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Cross-Domain Graph Anomaly Detection

Kaize Ding~, Kai Shu*, Xuan Shan", Jundong Li, Member, IEEE, and Huan Liu~, Fellow, IEEE

Abstract— Anomaly detection on attributed graphs has
received increasing research attention lately due to the broad
applications in various high-impact domains, such as cyberse-
curity, finance, and healthcare. Heretofore, most of the existing
efforts are predominately performed in an unsupervised manner
due to the expensive cost of acquiring anomaly labels, especially
for newly formed domains. How to leverage the invaluable
auxiliary information from a labeled attributed graph to facilitate
the anomaly detection in the unlabeled attributed graph is seldom
investigated. In this study, we aim to tackle the problem of
cross-domain graph anomaly detection with domain adaptation.
However, this task remains nontrivial mainly due to: 1) the
data heterogeneity including both the topological structure and
nodal attributes in an attributed graph and 2) the complexity
of capturing both invariant and specific anomalies on the target
domain graph. To tackle these challenges, we propose a novel
framework COMMANDER for cross-domain anomaly detection on
attributed graphs. Specifically, COMMANDER first compresses the
two attributed graphs from different domains to low-dimensional
space via a graph attentive encoder. In addition, we utilize
a domain discriminator and an anomaly classifier to detect
anomalies that appear across networks from different domains.
In order to further detect the anomalies that merely appear in
the target network, we develop an attribute decoder to provide
additional signals for assessing node abnormality. Extensive
experiments on various real-world cross-domain graph datasets
demonstrate the efficacy of our approach.

Index Terms— Anomaly detection, attributed graphs, domain
adaptation, graph neural networks (GNNs).

I. INTRODUCTION

TTRIBUTED graphs are a type of graphs that not only

model the attributes of each data instance but also encode
the inherent dependencies among them. They have been
widely used to model complex systems, such as social media
networks [1], academic graphs [2], and financial transaction
networks [3]. However, anomalous nodes—whose patterns
significantly deviate from the majority—can be rampant in
attributed graphs and cause real-world societal effects. For
example, spammers in social networks can coordinate among
themselves to launch various attacks, such as spreading ads
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to generate sales, disseminating pornography, viruses, and
phishing [4]; fraud behaviors in financial networks may lead
to huge financial loss for both customers and merchants [5].
Therefore, it is critical to detect anomalies on attributed
graphs.

For a real-world anomaly detection system, it is often unre-
alistic to obtain abundant labeled data for every domain (e.g.,
Hoftels and Restaurants are two different domains in Yelp) due
to the expensive labeling cost [6], [7]. As such, graph anomaly
detection is commonly performed in the single-domain set-
ting, and unsupervised methods are proposed to handle those
unlabeled domains [3]. However, the performances of unsu-
pervised approaches may be limited without any supervision
information. Thus, when the target graph is from an unlabeled
domain, it is natural and important to explore the auxiliary
knowledge from other related domains that come from the
same data platform. Specifically, we would like to investigate
whether the anomaly detection performance on an unlabeled
attributed graph (target graph) can be improved by leverag-
ing another labeled attributed graph (source graph). Recent
advancements on domain adaptation have shown promising
results in learning domain-invariant features across domains
in various research disciplines, including computer vision
[8]-[10] to natural language processing [11], [12]. In light of
this, we propose to tackle the novel problem of cross-domain
graph anomaly detection by adapting domain discrepancies
between two attributed graphs.

Despite the unprecedented success of deep domain adapta-
tion, directly grafting it for detecting anomalies on attributed
graphs is infeasible due to the following challenges. First,
compared to conventional text or image data, attributed graphs
are notoriously difficult to handle due to the data hetero-
geneity from both structure and attribute perspectives [13].
As such, applying conventional domain adaptation tech-
niques to our problem may result in unsatisfactory results
as they are not tailored for attributed graphs. Therefore,
the first challenge centers around how to model two arbitrarily
structured attributed graphs from different domains and learn
domain-invariant node representations for detecting anom-
alies. Second, in order to detect anomalies on the unla-
beled target graph, one straightforward solution is to train a
domain-adapted classifier as existing work shows [6], [9], [14].
However, the domain-adapted classifier may render unsat-
isfactory anomaly detection performance. Fig. 1 shows an
example of detecting anomalies on attributed graphs in the
cross-domain setting. As we can see, the labeled fraudulent
reviewers in the Books domain (e.g., A;) continuously spread
promotion links instead of reviewing books, which can be
treated as a typical type of anomalies. Although we are able
to detect the anomalies that reveal similar behaviors (i.e.,
shared anomalies) in the Clothes domain (e.g., B;) by domain
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Fig. 1. Example of cross-domain graph anomaly detection. A; and B; can
be considered as the shared anomalies since they show similar behaviors
across two graphs from different domains, while B is an instance of unshared
anomalies since such type of anomalies only exists in the target graph.

adaptation, domain B has another type of fraudulent reviewers
who generate negative reviews to sabotage the reputation of
targeted products (e.g., Bz). The domain-adapted classifier
may not work well for detecting such type of anomalies (i.e.,
unshared anomalies) since they do not appear in the source
domain graph. Therefore, the second challenge lies in how to
spot both the shared and unshared anomalies on the target
graph simultaneously.

