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Abstract—Our understanding of COVID-19 pandemic epi-
demiology has many gaps, with many challenges arising on a
global scale. This paper looks at the problem at a smaller geo-
graphical scale, the extent of the campus of a large organization.
Equipped with an asymptomatic testing program and rough
location data from the campus wireless network, we make the
case that epidemiological models may be informed from this new
source of data, which offers fidelity at the temporal resolution of
seconds and spatial resolution of a Wi-Fi cell size, in particular
for the tasks of pinpointing clusters of cases and contexts of
infection transmission. We sketch the design of a system that
fuses the two foregoing information streams and explain how the
result can be incorporated into standard epidemiological models
of communicable disease, both for better parameter estimation
in elementary models, as well as for providing spatial inputs
into more sophisticated models. We conclude with logistical and
privacy considerations we have encountered in an associated
ongoing study, to inform similar efforts at other organizations.

Index Terms—COVID-19, SARS-CoV-2, contact tracing, Wi-
Fi, privacy, epidemiology.

I. INTRODUCTION

While the ongoing COVID-19 pandemic has highlighted
the importance of contact tracing, it has also exposed the
challenges of performing epidemiological analysis and con-
tact tracing for a virus that transmits asymptomatically and
propagates in an airborne manner. Further exacerbating these
challenges is the fact that in general, traditional contact tracing,
which involves primarily human effort in identifying and
communicating with the close contacts of a confirmed case,
has suffered from low compliance rates in the US [1] and large
budgets in, for example, the UK [2]. However, over the past
year, two notable organizational trends have emerged in the
US, Europe, and other countries, in particular.

First, in the past and particularly during the ongoing pan-
demic, people in the US have spent and will likely spend the
majority of their time on a corporate or academic campus.
As users roam about campus, their smart phones connect to
a series of hotspots that comprise the campus Wi-Fi network.
Once configured by a user, this securely-authenticated con-
nection mechanism is automatic, and data concerning such
connections is logged on the campus wireless network servers.
With knowledge of each hotspot’s deployed building and room
location, this data captures users’ rough room-level locations,
as well as the corresponding window of time during which
the user is connected to a certain hotspot. Data is therefore
available for the location of the Wi-Fi hotspot, beginning

and ending time of the user’s association, and average signal
strength between access point and mobile client during the
association. There is good reason to believe that this room-
level data may be of better use than simple “as the crow
flies” distance between two mobile devices, as it may correlate
better than simple distance with two users sharing or not
sharing the same room air space. Therefore, a number of
researchers [3]–[6] and at least one Wi-Fi infrastructure vendor
[7] have proposed leveraging this Wi-Fi infrastructure for
contact tracing.

Second, corporations and universities have begun to set
up in-house or contracted asymptomatic COVID-19 testing
programs, in order to open their campuses and workplaces
more safely. Some pharmacies are offering these services as a
product to corporations. This means that in addition to rough
room-level location data, corporations and universities will and
in some cases already do have asymptomatic testing results
also available in house. This is expected to aid the operational
process of reopening and managing the pandemic in the near
and mid-term future, allowing greater numbers of people to
return to campus and/or reducing the COVID-19 caseload, thus
potentially saving lives.

This paper aims to make the case that the “join” of the
two foregoing sources of data may serve as a new source of
information for epidemiological models, particularly for those
models that are attempting to pinpoint clusters to disease trans-
mission, and those models attempting to understand SARS-
CoV-2 transmission in various indoor spaces, with varying
levels of ventilation and other safety measures.

Current medical consensus indicates that SARS-CoV-2 is
transmitted through contact surfaces, droplets, and aerosols
(airborne transmission), and that risk of transmission through
the latter two modes, in particular, may increase with increased
duration of close contact to a positive case. As SARS-CoV-
2 spread requires contact between people, understanding the
contact between members of the organization is important.
Construction of a realistic contact network identifying the
time, duration, and location of contact between individuals
is therefore useful.

We propose mathematical and statistical modeling ap-
proaches to infer contact patterns from de-identified Wi-Fi
network data and characterize the spread of SARS-CoV-
2. Integrating contact and location information with weekly
viral testing results from the organization can give a unique



perspective to identify locations where transmission is more
frequent, as well as potential super-spreading events, which
can, in turn, help prevent onward transmission.

The rest of this paper is structured as follows. Section II
presents further details on our study design and information
flow. Section III details several different ways the study data
can inform some of the leading disease models in the literature.
We explain our algorithm on identifying risky spaces, and
how can it facilitates mitigating the disease transmission in
Section IV. Section VII and Section V introduces the potential
usage of Wi-Fi data in contact tracing systems, and the
principles for improving subjects’ privacy, respectively. We
discuss other wireless technologies for contact tracing and
proximity prevention in Section VI.

