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Abstract

Decision-making in two-alternative forced choice tasks has several underlying components including stimulus encoding, per-
ceptual categorization, response selection, and response execution. Sequential sampling models of decision-making are based on
an evidence accumulation process to a decision boundary. Animal and human studies have focused on perceptual categorization
and provide evidence linking brain signals in parietal cortex to the evidence accumulation process. In this exploratory study, we
use a task where the dominant contribution to response time is response selection and model the response time data with the drift-
diffusion model. EEG measurement during the task show that the readiness potential (RP) recorded over motor areas has timing
consistent with the evidence accumulation process. The duration of the RP predicts decision-making time, the duration of
evidence accumulation, suggesting that the RP partly reflects an evidence accumulation process for response selection in the
motor system. Thus, evidence accumulation may be a neural implementation of decision-making processes in both perceptual
and motor systems. The contributions of perceptual categorization and response selection to evidence accumulation processes in
decision-making tasks can be potentially evaluated by examining the timing of perceptual and motor EEG signals.

Keywords Decision-making - Electroencephalography - Readiness potential - Motor preparation - Perceptual categorization -
Response selection

Introduction

Decision-making has been extensively studied using two-
alternative forced choice (2AFC) tasks that incorporate multiple
stages of information processing (Ratcliff et al. 2016). In these
tasks, participants typically perceive a visual or auditory stim-
ulus (perception), categorize the stimulus and select one of two
responses (decision-making), and respond with a motor action
(response execution). Behavioral data consisting of response
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time (RT) and accuracy have been modeled by a number of
sequential sampling models (SSM) including drift-diffusion
models (DDMs; Stone 1960; Link and Heath 1975; Ratcliff
and McKoon 2008), linear ballistic accumulator models
(Brown and Heathcote 2008), and leaky competing accumula-
tor models (Usher and McClelland 2001). In these models,
sensory information is first encoded, followed by an evidence
accumulation process to a threshold that triggers motor plan-
ning and execution. When fitting DDMs to behavioral data,
sensory encoding time and motor execution time are typically
estimated using a single parameter labeled non-decision time.
The remaining time, labeled here as decision-making time, is
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the period of evidence accumulation, which is treated as a uni-
tary process in most sequential sampling models.

Both animal and human researchers have found neural
markers of evidence accumulation in electrophysiology by
focusing on perceptual processing in the parietal cortex (see
Shadlen and Kiani 2013; Kelly and O’Connell 2013;
O’Connell et al. 2018). For instance, direct recordings from
parietal cortical neurons (found in the lateral intraparietal
(LIP) area) in monkeys have identified cells whose firing rates
progressively increase prior to a decision and response
(Roitman and Shadlen 2002; Huk and Shadlen 2005;
Churchland et al. 2008). The changing firing rates of these
neurons are consistent with the theoretical account of accumu-
lation of evidence to a boundary that is central to decision-
making in SSMs. Moreover, in these studies, as the strength of
sensory signals increases, the rate of increase in firing rate is
enhanced, suggesting a faster rate of information accumula-
tion that leads to faster RTs and more accurate decisions (Kim
and Shadlen 1999 ; Roitman and Shadlen 2002).

These findings in animal models have motivated studies in
humans using EEG to identify a signal that ramps to a decision
threshold, providing clear information about the rate and
timing of decision-making (Kelly and O’Connell 2013;
Philiastides et al. 2014). A number of studies have focused
on the P300, a stimulus-locked evoked potential that increases
its positive amplitude over parietal electrodes, reaching a max-
imum at least 300 milliseconds (ms) after stimulus presenta-
tion (Philiastides et al. 2006; Ratcliff et al. 2009) or the closely
related central-parietal positivity (CPP), a label that better ac-
counts for the variability in the timing of the peak of positive
potentials across different experiments (O’Connell et al. 2012;
Kelly and O’Connell 2013; Rangelov and Mattingley 2020).
The P300 and CPP amplitudes are sensitive to stimulus prob-
ability and stimulus salience (Polich et al. 1996; Smith and
Ratcliff 2004), such that low-probability and high-salience
sensory events elicit higher amplitude signals. Moreover, the
parietal signals have been observed for both auditory and vi-
sual stimuli, suggesting that they are supramodal responses
(Polich et al. 1996; O’Connell et al. 2012) related to percep-
tual categorization (Duncan-Johnson and Donchin 1977;
Kutas et al. 1977; Kotchoubey and Lang 2001; Azizian et al.
2006).

Both the amplitude and the timing of the CPP and P300
have been suggested as indicators of the evidence accumula-
tion process. In a study using stimuli with different levels of
salience and a categorical discrimination (face/car), the mag-
nitude of the P300 parietal signal was correlated to the evi-
dence accumulation rate in a DDM of the response data
(Philiastides et al. 2006). In another study using vigilance
tasks, the detection of gradual reductions in stimulus contrast
evoked a CPP that was delayed as RT increased and peaked at
the time of response execution (O’Connell et al. 2012).
Critically, this signal was found across sensory modalities,
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specifically auditory and visual (Polich et al. 1996;
O’Connell et al. 2012) and even in decision-making tasks
not requiring a motor response (O’Connell et al. 2012). A
similar effect could be observed for motion discrimination,
with a delayed and smaller CPP peak amplitude as motion
coherence decreased (Kelly and O’Connell 2013). This rela-
tionship has also been found for more complex perceptual
tasks such as mental rotation (van Ravenzwaaij et al. 2017).

Decision-making tasks that require a motor response (such
as a button press) have at least two decision-making compo-
nents: perceptual categorization and response selection.
Sequential sampling models such as the DDM divide the in-
terval between stimulus and response into three phases: per-
ceptual encoding, evidence accumulation, and response exe-
cution (Link and Heath 1975; Ratcliff and McKoon 2008;
Schall 2003). DDM models of behavioral data are limited to
a single non-decision time parameter that lumps together per-
ceptual encoding and response execution. Similarly, the DDM
models perceptual categorization and response selection by a
single evidence accumulation process that crosses an evidence
threshold, triggering response execution. Previous studies de-
scribed above have focused primarily on perceptual categori-
zation and identified the P300/CPP as a correlate of evidence
accumulation. Other studies who have focused on response
selection by examining the readiness potential (RP), which
is recorded over motor areas and has been interpreted as ac-
tivity related to response selection in preparation for, and
sometimes been found to be distinct from, response execution
(Eimer 1998; Miller et al. 1999; Leuthold et al. 2004; van
Boxtel and Bocker 2004; Alexander et al. 2016). Previous
studies have found that the RP can be elicited during evidence
accumulation. Gluth et al. (2013) employed a paradigm that
allowed a decision to be made about taking a stock at any
point throughout six trials. They found that the stimulus-
locked lateralized RP (LRP) was elicited in trials when partic-
ipants did not take the stock option. Multiple other studies
have found LRPs before stimulus onset, when pre-cued infor-
mation is given about the response to be made, reflective of
response selection (Osman et al. 1995; Leuthold et al. 1996;
Ulrich et al. 1998; Leuthold et al. 2004). A response-locked
RP can be observed before motor execution and is also influ-
enced by pre-cued information, with the RP peak latency to
response completion shorter when cued information about the
finger to be used is provided (Rohrbaugh and Gaillard 1983;
Osman et al. 1995). These studies suggest that the RP can be
reflective of multiple movement-related processes, potentially
including response selection.

We propose that depending on task demands, both percep-
tual categorization and response selection can contribute to the
time course of decision-making. We carry out a new experi-
ment that focuses on response selection and identify the RP as
a motor signal that reflects the time course of evidence accu-
mulation in a DDM model of RT. We sought to test the idea
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that response selection can reflect the time course of evidence
accumulation. In this exploratory study, we make use of the
DDM to model behavioral data in a 2AFC task known as the
Action Selection (AS) task (O’Shea et al. 2007). In the AS
task, the participants are presented one of four different stimuli
varying along two dimensions (shape and size) and respond
with one of two simple motor responses (shoulder rotations).
The stimulus to response mapping in this task is thought to be
more difficult than typical 2AFC tasks because it requires
integration of two features, shape and size, in order to select
the correct response. We make use of a DDM to separate the
additive contributions of non-decision time (NDT: for percep-
tual preprocessing and motor execution) and decision-making
time (DT) to response time (RT) while participants perform
the AS task. The DDM makes use of a unitary evidence ac-
cumulation process to model DT, which we hypothesize in-
corporates both perceptual categorization and response selec-
tion. We demonstrate that in this particular task, the RP, rather
than the P300/CPP, will track DT. This close relationship
suggests that the RP reflects an evidence accumulation pro-
cess for response selection and supports the notion that evi-
dence accumulation is a general neural implementation of
decision-making in both perceptual and motor systems.
Moreover, concurrent EEG recordings can be used to refine
our understanding of the contribution of perceptual categori-
zation and response selection to decision-making time.

