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It has been recently shown that an additional therapeutic gain may be achieved if a radiotherapy plan

is altered over the treatment course using a new treatment paradigm referred to in the literature as spa-

tiotemporal fractionation. Due to the non-convex and large-scale nature of the corresponding treatment-plan

optimization problem, the extent of the potential therapeutic gain that may be achieved from spatiotemporal

fractionation has been investigated using stylized cancer cases to circumvent the arising computational chal-

lenges. This research aims at developing scalable optimization methods to obtain high-quality spatiotempo-

rally fractionated plans with optimality bounds for clinical cancer cases. In particular, the treatment-planning

problem is formulated as a quadratically constrained quadratic program and is solved to local optimality

using a constraint-generation approach, where each subproblem is solved using sequential linear/quadratic

programming methods. To obtain optimality bounds, cutting-plane and column-generation methods are

combined to solve the Lagrangian relaxation of the formulation. The performance of the developed methods

are tested on de-identified clinical liver and prostate cancer cases. Results show that the proposed method

is capable of achieving local-optimal spatiotemporally fractionated plans with an optimality gap of around

10-12% for cancer cases tested in this study.

Key words : radiotherapy planning; spatiotemporal fractionation; quadratically constrained quadratic

programming

1. Introduction

The main goal of radiotherapy is to deliver a therapeutic dose of radiation to the clinical

target volume in order to eradicate cancer cells while sparing the surrounding healthy tissue

to the largest extent possible. As the radiation beam passes through the patient’s body, it

damages both cancerous and healthy cells along its path; thus, radiotherapy plans must be

carefully designed to maximize the chance of tumor eradication while minimizing the risk

of normal-tissue side effects resulting from the treatment (Romeijn and Dempsey 2008).

Intensity-modulated radiotherapy (IMRT) is one of the most common forms of photon
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therapy, which uses a multi-leaf collimator (MLC) system to modulate the shape and

intensity of radiation beams (Bortfeld 2006). In IMRT, each beam is discretized into smaller

beams, called beamlets, whose intensities are individually adjustable by using the MLC.

The goal of IMRT planning is to find the optimal beamlet intensities at each incident beam,

called fluence map, in order to yield a dose distribution that delivers the prescribed dose to

the target volume and at the same time preserves the functionality of nearby normal tissue

and critical structures. This is achieved through formulating and solving a mathematical

optimization problem known as fluence-map optimization (FMO).

IMRT plans are typically delivered in daily fractions over the course of one to several

weeks, where a fraction of the prescribed dose is delivered at every treatment session. This

is motivated by the fractionation effect, which suggests that cells can survive a larger total

radiation dose if the radiation is delivered in daily fractions. Though the fractionation effect

is beneficial to preserving normal tissue, it may adversely impact the fraction of tumor

cells killed. However, because the fractionation effect in a majority of tumors is smaller

than the normal tissue, fractionated radiotherapy is routinely used in the clinic to safely

deliver larger prescription dose values that would not be possible otherwise. A fractionation

scheme is characterized by the number of treatment sessions and the dose delivered per

fraction. The concept of biologically effective dose (BED) is clinically used to calculate iso-

effective fractionation schemes (Fowler 1989, 2010). Specifically, two fractionation schemes

with identical BED values are expected to cause the same biological damage in a structure,

irrespective of the number of fractions and the dose delivered per fraction.

Traditionally, the fractionation decision and the FMO problem have been handled inde-

pendently. The solution to the FMO problem determines the set of fluence maps for the

incident beams and the resulting spatial dose distribution. The fractionation decision then

involves finding a suitable fractionation schedule to deliver the given spatial dose distribu-

tion. The radiation oncologist typically determines the choice of the fractionation scheme

based on clinical trails. Relatively recently, several studies have shown the dependence

of the optimal fractionation scheme on the spatial dose distribution (Mizuta et al. 2012,

Unkelbach et al. 2012, Yang and Xing 2005, Saberian et al. 2015). Given a fixed spatial

dose distribution, those studies model the fractionation decision as a mathematical opti-

mization problem with the goal of optimizing the BED delivered to the target volume

and normal tissue. They have shown that when the spatial dose distribution is fixed and
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given, a uniform fractionation scheme with equal dosage per fraction is optimal, where

the number of fractions depends on the BED parameter values for the target volume and

critical structures. Saberian et al. (2017) proposed an integrated planning approach to

simultaneously optimize the spatial dose distribution and the fractionation length while

assuming a uniform fractionation scheme. Ajdari and Ghate (2016b) extended this inte-

grated planning approach by developing a robust counterpart to address the uncertainty

associated with the BED parameter values. More recently, several studies have focused

on developing adaptive strategies using stochastic control techniques to re-optimize the

spatial dose distribution (Saberian et al. 2016, Ajdari et al. 2020, Ten Eikelder et al. 2020)

and the fractionation scheme (Ajdari et al. 2018, 2019) in response to changes in imaging

bio-markers tracked during the course of treatment.

In uniform fractionation, the total dose received by a structure is divided into equal

number of fractions for both the target volume and the normal tissue. However, it is desired

to deliver the dose to the target volume in as few fractions as possible to reduce the frac-

tionation effect, thus killing more tumor cells. On the other hand, the dose received by the

normal tissue should be ideally divided into as many fractions as possible to exploit the

fractionation effect in the normal tissue to the largest extent possible. Spatiotemporal frac-

tionation is a treatment paradigm aiming at selective reduction of the fractionation effect

in the target volume by altering the spatial dose distribution across treatment sessions. In

spatiotemporal fractionation, fraction-dependent dose distributions are used to irradiate

a specific subregion of the target volume at each treatment session while maintaining a

relatively uniform dose in the normal tissue across fractions. In that case, a majority of the

prescription dose for each target subregion will be delivered in a single or a few fractions,

thus reducing the fractionation effect in the target. Meanwhile, critical structures receive

a relatively uniform dose from each fraction-dependent dose distribution, thus benefiting

from the fractionation effect.

To design spatiotemporally fractionated radiotherapy plans, the fractionation effect is

integrated into the FMO problem by directly optimizing for the BED distribution in the

target volume and the surrounding critical structures. This is achieved by formulating and

solving the FMO problem in terms of fraction-dependent fluence maps using BED-based

treatment-plan evaluation criteria. The resulting formulation is non-convex in general and



Adibi and Salari: Spatiotemporally Fractionated IMRT Planning
4

larger in scale compared to the conventional FMO problem and thus is computationally

more challenging to solve.

Several studies by Unkelbach and colleagues have demonstrated proof-of-concept for the

potential therapeutic gain achievable from spatiotemporal fractionation in different treat-

ment sites and modalities (Unkelbach and Papp 2015, Unkelbach et al. 2016, 2017). In

those studies, the FMO problem was formulated with the goal of minimizing the average

BED delivered to a specific subset of critical structures while constraining BED-based

evaluation criteria in the target volume and other structures to the values obtained by

uniform fractionation. They employed an L-BFGS Quasi-Newton method along with aug-

mented Lagrangian method to locally solve the formulation. The results show a reduction

of 10-20% in the mean BED delivered to the specified subset of critical structures while

maintaining the same quality of BED distributions in the target volume and other struc-

tures compared to uniform fractionation. Ajdari and Ghate (2016a) proposed a formulation

aiming at maximizing the BED equivalence of the average dose delivered to the target

volume across fractions while constraining the mean or maximum BED in different critical

structures. They developed a heuristic solution approach using model predictive control to

obtain local solutions. They reported a 2-5% gain in tumor BED compared to uniformly

fractionated plans for head-and-neck test cases.

More recent studies on spatiotemporal fractionation address the non-convexity of the

problem by proposing methods to obtain optimality bounds on the quality of the solutions

found using local optimization (Gaddy et al. 2018, Adibi and Salari 2018). Specifically,

the FMO problem was formulated as a non-convex quadratically constrained quadratic pro-

gramming (QCQP) problem, which is locally solved using convex optimization techniques.