In this article, we propose cross-domain anomaly detection
on attributed networks (COMMANDER), a novel end-to-end
framework that consists of four principled components
to address the above challenges. For the first challenge,
COMMANDER employs a shared graph attentive encoder build-
ing on top of the graph attention networks [15] to learn node
representations of both source and target attributed graphs.
Meanwhile, by deceiving the domain discriminator to distin-
guish the domain assignment of nodes, the graph attentive
encoder gradually maps node representations from both source
and target graphs to a domain-invariant feature space. For
the second challenge, COMMANDER can detect the shared
anomalies with the domain-adapted anomaly classifier trained
from the labeled source graph. Meanwhile, COMMANDER
uses an attribute decoder to spot the unshared anomalies by
measuring the attribute reconstruction error of each node.
As such, the synergistic collaboration between anomaly
classifier and attribute decoder empowers COMMANDER to
achieve superior anomaly detection performance on the target
graph. To summarize, our contributions of this study are as
follows.

1) Problem: To the best of our knowledge, we are the first
to study the novel problem of cross-domain graph anom-
aly detection. In particular, we emphasize its importance
and give a formal problem definition.

2) Algorithm: We develop an end-to-end framework for
cross-domain graph anomaly detection. The proposed
framework bridges the domain discrepancy between
two attributed graphs and detects both the shared and
unshared anomalies on the target graph.

3) Evaluation: We perform extensive experiments on
real-world datasets to verify the effectiveness of our pro-
posed model. The experimental results demonstrate its
superior performance for cross-domain graph anomaly
detection.
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Fig. 2. Cross-domain data analysis w.r:t. feature similarity between different
user groups.

II. PROBLEM DEFINITION

To legibly describe the studied problem, we follow the
commonly used notations throughout this article. Specifically,
we use lowercase letters to denote scalars (e.g., 1), boldface
lowercase letters to denote vectors (e.g., X), boldface uppercase
letters to denote matrices (e.g., X), and calligraphic fonts to
denote sets (e.g., V).

Given an attributed graph G = (V, £, X), where V denotes
the set of nodes {vy,v7,...,v,} and £ denotes the set of
edges {e,es,..., ey}, d-dimensional attributes of n nodes
are denoted by X = [x1,X2,...,Xs] € R"*d_ Therefore,
the attributed graph can also be represented as G = (X, A) for
simplicity. Here, A = {0, 1}"*" is an adjacency matrix where
A; j = 1 indicates that there is an edge between node »; and
node v;; otherwise, A; ; = 0.

In order to provide more interpretable results, graph
anomaly detection is commonly considered as a ranking
problem [3], [13]. Accordingly, we define the problem of
cross-domain graph anomaly detection as follows.

Problem 1 (Cross-Domain Graph Anomaly Detection):
Given a labeled attributed graph G° = (X*, A®) from the
source domain and another unlabeled attributed graph G' =
(X!, A") from the target domain, here, we follow previous
works and assume that G* and G’ share the same feature space
but do not have overlapped nodes or edges. The objective
is to learn an anomaly detection model, which is capable
of generalizing the knowledge from the labeled graph G°,
to detect the anomalies on the target graph G'. Ideally,
anomalous nodes should be ranked on higher positions over
normal nodes in the returned list.

ITI. PRELIMINARIES
A. Anomaly Analysis Across Domains

To gain insight into the relations between anomalies in a
single domain or across different domains, we conduct an
initial exploration on a pair of real-world datasets covering
two different domains (i.e., Hotel and Restaurant) in Yelp
(the details of the datasets are introduced in Section V-A).
There are regular users and anomalies in both domains. In this
analysis, we regard Hofel as our target domain for which we
want to detect anomalies. As shown in Fig. 2, we compare the
cosine similarity between different user pairs. Note that each
user is represented with a feature vector constructed with the
bag-of-word features from all his/her reviews. For group 3
(G3), we calculate the similarity between each anomaly and
all the regular users in Hofel and show the average value
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for each anomaly. Compared with G1, in which we show the
average similarity between each anomaly and the other anom-
alies in the same domain, the values in G3 are significantly
smaller. Such discrepancy between anomalies and regular
users—which represent the majority of users in the platform—
can be utilized for anomaly detection under the unsupervised
setting. To investigate whether the labeled anomalies in the
source domain (Restaurant in this case) can give guidance
to anomaly detection in Hofel, we evaluate the similarities
between anomalies across these two domains (shown in G2).
The fact that the anomalies in Hofel are closer to anomalies in
Restaurant than regular users in Hofel demonstrates that the
supervised information from the source domain (Restaurant)
can be potentially leveraged for detecting anomalies in the
target domain (Hotel). However, the values of similarity in
G2 are still smaller than those in G1, meaning that there
exist some anomalies in Hofel revealing unshared patterns
compared with anomalies in Restaurant. We observe similar
data patterns in other pairs of cross-domain datasets, which
motivates our design of COMMANDER.

