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ABSTRACT
In general, graph neural networks (GNNs) adopt the message-
passing scheme to capture the information of a node (i.e., nodal
attributes, and local graph structure) by iteratively transforming, ag-
gregating the features of its neighbors. Nonetheless, recent studies
show that the performance of GNNs can be easily hampered by the
existence of abnormal or malicious nodes due to the vulnerability of
neighborhood aggregation. Thus it is necessary to learn anomaly-
resistant GNNs without the prior knowledge of ground-truth anom-
alies, given the fact that labeling anomalies is costly and requires
intensive domain knowledge. In order to keep the effectiveness
of GNNs on anomaly-contaminated graphs, in this paper, we pro-
pose a new framework named RARE-GNN (Reinforced Anomaly-
REsistant Graph Neural Networks) which can detect anomalies
from the input graph and learn anomaly-resistant GNNs simultane-
ously. Extensive experiments on real-world datasets demonstrate
the effectiveness of the proposed framework.
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1 INTRODUCTION
Real-world graphs are commonly contaminatedwith a small portion
of nodes, namely, anomalies, whose patterns significantly deviate
from the majority nodes [1, 2, 5, 6]. For instance, in a social network,
there may exist camouflaged users who randomly follow different
users, rendering properties like homophily not applicable to this
type of relationships [10, 25]. Owing to the vulnerability of neigh-
borhood aggregation according to previous research [9, 10, 27], the
existence of such abnormal instances will inevitably deteriorate the
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performance of GNNs – unwanted messages from those abnormal
nodes will be propagated throughout the graph, learning to the
learned node representations less expressive. Therefore, how to
learn anomaly-resistant graph neural networks is a challenging
yet imperative problem to further push forward the performance
boundary of existing works.

However, solving the aforementioned problem remains a non-
trivial task. Since collecting ground-truth labels of anomalies is
extremely expensive and requires intensive domain-knowledge [2,
6, 18], it is impractical to annotate substantial ground-truth anom-
alies. Upon the success of research on graph-based anomaly de-
tection [2, 5, 6, 35], one natural solution is to apply one of the
unsupervised anomaly detection methods on the input graph, and
train the GNNmodel on a cleaned graph in a either joint or pre-post
way. Although being intuitive, those two separate phases target
disjoint optimization objectives, which in turn poses great chal-
lenge to systematically learn anomaly-resistant GNNs. Specifically,
due to the lack of supervision, the anomaly detection phase may
introduce severe learning errors: on the one hand, if normal nodes
are wrongly detected as anomalies (false positive), it may cause
information loss when learning GNNs on the target task; on the
other hand, those undetected anomalies (false negative) will still
hamper the model performance of learned GNNs. Hence, how to
align the anomaly detection strategy with the final GNN model
performance on the target task is another challenge to resolve.

To address the challenges discussed above, we propose a new
GNN framework – Reinforced Anomaly-REsistant Graph Neural
Networks (RARE-GNN) in this study. In essence, the proposed
framework RARE-GNN is composed of two main graph neural
modules: the detection network that detects and removes anomalies
from the input graph and the prediction network that learns and
evaluates on the “cleaned” graph for a down-stream task. Specifi-
cally, we model the studied problem as a Markov Decision Process
(MDP) task and employ deep Q-learning (DQN) [20] as the medium
to bridge the non-differentiable gap between the two graph neural
modules. At each timestamp, a suspicious node will be selected
by the detection network and the relations with its neighboring
nodes will be updated accordingly. After a series of selections, an
augmented graph [36] that masks out all the selected nodes and
related edges will be fed to the detection network. Meanwhile, its
selection policy will be evaluated by a reward derived from the
prediction network [29, 32] on the target task. In this way, the two
modules can seamlessly work together and those anomalies ham-
per the model performance on the target task can be accurately
detected. We conduct extensive experiments on various datasets
and the experimental results demonstrate the superior performance
of RARE-GNN on node classification as well as anomaly detection
over the state-of-the-arts.
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2 RELATEDWORK
Graph Representation Learning. Graphs serve as a common
language for modeling relational and structured data. As the es-
sential key for conducting various graph analytical tasks, how to
learn expressive graph representations has drawn much research
attention. Recently, graph neural networks (GNNs) have become a
prevailing paradigm for graph representation learning due to its
superior effectiveness [7, 12, 14, 15, 28, 30, 31]. In general, GNNs
adopt a message-passing scheme and learn node representations by
iteratively transforming and aggregating the information from local
neighborhoods. Many models in this line of work such as GCN [14],
GAT [28], and GraphSAGE [12], have achieved great success in
both academic and industrial communities. However, the message-
passing scheme relies on the homophily assumption [19] and is
inherently vulnerable to outliers or anomalies [4, 10]. Existing GNN-
based graph anomaly detection methods [4, 5, 35] commonly fo-
cus on detecting anomalies rather than learning anomaly-resistant
GNNs. Though recent works like SEANO [17] and ONE [2] are able
to learn robust representations that jointly preserve graph informa-
tion while minimizing the negative effects of anomalies, none of the
them is tailored for graph neural networks, rendering the learned
node representations less expressive. As a necessary supplement in
this research field, our RARE-GNN framework is compatible with
arbitrary GNN architectures for any specific down-stream learn-
ing tasks. By integrating the anomaly detection process and GNN
learning process into a unified framework, we are able to mitigate
the adverse effects of anomalies and further learn powerful GNNs.

