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Abstract—This paper presents a federated learning (FL)
framework that uses multiple self-reporting crowdsourcing mo-
bile and web apps to collaboratively construct a fine-grained
COVID-19 vulnerability prediction map. The use of FL pro-
vides a reliable prediction by aggregating training results from
multiple apps, while at the same time circumventing data privacy
regulations that prevent user information from multiple apps to
be shared with each other. Such a fine-grained vulnerability map
identifies early on high-risk areas, helping to reduce the spread
of the disease. To mitigate data bias from each self-reporting
app, an adaptive worker selection algorithm that leverages
neighbouring datasets to obtain a balanced data distribution
is proposed. Further, a differential privacy scheme is adopted to
protect user information. The simulation results show that the
proposed framework outperforms the widely used FedAvg FL
algorithm by 6% on prediction accuracy while preserving user
privacy.

I. INTRODUCTION

The recent COVID-19 pandemic has caused a public health
crisis around the world. It is critical to identify early on
high-risk areas and to forecast future cases, which is also
called vulnerability risk. COVID-19 heatmaps that show the
locations of people with high risk being infected have helped
the public understand COVID-19 transmission in commu-
nities. The heatmaps also allow healthcare organizations to
proactively allocate medical resources to stop the virus from
spreading.

The success of the COVID-19 vulnerability map construc-
tion relies on comprehensive COVID-19 data. The maps
are normally generated based on infection information from
local governments or the Centers for Disease Control and
Prevention (CDC). However, current vulnerability maps fail to
provide reliable and detailed information. Existing maps only
show confirmed cases at the county level. They don’t provide
fine-grained levels of vulnerability and lack of adequate
coverage of patients who are asymptomatic. Consequently,
there has been an increase in the number of various mobile
and web self-reporting applications (apps) that report crowd-
sourced symptom data. Such crowd-sourcing apps collect a
tremendous amount of data tagged with specific geographic
information and play a major role in monitoring COVID-19.
It becomes promising to construct a fine-grained vulnerability
map leveraging data from multiple apps to reliably predict
vulnerability [1].
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Recently, machine learning (ML) models have been used
to construct COVID-19 maps that predict the future trend of
the disease. Nevertheless, using only a single app to collect
the user dataset to train the ML models has drawbacks. Data
collected from a single app represents a limited geographic
community or a particular group. One promising solution is
to make the predictions more reliable through collaboration
among multiple crowdsourcing apps. However this approach
raises several new challenges. The first is the privacy con-
cern. Crowdsourced symptom related data contains sensitive
information and transferring this information is regulated by
the government. This regulation prevents data from multiple
crowdsourcing apps to be shared. Another issue is that the
crowdsourcing data may not distribute uniformly among de-
vices, which occurs when the users of an app are from a par-
ticular community and represent a similar demographic. This
could lead to misrepresentation of certain groups, potentially
generating an inaccurate map. For instance, data collected
from an app that is used by senior citizens could contain more
infected people than those from an app predominantly used
by school students. Consequently, if the apps used by seniors
have more users, the prediction results become biased toward
the seniors, which makes the prediction unreliable [2]. Last
but not least, in some rural areas, there may be not enough
crowdsourcing data collected and the small dataset could
cause the overfitting problem in ML models. For example,
Facebook has created a COVID-19 interactive map. However,
since it only uses one app to collect information, many areas
either do not have data or do not have sufficient data to make
accurate representations of the COVID-19 spread [3].

To overcome the issues above, we propose to develop
a publicly-available federated learning (FL) framework that
enables multiple self-reporting apps to cooperate with each
other. FL is a state-of-the-art ML approach that seeks to
address the problems of data governance and privacy by
training algorithms collaboratively without exchanging raw
input data [4] [5]. Most recently, several approaches utilizing
FL have been developed for COVID-19 applications, such as
using X-ray image analysis to detect lung infections [6]. To
the best of our knowledge, our approach using FL. method
to construct a reliable and accurate COVID-19 vulnerability
map is unique. The framework contains a central server and
local ML models running on individual mobile or web app
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providers. A long-short term memory (LSTM) model [7] is
utilized to train the ML model in our framework. To mitigate
the biased training data distribution in FL, we propose an
adaptive worker selection algorithm that leverages the train-
ing results from selected workers in certain neighborhoods
(a worker is defined as an individual crowdsourcing app
provider). The algorithm reduces the prediction bias intro-
duced by an underrepresented local training dataset. It also
helps mitigate the overfitting problem due to the relatively
small datasets. To protect user information, a differential
privacy scheme (DP) [8] is utilized in the adaptive worker se-
lection algorithm. Extensive simulations are conducted based
on publicly-available datasets to evaluate the performance of
the proposed framework. The results demonstrate that the
proposed framework not only outperforms the state-of-the-art
FL FedAvg algorithm by 6% on prediction accuracy, but also
preserves user privacy.