B. Graph Neural Networks (GNNs)

Recently, GNNs have demonstrated their remarkable per-
formance in different graph learning tasks [16]-[19]. The
early proposed GNNs extend the operation of convolution on
graph-structured data in the spectral domain for network rep-
resentation learning. In the meantime, many prevailing GNN
models that follow the neighborhood aggregation strategy have
been proposed and are analogous to the Weisfeiler—Lehman
(WL) graph isomorphism test. Specifically, the representation
of a node is computed by iteratively aggregating representa-
tions of its local neighbors. Formally, a GNN layer can be
defined as

h! = TRANSFORM‘(h‘i“, hfv)

h)y, = AGGREGATE' ({hj,_1 |Vj e N,}) D)
where hf. is the node representation of node i at layer / and
N; is the local neighbor set of node i. AGGREGATE and
TRANSFORM are two key functions of GNNs and have a series
of possible implementations [15], [16], [20].

By stacking multiple GNN layers, the learned node repre-
sentations are able to capture the long-range node dependen-
cies in the input graph, which mitigates the network sparsity
issue beyond the observed links among nodes.

IV. PROPOSED APPROACH

In this section, we present the details of the proposed frame-
work that consists of four dedicated components (see Fig. 3):
1) a graph attentive encoder; 2) a domain discriminator; 3) an
anomaly classifier; and 4) an attribute decoder. Specifically,
CoMMANDER accomplishes domain adaptation on attributed
graphs with the graph attentive encoder and domain dis-
criminator. The anomaly classifier and attribute decoder are
employed to detect anomalies on the target attributed graph
synergistically.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

A. Domain Adaptation on Attributed Graphs

Deep domain adaptation has recently drawn much atten-
tion with the booming development of deep neural networks
(DNNs). Those deep domain adaptation methods have been
proven to be effective in different learning tasks, such as
image classification, sentiment classification, and text match-
ing [6], [9]. The main intuition behind these methods is
to learn the domain-invariant representations of combined
samples from both source and target domains. In order to
perform cross-domain anomaly detection on attributed graphs,
we propose to follow a prevalent line of study [9], [21], [22]
and first employ a shared encoder to extract the latent repre-
sentation of each node in both G° and G'. However, apart
from the image or text data that we can directly feed the
combined samples from both source and target domains into
a shared feature extractor, different attributed graphs have
distinctive topological structures. Thus, it is unclear that how
we can model two arbitrarily structured attributed graphs using
a shared encoder.

1) Graph Attentive Encoder (Enc): To counter this problem,
we build our shared encoder grounded on the graph attention
networks (GATSs) [15]. GAT is an attention-based GNN model
that allows specifying fine-grained weights when aggregating
information from neighbors (as shown in Fig. 3). Formally,
in each layer [, node v; integrates the features of neighboring
nodes to obtain representations of layer [ + 1 via

W =g > a;why 2)

JjeNiUn;

where ¢ denotes the nonlinear activation function (e.g.,
ReLU), A; denotes the set of neighbors for v;, and a; j is
the attention coefficient between node »; and node v, which
can be computed as

— exp(o (a” [Wh?) @® th(r?)]) )
Zienion 0 (@ (@TIWHY & Whi'1))

where @ is the concatenation operation and the attention vector
a is a trainable weight vector that assigns importance to the
different neighbors of node v;, allowing the model to highlight
the features of the important neighboring node that is more
task-relevant.

The benefits of using graph attention networks are mainly
twofold.

1) Graph attention networks employ a trainable aggregator
function to learn the representation of each node, which
eliminates the dependency on the global graph structure.
In this way, our shared encoder is capable of learning
node representations for both G* and G' [15].

2) Since malicious users might build spurious connections
with normal users to camouflage their noxious inten-
tions, graph attention networks can better assess the
abnormality of each node by specifying fine-grained
attention on the neighboring nodes.

(3)

C(;'J‘

Thus, the graph attentive encoder is able to learn high-quality
node representations from the two attributed graphs G* and G'.
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Fig. 3. Overview of the COMMANDER framework for cross-domain graph
anomaly detection. Figure is best viewed in color.

Moreover, we build the graph attentive encoder Enc with
multiple GAT layers

WO —o 3 aOwos,
JeN:Un;
L L—1
JeN:Un;

where z; is the latent representation of node i. In this way,
the graph attentive encoder Enc can capture the nonlinearity of
topological structure and nodal attributes. Following previous
domain adaptation works [23], [24], we use Enc as a shared
architecture and encodes G* and G' one by one in each
epoch. In this way, the graph attentive encoder is able to
map the learned node representations from two graphs to
an aligned embedding space and further enables knowledge
transfer across graphs from different domains.

2) Domain Discriminator (Dis): In order to further per-
form domain adaptation on two attributed graphs from dif-
ferent domains, we adopt the idea of adversarial machine
learning [25] to perform adversarial domain adaptation
[14], [26] in a two-player minimax game. As shown in Fig. 3,
the first player is the domain discriminator Dis, which tries
to distinguish whether an embedded node is from the source
domain or the target domain, and the second player is the
graph attentive encoder Enc, which is adversarially trained to
deceive the domain discriminator. The domain discriminator
Dis is built with a feed-forward layer with tanh nonlinearity,

2409
followed by a sigmoid function:

o = tanh(WPz; + bP)

9 = sigmoid(uo?) O]

where W2 and b? denote the trainable parameter matrix and
bias, respectively, and of} is the output of the feed-forward
layer. Here, u is another trainable weight vector and §; is the
predicted domain label. The adversarial domain loss can be
mathematically formulated as

Np

Lp= —NLD > [d;- log §i + (1 — d;) log(1 — 5),-)] (6)
i=l

where Np denotes the number of all the nodes in both G* and
G'. Here, d; represents the domain label of node i and §; is
the predicted domain label.

