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ABSTRACT: There is a growing interest in the use of ground-based remote sensors for numerical weather prediction, which
is sparked by their potential to address the currently existing observation gap within the planetary boundary layer. Neverthe-
less, open questions still exist regarding the relative importance of and synergy among various instruments. To shed light on
these important questions, the present study examines the forecast benefits associated with several different ground-based pro-
filing networks using 10 diverse cases from the Plains Elevated Convection at Night (PECAN) field campaign. Aggregated ver-
ification statistics reveal that a combination of in situ and remote sensing profilers leads to the largest increase in forecast skill,
in terms of both the parent mesoscale convective system and the explicitly resolved bore. These statistics also indicate that it is
often advantageous to collocate thermodynamic and kinematic remote sensors. By contrast, the impacts of networks consisting
of single profilers appear to be flow-dependent, with thermodynamic (kinematic) remote sensors being most useful in cases
with relatively low (high) convective predictability. Deficiencies in the data assimilation method as well as inherent complexi-
ties in the governing moisture dynamics are two factors that can further limit the forecast value extracted from such networks.

KEYWORDS: Data assimilation; Remote sensing; Convective-scale processes

1. Introduction

The planetary boundary layer (PBL) has crucial implications
for many Earth system processes, such as radiative transfer, air
pollution, and land–atmosphere exchanges (Wulfmeyer et al.
2015). Compared to other parts of the atmosphere, the PBL is
characterized by considerably smaller spatiotemporal scales,
especially with respect to water-related variables (Lilly and
Perkey 1976). To adequately describe the inherently large vari-
ability in the PBL, one requires a dense observing network that
can frequently sample the thermodynamic and kinematic prop-
erties of the lower atmosphere. Nevertheless, the PBL is
observed poorly by current observing systems}a fact that
became first apparent in early studies of convection initiation.
For example, Crook (1996) used a high-resolution, nonhydro-
static model to show that small changes in the PBL structure,
comparable in magnitude to typical measurement uncertain-
ties, “can make the difference between no initiation and
intense convection.” Similarly, Weckwerth et al. (1996) found
that there is large moisture variability within daytime PBLs
(1.5–2.5 g kg21), concluding that water vapor is under-sampled
by traditional observation techniques (see also Weckwerth and
Parsons 2006). Having realized these limitations, the National
Research Council (NRC) developed a comprehensive report in
2009, which proposed the establishment of 400 sites with

ground-based remote sensors (NRC 2009). These recommen-
dations were further refined in subsequent NRC reports (NRC
2010, 2012) and recently updated by the World Meteorological
Organization (WMO 2018) to address the needs of future high-
resolution numerical weather prediction (NWP) systems.

Importantly, the growing awareness of the PBL’s observa-
tion gap catalyzed research efforts aimed at examining the
ability of various ground-based remote sensors to improve
regional NWP performance. At the beginning, the technology
underpinning thermodynamic remote sensors was still not suf-
ficiently developed and most of the original investigations
were conducted with the more widely available radar wind
profiler (RWP). After several studies demonstrated the short-
range forecast value coming from the National Oceanic and
Atmospheric Administration (NOAA) Profiler Network
(NPN), some of the leading NWP centers began assimilating
these novel wind datasets (Bouttier 2001; Benjamin et al.
2004). Recently, experiments have also been conducted with
another kinematic profiler}the Doppler wind lidar (DWL),
whose ability to capture the fine-scale structure of the wind
field makes it particularly suitable for use in high-resolution
numerical models. The forecast potential of DWL retrievals
was first demonstrated by Zhang and Pu (2011) on a warm-
season mesoscale convective system (MCS). Kawabata et al.
(2014) confirmed the NWP value of this instrument andCorresponding author: Dr. Hristo G. Chipilski, hristoc@ucar.edu
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further discussed the important synergy between lidar and
radar observations in improving the overall convective skill.

The microwave radiometer (MWR) was the first thermody-
namic remote sensor to be used in NWP applications, including
fog forecasting (Vandenberghe and Ware 2002), 1D-Var
retrievals (Martinet et al. 2015, 2017), and heavy precipitation
(Caumont et al. 2016). Although its ability to operate under all-
sky conditions is an important advantage, the MWR resolution
(300–1000 m in the first 2 km AGL) is too coarse relative to the
vertical grid spacing of most convection-allowing models. As a
result, recent impact studies have focused on exploring the advan-
tages of another passive thermodynamic remote sensor}the
Atmospheric Emitted Radiance Interferometer (AERI), and
have demonstrated that its assimilation can be beneficial for a
variety of convective applications (Coniglio et al. 2019; Hu et al.
2019; Chipilski et al. 2020; Degelia et al. 2020; Lewis et al. 2020).
Concurrently, the past decade has also seen advances in active
thermodynamic sensing. Instruments like the Raman lidar (RL)
and the differential absorption lidar (DIAL) have been crucial in
improving our understanding of near-surface Earth system pro-
cesses (Wulfmeyer et al. 2015, and references therein). Research-
grade RLs have been found to improve the simulated PBL
structure (Adam et al. 2016; Grzeschik et al. 2008) and the
ability of regional NWP models to predict heavy precipitation
(Leuenberger et al. 2020; Yoshida et al. 2020).

In this paper, we provide more evidence for the NWP value of
ground-based remote sensors by demonstrating their systematic
benefits on the relatively newly studied problem of bore-generat-
ing nocturnal convection (Haghi et al. 2018; Parsons et al. 2019).
This goal is achieved by using 10 diverse cases from the Plains
Elevated Convection at Night (PECAN; Geerts et al. 2017) field
campaign. Many of the simulated events have been examined in
great detail as part of recent publications (e.g., Mueller et al.
2017; Trier et al. 2017; Johnson et al. 2018; Johnson and Wang
2019; Smith et al. 2019; Miller et al. 2020; Parker et al. 2020;
Stechman et al. 2020; Carroll et al. 2021; Lin et al. 2021), which
provides an important context for our results. In addition, the
forecast impacts presented here corroborate the single case find-
ings of Chipilski et al. (2020; CWP20 hereafter); this is a highly
encouraging finding given the wide spectrum of atmospheric
bores and convective environments sampled in our dataset.

By further refining the experimental design of CWP20, the
second important contribution of this study is examining the
relative benefits of different ground-based profiling networks.
The motivation here is that most research in the past has
focused on the assimilation of single remote sensors that can
only measure the thermodynamic or kinematic components
of the unknown model state (e.g., Lewis et al. 2020; Li et al.
2020; Yoshida et al. 2020; Wang et al. 2020; Leuenberger et al.
2020; Qi et al. 2021). While several studies have attempted to
simultaneously assimilate multiple profiling instruments,
they have reached somewhat inconsistent conclusions. For
instance, Hu et al. (2019) found AERIs to be more important
than DWLs in improving the early evolution of a tornadic
supercell. At the same time, the study of Fourriè et al. (2021)
indicated that forecasts of heavy precipitation were improved
more by assimilating RWPs compared to RLs. A careful look

at the present literature reveals that even fewer studies have
attempted to evaluate the impacts of remote sensors against a
reference radiosonde network. Throughout this work, we will
demonstrate that the benefits of assimilating thermodynamic
and kinematic remote sensors tend to be flow-dependent and
that their combination is often necessary for achieving a sta-
tistically meaningful increase in the forecast skill. We will also
present evidence that the most robust forecast benefits come
from hybrid ground-based networks that contain both in situ
and remote sensing profilers.