Optimality bounds on the obtained local solutions were then provided by solving a convex

relaxation based on semi-definite programming (SDP). However, the non-convex QCQP

formulation and its SDP relaxation are large scale for clinical cancer cases and thus are

computationally prohibitive to solve using general-purpose solvers. Therefore, those stud-

ies use stylized cancer cases composed of two-dimensional CT slices for proof-of-concept

illustration.

In this study, we aim to extend prior work in this area by developing scalable solution

methods to find local solutions and optimality bounds for the spatiotemporal fractiona-

tion problem for clinical cancer cases. Optimality bounds provide valuable insight into the
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extent of the potential gain achievable from spatiotemporal fractionation, which may be

used to identify cancer cases that may benefit the most from spatiotemporal fractionation.

To that end, we reformulate the spatiotemporal fractionation problem as a QCQP prob-

lem and develop a constraint-generation method to handle the large number of quadratic

constraints that arise in clinical cases. At each iteration, a relaxed problem with only a

subset of constraints is solved and the most violated constraint(s) are then identified and

added sequentially. Sequential linear/quadratic programming methods are used to solve

the relaxed problem at each iteration efficiently. To obtain optimality bounds on the QCQP

reformulation, we solve the Lagrangian relaxation of the QCQP problem by reformulat-

ing it as an SDP problem and solving it using a cutting-plane method embedded in a

column-generation framework. The computational performance of the proposed solution

approaches are tested on de-identified clinical cancer cases. The main contributions of the

study are as follows:

• An optimization framework is proposed to obtain spatiotemporally fractionated radio-

therapy plans for clinical cases, aimed at altering the spatial dose distribution during the

course of the treatment.

• A tailored constraint-generation method is developed to find local solutions to large-

scale QCQP formulation arising in spatiotemporal fractionation.

• A column-generation method is developed to solve the Lagrangian relaxation of the

QCQP problem in order to obtain optimality bounds for spatiotemporal fractionation.

The remainder of this paper is organized as follows: In Section 2, we present the nota-

tion and a BED-based formulation for spatiotemporally fractionated IMRT planning. In

Sections 3 and 4, we develop tailored solution methods to obtain local optimal solutions

along with optimality bounds. Section 5 presents the numerical results of applying the

proposed spatiotemporal fractionation approach to de-identified clinical cancer cases. A

discussion on the insights obtained from the results is provided in Section 6. Finally, Section

7 summarizes the paper and highlights future research directions.

2. Problem Formulation

In this section, we first introduce the notation and then incorporate spatiotemporal frac-

tionation into the FMO problem. The resulting treatment-plan optimization problem is

then reformulated as a QCQP problem, which serves as the basis for our solution method

development.
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Given a prespecified set of beam angles, each beam is discretized into a set of beamlets

indexed by i ∈ I the intensities of which are individually adjustable. We let xi be the

intensity of beamlet i ∈ I. Let T and C denote the set of target and critical structures,

respectively. Additionally, we let S denote the set of all relevant structures with S =

T ∪C. To evaluate the dose delivered to each structure by the IMRT plan, we conceptually

discretize the relevant anatomy into a fine grid of three-dimensional cubes, which are called

voxels. The set of voxels in structure s∈ S are indexed by v ∈ Vs. Also, we let V =
⋃

s∈S Vs
be the set of all voxels in the relevant anatomy. The dose (measured in Gy) delivered to

voxel v ∈ V, denoted by dv, can be approximated as

dv =
∑
i∈I

Divxi, (1)

where Div is the dose-deposition coefficient measuring the amount of deposited dose in

voxel v from beamlet i under unit intensity. The conventional FMO problem aims at

optimizing the spatial distribution of the physical dose calculated using equation (1).

In spatiotemporal fractionation, we aim at varying the dose received by each voxel v ∈
V over fractions. In that case, one has to consider the impact of dose variation on the

fractionation effect within each voxel. More specifically, consider a fractionation scheme

with a pre-specified number of sessions indexed by n ∈N , where a physical dose of dnv is

delivered to voxel v in fraction n. To account for the fractionation effect, we calculate the

BED in voxel v, denoted by bv, as

bv =
∑
n∈N

dnv

(
1 +

dnv
[α/β]

)
, (2)

which is known as the biological dose. In the equation above, [α/β] (measured in Gy)

is a structure-specific parameter and describes the degree of sensitivity of a structure

to fractionation (Beyzadeoglu et al. 2010). For the target volume, the BED model may

be extended to include an additional term to account for tumor re-population. However,

assuming an exponential tumor growth, if the total number of treatment fractions (i.e.,

|N |) is fixed, then the re-population term will be constant (Fowler 2010). We note that

there are several extensions of the BED model to account for other biological effects such as

accelerated re-population, re-oxygenation of hypoxic tumors, and drug radio-sensitization

(Jones and Dale 2019). In this study, we focus on the basic fractionation effect, which is

well established and widely used to guide fractionation decisions in clinical practice.
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A collection of structure-based evaluation criteria, denoted by Fs : R|V| → R (s ∈ S),

are used to measure the quality of the biological dose distribution within each structure.

Without the loss of generality, we assume smaller values of the evaluation criteria are

preferred over larger ones. We can then formulate the spatiotemporal fractionation problem

in terms of the fraction-dependent beamlet intensities as

min
∑
s∈C

γsFs(b) (3)

subject to

bv ≥ τs v ∈ Vs, s∈ T (4)

bv =
∑
n∈N

dnv

(
1 +

dnv
[α/β]s

)
v ∈ Vs, s∈ S (5)

dnv =
∑
i∈I

Divxni n∈N , v ∈ V (6)

xni ≥ 0 n∈N , i∈ I (7)

In the formulation above, using non-negative weight factors γs (s∈ C), the objective func-

tion minimizes the weighted sum of evaluation criteria over all critical structures. If pro-

tection of a target structure from large BED values is desired, then that structure can

also be simultaneously considered as a critical structure to participate in the objective

function. The constraints in (4) ensure the delivery of at least the prescribed biological

dose τs to every voxel in the target structure s ∈ T . Equations (5) and (6) measure the

biological dose and the fraction-dependent physical dose at each voxel, respectively. Lastly,

the constraints in (7) enforce non-negativity on fraction-dependent beamlet intensities.

The generalized mean of the dose distribution has been traditionally used to evaluate the

quality of the physical dose distribution in different structures (Niemierko 1999, Henŕıquez

and Castrillón 2011). An approximation of the generalized mean using the convex combina-

tion of the maximum and average dose in a structure, known as max-mean approximation,

has also been used in conventional IMRT planning (Thieke et al. 2003, Long et al. 2012,

Craft et al. 2005). In our prior study, we employed the max-mean approximation to the

BED distribution, called max-mean BED, as a treatment-plan evaluation criterion for spa-

tiotemporal fractionation (Adibi and Salari 2018). In this study, we use structure-based

one-sided linear penalties to penalize any positive deviations of the max-mean BED from



Adibi and Salari: Spatiotemporally Fractionated IMRT Planning
8

a user-specified threshold. More formally, the plan evaluation criteria Fs (s∈ C) are defined

as

Fs(b) =

(
κs max

v∈Vs
bv + (1−κs)

1

|Vs|
∑
v∈Vs

bv− τs

)
+

, (8)

where (·)+ represents the ramp function, κs ∈ [0,1] is structure-specific convex-combination

coefficient, and τs is structure-specific user-specified threshold. Fs can be represented in

a linear form by introducing auxiliary variables us and ws corresponding to the maxi-

mum and mean of BED distribution in structure s, respectively. This linear representa-

tion also requires the addition of the following auxiliary constraints: bv ≤ us (v ∈ Vs) and

1
|Vs|
∑

v∈Vs bv ≤ws. The problem can then be reformulated as

min
∑
s∈C

γsps (9)

subject to

(4)− (7)

bv ≤ us ∀v ∈ Vs, s∈ C (10)

1

|Vs|
∑
v∈Vs

bv ≤ws ∀s∈ C (11)

ps ≥ (κsus + (1−κs)ws)− τs ∀s∈ C (12)

ps ≥ 0 ∀s∈ C (13)

In the rest of this section, we first reformulate the spatiotemporal fractionation problem

in (9)–(13) as a QCQP problem, which serves as the basis for our solution method devel-

opment. We highlight features of this reformulation that must inform the development

of scalable solution methods. We then consider the special case of uniform fractionation

and show that in that case the spatiotemporal fractionation problem can be reformulated

as a convex QCQP problem. Finally, we consider a variant of the proposed formulation

to maximize the potential gain achievable from spatiotemporal fractionation in a single

dose-limiting critical structure.