Since our goal is to bridge the domain discrepancy
between two graphs, here, we choose to maximize the above
cross-entropy loss. In other words, after the feature encoding
phase, the domain label of nodes would not be accurately
recognized by the domain discriminator, and the shared graph
attentive encoder would be able to extract domain-invariant
node representations from both source graph G*® and target
graph G'.

B. Cross-Domain Anomaly Detection

In Section IV-A, we have discussed how to bridge the
domain discrepancy between two attributed graphs from differ-
ent domains. This section introduces how to detect both shared
anomalies and unshared anomalies on the target graph G'.

1) Anomaly Classifier (CIf): Following the idea of other
domain adaptation learning tasks [22], we train an anomaly
classifier CIf right after the shared graph attentive encoder to
distinguish whether a node from G* is an anomaly or not.
CIf is built with a feed-forward layer with tanh nonlinearity,
followed by a sigmoid function:

of = tanh(W sz +b°)
i = sigmoid(v'of) (7
where W€ and b€ are the trainable parameter matrix and bias
and v is a trainable weight vector. Specifically, the anomaly
classification loss can be defined as the binary cross entropy

Ne

Le= —NLC > [ys log y; + (1 — y;) log(1 — ?s)] ®)
i=1

where N¢ denotes the number of nodes sampled from the
labeled graph G*° and y; and % denote the ground truth
anomaly label and the predicted anomaly label of node i,
respectively. Note that here, we sample an equal number of
normal nodes and abnormal nodes from G* for addressing
data imbalance. The shared graph attentive encoder maps data
from different domains to a domain-invariant feature space
by deceiving the domain discriminator, and then, the domain-
adapted anomaly classifier can be directly used for detecting
the shared anomalies on the target attributed graph.
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Nevertheless, one critical issue is that not all anomalies
share similar characteristics across graphs from different
domains. As discussed in the previous sections, some specific
types of anomalies that exist in G' may not appear in G°.
Thus, solely relying on a classifier trained on the labeled
source graph cannot accurately trace such unshared anomalies,
rendering unsatisfactory anomaly detection performance on the
target attributed graph.

2) Attribute Decoder (Dec): As suggested by recent stud-
ies [13], [27], [28], the reconstruction error between origi-
nal data and estimated data is a strong indicator to show
the abnormality of each data instance. The intuition is that
anomalies usually cannot be well reconstructed from the
observed data and have large reconstruction errors since their
patterns deviate significantly from the majority. Therefore,
we build an attribute decoder Dec following the graph atten-
tive encoder for reconstructing two attributed graphs. Since
node dependency information is inherently encoded in each
GAT layer, we propose to reconstruct the node attributes
for simplicity. Specifically, we build Dec with multiple GAT
layers

o o 3 aoweny,
JeN;Up;

X% =0 z at'(jL)W(L)h;L_I) 9)
JeN:Up;

where X; is the estimated attribute of node v;. The reconstruc-
tion error computed by this deep autoencoder network provides
a precise assessment of node abnormality [13], [29], [30]
and enables us to spot the unshared anomalies. Specifically,
the reconstruction loss can be defined as

Lp =X =X} + X' = X'||% (10)

where X = [X1, X2, ..., X;] denotes the reconstructed attribute
matrix of a graph.

In this way, our anomaly classifier and attribute decoder
are able to synergistically perform anomaly detection on
the target attributed graph. Intuitively, the anomaly classi-
fier would spot the shared anomalies with high precision;
meanwhile, the attribute decoder is capable of providing
complementary insight for detecting the unshared anom-
alies. As another benefit, the incorporation of the attribute
decoder can also improve the feature learning quality of
the graph attentive encoder through backpropagation and
relieve the overfitting problem when training the anomaly
classifier [31].

C. Model Learning

So far, we have introduced the architecture of our framework
COMMANDER for solving the problem of cross-domain graph
anomaly detection. This joint architecture requires dedicated
training objective for each component. The complete objective

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 6, JUNE 2022

Algorithm 1 Training Process of COMMANDER

Input: G*, G', Np, N¢, a, epoch.
Output: Anomaly scores of all nodes in G'.

1 while i < epoch do

2 I/l Adversarial domain adaptation
training

Sample Np nodes from G* and G';

Compute the adversarial domain loss according to Eq.
(5);

Take gradient steps and update the parameters;

/f Anomaly classification training

Sample N¢ nodes from G¥;

Compute the anomaly classification loss according to Eq.
(M

9 | Take gradient steps and update the parameters;

10 I/l Graph reconstruction training

11 | Compute the reconstruction loss according to Eq. (9);

12 | Take gradient steps and update the parameters;

L]

e -1 = W

13 Compute anomaly score of each node in G' using Eq. (11)

function can be formulated as follows:

L=—Lp+Lc+Lp

1 &
= - 2_ldilog$i + (1 — d) log(1 — 3]
D i

Ne¢
| ) _
e E[J’i log yi + (1 — yi) log(1 — 7)1

+]IX* = X%+ [IX - X2 (11)

We summarize the training procedure of COMMANDER in
Algorithm 1. By minimizing the dedicated objective functions,
COMMANDER gradually closes the domain shift between G*
and G' and learns a powerful anomaly detector. All the
parameters of COMMANDER are optimized by the standard
backpropagation algorithm [31]. Specifically, for each node,
we use the output from CIf as a learned weight to reweight
the reconstruction errors from Dec, and the final anomaly score
of node v; can be formulated as

score(v;) = ¥ill% — x|l (12)

where y; € [0,1] and the final scores represent the node
abnormality computed by both the anomaly classifier and the
attributed decoder.