II. STUDY DESIGN

While we describe the design of the system we have con-
structed at Princeton University, most other organizations with
their own campuses have similar wireless networks, and many
others have similar asymptomatic COVID testing programs.

A. Principal Actors

To allow other investigators to create similar studies, we
begin with a list of the principal actors involved in our own
study, and describe their roles in the research.

1) Health authority: Our study is conducted with the
consultation and collaboration with the organizational health
department, which has a primary interest in keeping the
employees and students associated with the organization safe
and healthy at work. In our organization, the health authority
runs the organization’s asymptomatic testing program with an
on-site lab, whose results flow into the IT department servers.
This affords easy access to data as well as improving privacy
and data security considerations, as discussed in Section V.

2) Researchers: As the work is multidisciplinary by nature,
it is essential to involve epidemiologists, computer scientists,
and medical clinicians. It is also useful to consult with the or-
ganization’s health authority and occupational safety authority
for real-world context, which is vital to accurately interpret
the data.

3) Information Technology department: In most organiza-
tions, the IT department runs the campus wireless network,
whose servers contain the Wi-Fi association data that studies
of this type require. In the case of our study, we have worked
with the IT department to ensure certain privacy properties as
discussed in Section V.

4) Research oversight bodies: As studies of this type work
with human subjects, academic institutions generally have
an Institutional Review Board (IRB) that approves research
studies. While IRB review protects human subjects, it does
not consider other institutional compliance issues, and so at
Princeton, data access is governed at the functional unit level.
This institutional review identifies conditions, articulated in a
Data Use Agreement, that ensure that any data made available
to researchers be used in a manner that is consistent with
institutional policy and state and federal regulations.

5) Research subjects: While consent from study partici-
pants obtained on a case by case basis, obtaining a sense of
“buy in” from the greater community at large is important to
encourage participation. Explaining the benefits of the study
to the community as well as to our knowledge of infectious
disease helps in this regard, through the use of press releases
and communications to the community at large.

B. Design Overview

In this section we describe the data sources our study uses,
as well as the mechanisms our study uses to move data to the
right locations within our organization to enable the analysis
we describe in the remainder of the paper.

1) Campus wireless network data collection: Our campus
wireless network uses a system provided by Aruba Net-
works, Inc., of which a subsystem called AirWave collects
and correlates information from several components of the
network, including hotspots, back-end “controller” servers,
and authentication servers.

The data collected consists of a series of tuples containing
the following data:

1) A unique user identifier in the organization;
2) the average signal strength (measured in dBm units) of

the connection;
3) access point (AP) name, which uniquely identifies the AP

the user connects to;
4) connect time: time of day and date the user connected;
5) disconnect time: time of day and date the user discon-

nected.
Information collected via the AirWave subsystem is stored

in a securely-encrypted form in a secure virtual machine
located on physical server machines owned by our IT depart-
ment, and located at a data center nearby.

2) Asymptomatic COVID test data collection: Our study
also uses the results of the on-campus testing for active
infection via saliva sampling. This is an RT-PCR test adminis-
tered by self-collection of a saliva sample in private and then
submitted to our organization via drop boxes or delivery to an
on-campus location.

3) Researcher access: The two foregoing data streams
are de-identified as described in Section V, and filtered to
include only participants who have voluntarily consented to
the research. Then the data are presented to the researchers in
de-identified form on a virtual machine accessible only to the
researchers via the organization’s single sign-on authentication
mechanism, which employs two-factor authentication. At no
time do the researchers have access to identifiable data, and
under the terms of the Data Use Agreement, the researchers
are explicitly prohibited from attempting to identify or contact
any individual who might be included in the data.

III. MODEL INTEGRATION OF WI-FI/COVID TEST DATA

In this section we consider multiple different ways of inte-
grating Wi-Fi and asymptomatic COVID testing program data
into various models of epidemiological disease spread, a key
tool in the arsenal of techniques epidemiologists use to study



1) For each positive COVID test with study identifier x:
a) Construct a list of study ids Nx in the same room as

x for at least time Tmct within transmission window
days Wt around x’s positive test result date.

b) For each y ∈ Nx, query y’s test results within a
incubation window of time Wi after each encounter.

2) Estimate ĉ as the fraction of positives in Step 1b.

Fig. 1. Estimation of the rate constant c in the SIR model, the rate at which
susceptible individuals are infected after meeting infected individuals.

communicable diseases. We begin with the simplest models
and consider progressively more complex models, comparing
their advantages and limitations given the granularity and
amount of data likely to be available to hand.