Reinforcement Learning on Graphs. Reinforcement learning
(RL) offers a powerful approach to solve challenging problems in a
variety of domains. More recently, reinforcement learning has be-
gun to find applications that involve graph-structured data. As one
pioneeringwork, Graph Convolutional Policy Network (GCPN) [33]
uses RL to learn to generate molecular graphs. GraphUCB [6] ex-
tends contextual multi-armed bandit (MAB) to graph-structured
data for detecting abnormal nodes. XGNN [34] generates graphs
via RL to achieve model-level interpretation of GNN models. Do
et al. [8] consider chemical reaction as markov decision process
of graph transformation and propose to use RL for predicting the
products of chemical reactions. As another line of application, peo-
ple explore to perform adversarial attacks on graph-structured data
using different RL agents [3, 26]. Recent works [16, 29] leverage RL
to optimize the neighborhood aggregation functions for pushing
forward the performance boundary of GNNs and Hu et al. [13]
use RL to learn a transferable active learning policy which can
directly generalize to unlabeled target graphs. Compared to the
aforementioned methods, our work is the first attempt for learning
anomaly-resistant GNNs by virtue of reinforcement learning.

3 PROPOSED APPROACH
3.1 Learning Environment
We start with introducing the learning environment of the problem.
As shown in Figure 1, at each time step 𝑡 , the detection network
selects one action 𝑎𝑡 (i.e., an abnormal node) based on the current
state 𝑠𝑡 that represents the current graph. Then the prediction net-
work will return a reward 𝑟𝑡 by quantifying the model performance
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Figure 1: Overview of the proposed RARE-GNN framework.
In each time step, the detection network selects one node,
and the prediction network will be trained on the anomaly-
removed graph to update the selection policy using the com-
puted reward on the validation set.

on a clean validation set, and uses it as a reinforcement signal to
learn the abnormality of each node being used in the training of the
predictor model. According to the reward, the reinforced detection
network updates its policy and the state will be changed to 𝑠𝑡+1.
This process continues until the agent reaches a termination state.
Intuitively, each training episode can be formulated as a Markov
Decision Process (MDP) characterized by a tuple (S,A,T ,R, 𝛾), in
which S is a set of states, A is a set of actions, T is the transition
function, R is the possible rewards, and 𝛾 is the discount factor.
Mathematically, the objective is to learn a policy 𝜋 (𝜽 ) parameter-
ized by 𝜽 to maximize the accumulated discounted rewards:

𝜋 (𝜽 )∗ = max
∞∑
𝑡=0

𝛾𝑡𝑟𝑡 , (1)