2. Problem statement

In this study, we will be concerned with the forecast accuracy
of a particular class of nocturnal convection}one associated
with the generation of atmospheric bores (bore-generating noc-
turnal convection hereafter). Our interest in these convective sys-
tems was motivated by their common occurrence during the
night (Haghi et al. 2017) and inherently low predictability (see
section 1 of CWP20). Figure 1 illustrates the typical evolution of
bore-generating nocturnal convection within the 10 PECAN
cases used herein. The data assimilation (DA) period usually
covered the time from the initial formation of convective cells
(Fig. 1a) to their upscale growth and eventual merging into a
mesoscale convective system (MCS) with a well-developed
surface-based cold pool (Fig. 1b). It is worth noting that while
surface-based cold pools do not necessarily form in all nocturnal
MCSs (e.g., Maddox 1980; Trier and Parsons 1993), they
occurred commonly during PECAN (Hitchcock et al. 2019) and
were an important precursor for the initiation of bores in our
experiments.

A critical requirement for our case study selection was the
presence of ground-based profilers upstream of the convective
developments displayed in Figs. 1a and 1b. Because of their
strategic deployment, these PECAN instruments provided
valuable information about the mesoscale environment in
which the bore-generating convective systems developed.
Therefore, it was expected that their assimilation would also
bring measurable forecast improvements. Our dynamically
relevant DA period was chosen to help us evaluate this
hypothesis in a controlled manner: by creating initial condi-
tions that featured a mature MCS with a well-developed cold
pool, we ensured that the future evolution of the convective
system will be mostly driven by the characteristics of the envi-
ronment into which it propagates. By contrast, if the forecasts
were to be initialized earlier, the MCS evolution will be sensi-
tive to the highly nonlinear (and inherently unpredictable)
small-scale interactions between individual convective cells
(see Fig. 1a), making it challenging to quantify the value of
different ground-based profiling networks.

Once the DA period was complete, we forecasted the bore-
generating MCS for another 5 h. During this time, the interaction
between its cold pool and the nocturnal PBL generated a
hydraulic response in the form of an atmospheric bore (Fig. 1c).
In some of the simulated cases, the bore remained closely
attached to its parent MCS and was responsible for the initiation
of new convection (i.e., bore-initiated convection), whereas in
other cases, it propagated far away from its source region and
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did not produce additional convective activity. To account for
this inherent dynamical coupling between the bore and its parent
MCS, we adopted a verification approach similar to CWP20
whereby the impact from different profiling instruments was
examined according to their ability to improve both the convec-
tive and bore components of the nocturnal system depicted in
Fig. 1c.1

3. Experimental design

To better understand the synergies between different
ground-based profiling networks, we refined the experimental
design of CWP20 such that only sites with collocated radio-
sondes and remote sensors were assimilated. This approach
resembles the methodology of Degelia et al. (2020) except
that our control experiments did not assimilate any PECAN
soundings. The rationale behind this choice was that the
PECAN radiosondes are released at a much higher frequency
compared to the operational radiosonde network, meaning
that they can no longer be treated as a conventional data
source. Degelia et al. (2020) sidestepped this problem by only
assimilating observations close to the operational 0000 UTC
launch; in our case, all available radiosondes were assimilated
and subsequently treated as a reference against which the per-
formance of ground-based remote sensors can be evaluated.

Our ground-based network with collocated in situ and
remote sensing instruments serves two distinct purposes. First,
it allows us to compare the impacts from remote sensors and

radiosondes in a more objective way that eliminates the
increased (or decreased) sensitivity of the forecasts to the
initial conditions in different parts of the model domain. Given
that the PECAN instruments observe the environmental condi-
tions over the same location, differences in their performance
can be solely attributed to the underlying measurement tech-
nique, sampling rate and observation error characteristics. The
second advantage of assimilating collocated instruments is that
we can explore the benefits of several different ground-based
profiling networks and seek answers to the following relevant
questions:

• Is it more beneficial to assimilate the highly frequent, but less
accurate remote sensing retrievals than the less frequent, but
highly accurate radiosonde measurements?

• How competitive is the performance of networks that consist
of single remote sensors compared to networks that host
both thermodynamic and kinematic profilers?

• Do we observe synergies after combining (i) thermodynamic
and kinematic profilers or (ii) remote sensing and in situ
instruments? In other words, does the simultaneous assimila-
tion of these instruments result in forecast improvements
which are much larger than the forecast improvements
brought by individual instruments?

a. PECAN observations

The profilers assimilated in our study were obtained from
five fixed and two mobile PECAN Integrated Sounding
Arrays (PISAs; see Figs. 2a,b). These PISAs were a unique
aspect of the PECAN field campaign as they hosted both in
situ and remote sensing instruments. Analogous to CWP20,
AERI was the only thermodynamic profiler assimilated in

FIG. 1. A schematic illustrating the typical evolution of a bore-generating convective system in the context of the ground-based profiling
instruments assimilated in this study. Our main objective is to evaluate the impact of the assimilated profilers on the forecasted parent
MCS, bore-induced convection initiation (CI; both direct and indirect) and explicitly resolved atmospheric bore [all shown in (c)].

1 The main difference with CWP20 was that our verification
included both the parent MCS and any bore-initiated convection,
whereas CWP20 only focused on the latter.
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this paper, whereas the RWPs and DWLs were blended into a
single kinematic profiler following Degelia et al. (2020).

The number of PISA sites available for each case was based
on the overall availability of PECAN radiosonde data. Specif-
ically, a certain PISA site was assimilated in our experiments
only if there was at least one radiosonde release from that site
during the selected DA period. As a result of this restriction,
the number of assimilated stations was usually reduced to 3 or
4 (see Table 2). At each of the assimilated PISA sites, the typ-
ical number of radiosonde launches was between 3 and 5,
although on one occasion (20 June), the FP3 site released a
total of 13 radiosondes over the 7-h DA period.

b. System configurations

The impact results presented here were obtained with the
same GSI-EnKF-WRF ensemble data assimilation and forecast
system as described in CWP20 (see also Johnson et al. 2015;
Wang and Wang 2017). However, the systematic nature of our
PECAN experiments necessitated several minor changes in its
configuration. Most notably, simulations were carried out on two
(instead of three) model domains (Fig. 2a)}an outer (d01)
12-km one and an inner (d02) 4-km one. The size of the d02
domains was the same for all 10 cases (352 3 301 grid points),

but their position was modified according to the location of the
bore-generating convective systems. The model physics were
chosen to be broadly consistent with CWP20 except from several
changes which can be identified by comparing Table 1 here and
Table 2 in CWP20.

