
∑

ui=0

|xi | −
∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )xi

∣
∣
∣
∣
∣
∣

⎞

⎠

≥ f (x, y) > 0 (31a)

where the strict equality is due to y = 0, u �= 0 and v �= 0. Thus (x, y) is a spurious
local minimum. The same argument applies to (28b).

(3) Assume that (29a) holds, namely |∑ui �=0 sign(ui )xi | = ∑
ui=0 |xi | and y = 0.

If | ∑ui �=0 sign(ui )xi | = 0, then (29c)–(29d) hold, a case that we will treat later.
If | ∑ui �=0 sign(ui )xi | �= 0, then take any θ �= 0 such that sign(θ) = sign(

∑
ui �=0

sign(ui )xi ) and consider the direction (uθ, v/θ) − (x, y). It goes from (x, y) towards
the global minimum (uθ, v/θ). As we next show, taking a small step t > 0 in this
direction renders the inequalities in (30f) and in (30i) binding, where (h, k) := t(uθ −
x, v/θ − y). Regarding (30f), observe that, if v j �= 0, then

sign(k j ) = sign(tv j/θ) (32a)

= sign

⎛

⎝tv j

∑

ui �=0

sign(ui )xi

⎞

⎠ (32b)
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= sign

⎛

⎝(1 − t)v j

∑

ui �=0

sign(ui )xi

⎞

⎠ (32c)

= sign

(

(1 − t)v j

∑

ui �=0

sign(ui )xi

︸ ︷︷ ︸
�=0

+tv j

∑

ui �=0

sign(ui )uiθ

)

(32d)

= sign

⎛

⎝v j

∑

ui �=0

sign(ui )[(1 − t)xi + tuiθ ]
⎞

⎠ (32e)

= sign

⎛

⎝v j

∑

ui �=0

sign(ui )(xi + hi )

⎞

⎠ . (32f)

Above, (32a) is due to k j = v j/θ − y j , y = 0, and t > 0. (32b) follows from
sign(θ) = sign(

∑
ui �=0 sign(ui )xi ). Also, since t > 0 is small, multiplying a number

by t or (1 − t) doesn’t change its sign, hence (32c). It is legitimate to add a linear
term in function of t in (32d) since it is dominated by the first term (t is small). We
get (32e) by factorizing the two terms by v j . Finally, (32f) is due to the fact that, by
definition, h = t(uθ − x), and hence tuiθ = hi + t xi . Regarding (30i), observe that,
if v j = 0, then k j = tv j/θ = 0.

In order to show that (uθ − x, v/θ − y) is a direction of descent, we pick up the
computation in (30a)–(30i) where we left off: f (x + h, y + k) = . . .

= f (x, y) +
∑

v j �=0

|tv j/θ |
⎛

⎝
∑

ui=0

|xi + t(uiθ − xi )|+ (33a)

−
∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )[xi + t(uiθ − xi )]
∣
∣
∣
∣
∣
∣

⎞

⎠ (33b)

= f (x, y) + t/|θ |
∑

v j �=0

|v j |
⎛

⎝
∑

ui=0

|(1 − t)xi |+ (33c)

−
∣
∣
∣
∣
∣
∣
(1 − t)

∑

ui �=0

sign(ui )xi + tθ
∑

ui �=0

sign(ui )ui

∣
∣
∣
∣
∣
∣

⎞

⎠ (33d)

= f (x, y) + t/|θ |
n∑

j=1

|v j |
⎡

⎣(1 − t)
∑

ui=0

|xi | − (1 − t)

∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )xi

∣
∣
∣
∣
∣
∣
+ (33e)

−sign

⎛

⎝(1 − t)
∑

ui �=0

sign(ui )xi

⎞

⎠ tθ
∑

ui �=0

|ui |
⎤

⎦ (33f)
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= f (x, y) + t/|θ |
n∑

j=1

|v j |
[

(1 − t)

⎛

⎝
∑

ui=0

|xi | −
∣
∣
∣
∣
∣
∣

∑

ui �=0

sign(ui )xi

∣
∣
∣
∣
∣
∣

⎞

⎠

︸ ︷︷ ︸
= 0

+ (33g)

− t |θ |
m∑

i=1

|ui |
]

(33h)

= f (x, y) − t2
n∑

j=1

|v j |
m∑

i=1

|ui | (33i)