Methods
Participants

Fifteen adults participated in this study. All participants met
the following inclusion criteria: at least 18 years of age, right-
handed, and English-speaking. Right-hand dominance was
verified using the Edinburgh Handedness Inventory
(Oldfield 1971). Participants were not able to participate if
they demonstrated any of the following exclusionary criteria:
inability to maintain attention or understand verbal instruc-
tions; any major neurological, psychiatric, or medical disease;
or a coexisting diagnosis impacting arm/hand function. One
participant was removed from analysis due to the EEG being
contaminated by pervasive muscle artifact, which precluded
estimation of slow-wave potentials (i.e., the RP and P300),
resulting in a sample size of fourteen adults (age 18—
26 years; 9 female). This study was approved by the
University of California, Irvine Institutional Review Board.
Each subject provided written informed consent.

Procedure

Participants performed two different tasks that required evalua-
tion of a visual stimulus and a motor response. Each sat with their

back on a chair, hips and knees at approximately 90°, and right
forearm in a tabletop splint. Participants completed 4 blocks (40
trials per block) of the AS task and 4 blocks (40 trials per block)
of the Execution Only (EO) task (see below). The blocks alter-
nated for all participants, starting with AS task. After each block,
participants received a 30-s rest break that was prompted by a
black screen on the laptop (Fig. 1b).

Each block of trials began with an instruction presented for
30 s (Fig. 1a). On each trial (Fig. 1b), participants focused on a
fixation cross. A stimulus (i.e., shape) appeared for 2 s and the
response was given by internal (inward) or external (outward)
rotation of the right shoulder by 17.5° using the tabletop fore-
arm splint apparatus (Fig. 1c), until the splint made contact
with a button embedded in either lateral wall. The purpose of
the splint apparatus was to minimize compensatory move-
ments by forearm and/or hand and thereby limit movement
to a single direction in a single joint (i.e., right shoulder rota-
tion). We used this splint apparatus in order to replicate this
study design in stroke patients, where participants would like-
ly be limited in making fine motor movements with distal
limbs such as the fingers. This device enables gross motor
movements through internal and external shoulder rotations.
Participants could respond as soon as the stimulus was pre-
sented, and up to 3 s after stimulus presentation. Participants’
responses were recorded when they depressed the button, in-
dicating movement completion. The interstimulus interval
was randomized between 1 and 3.5 s. Participants received
verbal instruction to move their arm to the middle of the ap-
paratus after each trial.

Experimental Tasks

The AS task (O’Shea et al. 2007) is a 2AFC task. Participants
were instructed to perform an external right shoulder rotation
(move the splint outward) when they saw either a big square or
small circle and instructed to perform an internal right shoulder
rotation (move the splint inward) when they saw either a big
circle or small square. The large shapes spanned 2° of visual
angle while the small shapes spanned 1° of visual angle.

The EO task is a simple reaction time task that was used as
a control condition, which generated all of the behavioral data
and evoked potentials without any necessary perceptual cate-
gorization or response selection. Participants were instructed
to move their right forearm, via shoulder rotation, to only one
side within a given block, upon stimulus onset, irrespective of
the size and shape presented. The EO blocks alternated be-
tween performing only internal rotations and performing only
external rotations.

Drift-Diffusion Model of Response Time

The RT and choice data for all participants and both tasks (AS
and EO) were simultaneously fit to a hierarchical drift-
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a Instructions: 30 secs b

Action Selection Task

-— ] —»

Execute Only Task
R —
—

Fig. 1 a Participants received instructions prior to each block of 40 trials.
The Action Selection (AS) task instructions directed the participants to
make an external rotation movement when a large square or small circle
appeared, and an internal rotation movement when a large circle or small
square appeared. For each Execution Only (EO) block, instructions di-
rected participants to perform either an external rotation movement or an
internal rotation irrespective of the stimulus. b The time course of each

diffusion model (DDM), using a Bayesian estimation method
with Markov Chain Monte Carlo samplers (Plummer 2003;
Vandekerckhove et al. 2011; Lee and Wagenmakers 2013;
Wabersich and Vandekerckhove 2014). Fitting parameters
of DDMs add to the analysis of human behavior by assuming
simple underlying cognitive processes that have some empir-
ical validation (Voss et al. 2004). DDMs also add to the cog-
nitive interpretation of EEG and fMRI signals by relating cog-
nitive parameters to observed cortical dynamics (Mulder et al.
2014; Nunez et al. 2015; Turner etal. 2015; Nunez et al. 2017;
Turner et al. 2017; Nunez et al. 2019a).

In a DDM of decision-making, it is assumed that humans
accumulate evidence for one choice over another in a random-
walk evidence accumulation process with an infinitesimal
time step until sufficient evidence is accumulated to exceed
the threshold (labeled boundary separation) for either the cor-
rect or the incorrect choice. That is, evidence accumulates
following a Wiener process (i.e., Brownian motion) with an
average rate of evidence accumulation (labeled drift rate) until
enough evidence for a correct decision over an incorrect deci-
sion is made (see Ratcliff et al. 2016 for further discussion).
The instantaneous variance (labeled diffusion coefficient) of
this Wiener process was fixed at 1.0 in this study, because
only two of the three evidence dimension parameters can be
uniquely estimated (Ratcliff 1978; Ross 2014; Nunez et al.
2017). That is, the drift rate and boundary separation can al-
ways be scaled by the diffusion coefficient and produce the
same fit of data.

Our hierarchical model was fit such that we could estimate
separate model parameters for each participant derived from
their accuracy-RT data. Each cognitive parameter of each par-
ticipant was drawn from a single task-level population (AS or
EO). This meant that we assumed that drift-diffusion cognitive
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Interstimulus Interval:
1-3.5 secs

Stimulus:
2 secs

Break: 30 secs after
each block (40 trials)

trial. The participants fixated on a cross during an interstimulus interval of
random duration ranging from 1 to 3.5 s. A single stimulus was presented
for 2 s during which responses were collected. After each block of 40
trials, participants received a 30-s break. ¢ The participants used the lower
arm splint apparatus to make an internal (left) or external (right) shoulder
rotation of 17.5° to press a switch that captured their response. The splint
was used to minimize any forearm or hand movements

parameters (drift rate J, boundary separation «, and non-
decision time 7) varied across participants (p) and the two
tasks (#), but that there was similarity across the participants
within each task. Adding these hierarchical parameters (mean
parameters p and standard deviation parameters o) to summa-
rize participants in each task yields better estimates of param-
eters due to shrinkage, a phenomenon whereby parameters are
better estimated because hierarchical relationships enforce
similarity across each participant (Gelman et al. 2014). Task-
level Bayesian priors for hierarchical drift-diffusion model
parameters were wide normal distributions. The prior distri-
butions were centered at 1 for drift rate and boundary separa-
tion with standard deviations of 2 and 0.5, respectively. These
two parameters are scaled by arbitrary evidence units depen-
dent upon the scale imposed by the choice of fixed diffusion
coefficient (here fixed at 1). The prior distribution for non-
decision time 7 was centered at 300 ms with a standard devi-
ation of 250 ms and truncated at 0 ms. Note that we did not
include start point of evidence accumulation parameters (see
Ratcliff et al. 2016) because we found parameter estimates
based on accuracy-RT and not left/right-RT data, and thus
assumed that the start point of evidence accumulation was
the midpoint between a correct and incorrect choice.

To refine our estimates of model parameters, we modeled
the presence of contaminant trials to remove them from the
decision-making model. Contaminant trials are defined as RT
observations that are not due to an evidence accumulation
process and are due to another random process. Because these
RTs are not due to a decision process, the associated accuracy
on those trials should be about 50% in a 2AFC task. DDM
parameters are not well estimated in the presence of contam-
inant trials; so like previous implementations (Drugowitsch
et al. 2012; Nunez et al. 2019a), we assumed that every
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participant in each condition (AS or EO) had some proportion
(A) of trials that were generated with a random response
(Bernoulli distribution with probability parameter equal to
0.5) and a random (uniformly distributed) RT between 0 and
a large RT (bounded by the maximum observed RT for that
participant in that particular task). The overall hierarchical
model of accuracy and RT data (vector y) per trial (n) is de-
fined by the following normal (%), truncated normal with
truncation between a and b denoted by €(a, b), gamma (1),
and uniform (U) hierarchical, prior, and likelihood
distributions:

Tp,~N<u(T),7O'%T)>E(O,1) D N (0.3,025%) 3 0()~(0.2,1)
04,,,~N(u(“)t,a(20)>e(0.1,5) D BN (1,0.82) 5 a~I(1,1)
5pz~N(M(5)n02((s)> s pe~N(1,2%) 5 o~I(1,1)

/\pINU(07 1)
Vu~(1=2p ) DDM (71, s, 8p) + ApU(~max(RT), max(RT))

RT is defined as the amount of time needed after the stim-
ulus onset for the participant to depress one of the two lateral
wall buttons with the forearm splint apparatus. DT is the
amount of time it takes to accumulate evidence to threshold
(modeled by the random-walk process), while NDT is the
amount of time not associated with evidence accumulation,
such as visual encoding time (i.e., the amount of time that
the brain takes to recognize that evidence must be
accumulated after visual onset; see Nunez et al. 2019a) and
motor execution time (i.e., any time after decision-making
occurs but before the response is recorded by the computer,
including arm movement time in the apparatus).