D. Complexity Analysis

Our proposed framework COMMANDER is composed of
four principled components introduced in the previous section.
In particular, the graph attentive encoder and attribute decoder
are built with an L-layer graph attention network [15].
As shown in [15], the time complexity of each graph atten-
tional layer can be expressed as O(ndd’ + md’'), where
d is the dimensionality of the input feature and d’ is the
dimensionality of output feature. For the anomaly classifier
and domain discriminator, those two components are built
with L’ fully connected layers, and the corresponding time
complexity of each fully connected layer can be expressed as
0(dd"). As m > n in general, the computational complexity
of COMMANDER is linear with respect to the number of edges.
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TABLE I
STATISTICS OF THE REAL-WORLD DATASETS

YelpHotel =  YelpRes | YelpNYC =  Amazon
# nodes 5,196 5,102 21,040 18,601
# edges 171,743 239,738 303,949 274,458
# attributes 8,000 8,000 10,000 10,000
# anomalies 250 275 1000 750

V. EXPERIMENTS

In order to verify the effectiveness of our proposed frame-
work, in this section, we conduct empirical evaluations on
various real-world attributed graph datasets.

A. Experiment Settings

1) Evaluation Datasets: To evaluate the performance of
different methods, we adopt two pairs of real-world datasets
for evaluation. All the datasets are public and have been widely
used for graph anomaly detection problems [32], [33]. The
dataset statistics are listed in Table I and we summarize the
details of those two dataset pairs as follows.

1) YelpHotel = YelpRes: YelpHotel and YelpRes are col-

lected from Yelp on two major business domains,
i.e., hotel and restaurant, in the Chicago area [32]. For
each dataset, users are considered as nodes and a link
will be created if two users commented on the same
hotel or same restaurant. By using the Yelp antifraud
filter, the users from each dataset can be separated into
two classes: anomaly (authors of filtered reviews) and
regular users (authors with no filtered reviews), which
can be considered as the ground truth labels.

2) YelpNYC = Amazon: To further study the effect of dif-
ferent levels of domain discrepancy on the performance
improvements, we also adopt another pair of attributed
graphs collected from two different platforms (domains
with higher discrepancy), i.e., Yelp and Amazon. Specif-
ically, YelpNYC collects data for the restaurants located
in New York City [32]. Amazon is another attributed
graph collected from an E-commerce platform in [33].
In this dataset, a user is flagged as a fraudulent user
if he/she has reviewed two or more products that have
been targeted by crowdsourcing efforts [33]; otherwise,
the user is considered as legitimate.

For all the datasets above, we apply bag-of-words
model [34] to obtain the attributes of each node. The vocab-
ulary is built on top of the textual contents related to the
nodes from both source and target graphs. With the processed
datasets, we are able to conduct the evaluation across four
domain shifts in our experiments, including YelpHotel —
YelpRes, YelpRes — YelpHotel, YelpNYC — Amazon, and
Amazon — YelpNYC. Notably, “A — B” represents the
task, which aims at detecting anomalies on the target domain
attributed graph B, by adapting the knowledge from the labeled
source domain attributed graph A. In addition, as anomalies
usually consist of a small portion of a dataset, we randomly
sampled out part of the spammers or fraudulent reviewers to
make our experiments more realistic and challenging.

2) Compared Methods: In the experiments, we compare
the proposed framework COMMANDER with several state-of-
the-art representative anomaly detection methods. Specifically,
LOF [35] detects anomalies at the contextual level and only
considers nodal attributes. ConOut [36] detects anomalies in
the local context by determining its subgraph and its relevant
subset of attributes. AMEN [37] uses both attribute and graph
structure information to detect anomalous neighborhoods.
Specifically, it analyzes the abnormality of each node from the
ego-network point of view. DOMINANT [13] is the state-of-
the-art model for detecting anomalies on attributed graphs.
By developing a graph convolutional network (GCN)-based
autoencoder, the reconstruction errors can be used for spotting
anomalies. ADDA [14] is an adversarial domain adaptation
model for image classification. We adopt the architecture of
this model to conduct cross-domain graph anomaly detection
by omitting the graph structures.

Since cross-domain graph anomaly detection remains an
understudied task, it is worth mentioning that none of the
above methods is exactly developed for solving our stud-
ied problem. Since no labels are available on the target
graph, we first select four state-of-the-art baselines (i.e., LOF,
ConOut, AMEN, and DOMINANT) for unsupervised anomaly
detection on attributed graphs. We directly run each of them
on the target graph and report the corresponding detection
performance to make a fair comparison. In addition, we also
compare with ADDA, which is a state-of-the-art domain
adaptation method. As it is not designed for graph-based
anomaly detection problem, we omit the topological structure
and use the probability predicted by ADDA to rank all the
nodes on the target graph.