All experiments were initialized by downscaling the
0000 UTC global GEFS/SREF ensemble (40 members in
total) valid on the day before each bore-generating MCS
event (see Fig. 2c). Conventional observations from the North
American Mesoscale Forecast System Data Assimilation Sys-
tem (NDAS) were then assimilated every 3 h for a total of
8 cycles. Afterward, much more frequent EnKF cycling was
carried out on the inner 4-km domain where conventional
observations were assimilated together with radar data and
PECAN ground-based profilers at 10-min intervals. As
explained in section 2, the length of the inner DA window
was dependent on the convective evolution in each case, but
varied between 2.5 h on 16 July 2015 and 7 h on 20 June 2015
(see Table 2 for more details). For the majority of the PECAN
cases, the d02 EnKF cycling started at 0000 UTC on the day of
the bore-generating MCS event; one exception to this setup was
the 7 June case where the 4-km DA period began 3 h earlier to
account for the early convection initiation on that day.

FIG. 2. Some aspects of the experimental design used in this study. (a) Location of the outer 12-km (d01; thick white
rectangle) and inner 4-km (d02; thinner white rectangles) model domains as well as the assimilated fixed PISA (FP) sites
(red stars). (b) Location of the assimilated mobile PISAs (MPs) (filled stars) and thermodynamic remote sensors used for
bore verification (filled dots). (c) A timeline corresponding to our analysis–forecast system. Following section 2, the final
analysis time in each PECAN case (ta) is chosen such that the bore-generating (parent) MCS has a well-developed cold
pool. The alternating red and blue lines between 2100 and 0000 UTC indicate that the d02 EnKF cycling can begin at
either of these two times (see main text for more details).
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c. Experiments

To examine the value of different ground-based profiling
networks, we adopted a data addition framework whereby
each new PECAN instrument was added on top of operation-
ally assimilated NDAS data. The first group of experiments
only considered single instrument types: SONDE assimilated
the special PECAN radiosondes, TQPROF}the thermody-
namic AERI retrievals, and UVPROF}the wind retrievals
from the combined DWL and RWP instruments. By contrast,
the second group of experiments sought to explore the value
of multiple profilers and to identify the existence of observa-
tion synergies. For instance, ALLPROF combined the two
types of ground-based remote sensors, whereas ALL consid-
ered all available PECAN observations for a given case. The
performance of these five ground-based profiling networks
was then compared against a control (CTL) experiment in
which only conventional NDAS data were assimilated.

4. Results

a. Convective impacts

1) AGGREGATED STATISTICS

We first assessed the profiler impacts with respect to the
convective forecasts. For each of the 10 cases, we computed
the Fractions Skill Score (FSS) based on the Neighborhood

Ensemble Probability (NEP) of radar reflectivity exceed-
ing 30 dBZ and the merged composite reflectivity product
from the Multi-Radar Multi-Sensor (MRMS; Zhang et al.
2016) program. These scores were evaluated at 15-min
increments within verification subdomains centered over
the bore-generating MCSs. The position and size of these
subdomains varied from case to case, but they were subjec-
tively drawn to encompass both the parent MCS and any
bore-initiated convection during the entire 5-h simulation
period.

Figure 3 displays the aggregated FSSs for 3 different
neighborhood radii (R)}5, 25, and 150 km. Each of these
scores carries a different physical meaning. For example,
the smallest R value is comparable to the model’s horizontal
grid spacing, in which case the FSSs provide a point-wise
measure of the convective skill. The intermediate R value is
commensurate with the smallest scales resolved by the
model (∼8Dx), whereas the largest one is located toward the
upper end of the meso-b spectrum, making it comparable to
the scale of large density currents and bores (Zuidema et al.
2017). As expected, the FSSs increased with R for a given
forecast lead time, correctly reflecting the higher predict-
ability of the larger scales. On average, the experimental dif-
ferences persisted for ∼2 h, although this period tended to
be slightly longer as R increased.

Regardless of the chosen verification scale, ALL provided
the best forecast performance, with the FSS differences being

TABLE 2. EnKF cycling period and assimilated PISA sites for the 10 PECAN cases used in this study. The numbers in the last seven
columns of the table indicate how many radiosondes were launched at each of the assimilated PISA sites.

Case

EnKF cycling on the d02 domain Assimilated PISA sites

Start End FP1 FP3 FP4 FP5 FP6 MP1 MP3

5 Jun 2015 0000 UTC 5 Jun 0430 UTC 5 Jun 3 1 1 3 3 3 3

6 Jun 2015 0000 UTC 6 Jun 0330 UTC 6 Jun 3 1 1 3 3 3 1
7 Jun 2015 2100 UTC 6 Jun 0200 UTC 7 Jun 1 3 3 3 3 3 3

20 Jun 2015 0000 UTC 20 Jun 0700 UTC 20 Jun 3 13 4 3 3 4 5
26 Jun 2015 0000 UTC 26 Jun 0300 UTC 26 Jun 3 2 3 2 3 1 3

2 Jul 2015 0000 UTC 2 Jul 0300 UTC 2 Jul 3 1 1 1 3 3 3

5 Jul 2015 0000 UTC 5 Jul 0500 UTC 5 Jul 3 2 2 3 2 2 3

11 Jul 2015 0000 UTC 11 Jul 0600 UTC 11 Jul 3 4 4 4 5 3 3
14 Jul 2015 0000 UTC 14 Jul 0300 UTC 14 Jul 3 2 2 2 2 3 3

16 Jul 2015 0000 UTC 16 Jul 0230 UTC 16 Jul 3 3 3 2 3 3 2

TABLE 1. List of WRF (version 3.8) physics options.

Parameterization Scheme Reference

Microphysics (EnKF cycling) WRF single-moment 6-class (WSM6) Hong and Lim (2006)
Microphysics (forecast) Thompson Thompson et al. (2008)
Planetary boundary layer and

surface layer
Mellor–Yamada–Nakanishi–Niino

(MYNN)
Nakanishi and Niino (2006)

Land surface Unified Noah land surface model Tewari et al. (2004)
Longwave radiation Rapid Radiative Transfer Model for

GCMs (RRTMG)
Iacono et al. (2008)

Shortwave radiation Goddard shortwave; Chou and Suarez (1994)
Cumulus (d01 domain only) Kain–Fritsch, Grell–Freitas ensemble

and, Grell 3D ensemble
Kain (2004); Grell and Freitas (2014);

Grell and Devenyi (2002)
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statistically significant at smaller R and for forecast lead times
between 1 and 2 h. Given that the forecast skill at these
smaller scales was completely lost toward the end of the 5-h
forecasting window,2 our verification statistics indicate that the
analysis benefits brought by ALL lasted for more than 30% of
the typical convective predictability time scale in CTL. Another
interesting aspect of these aggregated statistics is the similarity
of the FSSs at the start of the forecasting period}a result which
is opposite to some of the findings reported in Degelia et al.
(2020, e.g., see their Fig. 4). The comparable short-term perfor-
mance of CTL and ALL in our study implies that the environ-
mental perturbations brought by the assimilation of PECAN
profilers required additional growth before being able to impact
the subsequent convective evolution.