For this study, the primary analysis focused on the poste-
rior distributions of NDT for the two tasks instead of all esti-
mated parameters from the hierarchical DDM because our
hypotheses involved only the DT and NDT per participant
and not the underlying shape of the DT and NDT distribu-
tions. Medians of posterior distributions of NDT were used as
parameter estimates and were subtracted from RTs on each
trial to obtain estimates of DT for each trial. Parameter esti-
mates and 95% credible intervals (given by the 2.5th and
97.5th posterior percentiles) of the hierarchical DDM are giv-
en in Table 2 of the Supplementary materials. The hierarchical
DDM’s ability to describe data is provided in Table 1 of the
Supplementary materials as summarized by in-sample predic-
tion of correct-RT percentiles in each task.

EEG Recording

The participants were fit with a 256-electrode EEG cap
(HydroCel Sensor Net, Electrical Geodesics, Inc., Eugene,
OR, USA). The cap was placed on the participant’s head after
10 practice trials of the AS task were completed to familiarize

them with the experimental procedures. EEG data were sam-
pled at 1000 Hz using a high-input impedance Net Amp 300
amplifier (Electrical Geodesics, Inc.) and NetStation 4.5.3
software. The EEG signals were referenced to the vertex elec-
trode (Cz) during recording. The inputs from the splint appa-
ratus were recorded by the EEG amplifier, using separate
channels to record respective buttons for internal and external
shoulder rotation movements. The onset of the stimulus was
recorded by the EEG amplifier using a light detector (Cedrus,
San Pedro, CA, USA) for precise timing information synchro-
nized with the EEG.

EEG Preprocessing

All EEG preprocessing and analysis was performed using
original MATLAB (Natick, MA) programs. The EEG data
were detrended and segmented into trials starting 1000 milli-
seconds (ms) prior to stimulus onset up to 2500 ms after the
stimulus for a total duration of 3500 ms. Any trials where the
participants either responded incorrectly (wrong rotation di-
rection), did not respond at all, or responded either too rapidly
(within 200 ms) or too slowly (more than 2.3 s) from the
stimulus onset, were not included in analyses. Out of the total
4480 trials, for all participants in both tasks, there was only
one trial that was considered too fast and six trials that were
too slow. If participants responded more than once in one trial,
the first response was considered their response. Bidirectional
autoregressive interpolation was performed on each EEG
channel from 5 to 30 samples after the response on each trial
to remove an artifact created in the EEG by the input signal
from the switches on the splint apparatus. As all data analysis
took place in the interval prior to the response, this interpola-
tion did not affect any of the results and was only performed to
facilitate visualizing the results. The EEG data was high-pass
filtered at 0.25 Hz (0.25 Hz pass, 0.1 Hz stop, 10 dB loss) and
notch-filtered at 60 Hz (pass below 59 Hz and above 61 Hz,
10 dB loss) using Butterworth filters.

The EEG data were artifact-edited in two stages to remove
some stereotypical artifacts generated from events such as eye
movement, jaw movements, or muscle activity (Nunez et al.
2016). In the first stage, by visual inspection, trials that
contained any vigorous movement and channels frequently
containing EMG artifacts were removed from further data
analysis. After the manual inspection, the data were re-
referenced to the common-average reference. In the second
stage, independent component analysis (ICA) was then used
to classify and remove artifacts from data that were related to
eye movements, electrode pops, and environmental noise.
ICA components were assessed as clearly artifact or possibly
containing EEG (Nunez et al. 2016). All components not
marked as artifact were kept for data analysis, and only com-
ponents that clearly captured artifacts such as eye blinks, eye
movements, or isolated channel pops were removed. The ICA
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components were then projected back into channels and the
data were low-pass filtered at 50 Hz (Butterworth filter, 50 Hz
pass, 60 Hz stop, 10 dB loss).

Evoked Potentials

For each participant, stimulus-locked evoked potentials (EPs)
were calculated at each channel by aligning each trial to the
marker of the stimulus onset and averaging across trials, and
response-locked EPs were calculated by aligning to the mark-
er of the button press and averaging across trials. In prelimi-
nary analyses, only a trivial difference was found in RT be-
tween internal and external shoulder rotations (see “Results™).
Thus, we combined trials for the two directions of rotation to
analyze the behavioral data and compute the EPs.

The stimulus-locked EPs that were analyzed were the
N200, P300, and stimulus-locked RPs. In order to isolate each
EP component, without contributions from other EPs, the
P300 and stimulus-locked RPs were low-pass filtered at
4 Hz (Butterworth filter, 4 Hz pass, 8 Hz stop, 10 dB loss;
Leuthold et al. 1996; Miller et al. 1999). In these EPs, the
results are presented from 400 ms before the stimulus to
1500 ms after the stimulus, and baseline correction was per-
formed by subtracting the mean potential 200 to 0 ms before
the stimulus onset. The N200 waveforms were low-pass fil-
tered at 10 Hz (Butterworth filter, 10 Hz pass, 20 Hz stop,
10 dB loss) and high-pass filtered at 1 Hz (Butterworth
filter, 1 Hz pass, .25 Hz stop, 10 dB loss; Nunez et al.
2019a). These results are presented from 400 ms before the
stimulus to 1500 ms after the stimulus, and baseline correction
was performed by subtracting the mean potential 100 to 0 ms
before the stimulus onset.

The only response-locked EP analyzed is the response-
locked RP, which was low-pass filtered at 4 Hz (Butterworth
filter, 4 Hz pass, 8 Hz stop, 10 dB loss; Leuthold et al. 1996;
Miller et al. 1999). For the response-locked RPs, the results
are presented from 1200 ms before the response to 100 ms
after the response, with baseline correction performed by
subtracting the mean potential in the interval 1200 to
1000 ms before the response.

Evoked Potentials with Response Time Tertile Split

EPs were also calculated based on each participant’s RTs di-
vided into three equal-sized bins to separate them into differ-
ent response speed conditions (i.e., fastest, middle, slowest)
for both tasks. The stimulus-locked EPs (P300 and stimulus-
locked RPs) were calculated the same way as mentioned
above. The response-locked RPs in the fastest and middle
conditions also followed the same methods as mentioned
above. However, in order to accurately estimate the onset
times for the response-locked RPs in the slowest condition,
the time window had to be extended to 1500 ms before the
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response to account for RTs that were longer than 1200 ms.
Baseline correction was then performed by subtracting the
mean potential in the interval 1500 to 1300 ms before the
response. This time interval could not have been applied to
the middle and fastest RT conditions because the response-
locked RP would have potentially overlapped with data from
the previous trial due to short interstimulus intervals (as short
as 1000 ms, see “Procedure” above).

Timing of the Readiness Potential: RP Duration and
RP Onset Time

We characterized the timing of the RP in terms of duration of
the response-locked RPs and the onset time of the stimulus-
locked RPs. The response-locked RP was calculated by aver-
aging the EEG data aligned to the response. We identified the
eight channels (out of 256) that displayed the strongest nega-
tive potential prior to the motor response, which is the defin-
ing characteristic of the RP. These eight channels were located
close to the midline and slightly left-lateralized over motor
areas of the brain (see Fig. 3¢). RP duration, which was cal-
culated from the response-locked RP, was defined as the in-
terval during which the potential remained consistently nega-
tive at these channels, starting from the initial negative deflec-
tion up to the response completion. To identify this interval,
the first derivative of the RP was estimated by taking the
difference of the potential at each time point from the previous
time point. The start of the response-locked RP was detected
at the center of the first interval where the derivative remained
negative for 125 ms, indicating a consistent negative deflec-
tion of the EP. The duration of the RP was defined as the
interval from this starting point to the button press. The onset
time of the RP relative to stimulus presentation was calculated
from the stimulus-locked RPs at the same eight channels with
the same requirement that the derivative must have remained
negative for 125 ms to locate the onset of the negative deflec-
tion. Note that we also explored calculating response-locked
and stimulus-locked RPs with 100-ms windows for negative
derivatives. These changes did not fundamentally change the
analysis results. However, the 100-ms windows did not cap-
ture obvious changes in the potentials that could be seen vi-
sually, so we chose to use the 125-ms window for both
response-locked and stimulus-locked RPs.

N200 and P300 Peak Latency Estimate

The N200 and P300 showed greater individual difference in
scalp topography as compared to the RP. In order to estimate
the peak latency for each participant, we first performed a
singular value decomposition (SVD) on windowed filtered
EP data (see Nunez et al. 2017; Nunez et al. 2019a). For the
N200, we used a window from 125 to 250 ms after stimulus
onset, while for the P300, we used a window from 200 to
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450 ms. For one participant with an extended P300, we used a
window from 200 to 500 ms. In each participant’s data, we
verified visually that the largest SVD component had a scalp
topography that matched the EP component and used the la-
tency of the highest magnitude potential as the peak latency
estimate.