2.1. QCQP Reformulation

Let column vector D·v = (Div : i∈ I)> represent the dose-deposition coefficients associated

with voxel v ∈ V. Additionally, let row vector xn· = (xni : i∈ I) represent the beamlet-

intensity profile at fraction n ∈ N . Using equations (5) and (6), we substitute bv in con-

straints (4), (10), and (11) with a quadratic expression of the form
∑

n∈N (xn·D·v)
2 /[α/β]+
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xn·D·v for voxel v ∈ V and thus drop equations (5) and (6) from the formulation. Let

column vector y be the stacked vector of all remaining variables in the formulation,

namely, fraction-dependent beamlet-intensity vectors xn· (n ∈ N ) and auxiliary variables

us,ws, ps (s ∈ C). The spatiotemporal fractionation problem can then be reformulated in

terms of vector y as

min q>0 y (14)

subject to

y>Qvy+ q>v y+ τs ≤ 0 ∀v ∈ Vs, s∈ T (15)

y>Qvy+ q>v y≤ 0 ∀v ∈ Vs, s∈ C (16)

y>Qsy+ q>s y≤ 0 ∀s∈ C (17)

c>s y− τs ≤ 0 ∀s∈ C (18)

− y≤ 0. (19)

In the reformulation above, q0 is the vector of objective function coefficients with all ele-

ments equal to zero except for those corresponding to auxiliary variables ps (s∈ C), which

are equal to γs. The constraints in (15) are a reformulation of (4), where Qv is block diago-

nal with |N | identical blocks of the form −D·vD>·v/[α/β] and a block of zeros corresponding

to beamlet-intensity profiles and auxiliary variables, respectively. Similarly, qv is a stacked

column vector composed of |N | identical vectors of the form −D·v and a vector of zeros.

The constraints in (16) are a reformulation of (10), where Qv is block diagonal with |N |
blocks of the form D·vD

>
·v/[α/β] and a block of zeros. Additionally, qv is a stacked column

vector consisting of |N | identical vectors of the form D·v and a unit vector with one non-

zero element of −1 corresponding to auxiliary variable us. The constraints in (17) are a

reformulation of (11), where Qs = 1
|Vs|
∑

v∈VsQv and qs is a stacked column vector consist-

ing of |N | vectors of the form 1
|Vs|
∑

v∈VsD·v and a unit vector with one non-zero element

of −1 corresponding to auxiliary variable ws. The constraints in (18) are a reformulation

of (12) in which cs is a column vector with all elements equal to zero except for three

elements corresponding to auxiliary variables us, ws, and ps, which are κs, 1−κs, and −1,

respectively.

Because the objective function in (14) is linear, the formulation above may be considered

as belonging to the class of quadratically constrained linear programming (QCLP) prob-

lems. QCLP is a special class of QCQP where the objective function is linear with a zero
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Hessian matrix. On the other hand, any given QCQP problem may be reformulated as a

QCLP problem by transforming the objective function into a quadratic constraint using

an auxiliary variable. The QCLP reformulation then attempts to minimize the value of

the added auxiliary variable as the new linear objective function. Hence, QCQP solution

methods are applicable to QCLP and vice versa. Therefore, in this study, we consider the

formulation (14)–(19) as belonging to the broader class of QCQP problems.

There are two major challenges in solving the QCQP reformulation above. First, the

formulation is non-convex in general due to the negative semi-definiteness of matrices

Qv for target voxels in (15). Note that a block diagonal matrix is negative (positive)

semi-definite if and only if all its diagonal blocks are negative (positive) semi-definite.

Second, the formulation is large-scale, with the number of variables on the order of number

of beamlets times the number of fractions and the number of quadratic constraints on

the order of number of voxels. Non-convex QCQP problems are NP-hard and difficult

to solve, and usually there is no guarantee to reach global optimality (Park and Boyd

2017, Boyd and Vandenberghe 2004). General-purpose convex-optimization solvers, such

as Ipopt (Wächter and Biegler 2006) and Knitro (Byrd et al. 2006), can find local optimal

solutions for non-convex QCQP problems. However, our observation in the case of the

QCQP problem considered in this study is that those solvers take a long time to reach

local solutions and, depending on the number of voxels considered, computational-time and

memory requirements may be prohibitive for large clinical cases. In Section 3, we develop

customized solution methods to efficiently solve the QCQP reformulation by finding local

optimal solutions as well as tight optimality bounds.

2.2. Special Case of Uniform Fractionation

In this section, we consider a special case of the spatiotemporal fractionation problem

with the additional constraint that the spatial dose distribution is fraction-invariant, which

requires the use of identical beamlet-intensity profiles across fractions. In that case, our

spatiotemporal fractionation problem is equivalent to the traditional BED-based planning

problem utilizing a uniform fractionation scheme. Here, we discuss the steps to obtain a

convex QCQP reformulation of the spatiotemporal fractionation problem in (9)–(13) for

this special case.

The non-convexity of the QCQP reformulation presented in Section 2.1 stems from

the constraints in (4) that enforce the minimum prescribed BED in target voxels. Under
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uniform fractionation, we can rewrite those constraints in terms of physical dose. More

specifically, under uniform fractionation, we can replace fraction-dependent dose variables

dnv (n ∈ N ) in (2) with fraction-invariant variable dv. Next, by substituting bv from (2)

and bringing the right-hand side to the left, we can write the constraints in (4) as

|N |dv
(

1 +
dv

[α/β]

)
− τs ≥ 0.

The left-hand side of the inequality above is a convex quadratic function of dv with two

real roots, and thus is non-negative if and only if

dv ≥
−|N |+

√
|N |2 + 4|N |τs/[α/β]

2|N |/[α/β]
. (20)

By replacing constraint (4) with the equivalent form (20) in the spatiotemporal fraction-

ation problem (9)–(13) and applying the reformulation steps described in Section 2.1, we

obtain a convex QCQP reformulation for the special case of uniform fractionation.

2.3. Special Case of Considering a Major Dose-limiting Critical Structure

In the proposed spatiotemporal fractionation formulation (9)–(13), the objective function

aims at minimizing the weighted sum of max-mean BED penalties in all critical structures,

potentially distributing the spatiotemporal fractionation gain across different critical struc-

tures. However, it may be clinically desired to focus only on a major dose-limiting critical

structure in a treatment site (e.g., healthy liver in liver cancer and rectum in prostate can-

cer), and use spatiotemporal fractionation as a means to further reduce the deposited BED

in that particular structure as much as possible. To accommodate this case, we consider

a variant of the proposed formulation in which the objective function only consists of the

max-mean BED penalty associated with the dose-limiting critical structure while the max-

mean BED penalty in all other critical structures are constrained to the values obtained

from uniform fractionation. This requires imposing additional linear constraints of the

form ps ≤ p̂s for the remaining critical structures, where p̂s is the penalty value for critical

structure s in the uniformly fractionated plan. This problem can also be reformulated as

a QCQP problem following the steps in Section 2.1.

3. Solution Approach

One of the major difficulties of solving the QCQP formulation is the large number of

quadratic constraints associated with all voxels. In this section, we develop a constraint-

generation method that starts by solving a relaxed problem that includes only a subset
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of those quadratic constraints. The solution to the relaxed problem is then substituted in

the remaining constraints to identify possible violations. A subset of constraints with the

largest amount of violation are then identified and added to the relaxed problem. These

steps are repeated until a termination condition (i.e., no significant violation in any of the

relaxed constraints) is met.