Some marginal improvements were also observed with respect
to ALLPROF, although those were considerably smaller and
shorter-lived. While the most pronounced ALLPROF benefits
occurred at R = 150 km (where ALLPROF was nearly as skillful
as the best-performing ALL experiment), the FSS differences at
this verification radius were not statistically significant.

The impacts from single profiler experiments (SONDE,
TQPROF and UVPROF) were generally smaller than ALL
and ALLPROF. In addition, the verification statistics of these
experiments were more sensitive to the chosen verification
radius: they improved upon the CTL skill at R = 5 km (espe-
cially SONDE), but their impacts at larger R values became
neutral or even slightly negative.

To test the extent to which the presented impacts depend on
the chosen verification subdomains, aggregate FSS statistics were
also computed over the entire d02 domain. While the experimen-
tal differences were considerably smaller in this case, the positive
impacts from ALL were still present during the first 2 h of the
forecast. This is a very promising result as it implies that the

assimilation of ground-based profilers had domain-wide benefits
on the convective forecasts.

2) FLOW DEPENDENCE OF THE FORECAST IMPACTS

One of the most interesting aspects of this systematic study
was the strong variability of the convective skill. To understand
how this variability modulated the impacts discussed so far, the
10 PECAN cases were split into 3 predictability categories based
on the 2-h FSS associated with the CTL experiment (see Fig. 4).
The choice of this specific lead time was motivated by the fact
that the least predictable PECAN cases tended to completely
lose their convective skill 2 h into the forecast (Fig. 4a). On the
other hand, this predictability definition is also consistent with
the duration of the largest experimental differences in the aggre-
gated FSS statistics, as evident in Fig. 3. One notable exception
to this rule was the HP cases where the experimental differences
started to grow only after 2 h of model integration (Fig. 4c).

Differences in the forecast impacts for each predictability cat-
egory are visualized through the violin plots in Fig. 5. The color
shaded distributions in each panel show the FSS differences
between a certain PECAN experiment and CTL. Similar to the
average FSS results, ALL continues to be the best performing
experiment in the low predictability (LP) category (5, 11, and
14 July), with the largest contributions coming from TQPROF.
We also observe that ALLPROF performed slightly worse than
TQPROF, indicating that the addition of kinematic profilers
degraded the forecasts. This is to be contrasted with the high
predictability (HP) category (6 June, 7 June, 20 June, and
2 July) where UVPROF achieved the highest FSSs, while the
addition of other profiling instruments in ALLPROF and ALL
decreased the overall convective skill. On average, both
TQPROF and UVPROF had a slightly negative impact in the
medium predictability (MP) category (5 June, 26 June, and
16 July), whereas their combined assimilation produced a visi-
ble improvement in the convective skill. Together with the posi-
tive impacts in SONDE, this finding indicates the importance of

FIG. 3. Fractions skill scores (FSSs) averaged over the 10 PECAN cases and calculated for three different neighborhood radii: (a) 5,
(b) 25, and (c) 150 km. The markers at the bottom of each panel indicate whether the FSS differences between a given PECAN experiment
and CTL are statistically significant at the a� 0:01 level, as determined by a bootstrap method with 10,000 resamples. The1 and – symbols
differentiate between positive and negative impacts, respectively.

2 The loss of convective skill is evident in the small FSS changes
at the end of the forecasting window. Error saturation forR = 5 km,
for instance, occurs when the lead time is 4.5 h.
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simultaneously observing the thermodynamic and kinematic
components of the model state in the MP cases.

b. Bore impacts

1) VERIFICATION METHODOLOGY

Atmospheric bores are particularly challenging to identify
and track due to their complex footprint on several meteoro-
logical variables. Even though some NWP-based algorithms
have been proposed in the past (e.g., Chipilski et al. 2018), the
objective detection of bores in observational datasets remains
elusive. Albeit these limitations, our study attempts to provide
a comprehensive assessment of how the assimilation of differ-
ent ground-based profiling networks affects the forecast skill
of explicitly resolved bores. Toward this end, ensemble mean
forecasts from the simulated PECAN cases were verified in
two different ways. Similar to Geerts et al. (2017, see their
Fig. 8), we first examined the spatial representation of bores
by comparing model fields of vertical velocity at 1 km AGL
(w1km) against the position of fine lines in low-level radar
reflectivity data. This methodology resembles the one utilized
byWilson and Roberts (2006) and aims to examine the realism

of various simulated bore attributes, including position, extent
and propagation direction.

Our second verification method examined the extent to
which the ensemble mean forecasts were able to accurately
simulate the amount of bore lifting (Dh), i.e., the difference
between the post and pre-bore PBL heights. The choice of this
metric was motivated by its relevance to the initiation and
maintenance of nocturnal convection: a larger Dh value trans-
lates to more pronounced mechanical lifting at the leading
edge of the bore, which in turn creates more favorable condi-
tions for air parcels to reach their level of free convection. To
estimate Dh, we followed Chipilski et al. (2018) and searched
for the water vapor mixing ratio (q) or virtual potential tem-
perature (uy) contour associated with the largest vertical dis-
placement near the ground. Aside from the University of
Wisconsin King Air (UWKA) moisture retrievals used in
CWP20, our bore verification dataset featured additional ther-
modynamic profiles from ground-based AERI sites as well as
moisture retrievals from the National Aeronautics and Space
Administration (NASA) DC-8 aircraft. All 20 Dh measure-
ments (see filled circles in Fig. 2b) were then compared to
model-derived Dh estimates from vertical cross sections gener-
ated in proximity to the observed bore locations.

FIG. 5. Violin plots showing the predictability-dependent FSS differences between the five PECAN experiments and CTL. The (a) LP
and (b) MP cases combine all FSS differences during the first 2 h, whereas the (c) HP category only considers lead times between 2 and 5 h
when the experimental differences are more pronounced.

FIG. 4. As in Fig. 3, but the FSSs here are conditioned on the three predictability categories}(a) LP, (b) MP, and (c) HP (see main text
for more details)}and are only shown for R = 25 km. Note that statistical significance has not been tested here due to the small number of
cases in each predictability category.
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2) SPATIAL IMPACTS

The summary statistics in Table 3 indicate that the spatial
structure of the simulated bores in CTL was consistent with the
verifying radar observations in 4 out of the 10 cases. For the
remaining 6 cases, the most common forecast issues pertained
to the maintenance and extent of the predicted bores. Interest-
ingly, these problems occurred most frequently in the LP
regime where the parent MCSs tended to dissipate too quickly.
This close relationship between the forecast skills of the bore
and its parent MCS has a dynamical explanation; namely, the
premature dissipation of the parent MCS leads to a weaker and
shorter-lived cold pool that is in turn not capable of sustaining
upstream-propagating disturbances for a very long time (see
section 7 of White and Helfrich 2012). In the majority of these
situations, the assimilation of ground-based profilers resulted in
distinct forecast improvements. One such example comes from
the 5 July case (Fig. 6) where ALL was able to successfully
recover the eastern segment of the bore (originally missing in
the CTL forecast). In agreement with the convective LP find-
ings reported earlier in this Section, the largest contribution to
this positive impact came from the TQPROF network.