Statistical Tests

Analysis with linear models was performed on response-
locked RP durations, stimulus-locked RP onset times, P300
peak latency, N200 peak latency, and RT distribution statis-
tics. Mixed-effects ANOVA models were used to assess the
effect of task with participants (and shoulder rotation for one
model) as a random factor. In the RT tertile analyses, task and
RT tertile were fixed factors, while participants were a random
factor. Statistics reported are both F-statistics and associated
p values as well as the Bayes Factors (BF), which describe the
amount of evidence for a model with different means relative
to a model with only one mean for both tasks or for RT tertiles
(Rouder et al. 2012).

Paired samples #-tests were used to analyze differences in
EPs between the two tasks, or between EPs in the same task
(Student’s #-test for normally distributed data and Wilcoxon’s
signed-ranked for non-normal data). Linear regression models
were performed to assess the relationship between response-
locked RP duration or P300 peak latency to RT or DT. In
addition, a hierarchical linear regression model with partici-
pant treated as a random factor was also performed to analyze
these same relationships. Conventional F-statistics on these
models are presented. The amount of evidence for a model
that has a non-zero regression slope over a model that has a
regression slope of zero (Kass and Raftery 1995; Rouder et al.
2012) is presented as a BF. Adjusted R is also reported and
describes the fraction of variance of the dependent variable
(e.g., response time median) explained by the regressor vari-
able. All other statistics were generated by either JASP, an
open-source graphical software package for statistical analysis
(JASP Team 2020), or MATLAB (Natick, MA).

BF1 comparing models with regression slopes equal to
one, indicating a one-to-one relationship, to models with un-
known regression slopes were calculated by first fitting regres-
sion models (simple regressions and with participants as ran-
dom factors) in JAGS (Plummer 2003) with wide priors on
slope parameters (normal distribution centered on 1 with a
standard deviation of 3) and then using the simple Savage-
Dickey density ratio (Dickey and Lientz 1970; Wagenmakers
et al. 2010). Note that Bayes factors are sensitive to both
models of comparison, and thus, if the prior distribution
(denominator) is compared to the posterior distribution (nu-
merator), as we report with BF1, the BF will be highly sensi-
tive to the prior probability even when the posterior itself does
not change significantly (Liu and Aitkin 2008). For this

reason, we caution over-interpreting BF1 which will increase
with wider priors (smaller denominator) and decrease with
less-wide priors (larger denominator). We also report param-
eter estimates given by the posterior medians and 95% credi-
ble intervals with the 2.5th and 97.5th percentiles of the hier-
archical regression models that did not change significantly
when using wider (normal distribution centered on 1 with a
standard deviation of 1) and less wide (normal distribution
centered on | with a standard deviation of 5) priors for the
slope parameters.

Surface Laplacian

The surface Laplacian was applied to the response-locked RPs
to improve spatial resolution of the EEG. The surface
Laplacian is the second spatial derivative of the EEG along
the scalp surface and provides an estimate of the location of
focal superficial cortical sources (Nunez and Srinivasan
2006). The scalp surface was modeled using the MNI-152
average head (Mazziotta et al. 1995), and the surface
Laplacian was calculated along a triangular mesh representing
the scalp using a three-dimensional spline algorithm (see
Deng et al. 2012).

Results
Behavioral Data: Response Time and Accuracy

RTs for the AS task (mean (M)= 1031 ms, median (Md) =
992 ms, standard deviation (s) = 139 ms) were much longer
than the EO task (M =627 ms, Md =594 ms, s=113 ms). A
mixed-effects ANOV A model was used to analyze the RTs to
estimate the effect of task with shoulder rotation and partici-
pants treated as a random factor. There was a significant effect
of task on RTs (F(1,13)=106.76, p=0.02), with a decisive
Bayes factor (BF = 10*") supporting longer RTs in the AS
task. There was no significant effect of direction of shoulder
rotation; F(1,13)=6.90, p =0.15. Accuracy was very high for
both the EO task (M =0.99, s<0.01) and the AS task (M=
0.97, s=0.03).

Drift-Diffusion Model: Decision and Non-Decision
Time

We modeled the RT distributions with the DDM to separate
NDT for perceptual preprocessing and motor execution from
DT. The RT distribution for each participant is shown for each
task in Fig. 2. The EO task was performed faster and with less
variability across trials in each participant (Fig. 2, red
histograms) compared to the AS task (Fig. 2, blue
histograms). This result was expected since we did not expect
the EO task to require much time for evidence accumulation
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and only necessitated perceptual preprocessing and motor ex-
ecution. However, it may be true that some participants en-
gaged in evidence accumulation on some trials in the EO task,
as evidenced by the width and right tails of the distributions
and non-zero DT estimates in the EO task. Posterior distribu-
tions of the NDT parameter were estimated for both tasks
across participants (population level in the hierarchical model)
and for each participant in each task. For each participant and
task, a 95% credible interval of the NDT is presented by a
shaded bar in Fig. 2. The fastest RTs in each task were good
approximations of each participant’s NDT, confirming previ-
ous findings (see Ratcliff et al. 2016; Nunez et al. 2019a
Fig. 5). The Pearson correlation between the 10th RT percen-
tiles and posterior medians of NDT for each participant was
p=0.95 (p<0.001) in the AS task and p=0.93 (p <0.001) in
the EO task. There was a wide variability in NDTs across
participants but a relatively narrow 95% credible interval
within each participant’s data.

For the AS task, the median of the population-level poste-
rior distribution of NDT was 377 ms with a 95% credible
interval ranging from 317 to 438 ms. For the EO task, the
median of the population-level posterior distribution of non-
decision time was 288 ms with a 95% credible interval rang-
ing from 235 to 338 ms. There was very small overlap (21 ms)
found between the distributions for the two tasks indicating
that the probability of the NDTs being the same between the
AS task and the EO task was very small.

The DDM can be used to decompose RT into additive
components of NDT and DT. For the AS task, the median

Condition
[l Action Selection (AS)
|2 Execution Only (EO)

Participant

>>O0WO0000MMMTTMTONDII  —ccXXrrxZ 22

0 500 1000 1500 2000
Reaction Time (ms)
Fig. 2 Response time distributions and estimated non-decision times for
each participant. Each participant had a distribution of response times for
both the AS and EO tasks. Ninety-five percent credible intervals of non-
decision time are given by the shaded bars on the response time axis
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RT was 992 ms, and the NDT estimate was 377 ms, indicating
a typical DT of around 615 ms. In the EO task, the median RT
was 594 ms, and the NDT estimate was 288 ms, indicating
typical DT of approximately 306 ms. Thus, the longer RTs
exhibited in the AS tasks (~400 ms longer than EO) result
from both longer DT (~310 ms) and longer NDT (~ 90 ms).

Comparison of N200 and P300 Peak Latency Between
Tasks

The N200 and P300 are stimulus-locked EPs recorded over
occipital and parietal electrodes, respectively. Figure 3 a and b
show the waveforms and topographic maps of each EP for
each task averaged across all participants. The N200 shows
the characteristic of negativity over occipital cortex at around
180 to 220 ms (Patel and Azzam 2005), and bilateral topog-
raphy with the eight strongest electrodes in the average over
participants distributed over both hemispheres. The N200
waveforms are averaged over the eight electrodes with stron-
gest N200 indicated in the topographic map (Fig. 3a). The
P300 is a positive potential recorded over parietal electrodes
(Patel and Azzam 2005). The P300 waveform and topograph-
ic map is shown in Fig. 3b, with the waveform averaged over
the eight strongest electrodes, distributed bilaterally over both
hemispheres.

We examined the timing of the N200 in relation to the
estimates of NDT estimates in each task obtained from the
DDM. There was minimal difference in the N200 peak laten-
cies between the two tasks at these eight electrodes (Fig. 3a).
The AS task had a median N200 peak latency of 173 ms (M =
171.86 ms, s =26 ms) and the EO task had a median N200
peak latency of 168.50 ms (M = 165.29 ms, s =26 ms). N200
peak latencies were analyzed using a mixed-effects ANOVA,
with participants treated as a random factor, indicating no
significant difference found between the AS task and the EO
task; F(1,13)=3.72, p=0.08, with BF=1.16.

NDT consists of sensory encoding and response execution.
In the behavioral data, we found the AS task has ~90 ms
longer NDT, while the N200 peak latency indicates no differ-
ence between tasks. Because N200 peak latencies has been
shown to track sensory encoding time (Nunez et al. 2019a),
this suggests that the difference between tasks in NDT is pri-
marily due to response execution time. This might be expected
as the AS task requires reprogramming a new response on
each trial, while the EO task can be automated as the same
response is required on each trial within a given block.

