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Abstract 
Autonomous agents often have sufficient resources to 
achieve the goals that are provided to them. However, in dy-
namic worlds where unexpected problems are bound to oc-
cur, an agent may formulate new goals with further resource 
requirements. Thus, agents should be smart enough to man-
age their goals and the limited resources they possess in an 
effective and flexible manner. We present an approach to the 
selection and monitoring of goals using resource estimation 
and goal priorities. To evaluate our approach, we designed an 
experiment on top of our previous work in a complex mine-
clearance domain. The agent in this domain formulates its 
own goals by retrieving a case to explain uncovered discrep-
ancies and generating goals from the explanation. Finally, we 
compare the performance of our approach to two alternatives. 
 

Introduction   
Autonomous agents that operate in a dynamic world often 
encounter unexpected events or discrepancies that signal the 
existence of novel problems. These agents will perform bet-
ter when they can reason about and change their existing 
goals or formulate new ones in response to such discrepan-
cies. The goal reasoning (Aha 2018; Cox 2007; Munoz-
Avila et al. 2010; Molineaux, Klenk and Aha 2010; Dannen-
hauer and Munoz-Avila 2015) approach we use for goal for-
mulation is to explain the cause behind a discrepancy and to 
specify a goal to eliminate the cause. In doing so, the agent 
aims to prevent a reoccurrence. However, goal formulation 
often creates multiple goals, and each goal requires an inde-
pendent amount of resources to achieve it. Since agents of-
ten have limited resources, they must be careful in their goal 
selection and management. Our approach to these problems 
is to provide each goal with corresponding resource and pri-
ority estimates to help goal management. The contribution 
of this paper is the strategy that uses these estimates to man-
age the formulation, selection and pursuit of goals in an ef-
fective manner given the potential for future changes. 
 In our system, case-based explanations are retrieved by 
the event understanding system Meta-AQUA (Cox and Ram 
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1999) and applied to discrepancies in an event sequence. We 
have also integrated this sub-system within the MIDCA cog-
nitive architecture (Cox et. al. 2016) that perceives and acts 
directly on the world to examine the interaction between ex-
planation generation (by Meta-AQUA), goal formulation 
and management (provided by MIDCA). We refer to the 
combined system as the Goal-driven Autonomy for Trusted 
Autonomous Reasoning (GATAR) agent. 
 The paper continues as follows. Firstly, we introduce the 
technical approach which include a casebase of explana-
tions, the agent’s algorithm to manage goals, case retrieval, 
and goal formulation. Later we introduce a mine clearance 
domain, examples that might happen in the domain along 
with explanations and formulated goals. The section follow-
ing it discusses the experimental setup for evaluating the 
performance of the GATAR agent, a random goal selection 
agent and a standard agent which does not formulate new 
goals followed by the results. Related research is discussed 
in the next section. The conclusion and future scope com-
plete the paper. 

Technical Approach 
In our work, we use case-based explanations (Ram 1994; 
Cox and Burstein 2008; Schank et al. 2014). Each explana-
tion in our case-base is an abstract explanation pattern (XP) 
(Schank 1986) as shown in Figure 1. An XP is a data struc-
ture that represents a causal relationship between multiple 
states and/or actions; variables adapted during or after case 
retrieval abstractly define each action/state. An action or 
state is referred to as a node, and different types of nodes are 
described based on their role in an XP as follows. 

• Explains node: An unexpected observed action or state 
(i.e., the target of the XP).  

• Pre-XP node: An observed action/state along with the 
Explains node. 

• XP-asserted node: An action, state, or XP that contrib-
utes to the cause of the Explains node. 

 



 

 An explanation pattern represents a causal structure in 
which XP-asserted nodes form an antecedent and Pre-XP 
nodes form the consequent. The Pre-XP nodes represent 
those states that must hold for the XP to be a candidate, in-
cluding the Explains node itself.  