where 𝑟𝑡 denotes the immediate reward at timestamp 𝑡 . Specifi-
cally, in our problem, the agent only receives reward at the end.
Specifically, the MDP tuple is defined as follows:
State S. The state 𝑠𝑡 = [g𝑡 , h𝑡−1] which encodes the information
of the current graph 𝐺𝑡 after previous selections, is represented
by the concatenation of the hidden state of last step h𝑡−1 and the
intermediate graph representation g𝑡 .
ActionA.Given all the candidates nodes, the policy maps the state
s𝑡 into an action 𝑎𝑡 at each time step 𝑡 . Here 𝑎𝑡 is either selecting
a node in V or selecting the terminal action. Note that if a node
has been selected in previous time steps, it will not be considered
again in following iterations.
Transition T . It represents the function of transition from 𝑠𝑡 to
𝑠𝑡+1, where 𝑠𝑡+1 is considered to be a possible result of selecting an
action in 𝑠𝑡 . In our case, the transition function T is deterministic,
which means the next state 𝑠𝑡+1 is not stochastic and only depends
on the current state and action pair (𝑠𝑡 , 𝑎𝑡 ).
Reward R. The reward 𝑟𝑡 ∈ R indicates whether the performance
of the detection network can be improved after termination, which
can be used to guide the agent to update its policy. In this paper, we
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define the reward according to the down-stream task performance
(e.g., node classification, link prediction) on the clean validation
set with removing the selected nodes. Note that the model only
receives reward when the task terminates, and we assign a zero
reward to intermediate steps.

3.2 Reinforced Anomaly-resistant GNN
Given the state representation 𝑠𝑡 , RARE-GNN will select an action
according to the policy that can can maximize the final reward
(down-stream task performance). In this section, we first illustrate
how we compute the state representation 𝑠𝑡 = [g𝑡 , h𝑡−1].
Graph Representation Learning. We first introduce how we
build the graph representation module. Essentially, this module
encodes the input attributed graph to a low-dimensional embed-
ding vector. As shown in Figure 1, once the agent selects one node
𝑣𝑡 as an abnormal node at step 𝑡 , we are able to update the in-
termediate graph from 𝐺𝑡 to 𝐺𝑡+1 by changing the relation type
between 𝑣𝑡 and its neighbors. Correspondingly, for each node 𝑣𝑖 ,
it could have two types of neighboring nodes: (1) true neighbors,
which are considered as normal nodes so far; and (2) false neighbors,
which have been selected as anomalies in previous time steps. Dur-
ing the neighborhood aggregation process, we should separately
considered them to learn more expressive network representations.

To this end, we propose to use a relational GNN model [22]
to learn the graph representation g𝑡 . Specifically, given a specific
node 𝑣𝑖 in the attributed graph, we use the following operation to
calculate the representation of node 𝑣𝑖 at the 𝑙-th layer:

h𝑙𝑖 =
∑

𝑟 ∈{𝑟+,𝑟− }

∑
𝑗 ∈N𝑟

𝑖

1
𝑐𝑟
𝑖

W𝑙
𝑟h

𝑙−1
𝑗 +W𝑙

0h
𝑙−1
𝑖 , (2)

where 𝑁 𝑟
𝑖
denotes the neighbors of node 𝑣𝑖 in terms of type 𝑟 . 𝑐𝑟

𝑖
is

a normalization constant that can either be learned or chosen in
advance, here we set 𝑐𝑟

𝑖
= |N𝑟

𝑖
|.

To further compute the representation of the entire graph 𝐺𝑡 .
Following previous research, we directly compute the graph repre-
sentation by taking the average of 𝐿-th layer node representations:

g𝑡 =
1
|V|

|V |∑
𝑖=1

h𝐿𝑖 , (3)

where g𝑡 denotes the graph representation of 𝐺𝑡 . Note that other
graph pooling operation can also be used in our approach.

As we mentioned before, once the agent select one node 𝑣𝑡 as
an abnormal node at step 𝑡 , we are able to update the intermediate
graph from 𝐺𝑡 to 𝐺𝑡+1 by changing the relation type between 𝑣𝑡
and its neighbors.
Hidden State Representation Learning. Considering that the
agent performs sequential decision making, we introduce a hidden
vector h𝑡 to keep the history information to better guide the agent.
Specifically, the hidden state h𝑡 is determined by the last hidden
state h𝑡−1 and the current state s𝑡 :

h𝑡 = GRU(s𝑡 , h𝑡−1), (4)

where GRU (Gated Recurrent Unit) is a gating mechanism to control
the memorization or forgetting of the history information.