3.1. Constraint-Generation Method

To apply the constraint-generation method to our QCQP formulation, we start by consid-

ering a relaxed problem obtained by including only some of the constraints in (16) that

correspond to a subset of voxels within each critical structure, denoted by V̄s (s ∈ C). All

other constraints in (15) and (17)–(19) are included. At each iteration, we solve the relaxed

problem to local optimality using a customized solution method presented in Section 3.3.

Using the obtained fraction-dependent fluence maps, we calculate the BED values for all

voxels in a given structure and, in turn, the amount of violation of the corresponding

constraint in (16). In particular, to calculate constraint violations, we use the equivalent

constraint (10). We then add a subset of voxels with the largest violations in each critical

structure, if any, to the relaxed problem and proceed to the next iteration. Algorithm 1

summarizes the steps taken by the constraint-generation method to find local solutions to

the QCQP problem.

Algorithm 1 Constraint-generation method to solve QCQP formulation

1: Initialize subset of voxels V̄s ⊆Vs (s∈ C)

2: while termination condition not met do

3: Solve the relaxed QCQP formulation (14)–(19) with V̄s (s∈ C) to obtain ŷ

4: Calculate BED distribution associated with ŷ

5: Calculate violation of constraint (10) for voxels in Vs \ V̄s for structure s∈ C

6: Update V̄s by adding voxels with largest violations, if any, for structure s∈ C

7: end while

8: Return y∗← ŷ

3.2. Sequential Linear Programming

The relaxed QCQP formulation in the constraint-generation framework above is non-

convex in general due to the presence of quadratic constraints associated with target voxels.

General-purpose solvers are not able to provide high-quality solutions for the relaxed prob-

lem, particularly as the number of voxels considered in the relaxed problem increases.
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Hence, we develop a sequential linear programming (SLP) method to solve the relaxed

problem efficiently. At each iteration, the SLP method approximates the QCQP problem

using the first-order Taylor expansion of the nonlinear constraints around the current solu-

tion and solves the resulting linear program to update the solution. In the rest of this

section, we provide more details on the steps of our SLP implementation, which is based

on the penalty successive linear programming algorithm described in Bazaraa et al. (2013).

Consider the relaxed QCQP formulation (14)–(19) in which for each critical structure

s ∈ C in (16), the set of voxels Vs is substituted with a subset V̄s. At each iteration, the

SLP method constructs a linear approximation of the QCQP formulation by linearizing

all quadratic constraints in (15)–(17) around the current solution y(k) and relaxing them

by introducing an `1-norm penalty in the objective function. Additionally, a trust-region

constraint is imposed to ensure boundedness of the LP problem as well as convergence of

the SLP method. Hence, to obtain an updated solution, we solve an LP problem of the

form

min q>0 y+µ1

∑
s∈S

∑
v∈V̄s

hv +µ2

∑
s∈C

h̄s

subject to

(
2y(k)>Qv + q>v

)
y− y(k)>Qvy

(k) + τs ≤ hv ∀v ∈ Vs, s∈ T (21)(
2y(k)>Qv + q>v

)
y− y(k)>Qvy

(k) ≤ hv ∀v ∈ V̄s, s∈ C (22)(
2y(k)>Qs + q>s

)
y− y(k)>Qsy

(k) ≤ h̄s ∀s∈ C (23)

c>s y− τs ≤ 0 ∀s∈ C (24)∥∥y− y(k)
∥∥
∞ ≤∆(k) (25)

y≥ 0, h≥ 0, h̄≥ 0. (26)

Following a standard trust-region procedure, the decision whether to accept or reject the

updated solution and the adjustment of the trust-region radius ∆(k) is made based on the

ratio of the actual improvement and the improvement predicted by the linearized model. In

particular, let y∗ be the optimal solution to the LP problem. The predicted improvement is

calculated as the difference between the LP objective values at y∗ and y(k). Also, the actual

improvement is calculated by using the original quadratic constraints (15)–(17), in lieu of

the linearized constraints (21)–(23), to evaluate the `1-norm penalty at y∗ and y(k). If the
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improvement ratio is smaller than a user-specified threshold, then the update is rejected,

the trust-region radius is decreased, and the step is repeated. Otherwise, the update is

accepted, the trust-region radius is adjusted, and SLP proceeds to the next iteration (see

Bazaraa et al. (2013) for more details on the adjustment of the trust-region radius).

3.3. Sequential Quadratic Programming

We also develop a sequential quadratic programming (SQP) method to solve the relaxed

QCQP problem. At each iteration of the SQP method, a convex quadratic programming

(QP) approximation of the QCQP problem is constructed and solved around the current

solution to obtain a search direction. A line-search problem is then solved to find the

optimal step length along the search direction. Our SQP implementation, summarized

below, is an adaptation of the merit-function sequential quadratic programming algorithm

described in Bazaraa et al. (2013).

To construct the QP approximations, the quadratic constraints in (15)–(17) are lin-

earized using their first-order Taylor series expansions at the current solution. This leads to

a first-order approximation of the relaxed QCQP formulation (14)–(19), where only a sub-

set of voxels V̄s for each critical structure s∈ C is considered. The obtained approximation

problem is then augmented by second-order information through adding the Hessian of the

Lagrangian to the objective function in the form of a quadratic term. However, the Hessian

of the Lagrangian may not always be positive semi-definite due to the quadratic constraints

associated with target voxels in the QCQP problem, potentially rendering the QP approxi-

mation non-convex. To overcome this issue, we employ the damped BFGS updating method

to approximate the Hessian with a positive-definite matrix at each iteration (Nocedal and

Wright 2006). The optimal solution to the resulting convex QP approximation provides

a search direction. To obtain the optimal step length, the line-search problem aims at

minimizing a merit function to ensure the maximum possible improvement in the objec-

tive function along the search direction while maintaining feasibility. The above-mentioned

steps are repeated until the termination condition of no significant change in the objective

function value is satisfied.

4. Obtaining Optimality Bounds

Thus far, we have presented customized solution methods to find local-optimal solutions to

the QCQP formulation of the spatiotemporally fractionated radiotherapy planning prob-

lem. However, due to the non-convexity of the formulation, they merely provide an upper
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bound on the global optimal solution, and there is no guarantee on the global optimality of

the found solutions. To examine the quality of the solutions, we also obtain lower bounds on

the global optimal solution of the non-convex QCQP formulation. This is typically achieved

by solving a convex relaxation of the QCQP formulation, namely, the SDP relaxation or

the Lagrangian relaxation. These two relaxations of the QCQP problem are closely related

in that the Lagrangian relaxation is the conic dual of the SDP relaxation. Hence, under

a constraint qualification condition (e.g., Slater’s condition), the strong duality applies

and both relaxations generate the same bounds (d’Aspremont and Boyd 2003). Our ini-

tial experiments showed that it is computationally more efficient to solve the Lagrangian

relaxation, rather than the SDP relaxation, of the QCQP formulation for clinical cases.

In the rest of this section, we present the Lagrangian relaxation of the QCQP problem

and develop a column-generation approach to solve it. At each iteration, the proposed

column-generation approach solves a restricted Lagrangian relaxation that includes only a

subset of dual variables using a cutting-plane method. The found solution is then used to

identify and add new promising variables.