Discrepancy Response and Goal Management 
Algorithm 1 represents GATAR’s approach towards execut-
ing in its environment (Gogineni et al. 2019). Following the 
notation of Ghallab, Nau, and Traverso (2004), this algo-
rithm takes the following inputs: the environment model (Σ), 
the current observations of the world (𝑠𝑐), expected obser-
vations of the world (𝑠𝑒), case library (𝐿), current goal (𝑔𝑐) 
and a goal agenda (𝐺 = {𝑔1 … 𝑔𝑐 … 𝑔𝑚}). GATAR creates 
a plan (𝜋 = < 𝑎1 … 𝑎𝑛>) of n actions to achieve the initial 
goal and starts executing the initial plan by modifying its 
goal agenda when there is a discrepancy (i.e., a condition 
such that the observed state significantly differs from an ex-
pected state; see Dannenhauer, Munoz-Avila and Cox 
2016). Algorithm 1 extends our previous work in lines 10 to 
17 (and line 2). ManageGoals monitors the goals and selects 
the goal that takes minimum resources with maximum pri-
ority (line 10). If the current goal (𝑔𝑐)  is switched with a 
selected goal (𝑔𝑠) (line 11 and 12), GATAR plans to achieve 
the selected goal (𝑔𝑠) (line 13). Similarly, when the plan for 
the current goal is completed (line 14) then GATAR re-
moves the current goal from the goal agenda (𝐺 =
{𝑔1 … 𝑔𝑚}) (line 15), selects the goal (line 16) and plans to 
achieve the selected goal. This continues while GATAR has 
resources available, as determined by function (𝑅: 𝑆 → ℝ+) 
characterizing the resources remaining in a current state us-
ing a positive real number. 
 Algorithm 2 presents GATAR’s approach towards goal 
management. The function ManageGoals is called with a 
current state and existing goal agenda of the most recent dis-
crepancy. It first adds to the goal agenda all goals proposed 
by the current explanation (Line 1), then calculates the set 𝐶 
of candidate goals whose resource requirements can be sat-
isfied (Line 2). To determine which goals can be satisfied, it 
uses a hand-coded domain specific resource estimation 
function (𝑅̂: 𝐺 × 𝑆 → ℝ+) that estimates the amount of re-
sources required to achieve a goal (𝑔) from a state (s). GA-
TAR then filters the set 𝐶 down to the highest priority goals 

(line 3) with minimum resource utilization (line 4). The pri-
ority function (𝑃̂: 𝐺 × 𝑆 → ℝ+) is a hand-coded domain-
specific function that assigns a real-valued priority to a goal 
(𝑔) in a state (s). Finally, GATAR returns an arbitrary mem-
ber of candidate goals 𝐶 (which will usually be unique), 
along with an updated agenda (line 5). 

Algorithm 1. Execute and Monitor 
 𝑬𝒙𝒆𝒄𝒖𝒕𝒆𝑨𝒏𝒅𝑴𝒐𝒏𝒊𝒕𝒐𝒓 (𝜮, 𝒔𝒄, 𝒔𝒆, 𝑳, 𝒈𝒄, 𝑮̂)  

1. 𝜋 ← 𝑃𝑙𝑎𝑛(, 𝑠𝑐 , 𝑔𝑐) 
2. 𝑤ℎ𝑖𝑙𝑒 𝑅(𝑠𝑐) > 0 𝑑𝑜 
3.     𝑠𝑐  ←  𝛾 (𝑠𝑐 , 𝜋[1]) 
4.     𝜋 ←  𝜋[2. . 𝑛] 
5.     𝑠𝑒  ← 𝑠𝑒  ∪ 𝑝𝑟𝑒(𝜋[1]) ∪ 𝜋[1]+ −  𝜋[1]−  
6.     𝑖𝑓  𝑠𝑐  ⊭  𝑠𝑒   // discrepancy exists 
7.         𝜒𝑐  ←  𝑆𝑒𝑙𝑒𝑐𝑡(𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒 (𝐿, 𝑠𝑐)) 
8.         𝑠𝑒  ← 𝑠𝑒  ∪ 𝑠𝑐  ∪ XP-asserted (𝜒𝑐)  
9.        𝐺 ←  𝐺 ∪ 𝐹𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑒𝐺𝑜𝑎𝑙𝑠(𝜒𝑐)  
10.     𝑔𝑠 , 𝐺 ← 𝑀𝑎𝑛𝑎𝑔𝑒𝐺𝑜𝑎𝑙𝑠(𝑠𝑐 , 𝐺) 
11.     𝑖𝑓 𝑔𝑐  ≠   𝑔𝑠 
12.        𝑔𝑐 ←  𝑔𝑠  
13.        𝜋 ← 𝑃𝑙𝑎𝑛(, 𝑠𝑐 , 𝑔𝑐) 
14.     𝑖𝑓   𝜋 =  ∅ 
15.         𝐺  ←  𝐺 −   𝑔𝑐   
16.         𝑔𝑐 , 𝐺 ← 𝑀𝑎𝑛𝑎𝑔𝑒𝐺𝑜𝑎𝑙𝑠(𝑠𝑐 , 𝐺) 
17.         𝜋 = 𝑃𝑙𝑎𝑛(, 𝑠𝑐 , 𝑔𝑐) 