A. SIR Model Integration

The classic SIR model [8] describes the number of sus-
ceptible (S), infected (I), and recovered (R) individuals in a
population, over time:

Ṡ = −cSI
İ = cSI − wI

Ṙ = wI

(1)

where rate constants c and w describe the rate at which
susceptible individuals get the disease when meeting infected
individuals, and infected individuals recover from the disease,
respectively. This model assumes that recovered people are
immune to the disease.

1) Estimation of SIR rate parameters: Even in this simple
model, we may be able to estimate rates c and w in the
following way, as shown in Figure 1. To estimate the rate
at which susceptible individuals get the disease when meeting
infected individuals (ĉ), we iterate over the study identifiers
of positive COVID tests, and consider the close contacts of
each within a transmission window of the respective positive
COVID test, a period of time around the positive COVID
test during which infection could plausibly take place. We
then query COVID test results of that set of close contacts
over a time window that reflects plausible incubation time of
the disease (incubation window), and estimate ĉ as the total
fraction of positives over all these queries.

The foregoing ĉ estimation algorithm relies on several time
window parameters that are informed by the literature and
public health advice, and hence may be updated as the current
advice changes. We suggest a minimum contact time Tmct =
10 minutes based on US CDC guidelines as of publication.

The transmission window Wt should be set to three days
before, through to one day after the positive COVID test
result. The beginning edge of the transmission window in
the past covers the potential for asymptomatic shedding and
transmission prior to the positive test result, while the trail-
ing edge of the transmission window accounts for the time
between a positive test collection and the quarantine of the
individual due to any laboratory processing and contact tracing

delays. This window’s settings are therefore informed by
the organization’s testing, tracing, and quarantine protocol: at
Princeton individuals who test positive in the asymptomatic
testing program are required to quarantine away from others
on campus.

The incubation window Wi should be set to three days
after, through to nine days after the encounter between the
two individuals. These figures represent an incubation window
that covers about 80% of all incubation times, and can be
adjusted as medical knowledge improves or virus variants
impact incubation time.

To estimate the rate at which infected individuals recover
from the disease (ŵ), we can again select from the data all
positive viral test results, and for each (again with study
identifier x), query the next negative viral test result. By
analyzing the distribution of these recovery times we expect
to see a significant amount of noise in the upper quartiles
of the distribution representing extended quarantine times and
some amount of delay in administering a follow up viral
test. The information contained in the lower quartiles of this
distribution, however, trace an estimate of the distribution of
recovery times, whose mean can be used to estimate w.

2) Spatial parameterization of the SIR model: An issue
with SIR model is that it assumes healthy and infected persons
are distributed homogeneously in space, which is not true
in reality and the heterogeneous distribution has significant
influence on a pandemic. Even for the simple SIR model,
it may be possible to subdivide the model into multiple
smaller models, each covering different regions of the campus
being studied. While conceptually straightforward, each such
division reduces the amount of data collected by the sub-
model size, and so data fidelity may suffer if the subdivision
is performed at a fine granularity: we take this issue up next.

B. SIR-DDFT Model Integration

Since the SIR model has no formal notion of space a
priori, Vrugt et al. combine the SIR model with a dynamical
density functional theory (DDFT) to model social distancing
and isolation behavior. This SIR-DDFT model [9] models the
time evolution of a density field with free energy F as follows:

∂tS = ΓS ~∇ ·
(
S~∇ δF

δS

)
− cSI

∂tI = ΓI ~∇ ·
(
I ~∇ δF

δS

)
+ cSI − wI

∂tR = ΓR~∇ ·
(
R~∇ δF

δS

)
+ wI

(2)

The model admits different mobilities ΓS , ΓI , and ΓR to
model the mobility of susceptible, infected, and recovered
individuals, respectively. We propose to estimate the mobility
coefficient via a query of the Wi-Fi hotspot association time
series. Specifically, for each individual, we have the location
information of the associated Wi-Fi hotsopts, and the corre-
sponding time stamps. Within a mobility time window Wmob,
the velocity of the user V is:

V = (LS − LE)/Wmob (3)



where LS and LE are the locations of the initially and lastly
connected Wi-Fi hotspots, respectively, during the mobility
time window Wmob. By considering the accuracy requirements
of mobility and the collected Wi-Fi data granularity, we set
the mobility time window Wmob = 1 minute. After we obtain
individuals’ mobility estimation, we further separate them into
the three respective SIR-DDFT categories and averaged over
all the individuals in each category.