4.1. Lagrangian Relaxation

Lagrangian relaxation is commonly used to compute bounds on the optimal objective value

of non-convex problems, where the quality of the bound depends on the optimality gap

(Boyd and Vandenberghe 2004). To formulate the Lagrangian relaxation of the QCQP

formulation in (14)–(19), we first obtain the Lagrangian. Let J be the index set of all

constraints in (15)–(19) and λj (j ∈J ) be the associated dual variables. We represent the

left-hand side of each constraint j ∈ J as a quadratic function Hj(y) = y>Q′jy + q′>j y +

r′j, where Q′j, q
′
j, and r′j are the corresponding second-order, first-order, and constant

coefficients. The Lagrangian can then be written as

L(y,λ) = y>Q̃(λ)y+ q̃(λ)>y+ r̃(λ), (27)

where Q̃(λ), q̃(λ), and r̃(λ) are defined as

Q̃(λ)≡
∑
j∈J

λjQ
′
j (28)

q̃(λ)≡ q0 +
∑
j∈J

λjq
′
j (29)

r̃(λ)≡
∑
j∈J

λjr
′
j. (30)
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Next, the Lagrangian dual function is obtained by finding the infimum of the Lagrangian

over vector y as follows (Park and Boyd 2017):

inf
y
L(y,λ) =

r̃(λ)− 1
4
q̃(λ)>Q̃(λ)†q̃(λ) Q̃(λ)� 0;

−∞ otherwise,
(31)

where † denotes the Moore-Penrose pseudo inverse, and � 0 denotes positive semi-

definiteness (PSD). Lagrangian relaxation is then formulated as the maximization of the

Lagrangian dual function subject to non-negativity of the dual variables.

By applying the Schur complement, we can write the Lagrangian relaxation as an SDP

problem as (Park and Boyd 2017)

max α (32)

subject to  Q̃(λ) (1/2)q̃(λ)

(1/2)q̃(λ)> r̃(λ)−α

� 0 (33)

λj ≥ 0 j ∈J (34)

The optimal objective value of the SDP problem above provides a lower bound for the

QCQP formulation. However, a major challenge in solving this SDP formulation is the

size of the vector λ because of the large number of constraints in the QCQP formulation.

General-purpose SDP solvers (e.g., SeDuMi) fail to solve the problem for clinical instances

due to computational memory and time requirements. Therefore, we develop a customized

solution method for this SDP formulation by combining the column-generation and cutting-

plane methods.

4.2. Column-generation Method

To solve the Lagrangian relaxation, we develop a column-generation method where at each

iteration a restricted version of the SDP formulation (32)–(34) is solved by including only a

subset of dual variables λj (j ∈J ). Given the optimal solution to the restricted Lagrangian

relaxation, we then solve the pricing problem to identify new promising dual variables to

be added to the restricted problem. We repeat the above-mentioned steps until the desired

termination condition is met.

At each iteration of the column-generation method, we solve a restricted Lagrangian

relaxation with a maximization objective; therefore, the optimal objective value α∗res is less



Adibi and Salari: Spatiotemporally Fractionated IMRT Planning
17

than or equal to the optimal objective value of the full Lagrangian relaxation α∗. Hence, the

solution to the restricted Lagrangian relaxation at each iteration provides a lower bound

for the optimal solution to the QCQP formulation q>0 y
∗, that is, α∗res ≤ α∗ ≤ q>0 y∗. Hence,

if desired, the column-generation method may be terminated prior to convergence without

compromising the validity of the bound computed. In the remainder of this section, we first

develop a solution method for the restricted Lagrangian relaxation, and then formulate

and solve the pricing problem.

4.2.1. Cutting-plane method. Consider a restricted Lagrangian relaxation where only

a subset of dual variables J ⊆ J is included. Despite considering only a subset of dual

variables, the PSD constraint in (33) involves a large-sized matrix, due to the size of the

Qv (v ∈ V) and Q̄s (s∈ S) matrices for clinical cases, which renders the restricted problem

computationally prohibitive to solve using general-purpose SDP solvers (e.g., SeDuMi).

Hence, we propose a cutting-plane method to solve the restricted problem. Such methods

are an alternative to interior-point methods for solving large-scale SDP problems efficiently

(Furrer 2009). The SDP formulation of the Lagrangian relaxation presented in (32)–(34)

can be expressed as a semi-infinite LP if the PSD constraint in (33) is substituted with

infinitely many linear constraints in terms of (λ,α) of the form

ζ>

 Q̃(λ) (1/2)q̃(λ)

(1/2)q̃(λ)> r̃(λ)−α

 ζ ≥ 0 ∀ζ ∈Rm+1, (35)

where m is the dimension of vector y. Cutting-plane methods for SDP aim at solving

this equivalent semi-infinite LP formulation by solving a sequence of relaxed LPs that

only contain a finite number of the constraints in (35). In other words, the relaxed LP is

obtained by substituting the constraints in (35) with

ζ>`

 Q̃(λ) (1/2)q̃(λ)

(1/2)q̃(λ)> r̃(λ)−α

 ζ` ≥ 0 ∀`∈ E ,

which are referred to as linear cuts and are indexed by ` ∈ E . This relaxed LP can be

written in terms of the vector of variables z =
[
λ>α

]>
as

min f>z (36)
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subject to

Az ≥ e (37)

z ≥ 0 (38)

in which f = [0 . . .0 − 1]>, and the element at the `-th row (`∈ E) and j-th column (j ∈ J̄ )

of the coefficient matrix A is calculated as

A`j =

〈 Q′j (1/2)q′j

(1/2)q′>j r′j

 , ζ`ζ>`
〉
,

where 〈·, ·〉 denotes the trace of the product of two matrices. The `-th element in the last

column of the coefficient matrix A, corresponding to variable α, is calculated as −ζ2
`,m+1.

Finally, the right-hand side of the `-th constraint in the relaxed LP is calculated as

e` =−

〈 Om×m (1/2)q0

(1/2)q>0 0

 , ζ`ζ>`
〉
, (39)

where O is the matrix of zeros.

At iteration k of the cutting-plane method, we first obtain the optimal solution (λ(k), α(k))

to the relaxed LP and then check for possible violation of the PSD constraint in (33)

evaluated at
(
λ(k), α(k)

)
. This is done via spectral decomposition of the matrix into eigen-

vectors and corresponding eigenvalues. If the PSD constraint is not satisfied (i.e., there are

negative eigenvalues), then we add a collection of eigenvectors that correspond to the most

negative eigenvalues to the set of linear cuts E . The above-mentioned steps are repeated

until the PSD constraint is (approximately) restored, that is, all eigenvalues are above a

user-specified threshold (i.e., −10−6) (Qualizza et al. 2012).

4.2.2. Pricing problem. Upon termination, the cutting-plane method provides the

optimal solution to the restricted Lagrangian relaxation. To check whether the solution

to the restricted problem is also optimal for the full Lagrangian relaxation, we investigate

whether it satisfies Karush-Kuhn-Tucker (KKT) conditions of the SDP formulation (32)–

(34). Let Y be the dual matrix associated with the PSD constraint in (33). The KKT

conditions can be expressed in terms of the primal-dual solution (λ,α,Y ) as follows (Correa

and Ramirez C. 2004):〈 Q′j (1/2)q′j

(1/2)q′>j r′j

 , Y〉≤ 0 j ∈J (40)
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O1×m −1

 , Y〉=−1 (41) Q̃(λ) (1/2)q̃(λ)

(1/2)q̃(λ)> r̃(λ)−α

� 0 (42)

λj ≥ 0 j ∈J (43)

Y � 0 (44)〈 Q̃(λ) (1/2)q̃(λ)

(1/2)q̃(λ)> r̃(λ)−α

 , Y〉= 0, (45)

where (40)–(41) correspond to the stationarity condition, (42)–(43) correspond to primal

feasibility, (44) corresponds to dual feasibility, and (45) corresponds to the complementary

slackness condition. We note that in obtaining the KKT conditions above, we use an

equivalent representation of the non-negativity constraints in (34) in the form of a PSD

constraint on a diagonal matrix, denoted by Λ, composed of λj (j ∈ J ). This equivalent

representation is then integrated into the PSD constraint in (33) by appending Λ as an

additional diagonal block. KKT conditions (40)–(45) are also applicable to the restricted

Lagrangian relaxation if the index set J is substituted with J̄ . Theorem 1 shows that the

optimal solution to the relaxed LP in (36)–(38) can be used to construct a primal-dual

solution that satisfies the KKT conditions of the restricted Lagrangian relaxation.