 
Algorithm 2. Goal Management 
 𝑴𝒂𝒏𝒂𝒈𝒆𝑮𝒐𝒂𝒍𝒔(𝒔𝒄, 𝑮̂) 

1.      𝐶 ← {𝑔 ∈ 𝐺|𝑅̂(𝑔, 𝑠𝑐) ≤ 𝑅(𝑠𝑐)} 
2.      𝐶 ← argmax

𝑔∈𝐶
𝑃̂(𝑔, 𝑠𝑐) 

3.      𝐶 ← argmin
𝑔∈𝐶

𝑅̂(𝑔, 𝑠𝑐) 

4.      return 𝐶, 𝐺 

Retrieving an Explanation Pattern 
To retrieve an XP, GATAR tries to unify a discrepant state 
or an action with the Explains node of the XP’s in the case 
base. When such a unification is successful, then the Pre-XP 
nodes of the corresponding case are unified with the obser-
vations of corresponding states or actions. Also, if this uni-
fication is successful then an XP is retrieved. From the re-
trieved sets of explanations, an explanation is selected based 
on a Bayesian inference technique to select and monitor ex-
planatory cases (Gogineni et al. 2019). Finally, Goals are 
formulated using the selected explanation. The following 
section describes the goal formulation process given an XP. 

Goal Formulation 
Goal formulation is essential for an intelligent agent to re-
spond to unpredictable events. In our previous work 
(Gogineni et al. 2018), we have formulated goals from the 

Figure 1. The XP Explanatory Case Structure. 

 



 

antecedent of the selected explanation pattern. There can be 
a maximum of three possible types of goals from an expla-
nation pattern: goal to eliminate the actor, goal to eliminate 
the results of the action by the actor and goal to avoid the 
discrepancy. Often an actor is responsible for the cause of a 
discrepancy, so a potential goal to eliminate the actor will 
hinder the occurrence of discrepancy in future. A potential 
goal to eliminate the results of the action of the actor is help-
ful in responding to the current discrepancy that hinders 
agents’ mission. Finally, a potential goal to avoid a discrep-
ancy is to look at the alternate opportunities in which the 
agent can avoid discrepancies both in present and in future. 
 For example, from an explanation pattern with a causal 
relation, an enemy ship laid the mines in a gaussian pattern 
to hinder the traversal of the freight ships. A potential goal 
to eliminate the actor is to apprehend the enemy ship. Simi-
larly, a potential goal to eliminate the results of the action is 
to survey and clear mines in the gaussian pattern. Finally, a 
potential goal to avoid the discrepancy is to survey and 
change the route of the freight ships to an alternate route. 

Goal Management 
Often in real world the agent has very limited resources to 
achieve its goals. In these situations, the agent must be smart 
about selecting the goals it can achieve. GATAR uses both 
priority and resource estimation functions to select and mon-
itor goals. In the underwater mine clearance domain priori-
ties are assigned to goals pertaining to the traversal route of 
freight ships. For example, if the agent has goal to survey 
regions where the freight ships traverse and a goal to survey 
other regions, priority is given to the former.  
 Each goal type has a resource estimation function to cal-
culate the resources it takes to achieve the goals. To select a 
goal, GATAR sorts its goals based on the priority. Later, 
from the sorted list it chooses a goal that takes minimum 
resources to achieve and monitors the remaining goals. 
Whenever a monitored goal with the same or higher priority 
takes less resources to achieve then the selected goal is 
switched with the monitored goal. Furthermore, if the se-
lected goal cannot be achieved with the current resources the 
agent has, then it switches the goal with the next possible 
priority goal that takes minimum resources to achieve and 
monitors other goals.  
 Table 1 shows the type of goals and the resource estima-
tion functions used for the Underwater Mine Clearance Do-
main. Mine Clearance Goals correspond to the agent survey-
ing and clearing mines at specific region. To estimate the 
time it takes to achieve these types of goals, we have esti-
mated the number of mines the agent can encounter based 
on Poisson distribution and time taken to clear mines based 
on an encounter with mines. The Poisson distribution takes 
the average number of mines encountered in a certain time 
period as an input and results in the probability of number 
of mines we might encounter in future time period. We have 
chosen the probability threshold as 70%. 