The second, less common problem in CTL involved the
spatial orientation/propagation direction3 of the explicitly
resolved bores. Here the assimilation of PECAN profilers
was also found to be helpful. Examining the 5 June case in
Fig. 7, for instance, we see that CTL incorrectly simulated a
southeastern- rather than a southwestern-propagating bore
(cf. Figs. 7a,b). Similar to the 5 July case, the simultaneous
assimilation of thermodynamic and kinematic remote sensors
was essential for producing better forecast results (Fig. 7d);
however, unlike the 5 July case, the inclusion of PECAN
radiosondes did not bring any additional forecast benefits
(cf. Figs. 7c,d).

3) STRUCTURAL IMPACTS

In Fig. 8, the Dh ensemble mean forecasts from all six experi-
ments were objectively compared against the available bore
observations. However, before commenting on the performance
of different ground-based networks, it is worth noting that the
average Dh value in our observational dataset (810.5 m) is com-
mensurate with other recently published composite bore studies
(Parsons et al. 2019; Loveless et al. 2019). Furthermore, the wide
range of observed Dh values suggests that the thermodynamic
profilers used here were able to sample a large variety of atmo-
spheric bores.

Based on the Pearson correlation coefficient (r) values, there
appears to be a weak positive linear relationship between the
observed and simulated bore lifting values, but we also observe a
relatively large scatter and negative bias, especially with respect to
the high-amplitude bores. From the single profiler experiments
(Figs. 8d–f), TQPROF led to the strongest forecast changes. How-
ever, the impacts from this ground-based network were not neces-
sarily all positive: while TQPROF reduced the root-mean-square
error (RMSE) by ∼60 m and achieved the highest r value across
all experiments, it further exacerbated the negative bias in CTL
by ∼10 m. On the other hand, the two combined ground-based
networks (Figs. 8b,c) were able to improve all of the aforemen-
tioned verification metrics. They exhibited very similar perfor-
mance, implying that the assimilation of radiosonde data on top
of ground-based remote sensors had a negligible impact overall.

5. Case studies

The results from section 2 indicated that the forecast perfor-
mance of SONDE, TQPROF, and UVPROF tends to be flow-
dependent. To further explore the potential dependence of our
findings on this aspect, we performed a detailed analysis of
three representative PECAN cases whose main purpose was to
establish a relationship between the forecast impacts of single
profiler networks and the governing convective dynamics.

a. Low predictability case: 11 July 2015

For the LP category, we selected the 11 July case since its
FSS time series was most representative of the average

TABLE 3. Subjective evaluation of the forecast impacts pertaining to the spatial characteristics of the explicitly resolved bores; the
1 and 2 symbols denote positive and negative impacts, respectively. Some of the entries in the last column contain the word
synergy, which indicates that the positive impacts in ALLPROF and/or ALL exceed those caused by the assimilation of single
profiling instruments.

Case CTL problems Impacts in ALLPROF and ALL Contribution from individual instruments

5 Jun 2015 Orientation 1 in both 1 from TQPROF and UVPROF; synergy
6 Jun 2015 Orientation, higher speed 1 in ALLPROF and 2 in ALL 1 from TQPROF and UVPROF; synergy
7 Jun 2015 Smaller extent 2 in ALLPROF and 1 in ALL 1 from SONDE and 2 from TQPROF; synergy

20 Jun 2015 No No }

26 Jun 2015 No No }

2 Jul 2015 No No }

5 Jul 2015 Maintenance, smaller extent 1 (extent) in both 1 from TQPROF; synergy (only in ALL)
11 Jul 2015 Maintenance, smaller extent 1 (maintenance) in ALLPROF and 1 from all; synergy

1 (maintenance, extent) in ALL
14 Jul 2015 Maintenance 1 in both 1 from TQPROF
16 Jul 2015 No No }

3 A bore can propagate in several different directions. There-
fore, to avoid ambiguity in the intended meaning of bore propaga-
tion, we use the propagation vector in the center of the observed
and forecasted bore segments.
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impacts in this predictability regime (see Fig. 5a). The same
11 July case was also the focus of a recently published work by
Carroll et al. (2021) who leveraged lidar observations and
Rapid Refresh model analyses to study the mesoscale moisture
transport responsible for the parent MCS initiation on this date.

Figure 9 shows the forecast performance at 0700 UTC}the
time when the experimental differences reached their peak val-
ues. The low NEPs that the CTL experiment predicted inside
the parent MCS are a sign of rapid convective dissipation, which
was quite a common feature in this predictability regime. Based
on the FSS values in the upper left corner of each panel, it is
clear that the most significant gains in forecast skill came from
ALL and TQPROF, despite the tendency of these experiments
to generate regions of spurious convection to the east of the
parent MCS.4 Slight improvements can be also seen in
ALLPROF, whereas the assimilation of SONDE and UVPROF
produced a marginal forecast degradation.

The green scatter dots in Figs. 9b–f represent regions in the
model domain where the assimilated ground-based profiling net-
works caused an increase in the forecasted low-level moisture.
They indicate that the aforementioned convective impacts were
correlated with differences in the low-level moisture field. More
specifically, it appears that the continuous assimilation of the
thermodynamic AERI retrievals resulted in a significant mois-
ture increase that maintained the MCS for a longer time. The
magnitude of these moisture changes was slightly reduced with
the addition of kinematic profilers (see ALLPROF in Fig. 9c),
but subsequently increased when all PECAN instruments were
assimilated together (see ALL in Fig. 9b). To gain further
insights into these results, an additional experiment termed
ALLTQ was conducted where only thermodynamic data (in situ
and remotely sensed) were assimilated. ALLTQ produced the
highest FSSs among all experiments (not shown), implying that
the forecast improvements in ALL were caused by the assimi-
lated thermodynamic observations. This enhanced forecast sen-
sitivity to the initial moisture fields aligns well with the findings
of Carroll et al. (2021), where it was shown that the convection
initiation on 11 July was coincident with an observed maximum
in the water vapor flux.

FIG. 6. Example of how the assimilation of different ground-based profiling networks affected the predicted bore extent during the
5 July 2015 case. (a) Observed low-level reflectivity mosaic at 0554 UTC (taken from the PECAN field catalog). (b)–(g) Analysis mean ver-
tical velocity at 1 km AGL (w; color shading) and 30-dBZ composite MRMS reflectivity (black contours) at 0600 UTC. The dashed ellipses
in (a) and (c) mark the location of the eastern bore segment discussed in the main text.