Theorem 1. Given the optimal solution
(
λ̂, α̂

)
and the corresponding dual values π̂

obtained from solving the relaxed LP in (36)–(38), the primal-dual solution
(
λ̂, α̂, Ŷ

)
with

Ŷ =
∑

`∈E π̂`
(
ζ`ζ
>
`

)
satisfies the KKT conditions of the restricted Lagrangian relaxation.

Proof. See the online supplement.

At each iteration of the column-generation method, Theorem 1 provides us with a primal-

dual solution
(
λ̂, α̂, Ŷ

)
that satisfies the KKT conditions of the restricted Lagrangian

relaxation. To investigate whether
(
λ̂, α̂, Ŷ

)
also satisfies the KKT conditions of the full

Lagrangian relaxation, all we need to check is whether the condition in (40) is satisfied

for all constraints j ∈J . To that end, we formulate and solve the pricing problem to find

the largest value of the left-hand side of the inequality evaluated at Ŷ over all constraints

j ∈J as follows:

ϕ̂= max
j∈J

〈 Q′j (1/2)q′j

(1/2)q′>j r′j

 , Ŷ〉 (46)
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If the optimal objective value of the pricing problem is non-positive, then the primal-dual

solution
(
λ̂, α̂, Ŷ

)
also satisfies the KKT conditions of the full Lagrangian relaxation, and

the column-generation method returns α̂ as a lower bound on the optimal solution of the

QCQP problem. Otherwise, we add a subset of promising dual variables (i.e., dual variables

corresponding to constraints with large positive objective values in (46)) to the restricted

Lagrangian relaxation and proceed to the next iteration.

Algorithm 2 shows the steps of the proposed column-generation method to solve the

Lagrangian relaxation. In particular, we initialize the set J̄ ⊆ J by including all dual

variables associated with constraints (17)–(19). The subset J̄ also includes dual variables

associated with some of the constraints in (15)–(16). Moreover, we initialize the set of linear

cuts E using the set of vectors in Rm+1 that have exactly two nonzero elements, each equal

to ±1, which are known as diagonally dominant sum-of-squares (DSOS) cuts (Ahmadi

et al. 2017). Our experimental results show that the use of DSOS cuts for initialization

leads to fewer iterations, compared to randomly generated vectors. Finally, to solve the

pricing problem, we perform an exhaustive search by evaluating the objective function in

(46) for each constraint j ∈J \ J̄ .

5. Computational Results

In this section, we apply the proposed solution approach to clinical cancer instances in

order to evaluate the computational performance and to quantify the potential benefit of

spatiotemporal fractionation.

5.1. Cancer Cases

We start by testing the performance of the proposed methods on two de-identified clinical

instances selected from the common optimization for radiation therapy (CORT) dataset

(Craft et al. 2014). The first case is a liver cancer case with one target volume, planning

target volume (PTV), and five critical structures, namely healthy liver, heart, stomach,

skin, and entrance region. A non-coplanar beam arrangement is used for the liver case.

The second case is a prostate cancer case with one PTV and three critical structures,

namely, rectum, bladder, and body. A coplanar equispaced beam arrangement is used for

the prostate case (see the online supplement for more details on specifications of the two

test cases). We perform down-sampling by selecting a random subset of voxels from each

critical structure to be included in the optimization model in an attempt to reduce the total
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Algorithm 2 Column-generation method to solve Lagrangian relaxation

1: Set ε > 0 and initialize subset of dual variables J̄ ⊆ J and linear cuts E

2: while termination condition not met do

Solve restricted Lagrangian relaxation using cutting-plane method

3: Set k= 1

4: Solve relaxed LP in (36)–(38) to obtain
(
λ(k), α(k), π(k)

)
5: Perform spectral decomposition of matrix in (33) evaluated at

(
λ(k), α(k)

)
6: if minimum eigenvalue ≥−ε then

7:
(
λ̂, α̂, π̂

)
←
(
λ(k), α(k), π(k)

)
and go to line 12;

8: else

9: Add new linear cuts to set E using eigenvectors with most negative eigenvalues

10: k← k+ 1 and go to line 4.

11: end if

Solve pricing problem

12: Calculate dual matrix Ŷ using π̂ as in Theorem 1

13: Solve pricing problem in (46) using Ŷ to obtain ϕ̂

14: if ϕ̂≤ 0 then

15: α∗← α̂ and stop;

16: else

17: Add promising dual variables with most positive objective values in (46) to J̄

18: go to line 3

19: end if

20: end while

21: Return αres← α̂

number of voxels considered in the optimization stage. Specifically, for the liver case, we

use a down-sampling ratio of 1:4, 1:4, 1:16, 1:32, and 1:32 in heart, stomach, healthy liver,

entrance, and skin, respectively. For the prostate case, we use a down-sampling ratio of 1:2,

1:1, and 1:32 in bladder, rectum, and body, respectively. No down-sampling is performed

in PTV. The number of voxels in the original and down-sampled voxel grid are on the

order of 106 and 104, respectively. We note that all evaluations are still performed on the

original voxel grid.

For each critical structure, we tune the max-mean BED coefficient κs in the plan evalu-

ation criterion (8) to achieve a conformal BED distribution and to avoid any hot spots in

that structure. In the liver case, the coefficient is set to 0.8, 0.9, 0.8, 0.8, and 0.9 for the
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healthy liver, heart, stomach, skin, and entrance region, respectively. In the prostate case,

a coefficient of 0.5, 0.4, and 0.9 is used for the rectum, bladder, and body, respectively. The

weighting factor γs in the objective function is chosen based on the relative importance of

each critical structure as specified by the user. In the liver case, a weighting factor of 0.5

is used for all critical structures while in the prostate case, a weighting factor of 0.5, 0.4,

and 0.4 is used for the rectum, bladder, and body, respectively.

A target [α/β] value of 10 Gy and 1.5 Gy is used for the liver and prostate case, respec-

tively. Additionally, an [α/β] value of 4 Gy is used for all critical structures in the liver

case. For the prostate case, an [α/β] parameter value of 3, 3, and 5 Gy is used for body,

rectum, and bladder, respectively. A BED threshold value of zero is used in the penalty

functions for all critical structures. To set the prescribed BED thresholds for PTV, we use

the equivalent BED of a prescribed physical dose of 70 and 74 Gy delivered in a stan-

dard fractionation scheme with 30 fractions for the liver and prostate case, respectively.

We consider a hypo-fractionation scheme to generate both uniformly and spatiotemporally

fractionated plans with |N |= 5 treatment fractions.

5.2. Implementation and Results

An important factor in spatiotemporal fractionation is the number of distinct dose distri-

butions used over the treatment course. Based on the results obtained in our previous study

for stylized cancer cases (Adibi and Salari 2018), the larger the number of distinct dose

distributions allowed, the larger the spatiotemporal fractionation gain observed. However,

a larger number of distinct dose distributions may increase the logistical cost associated

with clinical workload and plan quality assurance. Hence, there is a trade-off between the

additional spatiotemporal gain and the increase in clinical workload. Here, we start by

considering spatiotemporal fractionation using only two distinct dose distributions. That

means two sets of fluence maps for the incident beams will be used. To deliver the resulting

spatiotemporally fractionated plan following a hypo-fractionated scheme with five frac-

tions, one set of fluence maps will be delivered three times while the other set will be

delivered twice. Note that the order in which the dose distributions are delivered does not

alter the results. For each cancer case, we also obtain a uniformly fractionated reference

plan by solving the special case of our QCQP reformulation presented in Section 2.2.

The computational experiments are performed in MATLAB environment using a Win-

dows machine with an Intel Core i5 CPU and 8GB of RAM. The interior-point optimizer
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(IPOPT) (Wächter and Biegler 2006) from the MATLAB OPTI toolbox (Currie and Wil-

son 2012) is used to solve the QP subproblems in the SQP method. To solve the LP

subproblems in the SLP method, the Gurobi solver is used (Gurobi Optimization 2016).