 Apprehension goals correspond to the agent apprehend-
ing the enemy. These goals use Distance-based function to 
estimate the time taken to reach the enemy and return to the 
current position. A Distance-based function uses speed and 
distance to calculate the time it takes to apprehend plus the 
apprehension time which can be learned from the previous 
encounters.  
 Equipment goals include rectifying or repairing the 
agent’s failed sensor and use a Distance-based function to 
estimate the time it takes to reach the repair point plus the 
repair time, which it learns from previous encounters. 
 Switching Location goals correspond to the goals of the 
agent in switching the surveying regions. To estimate the 
time to reach the new destination, we use the previous Dis-
tance-based function estimates and the Poisson distribution 
estimates to survey and clear mines at the switched location. 

Table 1. Resource Estimation Functions for Goals 

Goals Resource Estimation  
Mine Clearance Goals Poisson distribution 
Apprehension Goals Distance-based function 
Equipment Goals Distance-based function  
Switching Location  Distance-based function + 

Poisson distribution 

The Mine Clearance Domain 
Our approach is implemented in a mine clearance domain 
(Kondrakunta et al. 2018), which is simulated using MOOS-
IVP (Benjamin et al. 2010), software that provides complete 
autonomy for marine vehicles. Figure 2 represents the mine 
clearance domain with all the agents, regions and mines. The 
red cylindrical object towards the top left corner is a Remus, 
which is an unmanned underwater vehicle controlled by the 
GATAR. Remus has a mine detection sensor represented as 
a grey region around it. Yellow objects, near the shore, to 
the left side of the image are freight ships and the four ob-
jects on the top right of the image are fishing vessels. Green 

Figure 2. Simulation of Mine Clearance Domain. 



 

triangles are the mines that hinder the ability of freight ships. 
Area between the two parallel lines is the Q-route. A Q-route 
is an area where the freight ships use to transport their ship-
ments. There are two Q-routes in this domain Q-route1 and 
Q-route2. The two octagons are green areas namely GA1 
and GA2, where the mines are expected to be present. Clear-
ing mines in these areas are the explicit goals of GATAR. 

Discrepancies that occur in the domain 
There are several discrepant events that might occur simul-
taneously in this domain. These events often affect the agent 
or its mission. GATAR uses its smart goal reasoning strat-
egy to respond to these events. These discrepant events in-
clude minelaying, sensor failure, misclassification, recon-
naissance failure and environmental effects. Minelaying 
events occur when an aerial vehicle, enemy ship or a fishing 
vessel lays a pattern of mines to trap freight ships. Remov-
ing such mines within areas GA1 and GA2 is an explicit goal 
for GATAR. Alternatively, a sensor failure indicates a fault 
in the agent’s sensor to detect and classify mines. Misclas-
sification event indicates that the agent’s action of misclas-
sifying a benign to be a mine. A benign is an object that re-
sembles a mine but not a mine. Similarly, environmental ef-
fects include tides that displace mines. 

Possible Explanations and Goals for the Domain 

Whenever GATAR detects a discrepancy, it retrieves and 
selects an explanation from the case-base to formulate new 
goals. These goals are down selected based on the availabil-
ity of resources. Table 2 shows seven different explanations 
explaining the discrepant events that might happen in the 
domain. Each explanation has a minimum of one and a max-
imum of three different goals. In the table, clear-area de-
scribes the area where no mines are expected.  

Experimental Design 
To evaluate the contribution of this paper represented by the 
GATAR strategy, we have introduced two other strategies, 
namely the Random Goal Selection strategy and the No Goal 
Formulation strategy. Each of the agents is assumed to per-
form the same task of detection and clearing all the mines in 
GA1 and GA2 and that they will also detect the same set of 
discrepant mines at different regions in the domain. How-
ever, they all respond differently to the discrepant mines. An 
agent with the Random Goal Selection strategy like the GA-
TAR agent will detect the discrepant mines, retrieves and 
selects an explanation to explain the discrepancy and formu-
lates goals. However, they differ in their goal selection strat-
egies. The GATAR agent uses a smart selection strategy to 
select and monitor goals, while the Random Goal Selection 
agent selects a goal at random and tries to achieve it. Alter-
natively, No Goal Formulation strategy will only achieve 

the given set of goals and ignores the discrepancies it comes 
across. 