=(1 − t2) f (x, y). (33j)

Above, (33a)–(33b) is due to the definition of (h, k).We get (33c)–(33d) by factorizing
by t/|θ |, canceling out ui in the summation over ui = 0, and expanding the product
in the summation over ui �= 0. (33e)–(33f) use the fact that t > 0 is small and∑

ui �=0 sign(ui )xi �= 0. They also use the fact that |a+b| = |a|+sign(a)b if |a| > |b|.
(33g)–(33h) are due to sign(θ) = sign(

∑
ui �=0 sign(ui )xi ) and sign(θ)θ = |θ |. It also

uses the fact the multiplying a number by 1− t > 0 doesn’t change its sign. The term
that cancels out in (33g) is due to (29a). Finally, (33j) uses the definition of f and the
fact that y = 0. It implies that (h, k) is a direction of descent. We conclude that any
point (x, y) satisfying (29a) is a saddle point and that it admits a direction of descent
towards the global minimum (uθ, v/θ). The same argument applies to (29b), namely
x = 0 and |∑v j �=0 sign(v j )y j | = ∑

v j=0 |y j |.
We now treat the remaining case (29c)–(29d), namely

∑
ui �=0 sign(ui )xi =∑

v j �=0 sign(v j )y j = 0, xi y j/(uiv j ) ≤ 1 if uiv j �= 0, xi = 0 if ui = 0, and y j = 0
if v j = 0. Given θ �= 0, consider the direction (uθ, v/θ) − (x, y), which goes from
(x, y) towards the global minimum (uθ, v/θ). As we explain below, one can choose
θ such that, when taking a small step t > 0 in this direction, the ratio inequalities in
(29c) remain valid. In other words, we have

(xi + hi )(y j + k j )

uiv j
≤ 1 , if uiv j �= 0. (34)

where (h, k) := t(uθ − x, v/θ − y) and t > 0 is small enough. In order to prove this,
observe that (34) is equivalent to

(

(1 − t)
xi
ui

+ tθ

)(

(1 − t)
y j
v j

+ t/θ

)

≤ 1 , if uiv j �= 0, (35)

where we simply use the definition of (h, k). For all indices i and j where
xi y j/(uiv j ) < 1, the inequality in (35) holds by continuity for t small enough, regard-
less of θ . Hence, if there are no binding inequalities xi y j/(uiv j ) = 1, then one may
choose any θ �= 0. Otherwise, the set of binding inequalities (xi/ui )(y j/v j ) = 1
can be decomposed into two groups: those with positive ratios (i.e. xi/ui > 0 and
y j/v j > 0) and those with negative ratios (i.e. xi/ui and y j/v j < 0). Without loss
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of generality, we may assume that there exists at least one positive binding ratio. As
it turns out, all the positive ratios xi/ui involved in binding inequalities are equal
to one another. Indeed, if (xi/ui )(y j/v j ) = 1 and (xk/uk)(yl/vl) = 1, then the
inequalities (xi/ui )(yl/vl) ≤ 1 and (xk/uk)(y j/v j ) ≤ 1 yield xi/ui ≤ xk/uk and
xk/uk ≤ xi/ui , that is to say, xk/uk = xi/ui . Let θ > 0 denote this common
ratio. Now consider a binding inequality in (35): if xi/ui > 0, then xi/ui = θ

and y j/v j = 1/θ , so that the inequality in (35) readily holds. If xi/ui < 0, then
xi/ui < (1 − t)xi/ui + tθ < 0 and y j/v j < (1 − t)y j/v j + tθ < 0 for t > 0 small
enough, hence [(1 − t)xi/ui + tθ ][(1 − t)y j/v j + tθ ] ≤ xi y j/(uiv j ) ≤ 1. Again,
the inequality in (35) holds. As a result, we have found θ for which (35) is true with
t > 0 small enough. We next make use of this to compute f (x + h, y + k) = . . .