II. SYSTEM MODEL & PRIVACY PRELIMINARY
A. System Model

The proposed FL framework coordinates the collaboration
of multiple COVID-19 self-reporting apps to construct a
fine-grained and periodically-updated vulnerability prediction
map (VPM), as shown in Fig. 1. More specifically, in the
VPM, the targeted area G is divided into K non-overlapping
cells, denoted by the set G = {g1, - , gk, - ,9x }. The FL
framework contains a central server and many app providers.
Furthermore, the central server creates a broker for each cell
and manages the broker operations. There are K number of
brokers, denoted by B = {by, -+ , b, -+ ,bx}.

For the k-th cell gi, the broker by is responsible for
performing an area vulnerability prediction via FL. The cen-
tral server supervises the crowdsourcing apps as they join
the framework. An app is allowed to join the framework
if it contains user-reported COVID-19 symptoms data and
provides the central server with a list of its workers. A worker
is denoted as d and it collects and stores self-reporting data.
The workers can be from different apps and each worker
can store user reports gathered from more than one cell. The
central server sends the workers’ IDs to the corresponding
broker. The workers available in the b, broker are denoted
as Dy = {d},---,d,--- ,dy*}, where d* denotes the m-
th worker in cell g; and Mj, is the number of participating
workers in cell g;. The broker by coordinates the workers
Dy, to jointly train the FL model. A broker doesn’t know
about any user data information since such information is
stored locally on each worker and won’t be shared to the
broker during training. Further to mitigate bias, we propose
an adaptive worker selection algorithm, shown in section IV.
After training, the broker b sends the prediction results to
the central server to build the vulnerability map.

The COVID-19 symptom data is collected by COVID-19
crowdsourcing apps. Each app launches an online question-
naire that asks users which COVID-like symptoms they have
along with their location information. We assume the users
trust the app to protect their private information and accurately
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Fig. 1.  Federated learning framework for COVID-19 vulnerability map
construction.

report their symptoms. The app’s users are distributed over
the region G. At each period, a total of NV participants upload
their records. We denote the report stored in the j-th app
device from the i-th participant as r] = (t], s!), where t] is
the recording timestamp and s} = (sj;,--- ,sj,) represents
the symptom information with the p covid-related symptom
attributes. Each reported 7/ is tagged with a location []. In
a fine-grained VPM, the spatial unit is set to the street or
township level, such as a zip code. Each cell g is tagged
with a certain vulnerability prediction level Vj. The entire
VPM is modeled as V £ [V, .-+, Vk].

B. Differential Privacy Preliminaries

The state-of-the-art DP [8] is used as our privacy model in
this paper. It gives a rigorous privacy guarantee against what
an adversary can infer after observing the published statistics
of the users’ dataset. The definition of DP is shown as follows.

Definition 1: Suppose privacy parameter € > 0, a random-
ization algorithm A satisfies e-differential privacy. For any
neighboring database x,y that differ in at most one element,
and for any subset of outputs O C range(A),

PriA(x) € O] < e“Pr[A(y) € O], (1)

The different choices of privacy budget e determine dif-
ferent privacy preservation levels. A smaller privacy budget
€ indicates the probability of the outputs of the randomized
algorithm .4 with two different datasets is close to each other.
This suggests stronger privacy protection. On the other hand,
a high privacy preservation level would largely compromise
the data utility.

Definition 2 (Global sensitivity): The global sensitivity of
a query function f, given two neighboring databases x,y is

Af =

The global sensitivity of a function f represents the maxi-
mal difference of the outputs that a single input value changes
in calculating the query function f, which only depends on
the query function but not the dataset. The sensitivity A f
determines the scale of differential privacy noise needed to
efficiently hide the individual information.

In the proposed FL framework, the brokers are assumed
to be semi-honest, i.e., honest-but-curious about the users
individual information [9] and the workers can only trust
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themselves. Thus, secure multi-party computation (SMC) with
DP is more suitable in our case. Particularly, we exploit
the distributed differential privacy (DDP) framework with
Laplace perturbation scheme in [10], where the workers
generate partial noise from Laplace distribution. Then the
workers inject it to their data locally such that the aggregated
Laplace noise is large enough to guarantee DP. Meanwhile a
secure aggregation algorithm is introduced to ensure the only
information the aggregator (i.e., the broker) can observe is the
statistical results, which is shown in Section IV-C.

