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Abstract

Autonomous agents often have sufficient resources to
achieve the goals that are provided to them. However, in dy-
namic worlds where unexpected problems are bound to oc-
cur, an agent may formulate new goals with further resource
requirements. Thus, agents should be smart enough to man-
age their goals and the limited resources they possess in an
effective and flexible manner. We present an approach to the
selection and monitoring of goals using resource estimation
and goal priorities. To evaluate our approach, we designed an
experiment on top of our previous work in a complex mine-
clearance domain. The agent in this domain formulates its
own goals by retrieving a case to explain uncovered discrep-
ancies and generating goals from the explanation. Finally, we
compare the performance of our approach to two alternatives.

Introduction

Autonomous agents that operate in a dynamic world often
encounter unexpected events or discrepancies that signal the
existence of novel problems. These agents will perform bet-
ter when they can reason about and change their existing
goals or formulate new ones in response to such discrepan-
cies. The goal reasoning (Aha 2018; Cox 2007; Munoz-
Avila et al. 2010; Molineaux, Klenk and Aha 2010; Dannen-
hauer and Munoz-Avila 2015) approach we use for goal for-
mulation is to explain the cause behind a discrepancy and to
specify a goal to eliminate the cause. In doing so, the agent
aims to prevent a reoccurrence. However, goal formulation
often creates multiple goals, and each goal requires an inde-
pendent amount of resources to achieve it. Since agents of-
ten have limited resources, they must be careful in their goal
selection and management. Our approach to these problems
is to provide each goal with corresponding resource and pri-
ority estimates to help goal management. The contribution
of this paper is the strategy that uses these estimates to man-
age the formulation, selection and pursuit of goals in an ef-
fective manner given the potential for future changes.

In our system, case-based explanations are retrieved by
the event understanding system Meta-AQUA (Cox and Ram
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1999) and applied to discrepancies in an event sequence. We
have also integrated this sub-system within the MIDCA cog-
nitive architecture (Cox et. al. 2016) that perceives and acts
directly on the world to examine the interaction between ex-
planation generation (by Meta-AQUA), goal formulation
and management (provided by MIDCA). We refer to the
combined system as the Goal-driven Autonomy for Trusted
Autonomous Reasoning (GATAR) agent.

The paper continues as follows. Firstly, we introduce the
technical approach which include a casebase of explana-
tions, the agent’s algorithm to manage goals, case retrieval,
and goal formulation. Later we introduce a mine clearance
domain, examples that might happen in the domain along
with explanations and formulated goals. The section follow-
ing it discusses the experimental setup for evaluating the
performance of the GATAR agent, a random goal selection
agent and a standard agent which does not formulate new
goals followed by the results. Related research is discussed
in the next section. The conclusion and future scope com-
plete the paper.

Technical Approach

In our work, we use case-based explanations (Ram 1994;
Cox and Burstein 2008; Schank et al. 2014). Each explana-
tion in our case-base is an abstract explanation pattern (XP)
(Schank 1986) as shown in Figure 1. An XP is a data struc-
ture that represents a causal relationship between multiple
states and/or actions; variables adapted during or after case
retrieval abstractly define each action/state. An action or
state is referred to as a node, and different types of nodes are
described based on their role in an XP as follows.

® Fxplains node: An unexpected observed action or state
(i.e., the target of the XP).

® Pre-XP node: An observed action/state along with the
Explains node.

® XP-asserted node: An action, state, or XP that contrib-
utes to the cause of the Explains node.



An explanation pattern represents a causal structure in
which XP-asserted nodes form an antecedent and Pre-XP
nodes form the consequent. The Pre-XP nodes represent
those states that must hold for the XP to be a candidate, in-
cluding the Explains node itself.
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Figure 1. The XP Explanatory Case Structure.

Discrepancy Response and Goal Management

Algorithm 1 represents GATAR’s approach towards execut-
ing in its environment (Gogineni et al. 2019). Following the
notation of Ghallab, Nau, and Traverso (2004), this algo-
rithm takes the following inputs: the environment model (),
the current observations of the world (s.), expected obser-
vations of the world (s,), case library (L), current goal (g,)
and a goal agenda (G = {g; ... gc ... Gm})- GATAR creates
a plan (r =< a; ... a,>) of n actions to achieve the initial
goal and starts executing the initial plan by modifying its
goal agenda when there is a discrepancy (i.e., a condition
such that the observed state significantly differs from an ex-
pected state; see Dannenhauer, Munoz-Avila and Cox
2016). Algorithm 1 extends our previous work in lines 10 to
17 (and line 2). ManageGoals monitors the goals and selects
the goal that takes minimum resources with maximum pri-
ority (line 10). If the current goal (g.) is switched with a
selected goal (g) (line 11 and 12), GATAR plans to achieve
the selected goal (g,) (line 13). Similarly, when the plan for
the current goal is completed (line 14) then GATAR re-
moves the current goal from the goal agenda (G =
{91 --- gm}) (line 15), selects the goal (line 16) and plans to
achieve the selected goal. This continues while GATAR has
resources available, as determined by function (R: S —» R*)
characterizing the resources remaining in a current state us-
ing a positive real number.