4 Additional tests showed that including the region of spurious
convection in the FSS calculations did not change the fact that
ALL and TQPROF were the best performing experiments in this
case.
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Although both AERIs and radiosondes provided valuable
moisture information that was crucial for the accurate simula-
tion of the bore-generating MCS, the positive moisture differ-
ences created by the former experiment were significantly
larger. To explain why, we now discuss the low-level moisture
innovations at the FP3 PECAN site (see Fig. 10). Focusing on
the two solid curves, we first observe that the TQPROF
background was consistently drier than the observations
following cycle 23. However, the frequent assimilation of
AERI retrievals continuously nudged the TQPROF forecasts
toward the observed state such that the moisture innovations
during the last EnKF cycle became negligible. During cycle 24,
the SONDE innovations were also negative and similar in
magnitude to TQPROF. Nevertheless, due to the complete
lack of observations in subsequent cycles, the background
innovations continued to grow and reached 2 g kg21 during
the final analysis time – values that resemble the Rapid
Refresh model analysis errors reported in Carroll et al. (2021).
At this point, even though the assimilation of FP3 radiosonde
data produced large moisture increments, the SONDE analy-
sis innovations remained strongly negative. These diagnostics
suggest that the lack of appreciable moisture changes in

SONDE was caused by the small number of PBL observa-
tions, which were not able to effectively suppress the growing
background errors in this experiment.

To illustrate the forecast degradation in UVPROF, we com-
pared its DA performance to that of TQPROF at 0600 UTC
(Fig. 11). During this last EnKF cycle, the low-level moisture
background in both experiments contained a localized region
of dry air ahead of the parent MCS. Assimilating the MP1
AERI instrument, which was located within the dry region,
generated positive increments in water vapor mixing ratio
(red contours in Fig. 11a). By contrast, the MP1 kinematic
profiler further enhanced the strength of the dry region. To
explain these opposite impacts, we need to first recall that q
is not a directly observed variable in UVPROF, meaning that
all moisture corrections in this experiment were entirely
determined by the empirical background covariances. And
since q represents a passive tracer in the absence of evapora-
tion or condensation processes, the moisture–wind back-
ground covariances in UVPROF reflect the advection of q by
the wind. With this in mind, we now observe that the MP1
kinematic profiler induced a westerly wind increment (east-
ward-pointing black arrows in Fig. 11b) that acted upon a

FIG. 7. As in Fig. 6, but with respect to the propagation direction of the explicitly resolved bore during the 5 Jun 2015 case. Both observed
and forecasted data are displayed at 0530 UTC on that day.
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sharp moisture gradient around the MP1 site. Since q was
considerably smaller upstream of MP1, an increase in the
westerly component of the wind was correlated with a
decrease in the moisture content.

b. High predictability case: 2 July 2015

The observation impacts in the HP category are exempli-
fied through the 2 July case, which was characterized by a
quickly moving MCS with a large, eastward propagating bore.
As expected, CTL produced a very satisfactory prediction of
the parent MCS even 3h into the forecast (Fig. 12a), despite
the fact that the total DA period in this HP case was half as
large compared to its LP counterpart.

The main motivation for selecting the 2 July event was
the superior performance of UVPROF (cf. NEP changes in
Fig. 12f)}a typical characteristic in this HP category. Unlike the
11 July case, the convective forecasts here were most sensitive to
differences in the forecasted low-level wind field. In particular,
the black arrow in Fig. 12f indicates that UVPROF predicted a
stronger inflow toward the parent MCS. To reveal how these
wind changes affected the subsequent convective evolution, we
examined the vertical structure of the simulated cold pools. The
cross sections in Fig. 13 show that the stronger inflow in
UVPROF enhanced the low-level convergence along the cold
pool’s leading edge. The associated stronger updraft promoted a
more sustained growth of new convective cells, largely alleviating
the premature MCS dissipation in CTL. Interestingly, slight
increases in the updraft’s strength were also observed in the other

PECAN experiments, especially ALLPROF and ALL. Despite
their opposite near-surface wind impacts, these two experiments
were still able to deepen the cold pool’s inflow region and
increase the height-integrated convergence along the cold pool’s
leading edge.

Similar to the LP analysis, we now seek to understand why the
kinematic remote sensors were more effective at improving the
forecast skill than the corresponding radiosonde instruments. To
answer this question, we consider innovation statistics from the
FP3 site where most of the forecasted inflow differences in
UVPROF originated from. It is clear from Fig. 14a that the wind
innovations in UVPROF became negligible after the first EnKF
cycle (cf. the solid and dashed blue lines). The small UVPROF
increments throughout most of the cycling period suggest that
the high observation frequency of the kinematic remote sensor
was not an essential ingredient for improving the forecast skill in
this case. Instead, it was the ability of UVPROF to correct the
model state early enough in the DA window so that the resulting
wind changes can affect the subsequent convective evolution.5

While this reduced sensitivity to temporal frequency makes
radiosondes a potentially useful observing platform, the FP3
crew launched their first weather balloon only during the last

FIG. 8. Systematic verification of the forecasted bore lifting (Dh). The bias, root-mean-square error (RMSE), and Pearson correlation
coefficient (r) associated with different experiments are summarized in the top-left corner of each panel.

5 It could be also argued that the increased sampling frequency
of the kinematic remote sensor represents an indirect benefit since
it ensures that observations will be made at dynamically important
times.
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EnKF cycle, not leaving sufficient time for the wind corrections
to be advected toward the cold pool. In fact, comparison between
the solid red and blue curves in Fig. 14a indicates that the initial
wind errors at FP3 amplified over the cycling period and created
an even greater observation misfit during SONDE’s first assimi-
lation time.

The inability of TQPROF to create meaningful wind incre-
ments in this HP case can be primarily attributed to the high
accuracy of the background low-level moisture fields (relative

to the LP case), as evidenced by the root-mean-square innova-
tion (RMSI) profiles in Fig. 14b. To be more precise, the
absence of large moisture innovations prevented the EnKF
from making significant changes to both observed and unob-
served state variables. Further diagnostics also revealed that the
small moisture innovations in TQPROF were accompanied by
relatively small moisture–wind correlations. As a result, even
the few EnKF cycles that featured relatively large moisture cor-
rections were not able to produce sizeable wind increments.

c. Medium predictability case: 5 June 2015

We close this Section by discussing the forecast impacts the
5 June case when the convective evolution was considerably
more complex in comparison to the previous two cases. The
bore-generating MCS here interacted with another, much larger
MCS to its northeast (see the upper-right corner of Fig. 15a).
Problems with the CTL experiment included the low NEP values
inside the parent MCS as well as the simulation of spurious NEP
probabilities to its east. Consistent with our conclusions for the
MP category, forecast improvements in this case required the
simultaneous assimilation of thermodynamic and kinematic pro-
filers (Fig. 15c). By contrast, the use of networks consisting of sin-
gle remote sensors resulted in either neutral or slightly negative
impacts, primarily due to further NEP reductions inside the par-
ent MCS (Figs. 15e,f).