=
m∑

i=1

n∑

j=1

|(xi + hi )(y j + k j ) − uiv j | (36a)

=
∑

ui �=0

∑

v j �=0

|(xi + hi )(y j + k j ) − uiv j | (36b)

=
∑

ui �=0

∑

v j �=0

|uiv j |
∣
∣
∣
∣
(xi + hi )(y j + k j )

uiv j
− 1

∣
∣
∣
∣ (36c)

=
∑

ui �=0

∑

v j �=0

|uiv j |
(

1 − (xi + hi )(y j + k j )

uiv j

)

(36d)

=
∑

ui �=0

∑

v j �=0

|uiv j | −
∑

ui �=0

∑

v j �=0

sign(uiv j )(xi + hi )(y j + k j ) (36e)

=
∑

uiv j �=0

∑

v j �=0

|uiv j | −
∑

ui �=0

sign(ui )(xi + hi )
∑

v j �=0

sign(v j )(y j + k j ) (36f)

=
∑

ui �=0

∑

v j �=0

|uiv j | −
⎛

⎝(1 − t)
∑

ui �=0

sign(ui )xi + t
∑

ui �=0

sign(ui )uiθ

⎞

⎠ × (36g)

⎛

⎝(1 − t)
∑

v j �=0

sign(v j )y j + t
∑

v j �=0

sign(v j )v j/θ

⎞

⎠ (36h)

=
∑

ui �=0

∑

v j �=0

|uiv j | − t2
∑

ui �=0

sign(ui )ui
∑

v j �=0

sign(v j )v j (36i)

=(1 − t2) f (x, y). (36j)

Above, (36a) is a consequence of the definition of f . By definition of h, we have
xi + hi = (1 − t)xi + tui . According to (29d), xi = 0 whenever ui = 0, hence we
also have that xi + hi = 0 whenever ui = 0. Likewise y j + k j = 0 whenever v j = 0,
and thus (36b) holds. (36c) is obtained by factorizing each term in the sum by |uiv j |.
(34) implies that the term inside the absolute value is non-positive, hence (36d). (36e)
is the result of expanding the product inside the sum and the fact that sign(a) = |a|/a
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Fig. 5 Landscape of f (x1, x2, y) := |x1y| + |x2y − 1|

when a �= 0. (36f) is obtained by factorizing the second term in (36e). (36g)–(36h)
uses the definition of (h, k), namely that hi = tuiθ − t xi and k j = tv j/θ − y j . (36i)
follows from the equalities in (29c), which results in two terms cancelling out. (36j)
is due to the fact that when t = 0, the resulting expression must be equal to f (x, y)
since we are computing f (x + t(uθ − x), y + t(v/θ − y)). We conclude that (x, y)
is a saddle point and that it admits a direction of descent towards the global minimum
(uθ, v/θ). ��

We can now deduce Theorem 1 from Proposition 1. Recall that we use the con-
vention that a sum over an index set which is empty is equal to zero. For example,
if none of the entries of u are zero, then

∑
ui=0 |xi | = 0. In this case, (28a) is not

feasible since an absolute value cannot be negative. It follows from (28a)–(28b) that
there are no spurious local minima if neither of the entries of u nor v are equal to
zero. This condition on u and v is equivalent to saying the uvT has no zero entries.
Conversely, if some entries of either u or v are equal to zero, then one can readily see
that (28a)–(28b) is feasible. In the case where all the entries of uvT are equal to zero,
it follows from the expression of f (x, y) = ‖x‖1‖y‖1 that every local minimum is a
global minimum. Theorem 1 naturally ensues.

We finish this section with an example.When u = (0, 1)T and v = 1, the landscape
is represented in Fig. 5. According to (27), the global minima are all (x1, x2, y) ∈ R

3

such that (x1, x2, y) = (0, θ, 1/θ) where θ �= 0. This corresponds to the two black
hyperbolic branches. The surfaces around the global minima denote level sets of f ,
where the warmer the color (from blue to red), the smaller the objective value. Among
the three level sets in the figure, the one with highest objective value (in blue) has a
part which is not represented, namely, its intersection with the positive orthant. This
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is done in order to improve visibility. According to (28a)–(28b), the spurious local
minima are all (x1, x2, y) ∈ R

3 such that |x2| < |x1| and y = 0. This corresponds to
the area inside the two green triangles. According to (29a)–(29d), the saddle points
are all (x1, x2, y) ∈ R

3 such that |x2| = |x1| and y = 0. This corresponds to the edges
of the two green triangles located on the diagonal and anti-diagonal of the (x1, x2)-
plane. Notice that the union of the global minima, the spurious local minima, and the
saddle points in Fig. 5 agrees with the expression of the critical points found with a
commercial solver in Fig. 1.
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