In what follows, we first report on the performance of the proposed constraint-generation

method in finding local optimal solutions using SQP and SLP, which we refer to as SQP-CG

and SLP-CG, respectively. We then report on the performance of the proposed column-

generation method in solving the Lagrangian relaxation to obtain optimality bounds. Fur-

thermore, for each cancer case, we obtain both spatiotemporally and uniformly fractionated

IMRT plans to quantify the potential therapeutic benefit of spatiotemporal fractionation.

Finally, we use two additional test cases to evaluate the generalizability of the results.

5.2.1. Local-optimal spatiotemporally fractionated IMRT plans. To initialize the

constraint-generation method (Algorithm 1), we start by including all constraints in the

QCQP formulation, except for the constraints in (16) where only 50 voxels are randomly

selected in each critical structure, and their corresponding quadratic constraints are added

to the relaxed problem. Then, at each iteration, we add up to 50 most-violated relaxed

constraints associated with each critical structure. The termination condition (i.e., no

significant violation of the relaxed constraints) is satisfied after adding around 15% of

all critical-structure voxels. Results of the constraint-generation method are reported in

Table 1. We note that for the case of uniform fractionation, SLP-CG and SQP-CG are

applied to the special case of the QCQP reformulation presented in Section 2.2. Results

Table 1 Comparison of SLP-CG versus SQP-CG performance

Liver Prostate
Fractionation Method Obj. fun. val. CPU time [s] Obj. fun. val. CPU time [s]

Uniform
SLP-CG 191.96 651.1 99.93 711.3
SQP-CG 191.92 2163.1 99.89 2313.6

Spatiotemporal
SLP-CG 185.45 1102.5 94.04 1182.4
SQP-CG 185.57 2871.5 93.95 2948.1

show that the SLP-CG and SQP-CG methods yield locally optimal solutions with almost

identical objective values. Nevertheless, the required computational time for SLP-CG is

around 50% shorter than that of SQP-CG; therefore, we employ SLP-CG for the remainder

of the reported computational experiments. Table 1 also shows that the spatiotemporally

fractionated plan yields a smaller objective value than uniform fractionation by 3% and 6%

for the liver and prostate case, respectively. Next, we increase the number of distinct dose
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distributions used in spatiotemporal fractionation. Table 2 shows the optimal objective

values obtained using uniform versus spatiotemporal fractionation with up to five distinct

dose distributions. Results show that as the number of distinct dose distributions increases,

the optimal objective value decreases, though with a diminishing rate of return.

Table 2 Objective function value of spatiotemporally and uniformly fractionated plans with up to five distinct

dose distributions. Percentage gain over uniform fractionation is shown in parentheses

Case Uniform
Spatiotemporal

# of distinct dose distributions
2 3 4 5

Liver 191.73 185.45 (3.3%) 184.86 (3.6%) 183.30 (4.4%) 182.79 (4.7%)
Prostate 99.69 94.04 (5.7%) 90.86 (8.9%) 90.57 (9.1%) 90.36 (9.4%)

5.2.2. Optimality bounds. To ensure the quality of locally optimal spatiotemporally

fractionated plans, a lower bound on the global optimal solution is obtained by solving the

Lagrangian relaxation using the column-generation method described in Section 4 (Algo-

rithm 2). We initialize the set of dual variables in the restricted Lagrangian relaxation by

including all variables corresponding to constraints (17)–(19) as well as 500 dual variables

associated with randomly selected constraints from (15)–(16). Then, at each iteration, we

add up to 100 most promising dual variables identified based on the pricing problem. We

use a termination condition of no significant improvement in the objective function value (<

10−3) to stop the column-generation method. Furthermore, for the cutting-plane method,

we initialize the set of linear cuts by including 1,000 DSOS cuts. At each iteration, we add

all eigenvectors associated with the negative eigenvalues obtained from spectral decom-

position that are below the user-specified threshold. The computational time required for

solving different instances of the Lagrangian relaxation for each cancer case varies between

4 and 5 hours, depending on the number of distinct dose distributions allowed. Figure 1

shows the progression of the lower bound (αres) through iterations of the column-generation

method for the two cancer cases. Once the lower bound is obtained, the optimality bound

can be calculated as the relative difference between the lower bound and the objective value

of the local-optimal solution obtained using the constraint-generation method (i.e., upper

bound). Results are reported in Table 3, which show that for the two cancer cases tested,

an optimality bound of 10–12% can be achieved by solving the Lagrangian relaxation. The

column-generation method terminates after including only 8–10% of all dual variables. The
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Figure 1 Progression of provided lower bound through iterations of column-generation method for spatiotem-

porally fractionated plans with two distinct dose distributions

well-known tailing-off effect of the column-generation method can be seen in Figure 1. As

discussed in Section 4.2, if desired, we can terminate the column-generation method prior

to convergence and still obtain a valid lower bound. In particular, an optimality bound of

15.2% and 15.1% can be obtained within a running time of 135 and 119 minutes for the

liver and prostate case, respectively.

Table 3 Lower bounds and relative optimality bounds obtained for the liver and prostate cases

Case Parameter
Spatiotemporal

# of distinct dose distributions
2 3 4 5

Liver
Lower bound 163.91 163.98 164.02 164.17
Optim. gap (%) 11.6 11.3 10.5 10.2

Prostate
Lower bound 83.11 82.02 80.59 78.98
Optim. gap (%) 11.6 9.7 11.0 12.6

5.2.3. Potential therapeutic benefit of spatiotemporal fractionation. Next, we com-

pare uniformly and spatiotemporally fractionated plans. Figures 2(a) and 3(a) compare

the dose-volume histogram (DVH) for the physical dose distributions delivered by the two

plans. The DVH curves show the percentage of the structure volume that receives at least

a specific dose. DVH is commonly used to evaluate the clinical quality of radiotherapy

plans. Similarly, Figures 2(b) and 3(b) compare the BED-volume histogram (BEDVH) for

the uniform and spatiotemporal fractionation.

By comparing the DVH and BEDVH curves for the two plans one can notice that spa-

tiotemporal fractionation achieves the same BED coverage in PTV while using less physical

dose compared to the uniform fractionation. Additionally, spatiotemporal fractionation
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(a) Dose-volume histogram
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Figure 2 Results obtained for the liver case: (a) dose-volume histogram and (b) BED-volume histogram of

uniformly (dashed) and spatiotemporally (solid) fractionated plans using 5 distinct dose distributions

achieves a better BED distribution in critical structures without compromising the BED

coverage in PTV. The changes in the mean and maximum of the BED distribution in each

critical structure when using uniform versus spatiotemporal fractionation are reported in

the online supplement. Dose-wash diagrams associated with the uniformly and spatiotem-

porally fractionated plans are generated for both cancer cases using the Computational

Environment for Radiological Research (CERR) (Deasy et al. 2003) and are available in

the online supplement. They show the division of the target volume into subregions, each

irradiated by a distinct dose distribution.

We also evaluate the potential benefit of spatiotemporal fractionation when focusing on

max-mean BED reduction in a single dose-limiting critical structure, which is the healthy

liver and rectum in the liver and prostate case, respectively. To that end, we solve the spe-

cial case of the proposed formulation presented in Section 2.3 using both spatiotemporal

and uniform fractionation. We then calculate the spatiotemporal gain and compare that

against the gain obtained when considering all critical structures in the objective function.