The median P300 latency in the AS task was 326.50 ms
(M =327.50 ms, s =47 ms) and in the EO task was 289.50 ms
(M=294.64 ms, s =44 ms). A mixed-effects ANOVA with
participants treated as a random factor showed a significant
difference between tasks; (F(1,13)=12.58, p=0.004, with
BF=10.47). The P300 peak latency was delayed by about
40 ms in the AS task as compared to the EO task, potentially
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reflecting the additional depth of processing required for stim-
ulus categorization in the AS task versus stimulus detection in
the EO task.

Comparison of RP Duration Between Tasks

We calculated the response-locked RPs for each participant to
evaluate if the longer RTs in the AS task compared to EO task
were reflected in the RP. The response-locked RP is a negative
potential that begins prior to the response and reaches a neg-
ative peak at movement onset (Eimer 1998; Alexander et al.
2016). Figure 3 ¢ shows the average across participants of the
response-locked RPs, averaged across the eight channels with
the strongest negative potential (selected from 256 channels)
for both tasks. In our experiment, the button push
corresponded to the completion of shoulder internal or exter-
nal rotation, so the RP voltage minimum preceded the re-
sponse marker by around 225 ms. This had little impact on
the interpretation of the results, as the movement was identical

in the two tasks and the response-locked RP reached a mini-
mum at the same time around —250 to —200 ms in each
participant and task: #(13)=0.30, p=0.77 with BF =0.28.
Figure 3 ¢ shows the EEG topographies of the averaged po-
tentials over the time period of the minimum peak (— 250 to —
200 ms). In these data, the response-locked RP showed a
strong negative potential close to the midline and slightly
left-lateralized.

The duration of the response-locked RP was defined as the
time interval from the initial negative deflection of the
response-locked RP (i.e., when the signal showed a consistent
negative ramp), to the button press indicating completion of
movement. The duration of the response-locked RP for the AS
task (M =870 ms, Md =921, s =88 ms) was longer than the
duration of response-locked RP for the EO task (/=680 ms,
Md =645, s =146 ms) by approximately 190 ms. Response-
locked RP duration was compared between tasks using a
mixed-effects ANOVA with participants as a random factor.
There was a significant difference in response-locked RP
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Fig. 3 Evoked potential (EP) waveforms averaged across participants of
the eight strongest electrodes for each EP in the AS task and the EO task.
The dashed lines show the median peak latency or median duration time
of the signals. The rectangles indicate the baseline interval. On each
topographic map, the location of these eight strongest electrodes are in-
dicated and the map show the average potentials in a time window sur-
rounding the peak. a The N200 waveforms showed a bilateral distribution
over occipital regions in both hemispheres. The N200 peak latency was
nearly identical between the two tasks, with a median N200 peak latency
of 173 ms in the AS task and 168.5 ms in the EO task. The topographies
show mean potentials of the time interval from 100 to 150 ms, where the
minimum peak amplitude was for both tasks. b The P300 waveforms
showed a bilateral distribution over parietal cortex for both tasks. The

5

median P300 peak latency for the AS task was 326.5 and 289.5 ms in
the EO task, respectively, showing about a 40-ms difference. The topog-
raphies show the mean potentials of the time interval from 240 to 340 ms,
a window covering the peak latency in the two tasks. ¢ The response-
locked RP waveforms showed strongest negativity over the midline area
close to motor areas of the brain. The response-locked RP duration be-
tween the tasks varied greatly. The median response-locked RP duration
in the AS task was 921 ms and in the EO task was 645 ms. In the AS task,
the response-locked RP slowly ramped down to the negative minimum,
compared to the EO task where the RP sharply ramped down to the
minimum. The EEG topographies represent mean potentials of the time
interval from —250 to —200 ms, where the minimum peak amplitudes
occurred for both tasks

@ Springer



Comput Brain Behav

duration between the AS task and the EO task; F(1,13)=
18.72, p<0.001, with BF =304.24 indicating substantial ev-
idence to support a longer duration of the response-locked RP
in the AS task.

DT is defined as the difference between RT and NDT, and
thus, DT is an estimate of duration of the period of evidence
accumulation in the DDM. The AS task has DT about 310 ms
longer than the EO task. The P300 was delayed by about
40 ms which could account for only a small portion of the
difference in DT. This difference may reflect the perceptual
categorization in the AS task in comparison to stimulus detec-
tion in the EO task. In contrast, the duration of the RP was
approximately 190 ms longer in the AS task than the EO task
potentially indicating that response selection accounted for a
larger portion of the increase in decision-making time.

Comparison of Stimulus-Locked RP to the P300

We examined the stimulus-locked RP at the same channels
that showed the strongest negative potential for the response-
locked RP for each participant in each task and compared it to
the P300 recorded at parietal electrodes (Fig. 4). Similar to the
response-locked RP, the stimulus-locked RPs showed a strong
negative deflection at these electrodes. The onset of this neg-
ative potential occurred at a similar time for the AS task (M =
262 ms, Md=246 ms, s=76 ms) and the EO task (M=
270 ms, Md=217 ms, s=150 ms). A mixed-effects
ANOVA for the stimulus-locked RP onset times of the nega-
tive deflection treating participants as a random factor showed
no significant effect of task on onset times F(1,13) =0.06, p =
0.81, with the Bayes factor (BF =0.36). This suggests highly

a

Action Selection Task

ambiguous evidence regarding the difference between means.
This also indicates that the onset of the RP precedes the P300
peak. Wilcoxon signed-rank test indicated that in the AS task,
the stimulus-locked RP (Md =246 ms) had an earlier onset
time than the P300 peak latency (Md=326.50 ms); W= 14,
p=0.01, with BF=2.01. However, in the EO test, there was
no significant difference between the stimulus-locked RP on-
set time (Md =217 ms) and the P300 peak latency (Md =
289.50 ms); W= 28, p=0.14, with BF =0.69. This suggests
that the response selection indexed by the RP and perceptual
categorization indexed by the P300 take place in parallel in the
AS task, consistent with previous studies showing covert
EMG activity during decision-making (Servant et al. 2015),
and studies showing the onset of the RP during decision-
making (Ulrich et al. 1998; Gluth et al. 2013).

The striking difference between tasks was the extended
duration of the negative potential in the AS task as compared
to the EO task. Both tasks showed a negative potential that
reaches a peak magnitude at roughly 300 ms after stimulus
onset. Figure 4 b shows topographic maps of the potentials at
selected time points. For the AS task, the stimulus-locked EPs
at 300 ms post-stimulus is characterized by a strong positive
potential over parietal channels, and a negative potential that
is strongest at electrodes anterior to the eight channels with the
strongest response-locked RP. This topography indicates that
in this time window (about 300 ms after stimulus onset), the
stimulus-locked RP incorporates the negative potential gener-
ated by the dipole sources of the P300. In contrast, by 800 ms
after the stimulus, the topographic map indicated a strong
negative potential with topographic distribution closely corre-
sponding to the RP (see Fig. 3c) and very small positive

Execute Only Task
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Fig.4 a The time series of the stimulus-locked RP and the P300 averaged
over the eight strongest channels. The stimulus-locked RP is in red and
the P300 is in blue. The main difference seen between the two tasks are in
stimulus-locked RP. In the AS task, after the stimulus-locked RP reached
its minimum, there is a sustained negativity, whereas in the EO task, the
signal has returned close to baseline. The P300 seemed to display similar
time course in both tasks. b In the AS task, the scalp topography is shown
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for the average potentials between 300 and 350 ms, revealing a topogra-
phy similar to the one seen in Fig. 3b. When a later time period was
averaged from 750 to 800 ms, the topographic distribution closely
corresponded to the response-locked RP (see Fig. 3c). In the EO task,
when averaging the potentials around the peak of the two signals, the
topography looked similar to the response-locked RP (see Fig. 3¢)
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potential over parietal channels, which have returned to nearly
baseline (Fig. 4a). The EO task showed a topographic distri-
bution at 300 ms, which incorporated both the negative poten-
tial at electrodes exhibiting the strongest RP and the positive
potential over parietal cortex suggesting the two processes are
entirely concurrent. The positive potential at parietal elec-
trodes had a smaller magnitude and shorter duration.

We computed the average signal for the time period of 300 to
350 ms and 750 to 800 ms after stimulus onset for both the AS
and EO task (see windows in Fig. 4a). A paired sample ¢-test was
conducted to test the difference of the average of eight RP chan-
nels (Fig. 4a, in red) and the average of eight P300 channels (Fig.
4a, in blue) between the AS and EO task. In the interval 300 to
350 ms after stimulus onset, there was no significant difference
found between the two tasks for the average potential of the RP
channels; #13)=1.15, p=0.27, with BF =0.47. A significant
effect was found between the two tasks when comparing the
average of P300 channels in the same 300- to 350-ms interval;
#(13)=4.23, p<0.01, with BF =39.27. For the time period of
750 to 800 ms, the average of the eight RP channels was signif-
icantly different between tasks; #13)=—3.44, p<0.001, with
BF =11.25, while the average of the eight P300 channels was
not significantly different in this time period: #13)=1.53, p=
0.15, with BF =0.70.