3) Implementation Details: The proposed model is imple-
mented in TensorFlow and optimized with Adam opti-
mizer [38]. For the graph attentive encoder, we use two graph
attention layers with 128 and 32 dimensions and are both
activated by the ReLU function [39]. The attribute decoder
is a single-layer neural network with 128 neurons, in which
the ReLU function is used to activate the hidden layer and the
linear function is used to activate the output layer. As for the
domain discriminator, it is a single-layer neural network with
16 neurons using the tanh activation function for the hidden
layer and the sigmoid activation function in its output layer.
The anomaly classifier is implemented using the same way.
While optimizing the attribute decoder loss Ly, we set the
learning rate to 0.001. For optimizing both the adversarial
domain loss £p and anomaly classification loss L¢, we use
the initial learning rate of 0.005 and reduce it to 0.001 after
training for 50 epochs. We choose the parameter a with the
best performance for each domain shift scenario, and
the details can be found in Section IV-D. We grid search for
the parameter a in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
and select 0.5 for achieving the overall best results on different
datasets.

4) Evaluation Metrics: For the problem of graph anomaly
detection, previous research usually considers it as a ranking
problem [13], [36]. Following this line of work, we use three
standard evaluation metrics to measure the performance of
different anomaly detection algorithms.
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Fig. 4. Results of cross-domain graph anomaly detection w.r.t. AUC scores. (a) YelpHotel— YelpRes. (b) YelpRes— YelpHotel. (c) YelpNYC— Amazon.
(d) Amazon— YelpNYC.
TABLE II
RESULTS OF CROSS-DOMAIN GRAPH ANOMALY DETECTION W.R.T. PRECISION @ K
| Precision@ K |
YelpHotel — YelpRes YelpRes — YelpHotel YelpNYC — Amazon Amazon — YelpNYC
K 50 [ 150 ] 250 50 [ 150 ] 250 50 [ 150 ] 250 50 [ 150 ] 250
LOF 0.460 | 0.260 | 0.176 || 0.440 | 0213 | 0.172 || 0.140 | 0.073 | 0.052 || 0.380 | 0.200 | 0.168
ConOut 0.260 | 0.107 | 0.064 || 0480 | 0.280 | 0.216 || 0.040 | 0.020 | 0.012 || 0.660 | 0.407 | 0328
AMEN 0.040 | 0.073 | 0.092 || 0.160 | 0.113 | 0.080 || 0.020 | 0.013 | 0.012 || 0.580 | 0.333 | 0.264
DOMINANT 0.580 | 0.327 | 0.236 || 0.560 | 0320 | 0.224 || 0480 | 0433 | 0444 || 0.620 | 0407 | 0320
ADDA 0.460 | 0.233 | 0.176 || 0.500 | 0.247 | 0.172 || 0.380 | 0.220 | 0.184 || 0.540 | 0.353 | 0312
COMMANDER || 0.620 | 0.360 | 0.244 || 0.600 | 0.347 | 0.228 || 0.500 | 0.460 | 0.456 || 0.680 | 0.420 | 0.332
TABLE III
RESULTS OF CROS5-DOMAIN GRAPH ANOMALY DETECTION W.R.T. RECALL@ K
| Recall@ K |
YelpHotel — YelpRes YelpRes — YelpHotel YelpNYC — Amazon Amazon — YelpNYC
K 50 [ 150 ] 250 50 [ 150 ] 250 50 [ 150 ] 250 50 [ IS0 [ 250
LOF 0.084 | 0.142 | 0.160 || 0.088 | 0.128 | 0.172 || 0.009 | 0.015 | 0.017 || 0.019 | 0.030 | 0.042
ConOut 0.047 | 0.058 | 0.058 || 0.096 | 0.168 | 0.216 || 0.003 | 0.004 | 0.004 || 0.033 | 0.061 | 0.082
AMEN 0.007 | 0.040 | 0.084 || 0.032 | 0.068 | 0.080 || 0.001 | 0.003 | 0.004 || 0.029 | 0.050 | 0.066
DOMINANT 0.105 | 0.178 | 0215 || 0.112 | 0.192 | 0.224 || 0.032 | 0.087 | 0.148 || 0.031 | 0.061 | 0.080
ADDA 0.084 | 0.127 | 0.160 || 0.100 | 0.148 | 0.172 || 0.025 | 0.044 | 0.061 || 0.027 | 0.053 | 0.078
COMMANDER || 0.113 | 0.196 | 0.222 || 0.120 | 0.208 | 0.228 || 0.033 | 0.092 | 0.152 || 0.034 | 0.063 | 0.083

1) AUC: As a widely used evaluation metric in anomaly
detection methods [13], [28], [40], AUC value is the
area under the ROC curve, representing the probability
that a randomly chosen abnormal node is ranked higher
than a normal node. If AUC approaches 1, the method
is of high quality for detecting anomalies.
Precision@K : As each anomaly detection method out-
puts a ranking list according to the anomalous scores
of different nodes, we use Precision@ K to measure the
proportion of true anomalies that a specific detection
method discovered in its top K ranked nodes.
3) Recall@ K : This metric measures the proportion of true
anomalies that a specific detection method discovered in
the total number of ground truth anomalies.