Algorithm 2 presents GATAR’s approach towards goal
management. The function ManageGoals is called with a
current state and existing goal agenda of the most recent dis-
crepancy. It first adds to the goal agenda all goals proposed
by the current explanation (Line 1), then calculates the set C
of candidate goals whose resource requirements can be sat-
isfied (Line 2). To determine which goals can be satisfied, it
uses a hand-coded domain specific resource estimation
function (R:G x S — R*) that estimates the amount of re-
sources required to achieve a goal (g) from a state (s). GA-
TAR then filters the set C down to the highest priority goals

(line 3) with minimum resource utilization (line 4). The pri-
ority function (P:G X S —» R*) is a hand-coded domain-
specific function that assigns a real-valued priority to a goal
(g) in astate (s). Finally, GATAR returns an arbitrary mem-
ber of candidate goals C (which will usually be unique),
along with an updated agenda (line 5).

Algorithm 1. Execute and Monitor
ExecuteAndMonitor (£,s.,s,,L, g., G)

1. m« Plan(2;s., 9.)

2. whileR(s,) > 0do

3 Sc <Y (SC,TT[l])

4. m < 7[2..n]
5. S, « S, Upre(n[1]) U =[1]t — n[1]”
6 if s, ¥ s, //discrepancy exists
7 Xc < Select(Retrieve (L,s,))
8. Se < Sg U s, UXP-asserted (x.)
9. G « G U FormulateGoals(x,)
10.  g,,G « ManageGoals(s,, G)
1L ifgc # 9s

12, ge < gs
13. m < Plan(%s., g.)

14, if n=0

15. G« G- g,

16. 9o, G « ManageGoals(s,, G)
17. m = Plan(% s, g;)

Algorithm 2. Goal Management
ManageGoals(s,, G)
1. C «{ge (7|§A(g,sc) < R(s)}
2. C < argmaxP(g,s,)

gec ~

3. C < argminR(g,s.)
gec

4. return C, G

Retrieving an Explanation Pattern

To retrieve an XP, GATAR tries to unify a discrepant state
or an action with the Explains node of the XP’s in the case
base. When such a unification is successful, then the Pre-XP
nodes of the corresponding case are unified with the obser-
vations of corresponding states or actions. Also, if this uni-
fication is successful then an XP is retrieved. From the re-
trieved sets of explanations, an explanation is selected based
on a Bayesian inference technique to select and monitor ex-
planatory cases (Gogineni et al. 2019). Finally, Goals are
formulated using the selected explanation. The following
section describes the goal formulation process given an XP.

Goal Formulation

Goal formulation is essential for an intelligent agent to re-
spond to unpredictable events. In our previous work
(Gogineni et al. 2018), we have formulated goals from the



antecedent of the selected explanation pattern. There can be
a maximum of three possible types of goals from an expla-
nation pattern: goal to eliminate the actor, goal to eliminate
the results of the action by the actor and goal to avoid the
discrepancy. Often an actor is responsible for the cause of a
discrepancy, so a potential goal to eliminate the actor will
hinder the occurrence of discrepancy in future. A potential
goal to eliminate the results of the action of the actor is help-
ful in responding to the current discrepancy that hinders
agents’ mission. Finally, a potential goal to avoid a discrep-
ancy is to look at the alternate opportunities in which the
agent can avoid discrepancies both in present and in future.
For example, from an explanation pattern with a causal
relation, an enemy ship laid the mines in a gaussian pattern
to hinder the traversal of the freight ships. A potential goal
to eliminate the actor is to apprehend the enemy ship. Simi-
larly, a potential goal to eliminate the results of the action is
to survey and clear mines in the gaussian pattern. Finally, a
potential goal to avoid the discrepancy is to survey and
change the route of the freight ships to an alternate route.

Goal Management

Often in real world the agent has very limited resources to
achieve its goals. In these situations, the agent must be smart
about selecting the goals it can achieve. GATAR uses both
priority and resource estimation functions to select and mon-
itor goals. In the underwater mine clearance domain priori-
ties are assigned to goals pertaining to the traversal route of
freight ships. For example, if the agent has goal to survey
regions where the freight ships traverse and a goal to survey
other regions, priority is given to the former.