III. COVID-19 RIsK LEVEL ESTIMATION

The first step is the individual risk assessment, in which
the collected symptoms are mapped into a vulnerability level.
Since the self-reporting questionnaires launched by each app
are not exactly the same, we assume that the symptoms
contained in the questionnaires are similar to the symptoms
provided by the CDC, such as cough, fever with high body
temperature, chest pain and shortness of breath. Specifically,
given the reported symptoms X = {x;,1 < i < N}, the
worker would determine the vulnerability of each participant
via a predetermined function h : X — (0,1). The vul-
nerability score of each user is evaluated as the number of
reported symptoms divided by the total number of symptoms
in the predefined list. If the participant has tested positive
for COVID-19, then h = 1. By associating users with grid
cells based on locations [, each worker estimates the grid-
level vulnerability from the individual estimates, and Ehen the
broker aggregates the workers’ results as Vj, = %ﬁl(ag)
where N, denotes the total population in the grid cell g; and
ny is the number of participants in the grid.

The questionnaires include the participant’s age informa-
tion, which is used in our training algorithm to reduce bias
in the data collected from multiple apps, helping to achieve
a balanced representation in the model development. This
method will be described in the next section.

IV. VULNERABILITY PREDICTION

The use of the standard FL framework for vulnerability
prediction could result in a degradation in accuracy because of
the imbalance of the datasets from multiple apps. To address
this issue, an adaptive worker selection algorithm is proposed
and a DDP scheme is utilized to protect the user information.
A data pre-processing approach is also exploited to handle
the small dataset issue. A LSTM model is used in our FL
framework for vulnerability prediction.

A. Adaptive Federated Learning

We start with utilizing the federated averaging (FedAvg)
[5] method as a baseline to predict the COVID-19 vulnerabil-
ity risk. Later, our model will improve on the FedAvg method.
In the following description, we use one broker as an example
to illustrate our FL process. Each cell has a ML model, called
a global model. Each individual worker’s ML model is called
a local model. A worker can be selected for more than one
cell’s FL model training process. The broker and the workers

Algorithm 1 Adaptive Federated Averaging

Require: pj, is the size of workers in cell & and pj, is the size
of workers from the ¢’s neighborhood cells &’ for training;
F is the size of local epochs; the U}, are the workers in
cell k, and the U}, are the workers in k’s neighborhood
cells %'
Ensure: FL model w
1: procedure BROKERUPDATE:
2: Initialize wy
3: for each round t = 1,2, ... do
4 Uy, < (random p; workers)
5 if (Adaptive Worker Selection) then
6: U, < (KLD used to select p) workers in
7 neighbor cells k')
8
9

else
: U, +0
10: end if
11: for each worker d € Uy, and d’ € U}, in parallel
do
12: wil,, < WorkerUpdate(d, wy, k)
13: wi*| < WorkerUpdate(d', w;, k')
14: end for
15: if (Adaptive Worker Selection) tl;en
d; n’d ’
16: Wip1 ¢ ay. %wﬁl +8> n—’;'/wz:i
17: else
18: Wil < Z %wf_,_l
19: end if
20: end for
21:
22:
23: procedure WORKERUPDATE:(d, w, k)
24: B + (split data Rﬁ into batches size of B)
25: for each local epoch ¢ from 1 to £ do
26: for batch b € B do
27: wéw—n-VL(w)
28: end for

29:  end for
30: return w to server

encrypt the communication messages containing the model
parameters to provide data security.

The proposed FL process involves four steps, as shown in
Algorithm 1:

1) The broker server selects a set of workers M, =
{di1,ds,--- ,dp, } from the total available workers Dj,
for training, where pj is the total number of workers
selected.

2) The broker server starts a model training process with
a preset of model parameter weights w. Each worker
d downloads the primary model with the weights and
hyperparameters from the broker server. The hyper-
paramters include the local min-batch size B, the num-
ber of local epochs E, and the learning rate .

3) The workers train the model locally using their own
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data.

a) The workers split their data into batches of size B

b) During each local round of training, the workers
utilize stochastic gradient descent VL(w) to cal-
culate the loss and to compute new local weights.

c) After a set of local epochs E, each worker uploads
the generated weights to the broker.