Table 2. XPs for Discrepancies with Resulting Goals. 

Explanations Discrepancies Goals 

Fisher-XP: 
Fishing-vessel 
laid a single 
mine 

Single mine de-
tected at clear 
area. 

1.Apprehended (fish-
ing-vessel) 
2.ClearedMines  
(remus, clear-area) 
3.ChangedRoute (clear-
area, alternate-route) 

Sensor-XP:  
Remus sensor 
failure 

Single mine de-
tected at clear-
area or mines 
not detected at 
the expected ar-
eas.  

1.ChangedAgent (re-
mus, alternate-agent), 
2.Calibrated  
(remus, sensor), 
3.ChangedSensor  
(remus, sensor) 

Tide-XP:  
Mines drifted 
from expected 
regions GA1 or 
GA2 with tides 

Single or multi-
ple mines de-
tected at clear-
area or mines 
not detected at 
the expected ar-
eas. 

1.ClearedMines  
(remus, clear-area) 

Reconnais-
sance-XP:  
Reconnaissance 
failed 

Multiple mines 
detected in the 
clear-area 

1.ReportAgent  
(remus, previous-agent) 
2.ClearedMines  
(remus, all-clear-areas) 
3.ChangedRoute (clear-
area, alternate-route) 

Enemy-Sub-XP: 
Enemy ship laid 
the circular pat-
tern of mines 

Multiple mines 
detected in the 
clear-area 

1.Apprehended  
(enemy-ship) 
2.ClearedMines  
(remus, clear-area) 
3.ChangedRoute (clear-
area, alternate-route) 

Enemy-Aerial-
XP:  Aerial ve-
hicle laid the 
line pattern of 
mines 

Multiple mines 
detected in the 
clear-area 

1.Reported  
(aerial-vehicle), 
2.ClearedMines  
(remus, clear-area) 
3.ChangedRoute (clear-
area, alternate-route) 

Benign-XP:  
Remus misclas-
sified object as 
mine 

Single or Multi-
ple mines de-
tected 

1.ChangedAgent  
(remus, alternate-agent) 
2.Calibrated  
(remus, sensor), 
3.ChangedSensor  
(remus, sensor) 

 Each of these agents with the above-mentioned strategies 
are run across ten different scenarios. Each scenario con-
tains: ten freight ships that transport their shipments using 
the Q-route, fishing vessels, possible chance of enemy dis-
guised as a ship or a fishing vessel. Furthermore, there are 
different patterns of mines that can occur simultaneously 
across different regions. Possible mine patterns are: Gauss-
ian distribution of mines, linear distribution of mines, and a 
single mine. Table 3 shows different distributions of mine 
patterns at different areas along with their corresponding 
probabilities to be chosen randomly across ten scenarios.  



 

 Performance of the three agents are measured by percent-
age of freight ships that safely traverse from one end of the 
Q-route to the other.  

Table 3. Probability Occurrence of Mine Laying Patterns 
across Different Regions in Various Scenarios. 

Regions Mine Pattern Prob. 
 

GA1, GA2 
Gaussian mine pattern 0.5 
Line pattern of mines 0.3 
Single mine 0.1 
No mines 0.1 

Transit area between 
GATAR’s starting 
point and GA1, 
Transit area between 
GA1 and GA2 

Many Gaussian mine patterns 0.3 
Gaussian mine pattern  0.2 
Multiple line patterns  0.2 
Line pattern of mines 0.2 
Single mine 0.1 

 
Alternate Q-route 

No mines 0.2 
Gaussian mine pattern 0.3 
Line mine pattern 0.25 
Many Gaussian mine patterns 0.25 

Empirical Results 
Figure 3 depicts the performance of three agents mentioned 
earlier. The agents follow three different strategies: The 
GATAR strategy, Random Goal Selection, and No Goal 
Formulation. On the x-axis is the time delay with which the 
freight ships start their voyage and the y-axis presents the 
percentage of ships that successfully completed their jour-
ney across the Q-route.  