FIG. 9. Convective forecasts for the 11 Jul 2015 case, valid at 0700 UTC (corresponding to a 1-h forecast lead time). The color shading
represents (a) the NEP values associated with CTL and (b)–(f) the NEP differences between a given PECAN experiment and CTL. Over-
laid on these plots are also the 30-dBZ composite MRMS reflectivity (solid black contours), the experimental differences in the ensemble
mean of water vapor mixing ratio at 500 m above the ground (Dq; light and dark green dots correspond to areas where Dq exceeds 0.5 and
1 g kg21, respectively), and the position of assimilated ground-based PISA sites (yellow stars). The FSSs associated with each experiment
are additionally shown in the top-left corner of each panel. As explained in the main text, the FSS verification subdomain is centered over
the parent MCSs and includes the outward-propagating bores.

FIG. 10. FP3 innovation time series of specific humidity (dQ)
averaged over the 950–850-hPa layer and shown for the second half
of the 6-h EnKF cycling period on 11 Jul 2015. Note that the inno-
vation values plotted here represent the ensemble mean minus
observation differences; the blue and red colors refer to the back-
ground (bg) and analysis (anl) innovations, respectively.
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The location of the FP3 site (see yellow star in Fig. 16a),
which was assimilated as part of our 5 June experiments,
partly explains why it was necessary to observe both the ther-
modynamic and kinematic components of the model state: it
was positioned very close to a sharp near-surface boundary

characterized by strong variations in moisture and wind (and
along which the bore-generating convective system developed
in later EnKF cycles).

Given that SONDE was the best performing single profiler
experiment during this case, we now examine its low-level

FIG. 11. Comparing the 500 mAGL analysis increments in (a) TQPROF and (b) UVPROF during the last EnKF cycle
on 11 Jul 2015 (valid at 0600 UTC). The color shading, white arrows, and solid dark gray contours represent the back-
ground ensemble means of water vapor mixing ratio (q), wind, and 30-dBZ reflectivity, respectively. Positive (negative)
q increments are shown as red (blue) contours and are displayed for the following values:60.15,60.25, 60. 5, 61,61.5,
62, and 62.5 g kg21. Wind increments are shown as black arrows and are additionally magnified ∼10.6 times relative to
the background wind. Note that the moisture and wind increments inside the parent MCS are deliberately clipped in order
to better highlight the environmental changes brought by the assimilated ground-based remote sensors (see yellow stars).

FIG. 12. As in Fig. 9, but for 0600 UTC 2 Jul 2015 (corresponding to a 3-h forecast lead time). The green (yellow) dots show negative
(positive) differences in the u component of the ensemble-mean wind at 500 m AGL; the lighter (darker) colors mark regions where these
differences exceed 0.5 (1) m s21.
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increments (overlaid in Fig. 16a) in order to justify some of the
subsequent forecast improvements. Evidently, the dry moisture
increments at 500 m AGL extended to 2 km AGL (Fig. 16b)
where the background wind was oriented from south-south-
west. The resulting negative SONDE-CTL moisture differences
were then advected into the region of spurious convection and

helped suppress the excessively large NEP values in CTL.
Insofar as the wind impacts in SONDE are concerned, the
black arrows in Fig. 16a reveal two main types of correc-
tions. The first one pertains to a broad area of southerly
wind increments around the FP3 site that reflects an under-
estimation in the forecasted LLJ speed. We also observe

FIG. 13. Vertical cross sections through the cold pool associated with the parent MCS on 2 Jul 2015. The color shading displays the hori-
zontal wind speed parallel to the cross section, with positive (negative) values indicating flow oriented in the positive (negative) x direction.
The solid black contours show the virtual potential temperature and are plotted every 2 K, starting from 310 K near the surface. Vertical
velocities are also shown as solid blue contours whose spacing and initial value are both set to 0.25 m s21. The maximum value of the verti-
cal velocity (Wmax) is additionally labeled in the bottom-left corner of each panel. All cross sections are valid at 0530 UTC, which corre-
sponds to a 2.5-h forecast lead time for this PECAN case.

FIG. 14. Observation space diagnostics for the 2 Jul 2015 case. (a) Background u-wind innovation and bias profiles
(solid and dashed curves, respectively) for UVPROF and SONDE (blue and red colors, respectively) at the FP3 site.
Note that the UVPROF’s bias profile represents an average over all UVPROF’s innovations between the 2nd and
18th cycles. (b) Background root-mean-square innovation (RMSI) profiles of specific humidity (Q) associated with
TQPROF for the 2 Jul (solid curve) and 11 Jul 2015 (dashed curves) cases. All RMSI profiles are averaged over the
last 3 h prior to model initialization.
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northeasterly wind increments between the two convective cells
to the northwest of FP3 (see yellow ellipse in Fig. 16a), which
were induced by the spatial wind covariances in the background
ensemble. Regardless of their origin, the effect of both incre-
ment types was to strengthen the preexisting low-level conver-
gence to the north of FP3. Somewhat analogous to the
dynamical mechanisms discussed as part of the HP case, the
resulting enhancement of the low-level vertical velocity (see red
contours in Fig. 16c) created more favorable conditions for con-
vective growth and likely explains why SONDE predicted
higher NEP values inside the parent MCS.

Next, to understand why the TQPROF and UVPROF predic-
tions were not as skillful, we examine their DA impacts during
two different EnKF cycles. The first one is valid at 0310 UTC
(first row of Fig. 17), i.e., only 10 min after assimilating the FP3
radiosonde observations. Although the increments in TQPROF
and UVPROF were not as coherent or widespread as those in
SONDE, they appear to be subjectively consistent – both in
terms of the reduced moisture content as well as the strength-
ened LLJ. This similarity between TQPROF and UVPROF,
which occurred during several other EnKF cycles, comes in con-
trast to the LP case where the two experiments produced oppo-
site increments. To explain this apparent discrepancy, we note
that the low-level moisture on 5 June 2015 varied on much larger
scales compared to the LP case and was also strongly correlated
with the low-level wind field. For example, the dry air mass was
clearly associated with south-southwesterly winds, whereas the
flow in the moist air mass had a predominantly easterly compo-
nent. In this much simpler dynamical context, measurements of
either moisture or wind are sufficient to accurately constrain
both variables during the EnKF analysis update.

The aforementioned dynamical situation changed during the
last hour of EnKF cycling when convection started to develop
over the FP3 site. As a result of the highly nonlinear convective
dynamics, the wind–moisture relationship became more complex
and it was no longer possible to accurately estimate the model
state by only assimilating single remote sensors. This effect is
illustrated well on the bottom row of Fig. 17: we see that
TQPROF produced a distinctly negative moisture increment
around FP3, whereas the moisture changes in UVPROF were
more or less neutral despite the much larger background mois-
ture content in UVPROF. We hypothesize it was, namely, these
cross-variable analysis errors that eventually degraded the
TQPROF and UVPROF performance.