The results are reported in Table 4, which show that a higher percentage gain is expected

when the emphasis is on a single critical structure. Furthermore, the extent of the spa-

tiotemporal gain in the dose-limiting critical structure depends on the convex-combination

coefficient κ used in the max-mean BED criterion in (8). Figure 4 shows the sensitivity

of the spatiotemporal gain to the κ parameter value used for the dose-limiting critical
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Figure 3 Results obtained for the prostate case: (a) dose-volume histogram and (b) BED-volume histogram of

uniformly (dashed) and spatiotemporally (solid) fractionated plans using 5 distinct dose distributions

Table 4 Comparison of spatiotemporal gain in the optimal objective value over uniform fractionation when

considering all critical structures versus a single dose-limiting structure in the objective function

Case Max-mean BED Penalty
Spatiotemporal Gain (%)

# of distinct dose distributions
2 3 4 5

Liver
All critical structures 3.27 3.58 4.40 4.66
Healthy liver only 6.64 8.71 10.03 10.87

Prostate
All critical structures 5.67 8.86 9.14 9.35
Rectum only 7.23 10.95 11.70 13.07

structure. The spatiotemporal gain increases as more emphasis is put on the maximum of

the BED distribution (i.e., κ→ 1)

1 2 3 4 5
0

2

4

6

8

10

12

# of distinct dose distributions

S
p
at

io
te

m
p

or
al

G
ai

n
(%

)

κ= 0
κ= 0.8
κ= 1

(a) Healthy Liver (Liver Case)

1 2 3 4 5
0

5

10

15

# of distinct dose distributions

S
p
at

io
te

m
p

or
al

G
ai

n
(%

)

κ= 0
κ= 0.5
κ= 1

(b) Rectum (Prostate Case)

Figure 4 Sensitivity of spatiotemporal gain to max-mean BED coefficient of (a) healthy liver and (b) rectum
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5.2.4. Performance Evaluation Using Additional Test Cases. To examine the gen-

eralizability of the reported results, we apply the proposed spatiotemporal fractionation

framework to two additional liver cases chosen from the radiotherapy optimisation test set

(TROTS) (Breedveld and Heijmen 2017). The specifications of these two test cases are

provided in the online supplement. To run the additional cases, we use the same model

parameters as defined earlier in Section 5.1. The beam arrangement for the liver cases in

the TROTS dataset consists of 15 non-coplanar beams with almost twice as many beamlets

as in the liver case of the CORT dataset, leading to relatively longer computational times.

Depending on the number of distinct dose distributions, the constraint-generation method

takes between 20 to 80 minutes to obtain local optimal solutions for the TROTS test cases.

The column-generation method takes between 4 to 6 hours to obtain optimality bounds.

A summary of the results obtained for these two test cases are reported in Table 5, which

shows that the proposed methods yield a similar spatiotemporal gain and optimality gap

to those obtained for the CORT liver case.

Table 5 Summary of computational results obtained for TROTS test cases

Case Performance metric Uniform
Spatiotemporal

# of distinct dose distributions
2 3 4 5

Liver 01

Obj. function value 178.31 168.14 167.2 166.92 166.47
Spatiotemporal gain (%) - 5.7 6.2 6.4 6.6
Lower bound - 147.32 147.67 145.51 145.16
Optim. gap (%) - 12.4 11.7 12.8 12.8

Liver 02

Obj. function value 167.12 159.47 158.26 157.31 156.82
Spatiotemporal gain (%) - 4.6 5.3 5.9 6.2
Lower bound - 143.88 143.01 141.9 141.84
Optim. gap (%) - 9.8 9.6 9.8 9.6

6. Discussion

In this section, we discuss the main insights gained from our computational results and

highlight the key findings.

As Figures 2(b) and 3(b) suggest, a potential therapeutic gain may be achieved from

spatiotemporal fractionation over uniform fractionation due to the reduction of the BED

deposited in the critical structures while maintaining the same minimum BED level in the

target volume. This gain is attributed to a selective reduction of the fractionation effect

in the target volume, which leads to escalated BED values in the target volume. Thus,

the spatiotemporally fractionated plan is able to satisfy the minimum BED requirement
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in the target volume while delivering smaller BED values to critical structures. A selective

reduction of BED values in critical structures may potentially reduce the risk of normal-

tissue complications (Liu et al. 2017).

The observed gain in the objective function value due to spatiotemporal fractionation

varies across the two cancer cases and is approximately 5% for the liver cases and 9% for

the prostate case. This yields a reduction of 15% and 6% in the mean and maximum of

the BED distribution in the healthy liver, and a reduction of 11% and 7% in the mean

and maximum of the BED distribution in the rectum, respectively. However, this gain

may come at the expense of an increased clinical workload to treat a cancer patient. Table

2 suggests that there may be a diminishing return in the potential therapeutic gain as

we increase the number of distinct dose distributions for the cancer cases considered in

this study. Hence, the trade-off between the potential therapeutic gain and the increased

clinical workload may need to be considered when designing spatiotemporally fractionated

plans.

Results show that a larger spatiotemporal fractionation gain may be achieved if a single

critical structure is considered in the objective function while the quality of the BED

distribution in all other critical structures are constrained to the levels achieved in uniform

fractionation. This is mostly suited for a clinical scenario in which the reduction of the

complication risk in a major dose-limiting structure, beyond what could be achieved with

uniform fractionation, is desired. In that case, spatiotemporal fractionation could be used

to reduce the BED levels in that particular structure without comprising tumor control or

increasing the risk of complications in other critical structures.

Because of the non-convexity of the spatiotemporal fractionation problem, we obtain

optimality bounds to evaluate the quality of the local-optimal solutions. As reported in

Table 3, the optimality bounds obtained from solving the Lagrangian relaxation for the two

cancer cases are 10–12%. The optimality bounds provide valuable insight into the extent

of the potential gain that may be achieved from spatiotemporal fractionation.

The proposed constraint- and column-generation methods in this study may be adapted

to locally solve and find optimality bounds for non-convex QCQP problems in other appli-

cation domains. QCQP problems arise in different areas, including graph theory (Boyd and

Vandenberghe 2004), machine learning (Zhu et al. 2006), power systems (Low 2014a,b),

radar detection (De Maio et al. 2010), and signal processing (Huang and Palomar 2014).
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7. Conclusion

In this study, customized models and solution methods were developed to obtain high-

quality spatiotemporally fractionated IMRT plans with tight optimality bounds for clin-

ical cancer cases. The proposed BED-based formulation encourages lower BED values

in critical structures while ensuring that the target volume receives the prescribed BED

value. A QCQP reformulation of the problem was used as the basis for solution method

development. The QCQP reformulation is non-convex in general and large-scale. Hence,

a constraint-generation method was developed to obtain local-optimal solutions while a

column-generation method was employed to solve the Lagrangian relaxation to obtain

optimality bounds.

There are limitations with our study that point towards future research. Currently, there

is no mechanism to tighten the optimality bound for spatiotemporally fractionated plans

beyond what is obtained by solving the Lagrangian relaxation. Further reduction of the

optimality gap requires the development of global optimization techniques such as branch-

and-bound methods or cutting plane methods (Linderoth 2005, You et al. 2018). There

are several sources of uncertainty that may compromise the clinical quality of spatiotem-

porally fractionated plans. Specifically, it is difficult to accurately estimate radio-biological

parameter values, leading to ambiguity in the choice of appropriate values (Van Leeuwen

et al. 2018). Additionally, there may be inter- and intra-patient variability in the BED

parameter value (Menzies et al. 2014). Finally, spatiotemporally fractionated plans are

more susceptible to patient setup errors and anatomical uncertainties due to organ motion

compared to conventional IMRT plans (Gaddy et al. 2019). Future research may extend the

proposed spatiotemporal fractionation framework in this study by explicitly incorporating

those uncertainties.
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Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for

large-scale nonlinear programming. Mathematical Programming 106(1):25–57.

Yang Y, Xing L (2005) Optimization of radiotherapy dose-time fractionation with consideration of tumor

specific biology. Medical Physics 32(12):3666–3677.

You S, Wan C, Dai R (2018) A complementary cutting plane approach for nonconvex quadratically con-

strained quadratic programs. 2018 IEEE Conference on Decision and Control (CDC), 1–7 (IEEE).

Zhu X, Kandola J, Lafferty J, Ghahramani Z (2006) Graph kernels by spectral transforms. In Semi-supervised

learning 277–291.