Each goal type has a resource estimation function to cal-
culate the resources it takes to achieve the goals. To select a
goal, GATAR sorts its goals based on the priority. Later,
from the sorted list it chooses a goal that takes minimum
resources to achieve and monitors the remaining goals.
Whenever a monitored goal with the same or higher priority
takes less resources to achieve then the selected goal is
switched with the monitored goal. Furthermore, if the se-
lected goal cannot be achieved with the current resources the
agent has, then it switches the goal with the next possible
priority goal that takes minimum resources to achieve and
monitors other goals.

Table 1 shows the type of goals and the resource estima-
tion functions used for the Underwater Mine Clearance Do-
main. Mine Clearance Goals correspond to the agent survey-
ing and clearing mines at specific region. To estimate the
time it takes to achieve these types of goals, we have esti-
mated the number of mines the agent can encounter based
on Poisson distribution and time taken to clear mines based
on an encounter with mines. The Poisson distribution takes
the average number of mines encountered in a certain time
period as an input and results in the probability of number
of mines we might encounter in future time period. We have
chosen the probability threshold as 70%.

Apprehension goals correspond to the agent apprehend-
ing the enemy. These goals use Distance-based function to
estimate the time taken to reach the enemy and return to the
current position. A Distance-based function uses speed and
distance to calculate the time it takes to apprehend plus the
apprehension time which can be learned from the previous
encounters.

Equipment goals include rectifying or repairing the
agent’s failed sensor and use a Distance-based function to
estimate the time it takes to reach the repair point plus the
repair time, which it learns from previous encounters.

Switching Location goals correspond to the goals of the
agent in switching the surveying regions. To estimate the
time to reach the new destination, we use the previous Dis-
tance-based function estimates and the Poisson distribution
estimates to survey and clear mines at the switched location.

Table 1. Resource Estimation Functions for Goals

Goals Resource Estimation

Mine Clearance Goals Poisson distribution

Apprehension Goals Distance-based function

Distance-based function
Distance-based function +
Poisson distribution

Equipment Goals

Switching Location

The Mine Clearance Domain

Our approach is implemented in a mine clearance domain
(Kondrakunta et al. 2018), which is simulated using MOOS-
IVP (Benjamin et al. 2010), software that provides complete
autonomy for marine vehicles. Figure 2 represents the mine
clearance domain with all the agents, regions and mines. The
red cylindrical object towards the top left corner is a Remus,
which is an unmanned underwater vehicle controlled by the
GATAR. Remus has a mine detection sensor represented as
a grey region around it. Yellow objects, near the shore, to
the left side of the image are freight ships and the four ob-
jects on the top right of the image are fishing vessels. Green

fishert fishers

Remus Fishing Vessels

Mines

Q-route

Alternate Q-route

Figure 2. Simulation of Mine Clearance Domain.



triangles are the mines that hinder the ability of freight ships.
Area between the two parallel lines is the Q-route. A Q-route
is an area where the freight ships use to transport their ship-
ments. There are two Q-routes in this domain Q-routel and
Q-route2. The two octagons are green areas namely GAl
and GA2, where the mines are expected to be present. Clear-
ing mines in these areas are the explicit goals of GATAR.

Discrepancies that occur in the domain

There are several discrepant events that might occur simul-
taneously in this domain. These events often affect the agent
or its mission. GATAR uses its smart goal reasoning strat-
egy to respond to these events. These discrepant events in-
clude minelaying, sensor failure, misclassification, recon-
naissance failure and environmental effects. Minelaying
events occur when an aerial vehicle, enemy ship or a fishing
vessel lays a pattern of mines to trap freight ships. Remov-
ing such mines within areas GA1 and GA?2 is an explicit goal
for GATAR. Alternatively, a sensor failure indicates a fault
in the agent’s sensor to detect and classify mines. Misclas-
sification event indicates that the agent’s action of misclas-
sifying a benign to be a mine. A benign is an object that re-
sembles a mine but not a mine. Similarly, environmental ef-
fects include tides that displace mines.

Possible Explanations and Goals for the Domain

Whenever GATAR detects a discrepancy, it retrieves and
selects an explanation from the case-base to formulate new
goals. These goals are down selected based on the availabil-
ity of resources. Table 2 shows seven different explanations
explaining the discrepant events that might happen in the
domain. Each explanation has a minimum of one and a max-
imum of three different goals. In the table, clear-area de-
scribes the area where no mines are expected.