Stimulus-Locked RP Onset and Response-Locked RP
Duration by Response Time Tertiles

We investigated if the RP onset (measured from stimulus-
locked RP) or RP duration (measured from response-locked
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Fig. 5 The RPs of the eight most negative motor channels averaged
together and split into RT tertiles of fastest, middle, and slowest. a The
response-locked RPs for the fastest and middle tertiles are shown for a
window of —1200 to 100 ms around the response indicated by a black
vertical line. For the slowest RT tertile, a longer window, — 1500 to
100 ms, around the response, was used to accurately estimate response-
locked RP duration. The dashed vertical lines represent the response-
locked RP duration. In the AS task, the response-locked RP duration
varied between conditions revealing the pattern of longer RTs having a
longer RP duration. For the EO task, the fastest and middle condition had
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RP) was correlated to the RTs. For each participant, and in
each task, the trials were sorted by RT and both stimulus and
response-locked RPs were separately averaged for the trials in
the slowest, middle, and fastest RT tertiles, as shown in Fig. 5.

For the AS task (Fig. 5a), the fastest RT tertile had the
shortest RP duration (M =754 ms, Md =778 ms, s =88 ms);
then, the middle RT tertile had a longer RP duration (M=
815 ms, Md =851 ms, s =109 ms), and the slowest RT tertile
had the longest RP duration (M = 1070 ms, Md = 1098 ms, s =
142 ms). For the EO task, the fastest (M =621 ms, Md =
635 ms, s = 146) and middle (M =594 ms, Md =526 ms, s =
182 ms) RT tertiles had similar RP duration while the slowest
RT tertile (M =947 ms, Md=918, ms, s =129 ms) had RP
duration that was about 300 ms longer. A mixed-effects
ANOVA was used to estimate the effect of task and RT tertile
on RP duration treating participants as a random factor. There
was no significant interaction between task and the tertile split
(F(2,26)=1.53, p=0.24, BF = 1.60). There was a significant
effect of task (F(1,26) =23.08, p < 0.001) with evidence for a
difference in mean duration times between tasks (BF = 71.81),
and a significant effect of RT tertile (F(2,26)=78.27,
p<0.001) with decisive evidence of a difference in mean
duration between RT tertiles (BF = 10%).

In contrast, the stimulus-locked RPs had onset times that
were similar for the three RT tertiles in both tasks as shown in
Fig. 5b. For the AS task, the fastest RT tertile had an average
RP onset time at 273 ms (Md =229 ms, s = 98 ms), the middle
RT tertile had an average RP onset time of 301 ms (Md =
288 ms, s =95 ms), and the slowest RT tertile had an average
RP onset time at 287 ms (Md =270 ms s = 94 ms). For the EO

Stimulus-Locked RPs
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similar response-locked RP durations, and while the slowest was 300 ms
longer. b The stimulus-locked RPs are shown with a window of —400 to
1500 ms around stimulus onset indicated by the black vertical line. The
stimulus-locked RP onset times were similar in both tasks for all tertiles as
shown by the dashed vertical lines. The dotted vertical lines represent the
average RTs in all of the conditions. One subject was excluded from this
figure because of very fast RTs compared to the other participants. RP
duration and onset times were estimated from this subject and included in
the estimates of average duration and onset time and in the regression
models shown in Fig. 7
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task, the fastest RT tertile had an average RP onset time of
271 ms (Md =201 ms, s = 142 ms), the middle RT tertile had
an average RP onset time of 286 ms (Md =231 ms, s=

163 ms), and the slowest RT tertile had an average RP onset
time 0f 253 ms (Md =234 ms, s = 101 ms). The onset times of
the RP did not account for differences in the response time
tertiles. A mixed-effects ANOVA was used to estimate the
effect of task and RT tertile on onset times treating participants
as a random factor. There was no significant interaction be-
tween task and the tertile split (7(2,26) =0.32, p=0.73) with
evidence for no interaction effect (BF =0.03). There was no
significant effect found in tasks (F(1,26) = 0.48, p = 0.50) with
evidence for no effect of task (BF =0.31), nor any effect by
the RT tertiles (F#(2,26) = 0.64, p = 0.54) with some evidence
for no effect of RT tertile (BF =0.17).

P300 Peak Latency by Response Time Tertiles

The analysis by RT tertiles was repeated with P300 peak la-
tency as shown in Fig. 6. When plotting the P300 signal by RT
tertiles, the fastest RT tertile (M =334 ms, Md =333 ms, s =
45 ms), the middle RT tertile (M =324 ms, Md =325 ms, s =
45 ms), and the slowest RT tertile (M =345 ms, Md=
326.50 ms, s=61 ms) peaked at nearly the same time in the
AS task (Fig. 6). In the EO task, the fastest RT tertile (M =
277 ms, Md= 286.50 ms, s = 33 ms) and the middle RT tertile
(M=292 ms, Md= 287 ms, s =48 ms) had similar P300 me-
dian peak latency, while the slowest RT tertile (M =332 ms,
Md =303 ms, s =70 ms) showed a 40 to 50 ms longer latency
compared to the other two conditions.

A mixed-effects ANOVA was used to estimate the effect of
task and RT tertile on the P300 peak latency treating partici-
pants as a random factor. There was a significant interaction

between task and RT tertile (F(2,26) = 6.30, p =0.008, with
BF =4.48). Due to the interaction, a separate analysis was
done for each task to examine the effect of RT tertile. In the
AS task, there was no effect of RT tertile on P300 peak latency
(F(2,26)=1.76, p=0.19, with BF =0.55). However, a signif-
icant effect of RT tertile on P300 peak latency was found in
the EO task (F(2,26)=11.22, p <0.001, with BF =90.60). In
the EO task, the slowest RT tertile showed a delayed P300.
One explanation for this delayed peak in the slowest RT tertile
is lack of attention and arousal during those trials due to the
repetitive nature of the EO task. Another explanation could be
the presence of an evidence accumulation process in the
slowest trials and an absence of this process in the fastest
trials.

RP Duration as a Predictor of Response Time and
Decision-Making Time

We tested if the duration of the response-locked RP was quan-
titatively related to RT and DT within each participant. A
linear regression analysis was performed to determine if RP
duration could predict RT for each task, using the RP duration
and median RT computed for each RT tertile in each partici-
pant. For the AS task, RP duration was strongly correlated to
median RT (R* = 0.50, F(2,40) = 40.43, p < 0.001), with deci-
sive evidence of non-zero slope (BF = 10%). RP duration had a
nearly one-to-one relationship with RT for this task (Fig. 8a)
with 3=0.90 (#(40) = 6.36) and with some evidence of a re-
gression slope of 1 (BF1=15.45). The intercept of 217 ms
reflects additional time required to account for RT, possibly
reflecting visual stimulus processing time, and is consistent
with the onset time of the negative deflection in the
stimulus-locked RP (see Fig. 5b). In addition, a hierarchical
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linear regression model was fit to assess the same relationship
by treating participants as a random factor that also assumed
hierarchical mean parameters across participants. This model
provided similar evidence with RP having a nearly one-to-one
relationship with RT such that the hierarchical slope parame-
ter was estimated near 1 (median posterior 5=0.99, 95%
credible interval [0.78, 1.22], BF1 =25.31). The hierarchical
intercept parameter in this model was estimated at 138 ms
with some uncertainty (95% credible interval [—48 ms,
354 ms)).

DT was calculated for each trial by subtracting the NDT
(median of the posterior distribution of non-decision time es-
timated by the drift-diffusion model) from the RT on each
trial. Similar to the RT tertile analysis, the trials were sorted
by DT and EPs were estimated for tertiles of DT to estimate
RP duration. The RP durations for DT tertiles were combined
across participants to estimate a regression model.

In the AS task, the relationship between RP duration and
median DT were fairly strong (R2=0.55, F(2,40)=47.93,
p<.001, BF= 105), and the RP duration also had a near
one-to-one relationship with DT (Fig. 7b) with 3=0.86
(#(40)=6.92) and BF1 =4.04. The hierarchical linear regres-
sion model yielded similar results (median posterior 5= 0.87,
95% credible interval [0.64, 1.11], BF1 = 14.25).

In contrast, for the EO task, the RP duration did not per-
form as well as a predictor of either RT or DT.

There was a weaker (but significant) correlation between
RP duration and RT (R2 =0.27, F(2,40)=14.60, p<.001),
with BF =60.16 (Fig. 7¢) and a slope far less than one (5=
0.35, #40)=3.82 and BF1 < 10°). The hierarchical linear
regression model yielded similar results (median posterior
$=0.36, 95% credible interval [0.21, 0.52], BF1 < 1072'").
There was also a weak (but significant) relationship between
RP duration and DT (R2 =0.31, F(2,40)=18.30, p<0.001),
with BF =193.56 (Fig. 7d) and a slope far less than one (3=
0.31, #40) =4.28 and BF1 < 10>"). The hierarchical linear
regression model yielded similar results (median posterior 3=
0.36, 95% credible interval [0.19, 0.46], BF1 <10 >%).