Table 1: Details of the real-world attributed graphs

Dataset Cora CiteSeer PubMed MS-CS

# nodes 2,485 2,110 19,717 18,333
# edges 5,069 3.668 44,324 81,894
# attributes 1,433 3,703 500 6,805
# labels 7 6 3 15
# anomalies 50 30 911 842

Prediction Network. The prediction network is designed to learn
node representations on the augmented graph for a specific down-
stream task, i.e., node classification. Specifically, it can be built with
arbitrary GNN architectures and the downstream task performance
on the validation set is used as the reward signal for updating the
selection policy. In our implementation, we adopt a two-layer GAT
as the backbone. For node classification, the prediction network is
trained on the augmented graph with a cross-entropy objective:

L𝑐𝑙𝑠 = −
𝐶∑
𝑐=1

𝑦𝑐 log(𝑦𝑐 ), (5)

where y is the ground-truth and ŷ is the predicted label vector.
Detection (Policy) Network. As the model performance in terms
of Accuracy and the discrete action are not differentiable, to train
the proposed framework, we adopt Deep Q-learning as the medium
to bridge the gap between the selection strategy and the target
GNNmodel performance. Specifically, we use the experience replay
technique with memory bufferM and adopt a two-layer MLP to
build the detection network. We simulate action selection and store
the resulting data in a memory buffer M. In addition, we use 𝜖-
greedy policy to control the exploration-exploitation trade-off of
our framework. Our goal is to minimize the𝑄-learning loss function
L𝑟𝑙 as follows:

E(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1)∼M [(𝑟𝑡 +𝛾max
𝑎𝑡+1

𝑄∗ (𝑠𝑡+1, 𝑎𝑡+1;𝜽 ∗) −𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜽 ))2], (6)

where 𝑄 (𝑠𝑡 , 𝑎𝑡 ;𝜽 ) is the 𝑄-function, which estimates the expected
reward of action 𝑎𝑡 at state 𝑠𝑡 .

4 EXPERIMENTS
4.1 Experimental Settings
Evaluation Datasets. In order to make a fair and comprehensive
evaluation, we adopt four widely used graph datasets: Cora-ML,
CiteSeer, PubMed andMS-CS in our experiments. The first three
datasets are citation graphs, where each node represents a paper
and the edges represent citations between them, while the last one
is built from Microsoft Academic Graph where nodes represent
authors and edges represent the coauthorship relations between
them. All these datasets are benchmark datasets used for evalu-
ating semi-supervised node classification [14, 23]. The summary
of dataset statistics is presented in Table 1. We follow the stan-
dard training/validation/test splits as in previous studies [14, 23].
Specifically, we use 20 nodes per class for training, 500 nodes for
validation, and 1000 nodes for testing. The proposed approach and
baselines are all trained and evaluated with the complete graph
structure and node features in the training dataset, without using
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Table 2: Semi-supervised node classification results (mean accuracy ± standard deviation) on four datasets.

Methods Cora Citeseer PubMed MS-CS
ACC𝑜𝑟𝑖 ACC𝑝𝑡𝑏 ACC𝑜𝑟𝑖 ACC𝑝𝑡𝑏 ACC𝑜𝑟𝑖 ACC𝑝𝑡𝑏 ACC𝑜𝑟𝑖 ACC𝑝𝑡𝑏

DeepWalk [21] 70.7 ± 0.6 68.9 ± 0.8 43.2 ± 0.5 41.6 ± 0.7 65.3 ± 0.6 63.3 ± 0.7 68.6 ± 0.9 67.3 ± 0.9
node2vec [11] 65.2 ± 1.1 63.4 ± 1.0 41.7 ± 0.8 40.1 ± 0.5 61.4 ± 0.9 59.8 ± 1.0 66.3 ± 0.7 64.2 ± 1.0

GCN [14] 81.4 ± 0.4 76.3 ± 0.9 70.9 ± 0.5 66.5 ± 0.6 79.0 ± 1.1 75.2 ± 0.7 91.3 ± 0.2 87.5 ± 0.4
GAT [12] 83.3 ± 0.7 77.2 ± 1.0 72.6 ± 0.6 67.6 ± 0.8 78.5 ± 0.3 74.6 ± 0.4 90.5 ± 0.6 86.6 ± 0.4
SGC [30] 81.0 ± 0.0 76.9 ± 0.5 71.9 ± 0.1 66.8 ± 0.3 78.9 ± 0.4 75.5 ± 0.7 91.0 ± 0.2 87.1 ± 0.6