Experimental Design

To evaluate the contribution of this paper represented by the
GATAR strategy, we have introduced two other strategies,
namely the Random Goal Selection strategy and the No Goal
Formulation strategy. Each of the agents is assumed to per-
form the same task of detection and clearing all the mines in
GAI1 and GA2 and that they will also detect the same set of
discrepant mines at different regions in the domain. How-
ever, they all respond differently to the discrepant mines. An
agent with the Random Goal Selection strategy like the GA-
TAR agent will detect the discrepant mines, retrieves and
selects an explanation to explain the discrepancy and formu-
lates goals. However, they differ in their goal selection strat-
egies. The GATAR agent uses a smart selection strategy to
select and monitor goals, while the Random Goal Selection
agent selects a goal at random and tries to achieve it. Alter-
natively, No Goal Formulation strategy will only achieve

the given set of goals and ignores the discrepancies it comes
across.

Table 2. XPs for Discrepancies with Resulting Goals.

Explanations

Discrepancies

Goals

Fisher-XP:
Fishing-vessel
laid a single

Single mine de-
tected at clear
area.

1.Apprehended (fish-
ing-vessel)
2.ClearedMines

mine (remus, clear-area)
3.ChangedRoute (clear-
area, alternate-route)

Sensor-XP: Single mine de- | 1.ChangedAgent (re-

Remus sensor
failure

tected at clear-
area or mines
not detected at
the expected ar-
eas.

mus, alternate-agent),
2.Calibrated

(remus, sensor),
3.ChangedSensor
(remus, sensor)

Tide-XP:
Mines drifted
from expected
regions GA1 or

Single or multi-
ple mines de-
tected at clear-
area or mines

1.ClearedMines
(remus, clear-area)

GA2 with tides not detected at

the expected ar-

eas.
Reconnais- Multiple mines 1.ReportAgent
sance-XP: detected in the (remus, previous-agent)
Reconnaissance | clear-area 2.ClearedMines
failed (remus, all-clear-areas)

3.ChangedRoute (clear-
area, alternate-route)

Enemy-Sub-XP:
Enemy ship laid
the circular pat-
tern of mines

Multiple mines
detected in the
clear-area

1.Apprehended
(enemy-ship)
2.ClearedMines
(remus, clear-area)
3.ChangedRoute (clear-
area, alternate-route)

Enemy-Aerial- Multiple mines 1.Reported

XP: Aerial ve- detected in the (aerial-vehicle),

hicle laid the clear-area 2.ClearedMines

line pattern of (remus, clear-area)

mines 3.ChangedRoute (clear-
area, alternate-route)

Benign-XP: Single or Multi- | 1.ChangedAgent

Remus misclas-
sified object as
mine

ple mines de-
tected

(remus, alternate-agent)
2.Calibrated

(remus, sensor),
3.ChangedSensor
(remus, sensor)

Each of these agents with the above-mentioned strategies

are run across ten different scenarios. Each scenario con-
tains: ten freight ships that transport their shipments using
the Q-route, fishing vessels, possible chance of enemy dis-
guised as a ship or a fishing vessel. Furthermore, there are
different patterns of mines that can occur simultaneously
across different regions. Possible mine patterns are: Gauss-
ian distribution of mines, linear distribution of mines, and a
single mine. Table 3 shows different distributions of mine
patterns at different areas along with their corresponding
probabilities to be chosen randomly across ten scenarios.



Performance of the three agents are measured by percent-
age of freight ships that safely traverse from one end of the
Q-route to the other.

Table 3. Probability Occurrence of Mine Laying Patterns
across Different Regions in Various Scenarios.

Regions Mine Pattern Prob.
Gaussian mine pattern 0.5
GAl, GA2 Line pattern of mines 0.3
Single mine 0.1
No mines 0.1
Transit area between | Many Gaussian mine patterns | 0.3
GATAR’s starting | Gaussian mine pattern 0.2
point and GA1, Multiple line patterns 0.2
Transit area between | Line pattern of mines 0.2
GA1T and GA2 Single mine 0.1
No mines 0.2
Alternate Q-route Gaussian mine pattern 0.3
Line mine pattern 0.25
Many Gaussian mine patterns | 0.25

Empirical Results

Figure 3 depicts the performance of three agents mentioned
earlier. The agents follow three different strategies: The
GATAR strategy, Random Goal Selection, and No Goal
Formulation. On the x-axis is the time delay with which the
freight ships start their voyage and the y-axis presents the
percentage of ships that successfully completed their jour-
ney across the Q-route.