In this model, the free energy F is given by

F = Fid + Fexc + Fext. (4)

The first term Fid is the ideal gas free energy, which can be
calculated from the time evolution of a crowd density field
[9]. We propose to estimate the density field via the location
distribution of all users, where we use the associated APs’
locations to approximate users’ locations. The second term
Fexc is called excess free energy, which captures the effect
of interactions among people, it incorporates the effects of
social distancing and self-isolation on crowd density, which
can be seen as a repulsive potential between different persons.
Social distancing corresponds to a repulsive potential between
healthy persons, and self-isolation refers to a repulsive poten-
tial between infected persons and other persons. The last term
is the external potential, it corresponds to externally imposed
restrictions on crowd movements, including travel bans or the
isolation of a region with high rates of infection. This term
can be neglected in our campus scenario.

IV. IDENTIFYING RISKY SPACES

Since the focus is on public spaces, we may be able to
retrospectively identify “risky” spaces, and therefore facilitate
mitigating transmission.

One possible algorithm for scoring the risk level of a
particular space is as follows. First, enumerate all of the
locations in our study by AP, i.e., {l1, l2, . . . , lL} if there are
L APs in the entire campus. Then, we iterate first over all
the positive viral test results and then over all the locations
of the positive user existing within the transmission window
period of time Wt (cf. Section III-A1: this basic structure of
the algorithm is similar). With this list of AP locations where
positive users have shown up, we construct a list of potentially
exposed users with study IDs Nx in the same room as positive
users for at least time Tmct within transmission window days
Wt around positive users’ positive test result date. We further
query each potentially exposed users’ test results within an
incubation window of time Wi. If the viral test is positive, we
identify this as a probable transmission event from one user
to another, and then extract the location of that transmission
event lt (t ∈ [1, L]) and increment a risk count vector variable
rl. In this way a risk map can be constructed at the same
granularity as the AP deployment in the campus Wi-Fi network
that characterizes space risk; Figure 2 specifies this algorithm.

Our study may benefit society by increasing the understand-
ing of the characteristics of high-risk environments that can
inform pandemic responses in other areas, including other
universities and similar workplace campuses. Much future

1) For each positive COVID test with study identifier x:
a) Construct a list of study ids Nx in the same room as

x for at least time Tmct within transmission window
days Wt around x’s positive test result date.

b) For each y ∈ Nx:
i) Query y’s test results within a incubation window

of time Wi after each encounter.

ii) Increment risk count variable rl if the viral test
(whose location is l) is positive

2) Report the location risk distribution {r1, . . . , rL}.

Fig. 2. Risk scoring of different locations based on the frequency of estimated
probable transmission events in each space.

analysis taking air flow, ventilation, and other safety mech-
anisms is possible to follow up this approach.

V. PRIVACY AND SUBJECT PROTECTION

The proposed fusion of epidemiological modeling, location
data, and asymptomatic testing program data is unique to our
best knowledge, and so certain privacy issues arise.

The first and perhaps most notable hazard is the publication
of individual location information. A reasonably foreseeable
risk to the subject as a result of participation is the theoretical
risk of breach of privacy of user location and COVID test result
data. This risk is mitigated by the de-identification of all user
data at the source of the data within the organization itself.
Even if de-identified, there is another foreseeable risk because
of the theoretical possibility of re-identifying users based on
the data and real-world observation, for example. To mitigate
this concern, data must be aggregated, and differential privacy
techniques should be applied to any aggregated data before it is
published in order ensure that statistically, individuals cannot
be identified.

Beyond data publication itself, in an April 2020 webinar
[10], Felten of Princeton’s Center for Information Technology
Policy identified several principles for improving subjects’
privacy in the context of contact tracing apps, many of which
overlap with our own proposed list for micro-epidemiology:

a) Principle: Use study identifiers, and recognize their
limitations.: All individual identities are encrypted before use
for the research purpose, with the encryption key stored at
the data source (Office of Information Technology for wireless
network data; University Health Services for COVID test result
data). The study should ask for users informed consent to
use these data, with all University netids, PUIDs, and subject
names therein encrypted and anonymized,

b) Principle: Keep data in situ: In general, there is
concern over the location of users’ data and any sale of such
data. To mitigate such concerns, we suggest keeping the data
in situ to the greatest amount possible.

c) Principle: Informed consent: As part of the IRB
process, studies like the present are required to gain informed
consent from participants. As such, our organization has



instructed our IT department not provide to the research study
data from individuals who decline to consent, or who have
not viewed the consent form. Our IT department filters the
data feed it provides to the study to include solely data from
individuals who have consented.

d) Principle: Consider scoping data: both in space and
time. In space: with the data redacted and scoped to include
solely ”public” locations (”public” locations defined to exclude
all Residential College buildings, dormitories, and on-campus
faculty/staff/student housing), In time: Use from a point in
time beginning 90 days prior to today and continuing until
the closure of the study.

e) Principle: Use study ids and recognize limitations: In
our ongoing study, we de-identify user location and COVID
test data that is stored on IT department servers in the
following way.