Finally, it is worth remarking that the strategic timing of the
FP3 radiosonde launch likely enhanced the overall forecast bene-
fits in SONDE. Specifically, the FP3 radiosonde provided vital
environmental information just prior to convection initiation
when the relatively linear model dynamics still enabled the
EnKF algorithm to generate meaningful PBL corrections. This
setup is to be contrasted with the HP case where the lack of
radiosonde measurements early in the DA window limited their
subsequent impacts.

6. Summary and conclusions

This work evaluated the benefits of various ground-based pro-
filing networks across 10 diverse cases from the Plains Elevated
Convection at Night (PECAN) field campaign. In particular, we
explored the impacts of assimilating in situ and remote sensing
instruments on the short-range forecasts of bore-generating noc-
turnal convection. A total of five data addition experiments were

FIG. 15. As in Fig. 9, but for 0600 UTC 5 Jun 2015 (corresponding to a 1.5-h forecast lead time).
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conducted in order to evaluate the relative merits of networks
with single and combined instrument designs.

Aggregated verification statistics revealed that the largest
forecast improvements are obtained by simultaneously assimi-
lating in situ and remote sensing profilers. Combining thermo-
dynamic and kinematic remote sensors also resulted in
measurable benefits, especially with respect to the explicitly
resolved bores. On the other hand, the average impacts from
single profiler networks were shown to be mostly neutral in
sign. Detailed analysis revealed that the lack of statistically

detectable benefits from such networks is related to their
flow-dependent performance: thermodynamic and kinematic
remote sensors were found to be most beneficial in cases with
low and high convective skill, respectively. When averaged
across the 10 cases, these variable impacts negated each other,
explaining why the skill of single profiler experiments was not
statistically different from our control simulations.

To illustrate the aforementioned sensitivities, we used three
representative cases and showed that the underlying dynamical
context plays a crucial role in shaping the forecast impacts from

FIG. 16. Dynamical interpretation of the forecast improvements during the 5 Jun 2015 case. (a) Analysis increments for
SONDE at 0300 UTC. The meaning of all symbols is as in Fig. 11, but that the q increments are drawn at60.5,60.1,62,
and 64 g kg21, whereas the ratio of background to increment wind (represented by the white and black arrows, respec-
tively) is ∼1:3. The dashed yellow ellipse shows the position of the northeasterly wind increment discussed in the main
text. (b) SONDE-CTL analysis mean q differences (Dq; color shading) at 2 km AGL and valid at 0300 UTC. Regions
where Dq is equal to 20.5 g kg21 are highlighted with bisque contours. The solid black contours and black arrows repre-
sent SONDE’s analysis mean of 30-dBZ reflectivity and wind at 2 km AGL, respectively, while the purple dots indicate
grid points where the analysis mean vertical velocity at 1 km AGL exceeds 0.15 m s21. (c) SONDE’s analysis mean
updraft strength at 1 km AGL (w1; blue shading) and its change relative to CTL (red contours starting at 0.1 m s21 and
plotted every 0.2 m s21) at 0310 UTC. The solid black contours and black arrows have the same meaning as in (b), but
are shown for 1 kmAGL. Finally, the position of the FP3 site is marked with a yellow star in all panels.
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different ground-based profiling networks. Our examination
of the low predictability case, for instance, uncovered that the
evolution of the bore-generating convective system is sensitive
to both the low-level moisture analysis and the frequency of
moisture observations, in turn justifying the better forecast
performance caused by the assimilation of thermodynamic
remote sensors. By contrast, the positive impact of kinematic
profilers during the high predictability case were linked to an
enhanced forecast sensitivity to the low-level wind field.

Our study also demonstrated that the performance of single
profiling networks is contingent upon limitations in the underly-
ing DAmethodology. This is due to the fact that accurately esti-
mating the unobserved portion of the model state is closely
related to the quality of the background error covariances. The
main advantage of the EnKF approach used here is that it pro-
vides a flow-dependent covariance estimate based only on a
small number of ensemble members. In the special case of
quasi-linear model dynamics and comparable variability in the
moisture and wind fields (Figs. 17a,b), we found that the ensem-
ble-based covariances are sufficiently accurate to allow single
profiler networks to introduce physically sound corrections with
respect to both mass and wind variables.

On the contrary, when the flow was governed by highly non-
linear dynamics (Figs. 17c,d) and/or the background moisture
varied on scales much smaller than the corresponding wind field
(Fig. 11), a simultaneous estimation of the thermodynamic and
kinematic PBL properties was no longer possible. In these situa-
tions, the ensemble-based covariances could not faithfully
describe the true wind–moisture relationship – either as a direct
consequence of the more complicated dynamics or due to the
insufficient number of ensemble members needed to accurately
resolve the small-scale moisture variability. Consequently, errors
in the analysis of unobserved state variables accumulated over
time and had an adverse impact on the forecasts. All in all, these
findings suggest that the spatiotemporal characteristics of the low-
level moisture transport}an archetypal feature of the nocturnal
environment over the Great Plains (Trier and Parsons 1993; Trier
et al. 2017; Hitchcock et al. 2019; Weckwerth and Romatschke
2019), have important consequences on our ability to extract
meaningful information from single remote sensing networks.

Undoubtedly, future developments in DA theory would be
vital for the better utilization of ground-based remote sensing
technology. One possible research direction involves the develop-
ment of novel methods for estimating the optimal observation

FIG. 17. Comparing the low-level analysis increments in TQPROF and UVPROF during two EnKF cycles on
5 Jun 2015: (top) before and (bottom) after the initiation of convection over the FP3 site. The data shown in these pan-
els are as in Fig. 16a, but the ratio of background to increment wind (white and black arrows, respectively) here is ∼2:5
and the60.25 g kg21 q increment is additionally plotted.
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error statistics. The high vertical resolution and temporal fre-
quency of some remote sensors, such as the AERI, make it nec-
essary to introduce spatial and temporal correlations in the error
covariance matrices. Recent findings from Degelia and Wang
(2021, manuscript submitted toMon. Wea. Rev.) have also dem-
onstrated that convective forecasts can be further improved by
adopting a flow-dependent treatment of the observation error
statistics. Another interesting line of future research would be
to explore the benefits of directly assimilating the raw remote
sensing measurements (as opposed to having to rely on a sepa-
rate retrieval algorithm). Such an idea is highly appealing as it
would allow for a more straightforward quantification of the
measurement uncertainties in the estimation process. Finally,
the contrasting moisture variability in our cases would naturally
benefit from a multiscale DA approach capable of imposing dif-
ferent correlation structures as a function of the analyzed scales
(e.g., Wang et al. 2021).

We would like to conclude this article by recognizing that the
relative importance of different initial-condition variables in the
three predictability categories might be an artifact of our case
selection. In other words, there may be other situations where
the forecast skill in low (high)-predictability regimes is more sen-
sitive to the initial wind (moisture) fields, which would act to
reverse the impacts reported in our single profiler experiments.
A better understanding of which initial state variables have the
largest impact on the subsequent forecast errors is essential for
designing new observing systems.
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