—*— GATAR
-+— Random Goal Selection
—*— No Goal Formulation

100
90
80
70
60
50
40
30
20

150 200

~ercentage of ships that reached other end

Figure 3. Results Obtained for Different Scenarios.

Time delay of the ships start at 0 and end at 200 seconds,
these values are incremented in intervals of 50 sec. Each sec-
ond in simulation time is approximately equal to 20 seconds
in wall-clock time. There are ten ships in each experiment,
so the maximum percentage, 100, refers to all ten ships
reaching the destination. Each data point in the graph is an
average of ten different scenarios.

Time delay 0: Ships start traversing when Remus starts its
mission. Remus does not have time to clear any mines.
Hence all three agents perform similarly. In scenarios where
mines are sparsely placed, very few ships pass through the
Q-route. Hence, there is an initial percentage of 17.

Time delay 50: When following The GATAR strategy,
Remus enters the Q-route and clears GA1 and a few mines

in transit between GA1 and GA2 before the ships starts.
Therefore, there is an increase in the performance. No Goal
Formulation agent clears mines in GA1 and will be travers-
ing towards GA2 ignoring all the mines it encounters while
travelling. Random Goal Selection agent in some scenarios
acts on the goals to apprehend the enemy even before it
clears GA1, therefore there is a slight decrease in perfor-
mance of the Random Goal Selection agent.

Time delay 100: The GATAR agent clears all the mines
in GA1, Transit and might apprehend the enemy if it is near
Remus. Remus also clears some mines in GA2 if mine den-
sity is estimated to be sparse. This agent might also generate
a goal to change the Q-route if the estimated density of
mines in Q-route is dense, hence the sharp increase in the
performance of the agent. Random Goal Selection agent
generates goals at random and pursues them without reason-
ing about the outcome, even then those goals are formulated
to eliminate the discrepancy. So, there is an increase in per-
formance of the agent, but the increase is not as significant
as the smart agent. No Goal Formulation agent just clears all
mines in GA1 and GA2 and returns home.

Time delay 150: The GATAR agent now has more time
than earlier to either clear all mines in Q-route including all
in GA2, if the density is sparse to medium. If the density is
too high, then Remus might change the Q-route and clear
the mines in the new Q-route. Therefore, there is an increase
in the performance when compared to the previous value.
Random agent might choose better goals in some scenarios,
but it also has more time to clear additional mines. So, there
is an increase in the performance for this agent as well. No
Goal Formulation agent remains constant as it did not clear
any extra mines when compared to the previous scenario.

Time delay 200: Performance of Smart agent remains
constant, as it did the best it can with the previous deadline.
The performance of the Random agent dropped because it
pursued the goals that are of lesser value. For example, it
spent resources to apprehend the enemy rather than clearing
mines. Once again there is no change in the No Goal For-
mulation agent.

Performance of the smart agent clearly depicted signifi-
cant improvement when compared to other traditional and a
slightly smarter agent. This clearly shows the use case of
having a resource and priority estimation functions to select
and manage goals.

Related Research

Goal management has been a key focus of the goal reason-
ing research. Goal selection and monitoring plays a vital role
in managing goals. (Kondrakunta and Cox 2017) presents a
goal selection strategy to look at the ratio of cost to benefit
in selecting goals. This work closely aligns with our pro-
posed selection strategy, it uses domain specific estimations
to determine the cost and the benefit for a set of goals. How-
ever, this paper did not pursue the interactions with selection



and monitoring goals which is one of the key focus to better
performance of GATAR.

Similarly (Dannenhauer and Cox 2018) introduced the
idea of goal monitors. An agent creates rules as precondi-
tions to monitor goals. If the preconditions are satisfied then
the agent switches its goal, else drops the goal. This paper
did not look at the problem of selecting goals when there are
multiple of them to achieve. Moreover, the preconditions are
mostly rule based rather than any kind of estimation func-
tion, which is often a problem when the agent has very lim-
ited resources at hand.

Conclusion and Future Scope

In this paper, we discussed an approach to select and moni-
tor goals when the agent has very limited resources to
achieve its goals. Our approach uses goal specific resource
and priority estimation function to select and monitor goals.
Finally, the results show that the performance of GATAR is
better than the two other agents presented.

We acknowledge that our current experimentation pro-
cess uses estimations manually designed to fit the domain,
however in future, we would like to use an automated learn-
ing process to relax this assumption. In addition to the
above-mentioned experimentation, we would like to explore
more with resource and priorities as vectors instead of a pos-
itive real number. Moreover, we also want to implement this
across different domains and test the generalizability of this
approach.

Finally, we also want GATAR to learn these estimation
functions from the knowledge obtained from the retrieved
explanations.
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