Our IT department assigns each user a study ID, a unique
identifier assigned for the purposes of the study that is separate
from other identifiers such as email, employee identifier, name,
etc. A separate key file the IT department holds in secure
storage links study IDs to employee IDs, the purpose being the
ability to delete the key file once the study concludes so that
no one has access to personal identifiers. We have instructed
our IT department to encrypt study IDs in the location data
feed, and provide the research server with a full data feed
but containing solely these encrypted study IDs. We have also
instructed our IT department to work with University Health
Services to map names to study IDs, then apply the same
encryption function to the data subsequently stored on the
research server.

The researchers will not publish any data tied to individuals,
and will apply differential privacy techniques to aggregated
data that is published, to ensure that that aggregated data
cannot be tied to any individuals.

VI. RELATED WORK

a) Contact tracing systems: Contact tracing is widely
used to slow down the spread of COVID-19 [11]. Traditional
contact tracing involves labor-intensive case investigation and
thus is time-consuming and unscalable. Such methods have
also suffered from low compliance rates in the US [1] and
large budgets in, for example, the UK [2]. To make contract
tracing practical, many technology-empowered cost-effective
solutions have been proposed to automate this process.

Location-based contact tracing systems [12]–[15] track the
social distance between citizens using GPS locations of mobile
devices people carry. Tracking the exact location of citizens,
however, raises serious concerns about the user privacy, signifi-
cantly hindering its wide deployment. Proximity-based contact
tracing solutions that directly estimate the proximity between
citizens using Bluetooth Low Energy (BLE) beacons have
been proposed by both the research community [6], [16]–
[19] and commercial companies, like MSR [20], Google and
Apple [21], [22], which preserves user privacy by hiding the
absolute user location and thus is widely adopted by diverse
organizations and governments of many countries [12], [13].

Our Wi-Fi data and COVID test data could help to streamline
and increase the accuracy of existing contact tracing efforts.

b) Proximity prevention systems: A number of systems
have been devised whose goal is to help people maintain
social distancing measures that health authorities worldwide
recommend or require. They vary in their design, using Wi-
Fi probes [23], Bluetooth beacons [24]–[26], ultra wideband
(UWB) probes [27], or a combination of Bluetooth beacons
and UWB probes [27], [28] to estimate the proximity between
mobile users. When close-contact, i.e., distance smaller than
six feet, is identified according to the proximity, the proximity
prevention system signals an audible or tactile alert to one or
more persons’ wearable devices that they are too close.

c) Mathematical theory of epidemiology: Mathematical
theory has been widely used to analyze the epidemiological
disease spread, and containment. [29] has adopted a analytical
model to explore the relationship between the level of in-
fection, vaccination and community immunity. [30] leverages
epidemiological models to explore estimates for the magni-
tude and timing of future COVID-19 cases, given different
assumptions regarding the protective efficacy and duration of
the adaptive immune response to SARS-CoV-2, as well as its
interaction with vaccines and nonpharmaceutical interventions.
The widely used susceptible-infected-recovered (SIR) model
[8] can take externally imposed restrictions into account by
varying the spreading rate and recovery rate. However, a
drawback of this model is that it assumes healthy and infected
people are homogeneously distributed in space. In facing of
spatial diversities, some disease-spreading theories [31]–[35]
extend the SIR model to reaction–diffusion equations. An
issue with the reaction–diffusion equations is that they do not
take crowd interactions into account, including the effect of
social distancing and self-isolation. To make a more accurate
estimation of the epidemiological disease spread, we apply our
data on the SIR-DDFT model [9], which is a general form of
the reaction–diffusion equations.

VII. ONGOING AND FUTURE WORK

Currently, our project is recruiting subjects, to reach a
dataset size sufficient for performing experiments and fitting
the parameters of those models. Operationally, Wi-Fi and
COVID test data may in future help to streamline and increase
the accuracy of the contact tracing efforts of health authorities.
Such efforts may assist the health authority and the organiza-
tion’s administration to understand the pandemic’s evolution
on their campus, thus to make more informed decisions on
mitigation measures in future pandemics or outbreaks of the
current pandemic.
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