SEANO [17] 82.0 ± 0.5 78.1 ± 0.6 74.3 ± 0.6 71.6 ± 0.8 79.7 ± 0.4 76.8 ± 0.5 87.2 ± 0.5 86.3 ± 0.5
ONE [2] 77.5 ± 0.9 75.9 ± 0.8 69.8 ± 0.6 67.3 ± 0.3 75.3 ± 0.9 73.6 ± 0.8 84.8 ± 0.6 82.5 ± 0.9
RARE-GNN 83.7 ± 0.6 82.2 ± 0.4 74.0 ± 0.4 73.3 ± 0.6 79.9 ± 0.4 77.8 ± 0.5 91.4 ± 0.3 90.7 ± 0.5

the node labels in the held-out validation and testing sets. The
model hyper-parameters are selected based on the performance on
the validation set and the final classification accuracy is reported
on the test set.

To evaluate robustness of different methods to anomalies, we
inject a combined set of anomalies (i.e., structural anomalies and
contextual anomalies) into each of the datasets. Specifically, we
randomly select 5% of the nodes from a dataset (excluding validation
and test set) and conduct perturbations to get the injected anomalies.
For structural anomalies, we follow the method proposed by Ding
et al. [5] to construct small cliques; for contextual anomalies, we
follow the perturbation scheme described by Song et. al [17, 24]
to modify the node attributes. Note that we inject structural and
contextual anomalies with the same quantity.

Compared Methods. In our experiments, we compare the pro-
posed RARE-GNN framework with three different categories of
baseline methods: (1) random walk-based methods, including Deep-
Walk [21], node2vec [11]; (2)GNN-basedmodels includingGCN [14],
GAT [28], SGC [30]; and (3) two state-of-the-art network embed-
ding methods developed for anomaly-contaminated graphs. Specif-
ically, SEANO [17] is a semi-supervised method to learn robust
network embeddings while accounting for effects of anomalies,
ONE [2] is an unsupervised attributed network embedding ap-
proach that jointly learns and minimizes the effect of anomalies
in the network. It is worth pointing out that, for unsupervised
methods (DeepWalk, node2vec and ONE), we train a MLP classi-
fier based on the learned node representations to further conduct
node classification. For a fair comparison, those baselines use the
same training/validation/test data splits as other semi-supervised
methods for training the MLP classifier.

4.2 Experimental Results

Node Classification Performance. As we are pursing more pow-
erful GNNs that can eliminate the detrimental effect of anomalies,
we first evaluate the model performance on one important graph
learning task, i.e., semi-supervised node classification. Briefly, this
task aims to predict the missing node labels with a small portion of
labeled nodes. We repeat the evaluation process 10 times and report
the average performance in terms of Accuracy in Table 2. Note
that ACC𝑜𝑟𝑖 denotes the Accuracy on the original dataset, while

ACC𝑝𝑡𝑏 denotes the Accuracy on the perturbed (anomaly-injected)
dataset. The following observations can be made from the table:
• For GNN-based methods including GCN, SGC and GAT, we can
notice that there is a considerable gap between ACC𝑜𝑟𝑖 and
ACC𝑝𝑡𝑏 . It verifies that the GNN performance is very sensitive
to the existence of anomalies. Compared to GNN-based methods,
conventional graph embedding methods are not very sensitive
to that, but still, become worse with injected anomalies.

• Overall, RARE-GNN is the best performingmethod on all the four
datasets in terms of Accuracy (ACC). By using the down-stream
task performance on the validataion set as the reinforcement
signal, our graph anomaly detector is able to accurately detect
those anomalies. In this way, the GNN predictor will be trained on
a clean graph without those detected anomalies and the negative
impact of anomalies will be alleviated.
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Figure 2: Anomaly detection results (Precision@K) of differ-
ent methods on PubMed and MS-CS.

Anomaly Detection Performance. In the experiments, we eval-
uate the performance of our proposed framework RARE-GNN by
comparing it with other baseline methods. We present the exper-
imental results in terms of Precision@K on the four datasets in
Figure 2. Note that here we only include the results of SEANO
and ONE as they are able to detect anomalies during the learn-
ing process. From the evaluation results, we see that the proposed
deep framework RARE-GNN outperforms both SEANO and ONE
by a noticeable margin on all the evaluation datasets. Especially,
RARE-GNN can better rank anomalies on top positions. It shows
that the detection network in RARE-GNN is able to accurately detect
anomalies by learning the selection policy through RL.
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