P300 Peak Latency as a Predictor of Response Time
and Decision-Making Time

We tested whether P300 peak latency could predict RT or DT.
In the AS task, the P300 peak latency had little to no correla-
tion to the median RT tertiles (R*=0, F(2,40)=0.001, p=
0.97, with BF = 0.30) as shown in Fig. 8a, and the hierarchical
linear regression model of the same data yielded uncertain
results with a wide posterior distribution for the slope
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ration and 1.n.ed.1an. RT for the.AS @ AS:Fastest 2 = - @ AS:Fastest P
task data divided into RT tertiles. 1400 F | ¢ AS:Middle o g 1400 | | @ AS:Middle 7
b Regression model between B ASSlowest o gl B A>slowest e
s . 1200 | RT = 217 + 0.90 * RP Durafion » 1200 | DT = -123 + 0.86 * RP Duration ¢
response-locked RP duration (ab- @ R? = 0.50 / ° R? = 0.55 e &
solute value of RP onset time) and E 1000 £ 1000 i
median decision-making time for 8 a6 e 9 = 500
the AS task divided into DT g ; 7
. . g b~ ©
tertiles. ¢ Regression model be- £ 600 /,’ g 600
tween response-locked RP dura- & 200 prd i 200
tion (absolute value of RP onset e d 2
time) and median response time 200 7 200 P
.. . 7 7
for the EO task data divided into 5 L ok
RT tertiles. d Regression model 500 1000 1500 0 500 1000 1500
between RP duration (absolute RP Duration RP Duration
value of RP onset time) and C d
decision-making time for the EO 1600 — 1600 =
task divided into DT tertiles. This @ EO:Fastest s @ EO:Fastest P
within participant effect showed 1400 : Eoitidle s 1400 : fo:Micdle .
3 7 s o7
that in the AS task, RP duration 1200{ RT =357 + 035 *RPDuration .~ 1200 DT =
was strongly correlated to both g R® =027 o ) R%=
RT and DT, with nearly a one-to- 1000 E 1000
one relationship, indicating that g» 800 § 800
the duration of RP was tracking g o
o . 4 600 3 600
decision-making process. For the 2 a
EO task, the correlation was much 400 400
weaker, and the slope not equal to
one 200f - 200p
,/ ,/
0 0
500 1000 1500 0 500 1000 1500
RP Duration RP Duration

@ Springer



Comput Brain Behav

Fig. 8 a Regression model a b
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parameter (median posterior 3= 1.25, 95% credible interval
[0.13,2.33], BF1 =5.11). Also, no relationship was observed
between P300 peak latency and DT tertiles (R*=0, F(2,40)
<.001, p=0.99), with BF=0.30 as shown in Fig. 8b.
Similarly, the slope of the hierarchical linear regression model
of the same data was not significant as judged by the credible
interval that overlapped zero (posterior median 5=0.57, [~
0.33, 1.59], BF1 =4.03.

In the EO task, however, P300 peak latency did signif-
icantly correlate with RT (R2 =0.22, F(2,40)=11.25, p=
0.002), with BF =19.73, with a slope a little more than
one (6=1.21, #40)=3.35 and BF1=7.66) as shown in
Fig. 8c. A hierarchical linear regression model of the
same data estimated a hierarchical slope with a posterior
median of §=1.42 (95% credible interval [0.67, 2.12],
BF1=4.79). There was a stronger relationship with DT
and P300 peak amplitude that also showed a significant
correlation (R2 =0.31, F(2,40)=17.80, p<0.001, with
BF =165.02). There was a slope of slightly >1 (8=
1.19, #(40)=4.22 and BF1=11.05) as shown in Fig. 8d.
A hierarchical linear regression model of the same data
estimated a hierarchical slope with a posterior median of
B=1.20 (95% credible interval [0.65, 1.80], BF1 =8.23).
As noted earlier, in the EO task, the slowest tertile of RT
was associated with a delayed P300, which could possibly
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be an effect of arousal rather than decision-making or a
reflection of some evidence accumulation in the slowest
trials.

Surface Laplacian Analysis of the RP

The RPs in each participant were processed with a surface
Laplacian to identify superficial focal current sources. In
both tasks, with the application of a surface Laplacian, the
current density estimates were localized over the midline
somewhat anterior to bilateral motor cortex. Three elec-
trodes were positioned over the strongest signals, and the
time course shows that of those three, one electrode over
the right midline area showed a positive signal while two
electrodes over the left midline area showed a negative
signal in both tasks (Fig. 9a). This suggests that the RP
involves a lateralization of current density in areas of the
motor system that generate the RP and is discussed further
in the “Discussion” section. Figure 9 b shows the topog-
raphies of the surface Laplacian averaged over — 250 to —
200 ms before the response, and the three electrodes with
the highest magnitude current density are marked in
green, red, and blue and labeled 1-3, corresponding to
the waveforms in Fig. 9a. The overall pattern shows that
the right hemisphere exhibited more positive current
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Action Selection Task
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Fig.9 By applying a surface Laplacian, the strongest current density was
localized close to the midline, potentially generated by bilateral structures
in the motor cortex close to the midline. There were two electrodes that
showed strong negativity over the left midline area and one electrode that
showed strong positivity over the right midline area that could be
suggestive of lateralization of the motor system. a The time course of

density in comparison to the left hemisphere, for both of
these tasks involving right arm movement.

Discussion

Evidence accumulation is believed to be the underlying
mechanism of decision-making, determining the time it
takes to select between alternative decisions (Link and
Heath 1975; Ratcliff and McKoon 2008). Previous studies
have shown that parietal cortex activity exhibits charac-
teristics of evidence accumulation (Shadlen and Kiani
2013; Kelly and O’Connell 2013; O’Connell et al.
2018). These studies have modeled the mechanisms of
perceptual categorization in decision-making, followed
simply by the initiation of response execution. In this
study, we made use of the AS task (O’Shea et al. 2007)
to investigate the contribution of response selection to
decision-making. RT and accuracy data were fit to a
DDM (Ratcliff and McKoon 2008) in order to partition
RT into NDT (for stimulus encoding and motor execu-
tion) and DT (corresponding to the duration of evidence
accumulation). We found that, for the AS task only, the
duration of RP recorded over motor-related areas of the
brain has a one-to-one relationship with DT. The results
indicate that in the AS task, response selection can be
modeled with an evidence accumulation process reflected
in the timing of the RP.

-200

0

the three electrodes that generated the strongest current source density. b
The topography of current source density with the surface Laplacian
applied. The three midline electrodes with greatest activity are marked
in red, green, and blue and labeled 1-3. For reference, C3 and C4
electrodes are labeled

Readiness Potential Reflects Decision-Making in the
Action Selection Task

RPs display the characteristic of slow ramping negativity
reaching a minimum at the start of movement, resolving to
baseline as the movement completed and has been character-
ized to reflect response selection and multiple movement-
related processes (Rohrbaugh and Gaillard 1983; Osman
et al. 1995; Eimer 1998; Miller et al. 1999; Leuthold et al.
2004; van Boxtel and Bocker 2004; Alexander et al. 2016).
The duration of the RPs (absolute value of the RP onset time)
from the AS task was on average about 190 ms longer than the
duration of the RP from the EO task. The stimulus-locked RPs
at the same channels exhibited a negative ramp that onset
identically at around 265 ms for both tasks, suggesting that
the onset of the RP takes place after visual encoding but before
evidence accumulation. Moreover, the onset of the RP pre-
cedes the P300/CPP peak, which has been suggested to be an
indicator of evidence accumulation reaching a boundary
(O’Connell et al. 2012). Past work did not find evidence for
an effect of stimulus intensity on RP duration (Miller et al.
1999), indicating that the RP is independent of perceptual
processing. Although other studies have found that stimulus
intensity does influence motor execution time (Resulaj et al.
2009; Buc Calderon et al. 2015; Dotan et al. 2018; Weindel
etal. 2020), here we found that the RP does account for timing
of decision-making in a response selection task, although the
RP likely also reflects motor preparation and execution.
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To clarify if RP quantitatively tracked DT, a linear regres-
sion analysis was performed with the tertile split of trials by
RTs and DTs. Showing a within participant effect, in the AS
task, RP duration and RT had a strong relationship, indicating
a nearly one-to-one relationship (BF1 =25.31 from hierarchi-
cal regression model) between increasing duration of RP and
RT (Fig. 6a). The intercept of the standard regression model
was 217 ms, which was consistent with time for perceptual
processing (Thorpe et al. 1996; Rungratsameetaweemana
et al. 2018; Nunez et al. 2019a), and with the onset of the
stimulus-locked RP at about 265 ms (note that the 265-ms
estimate is the center of an interval from 203 to 328 ms where
the derivative of the RP waveform is consistently negative).
RP duration and DT also had a linear relationship (Fig. 6b)
indicating a close one-to-one relationship (BF1 =14.25 from
hierarchical regression model) between RP duration and DT.
These models provide strong evidence that RP duration tracks
DT, and that the intercepts of the regression model with RT
accounted for the visual encoding time prior to the onset of
evidence accumulation consistent with the onset time of the
stimulus-locked RP.