2)

B. Evaluation Results

First, we evaluate the performance of the proposed frame-
work COMMANDER and other unsupervised baseline methods
on four different domain shifts. The results with respect to
AUC scores are presented in Fig. 4. We also report the
Precision@K scores and Recall@K scores in Tables II and III,
respectively. From a comprehensive view, we can clearly
find that our approach COMMANDER achieves considerable
improvements over the state-of-the-art unsupervised methods
on all the domain shifts. Take AUC value as an example,

the performance of COMMANDER is 2.6% higher than the
best baseline on the YelpHotel — YelpRes case, and the
corresponding improvements on YelpHotel — YelpRes,
YelpNYC — Amazon, and Amazon — YelpNYC are reported
with 5.4%, 1.7%, and 1.6%, respectively. Meanwhile, our
approach consistently outperforms the best performing base-
lines according to Precision@K and Recall @K results, which
indicates that COMMANDER is capable of discovering more
anomalous nodes in its top return lists and once again
demonstrates the effectiveness of our approach.

Note that the unsupervised methods, including LOF,
ConOut, and AMEN, cannot achieve competitive results in
comparison. In particular, the performance of LOF is limited
by its inability of modeling node dependencies. We also
observe that AMEN performs poorly in the task of ranking
anomalous nodes. One explanation is that AMEN is designed
for detecting anomalous neighborhoods rather than nodes.
Even though DOMINANT performs best among all the unsu-
pervised methods due to the excellent expressive power of
GCN, it is still largely behind our approach as it is unable
to accurately spot those shared anomalies by utilizing labeled
data from the source graph.

Next, we compare the performance of the domain adaptation
method ADDA with our proposed framework COMMANDER.
With the reported results (w.r.t. AUC scores), we observe that
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COMMANDER outperforms ADDA by a significant margin,
reaching around 10%-20% relative improvement in most
cases. Meanwhile, as shown in Tables II and III, COMMANDER
is able to discover more true anomalies on its top anomaly
ranking list than ADDA. There are two major reasons that
result in the ineffectiveness of ADDA for the studied problem.
First, node dependency information is indispensable for assess-
ing the abnormality of a node, while ADDA cannot model
such information modality. Second, ADDA is unable to detect
the unshared anomalies on the target graph since it is not
tailored for anomaly detection problems. On the contrary, our
approach COMMANDER is able to detect unshared anomalies
on the target graph using the Attribute Decoder Dec.

In addition, the results show that our approach is able to
achieve larger improvements in the first two domain shifts than
the last two. Compared with the attributed graphs YelpHotel
and YelpRes, the attributed graphs YelpNYC and Amazon are
not only from two different business domains but also from
two different platforms. Thus, this observation implies that
the model performance is strongly associated with the degree
of domain discrepancy. In brief, smaller domain discrep-
ancy could be easier adapted, leading to better cross-domain
anomaly detection performance.

C. Ablation Study

To investigate how much is the contribution of each compo-
nent, in this section, we design the ablation study and show the
corresponding experimental results. Specifically, we compare
our proposed framework COMMANDER with the following
three variants.

1) CIf: We exclude the domain discriminator and attribute
decoder from COMMANDER and only use the anom-
aly classifier to detect anomalies on the target domain
attributed graph G'.

2) CIf + Dis: We exclude the attribute decoder from the
proposed framework COMMANDER and use the anomaly
classifier and domain discriminator to detect anomalies
on the target domain attributed graph G'.

3) Dec: We exclude the anomaly classifier and domain dis-
criminator from the proposed framework COMMANDER
and only employ attribute decoder for detecting
anomalies on the target domain attributed graph G'.

4) w/o GAT: We replace the GAT layers in COMMANDER
with GCN layers to examine the effectiveness of using
GAT for anomaly detection.

The comparison results on YelpHotel — YelpRes and
YelpRes — YelpHotel are shown in Table IV, and the results
on YelpNYC — Amazon and Amazon — YelpNYC are
shown in Table V. Due to the space limit, we only show the
results in terms of Precison@50 and AUC in our ablation
study. From the reported results, we make the following
observations.

1) By examining the performance of CIf on four domain
shifts, we can clearly find that it performs poorly overall.
On the contrary, the variant CIf 4 Dis improves the
detection performance to a large extent with the join
of Dis, which demonstrates that an anomaly classifier
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TABLE IV

ABLATION RESULTS ON TwO CROSS-DOMAIN SETTINGS:
YELPHOTEL — YELPRES AND YELPRES — YELPHOTEL

YelpHotel — YelpRes YelpRes — YelpHotel

Methods
Pre@50 AUC Pre@350 AUC
CIf 0.280 0.461 0.220 0.431
Clf+Dis 0.500 0.758 0.420 0.688
Dec 0.540 0.765 0.540 0.695
wlo GAT 0.580 0.776 0.580 0.722
COMMANDER 0.620 0.793 0.600 0.748
TABLE V

ABLATION RESULTS ON TW0O CROSS-DOMAIN SETTINGS:
YELPNYC — AMAZON AND AMAZON — YELPNYC

Methods YelpNYC — Amazon Amazon — YelpNYC
Pre@50 AUC Pre@50 AUC
cif 0.040 0.558 0.320 0.445
Cif+Dis 0.420 0.812 0.560 0.677
Dec 0.480 0.848 0.600 0.696
wlo GAT 0.460 0.857 0.640 0.702
COMMANDER 0.500 0.873 0.680 0.715

trained on the G* cannot be directly used on G’ without
domain adaptation.