 Time delay of the ships start at 0 and end at 200 seconds, 
these values are incremented in intervals of 50 sec. Each sec-
ond in simulation time is approximately equal to 20 seconds 
in wall-clock time. There are ten ships in each experiment, 
so the maximum percentage, 100, refers to all ten ships 
reaching the destination. Each data point in the graph is an 
average of ten different scenarios.  
 Time delay 0: Ships start traversing when Remus starts its 
mission. Remus does not have time to clear any mines. 
Hence all three agents perform similarly. In scenarios where 
mines are sparsely placed, very few ships pass through the 
Q-route. Hence, there is an initial percentage of 17. 
 Time delay 50: When following The GATAR strategy, 
Remus enters the Q-route and clears GA1 and a few mines 

in transit between GA1 and GA2 before the ships starts. 
Therefore, there is an increase in the performance. No Goal 
Formulation agent clears mines in GA1 and will be travers-
ing towards GA2 ignoring all the mines it encounters while 
travelling. Random Goal Selection agent in some scenarios 
acts on the goals to apprehend the enemy even before it 
clears GA1, therefore there is a slight decrease in perfor-
mance of the Random Goal Selection agent. 
 Time delay 100: The GATAR agent clears all the mines 
in GA1, Transit and might apprehend the enemy if it is near 
Remus. Remus also clears some mines in GA2 if mine den-
sity is estimated to be sparse. This agent might also generate 
a goal to change the Q-route if the estimated density of 
mines in Q-route is dense, hence the sharp increase in the 
performance of the agent. Random Goal Selection agent 
generates goals at random and pursues them without reason-
ing about the outcome, even then those goals are formulated 
to eliminate the discrepancy. So, there is an increase in per-
formance of the agent, but the increase is not as significant 
as the smart agent. No Goal Formulation agent just clears all 
mines in GA1 and GA2 and returns home.  
 Time delay 150: The GATAR agent now has more time 
than earlier to either clear all mines in Q-route including all 
in GA2, if the density is sparse to medium. If the density is 
too high, then Remus might change the Q-route and clear 
the mines in the new Q-route. Therefore, there is an increase 
in the performance when compared to the previous value. 
Random agent might choose better goals in some scenarios, 
but it also has more time to clear additional mines. So, there 
is an increase in the performance for this agent as well. No 
Goal Formulation agent remains constant as it did not clear 
any extra mines when compared to the previous scenario. 
 Time delay 200: Performance of Smart agent remains 
constant, as it did the best it can with the previous deadline. 
The performance of the Random agent dropped because it 
pursued the goals that are of lesser value. For example, it 
spent resources to apprehend the enemy rather than clearing 
mines. Once again there is no change in the No Goal For-
mulation agent. 
 Performance of the smart agent clearly depicted signifi-
cant improvement when compared to other traditional and a 
slightly smarter agent. This clearly shows the use case of 
having a resource and priority estimation functions to select 
and manage goals. 

Related Research 
Goal management has been a key focus of the goal reason-
ing research. Goal selection and monitoring plays a vital role 
in managing goals. (Kondrakunta and Cox 2017) presents a 
goal selection strategy to look at the ratio of cost to benefit 
in selecting goals. This work closely aligns with our pro-
posed selection strategy, it uses domain specific estimations 
to determine the cost and the benefit for a set of goals. How-
ever, this paper did not pursue the interactions with selection 

Figure 3. Results Obtained for Different Scenarios. 



 

and monitoring goals which is one of the key focus to better 
performance of GATAR.  
 Similarly (Dannenhauer and Cox 2018) introduced the 
idea of goal monitors. An agent creates rules as precondi-
tions to monitor goals. If the preconditions are satisfied then 
the agent switches its goal, else drops the goal. This paper 
did not look at the problem of selecting goals when there are 
multiple of them to achieve. Moreover, the preconditions are 
mostly rule based rather than any kind of estimation func-
tion, which is often a problem when the agent has very lim-
ited resources at hand. 

Conclusion and Future Scope 
In this paper, we discussed an approach to select and moni-
tor goals when the agent has very limited resources to 
achieve its goals. Our approach uses goal specific resource 
and priority estimation function to select and monitor goals. 
Finally, the results show that the performance of GATAR is 
better than the two other agents presented. 
 We acknowledge that our current experimentation pro-
cess uses estimations manually designed to fit the domain, 
however in future, we would like to use an automated learn-
ing process to relax this assumption. In addition to the 
above-mentioned experimentation, we would like to explore 
more with resource and priorities as vectors instead of a pos-
itive real number. Moreover, we also want to implement this 
across different domains and test the generalizability of this 
approach.  
 Finally, we also want GATAR to learn these estimation 
functions from the knowledge obtained from the retrieved 
explanations. 
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