In the EO task, RP duration did not predict DT and RT as
well as it did in the AS task. A lack of variability in the EO
task RTs, compared to AS task RTs, may partially explain this
finding, as shown in Fig. 2. Moreover, in the EO task, the
decision of which action to execute is fixed. As a conse-
quence, variability in RT or DT may be more strongly influ-
enced by variability due to stimulus processing (detection) or
response execution rather than in decision-making.

The P300 Does Not Track Decision-Making in the
Action Selection Task

In previous studies, the central-parietal positivity (CPP) and
P300 amplitude and timing of peak positive potential have
been found to be reflective of evidence accumulation process
towards a decision (O’Connell et al. 2012; Kelly and
O’Connell 2013; Twomey et al. 2015). In vigilance tasks
(specifically gradual reduction in contrast and motion detec-
tion task with different coherence levels), the peak of CPP was
delayed as RT increased (O’Connell et al. 2012; Kelly and
O’Connell 2013). As the difficulty of identifying and process-
ing the stimulus increased, there was a delay in the CPP, with
a peak right before motor execution. This was attributed to
longer decision-making since the peak of the CPP occurred at
motor execution. However, some of this delay may also reflect
increased time for perceptual processing, as these studies
employed stimuli at varying stimulus-to-noise ratios. The task
we have used in this study employed simple shapes presented
without any noise, and the decision-making involves a signif-
icant component of response selection rather than perceptual
categorization. The P300 was identified in each task, but the
time of the peak was delayed by about 40 ms in the AS task,
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despite a nearly 400 ms difference in RTs (Fig. 4c) and a 310-
ms difference in DTs. Moreover, when the data were split into
tertiles of fastest, middle, and slowest RTs, the P300 peak
latency did not predict RTs or DTs in the AS task within
participants. We also did not find a separate CPP from the
P300 that predict RT or DT that better matched the CPP as
found in other studies (O’Connell et al. 2012; Kelly and
O’Connell 2013; Rangelov and Mattingley 2020). This could
be due to different task structure and demands.

Evidence Accumulators in the Human Brain

Decision-making includes both perceptual categorization and
response selection. Our results suggest that by monitoring
both perceptual and motor signals, EEG data can be used to
understand the distinct contributions of perceptual and motor
decision-making to RT data depending upon the task de-
mands. The CPP or P300 may reflect an evidence accumula-
tion process for perceptual categorization, which have been
found to be closely related to evidence accumulation in tasks
with challenging perceptual decision-making (Philiastides
et al. 2006; Ratcliff et al. 2009; O’Connell et al. 2012; Kelly
and O’Connell 2013). In the AS task, perceptual categoriza-
tion was not decisive in determining RT and the decision-
making has a large component of response selection. Our
findings indicate that the RP reflects evidence accumulation
in the motor system for response selection, which is decisive
in determining RT in this task.

RT and choice behavior during visual decision-making tasks
are well characterized by models that assume a continuous sto-
chastic accumulation of evidence (Link and Heath 1975; Usher
and McClelland 2001; Ratcliff and McKoon 2008; Brown and
Heathcote 2008; Ratcliff et al. 2016). Studies in animal models
showing increasing firing rates in parietal cortex during percep-
tual decision-making (Roitman and Shadlen 2002; Huk and
Shadlen 2005; Churchland et al. 2008) motivated the earlier
studies of the P300 in parietal cortex (Philiastides et al. 2006;
Ratcliff et al. 2009; O’Connell et al. 2012; Kelly and O’Connell
2013) and the present study of the RP over motor-related areas
of the brain. However, the relationship between progressively
increasing firing rate and ramps in slow-wave EEG potentials
are complicated by a number of factors. EEG potentials reflect
synchronous synaptic potentials at a macroscopic (cm) scale
(Nunez and Srinivasan 2006). The sources of the EEG are the
currents in extracellular space-excitatory postsynaptic poten-
tials (EPSPs) generate positive sources inside the membrane
and negative current in the extracellular space while inhibitory
postsynaptic potentials (IPSPs) generate negative sources inside
the membrane and positive current in extracellular space. Thus,
increasing firing rates might be expected to generate increased
negative potentials as negative extracellular potentials reflect
(locally) more EPSPs, suggesting that a negative ramp is related
to increased cortical excitability facilitating firing of action
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potentials. However, we are cautious about this interpretation of
the RP because of the physics of EEG recording. Scalp poten-
tials are recorded at a distance from the cortex, and thus dom-
inated by dipole components of the brain current source distri-
bution (Nunez and Srinivasan 2006; Nunez et al. 2019b). Thus,
the sign of the observed potential may merely reflect whether
the negative or positive pole of the dipole is closer to the scalp.
Despite this complication, it is reasonable to interpret a slow
ramp in EEG potentials (of either sign) as a correlate of pro-
gressive change in firing rates, providing a means to investigate
accumulator processes in the human brain.

The RP duration in the EO task was somewhat surprising
because if it were an evidence accumulator, we would not
expect it to be longer than RTs for this task. Furthermore,
the only case where waveforms begin before stimulus onset
is the RP estimate for the EO task. There are several possible
reasons for observing these effects. One is the automatic na-
ture of the task. In the study by Libet and colleagues (Libet
et al. 1983) it has been suggested that response selection,
indexed by the RP, precedes the conscious decision to move.
In the EO task, despite the introduction of random onset times,
there is essentially a repetitive motion that the subject may
prepare for prior to stimulus presentation. Another is that the
RP has been observed before stimulus onset in cases where
there is pre-cued information given about the response to be
made (Osman et al. 1995; Leuthold et al. 1996; Ulrich et al.
1998; Leuthold et al. 2004). This could explain why we only
see this in the EO task because participants already know
which direction they will be responding.

Sources of the Readiness Potential

The scalp topographies of the RP reveal that the strongest
negative potentials occur over motor areas close to the midline
and anterior to C3/C4 (Fig. 3b). The Bereitschaftspotential for
finger movements is composed of an early shallow ramp over
midline areas, such as supplementary motor areas (SMA) and
pre-SMA, and a steeper negative slope over contralateral mo-
tor areas (corresponding to C3/C4) that reaches a negative
minimum at movement onset (Libet et al. 1983; Shibasaki
and Hallett 2006). In our task, which involved shoulder inter-
nal and external rotation movements, the RP had a focus en-
tirely over midline areas from RP onset to movement onset,
consistent with activity in the shoulder representation in pri-
mary motor cortex which is located close to the midline
(Penfield and Rasmussen 1950). The higher spatial resolution
of the surface Laplacian (Fig. 9) clearly indicated a focal
source close to the midline, with opposite polarities between
hemispheres. The lateralization found in the surface
Laplacian, with positive potential in the hemisphere ipsilateral
to movement and negative potential in the contralateral hemi-
sphere, has been thought to reflect response inhibition and

activation patterns and has also been observed in other choice
reaction time tasks (Burle et al. 2004).

Limitations of the Study

This study has a few methodological limitations that need to
be acknowledged. There was no counterbalancing in the order
of administration of the two tasks, with all the participants
starting with the AS task, thus ending with the EO task. This
might have contributed to some fatigue effect in the last EO
block for that specific shoulder rotation, influencing the mea-
sures of their RTs. With the exploratory nature of the task, a
formal power analysis was not conducted to determine the
optimal sample size; future confirmatory studies should per-
form such an analysis to ensure sufficient sample size. The
relationship of the RP to DT should also be explored in tasks
with more difficult response selection. In both the EO and AS
tasks, participants were very accurate (all participants were
100% accurate in the EO task and were between 88% and
100% accurate in the AS task with a mean of 98% accuracy).

Conclusion

Decision-making has several underlying components includ-
ing stimulus encoding, perceptual categorization, response se-
lection, and response execution. In this study, we made use of
a task where decision-making mostly involved response se-
lection. For this task, we find that the duration of a signal
linked to the motor system, the RP, has a one-to-one relation-
ship with amount of time required to make the decision, which
is modeled by a stochastic evidence accumulation process.
This close relationship between the RP and the evidence ac-
cumulation process supports the notion that an accumulator
process is a general neural implementation of decision-
making in both sensory and motor systems, both when indi-
viduals take actions in response to stimuli (Shadlen and Kiani
2013) or of their own free will (Schurger et al. 2012). Our
results suggest that the contributions of sensory or motor sys-
tems to variability in decision-making time can be assessed by
the timing of sensory and motor evoked potentials.
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