2) Comparing to the variant CIf + Dis, Dec achieves
superior detection performance in our experiments. The
reasonable explanation is that the attribute decoder pro-
vides a more comprehensive assessment and is capa-
ble of detecting both shared anomalies and unshared
anomalies to some extent.

3) By replacing the GAT layers in the COMMANDER
framework with vanilla GCN layers, the performance
decreases a noticeable margin, which shows the advan-
tage of using a graph attention mechanism for detecting
anomalies.

4) Since CIf + Dis and Dec considerably improve the
detection performance, they still cannot achieve com-
petitive results with our approach COMMANDER in
the evaluations. It validates our assumption that Dis
assists the anomaly classifier CIf to detect the shared
anomalies; meanwhile, Dec is the key component to
detect those unshared anomalies on the target graph.

To summarize, the ablation study illustrates that the absence
of any component will inevitably jeopardize the anomaly
detection performance of COMMANDER on G'. With all
the principled components, the proposed framework largely
outperforms all the variants under four domain shifts.

VI. RELATED WORK
A. Graph-Based Anomaly Detection

Graph-based anomaly detection methods have a specific
focus on graph-structured data. Previous research mostly stud-
ies the problem of anomaly detection on plain graphs [3].
As graph structure is the only available information modal-
ity in a plain graph, this category of anomaly detection
methods tries to exploit the graph structure information to
spot anomalies from different perspectives [41], [42]. For
instance, SCAN [41] is one of the first methods that target to
find structural anomalies in graphs. In recent days, attributed
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graphs have been widely used to model a wide range of
complex systems due to their superior capacity for handling
data heterogeneity. In addition to the observed node-to-node
interactions, attributed graphs also encode a rich set of features
for each node. Therefore, anomaly detection on attributed
graphs has drawn increasing research attention in the commu-
nity, and various methods have been proposed [36], [43], [44].
Among them, ConOut [36] identifies the local context for each
node and performs anomaly ranking within the local context.
AMEN [37] aims to discover anomalous neighborhoods on
attributed graphs by considering the ego-network information
for each node. More recently, researchers also propose to
solve the problem of anomaly detection on attributed graphs
using GNNs due to its strong modeling power [13], [45]-[47].
For instance, DOMINANT [13] achieves superior performance
over other shallow methods by building a deep autoencoder
architecture on top of the GCNs. Zhao et al. [47] proposed
a novel loss function to train GNNs for anomaly detectable
node representations. However, the aforementioned methods
merely focus on a single graph and are unable to transfer the
knowledge of anomalies from an auxiliary related domain.

B. Deep Domain Adaptation

Domain adaptation [48] aims at mitigating the general-
ization bottleneck introduced from domain shift. With the
rapid growth of DNNs, deep domain adaptation has drawn
much attention lately. In general, deep domain adaptation
methods are trying to locate a domain-invariant feature space
that can reduce the differences between the source and target
domains. This goal is accomplished either by transforming
the features from one domain to be closer to the other
domain or projecting both domains into a domain-invariant
latent space [9], [22], [49]. For instance, Tzeng ef al. [50]
leveraged an adaptation layer and a domain confusion loss
to learn the domain-invariant representations. TLDA [51] is
a deep autoencoder-based model, which tries to learn to
domain-invariant representations and useful for label classifi-
cation. Inspired by the idea of generative adversarial network
(GAN) [25], researchers also propose to perform domain adap-
tation in an adversarial training paradigm [9], [14], [22], [23].
By exploiting a domain discriminator to distinguish the
domain labels while learning deep features to confuse the
discriminator, DANN [23] achieves superior domain adapta-
tion performance. ADDA [14] learns a discriminative repre-
sentation using labeled source domain data and then maps
the target data to the same space through an adversarial
loss. Later on, researchers also try to apply domain adap-
tation techniques on graph-structured data [24], [52]-[54] to
handle the domain discrepancy between source and target
graphs. For example, DANE [52] applies a shared weight
GCN architecture with constraints of adversarial learning
regularization, enabling cross-network knowledge transfer for
unsupervised network embedding. Similarly, UDA-GCN [24]
further proposes dual GCNs to capture both the local and
global consistency relationships of each graph and uses an
intergraphed-based attention mechanism to better represent
each node. However, cross-domain anomaly detection remains
unsolved in the graph learning community.
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VII. CONCLUSION

In this article, we propose a novel anomaly detection
framework called COMMANDER to tackle the problem of
graph anomaly detection under the cross-domain setting. The
proposed framework consists of four principled components:
graph attentive encoder, anomaly classifier, domain discrimi-
nator, and attribute decoder. These components are tightly cou-
pled to bridge the domain discrepancy between two attributed
graphs from different domains and then perform accurate
anomaly detection on the target attributed graph. We perform
extensive experiments to corroborate the effectiveness of the
proposed COMMANDER framework.
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