4) The broker gathers the locally trained models and
aggregates them to obtain a shared global model.

a) The broker utilizes the FedAvg method to ag-
gregate worker weights by wi 1 = > (ng/n)wd
where w41 is the global model weights, w;lﬂ is
worker d’s model weights, ng is worker d’s local
data size, and n is the global data size.

b) The broker iterates step (2) until a preset epoch
number Ej, or an accuracy condition is reached.

The FedAvg method works under the assumption that the
global data distribution on each cell is balanced, even though
the local data on the workers may be disproportionate [5].
However, for crowdsourced COVID-19 symptom data, the
global data distribution can be biased. For instance, there
might be not enough data in some areas or the data dis-
proportionately represent a certain group in a specific area.
To overcome this issue, we propose a data pre-processing
method and an privacy preserving adaptive worker selection
algorithm, as discussed below.

B. Data Pre-processing

The workers prepare their datasets before the broker
launches the training task. The data pre-processing method
includes upsampling and regression imputation. If the workers
have relatively small amounts of user data, the workers aug-
ment their data sizes by upsampling. If their datasets contain
missing values, the workers apply a regression imputation,
which replaces missing values with a predicted value based
on a regression line.

C. Privacy Preserving Adaptive Worker Selection

We assume that each grid cell has an established age
distribution Pj,. A biased distribution occurs when the training
data doesn’t follow Pj,. We observe that there normally exists
at least another cell next to the cell gx, which has the
same or similar COVID-19 vulnerability level as cell gy.
Based on this observation, we introduce an adaptive worker
selection algorithm that allows the broker by, to find additional
workers from cell g5 ’s neighboring workers to make the global
distribution of collected data close to P;. We use g+ to denote
the cell gi’s neighbor cells. Often times there can be more
than one neighboring cell.

Before selecting the new ~w0rkers, the broker b, first
queries the age distribution Py from the collected data of
the selected workers. Moreover, to protect the sensitive age
information of each participant, based on the SMC scheme
(e.g., homomorphic encryption), each selected worker owns a
private key sky to encrypt the DP version of age distribution

information and the broker uses the key sk to decrypt the
statistics when receiving all of the cipher contents from the
workers. As a random variable with Laplace distribution can
be simulated using other random variable from the same
distribution [10], the worker d,  can generate a random
noise 2" ~ Lap(a) locally. Denote Lap(a) = —a sgn(U)
In(1 — 2|UJ), where « is set to ¢/Af, sgn denotes the sign
function and U is a random variable with uniform distribution
ranging (—1/2,1/2). In the adaptive worker selection scheme,
since the broker by is interested in age distribution, the
sensitivity A f is 1/y and y is the dimension of the probability
space. After generating the DP noise z;*, each worker sends
the noisy data ]5,2" = P + z;* encrypted with private key
pky to the broker by,. Then the broker decrypts the summation
data P, with the key sko and the aggregated noise follows
Lap(a) = /By, — 13 Lap(«) where the random variable
B, is taken from beta distribution with parameters 1 and
(pr — 1) [10]. Thus, the broker only learns the summation
of the age distribution under DP protection and no additional
personal information can be inferred.

After receiving the age information P, from the selected
workers, it uses a greedy strategy to find more suitable
workers. The broker searches the cell’s neighboring workers to
select the ones that make the combined distribution following
the established age distribution Pj. It uses the KullBack-
Leibler divergence (KLD) to measure the difference between
the probability distributions of Py and P, = (Pk + P,f,), as
follows:

arg min Dy, (Py|| (P + P{)),i € Dy, 2)
7

where P,f, is the worker’s probability distribution from the
neighboring cell gi/. Once the broker finds a new worker, it
updates its distribution P,. It repeats this process until P is
close to Py or when a pre-defined number of total neighboring
workers is met. Using adaptive worker selection, the broker
b gathers the trained models from the workers inside and
also outside of cell gi. It ensembles the trained parameters
from both types of workers, as shown below:

Py, ndi Py ndj p
k d; k' g
wiat oy kg S I Gl 3)
— ny, =
i= =

where a4+ = 1 and o > 5. The broker assigns more weights
to the training results from its own cell gg.

With the additional selected training data from neighbor-
hood workers, a broker aggregates more training models,
which will make the global model more reliable. It can also
help mitigate the overfitting problem caused by small datasets
in certain areas. The ensemble results improve the prediction
accuracy and reduce error in the learning models.

We utilize the LSTM model to predict the COVID-19
vulnerability level. The LSTM model [7] is an extension of
the recurrent neural network (RNN) model that introduces
memory cells. Our model uses the memory cells to store
COVID-19 symptoms for long periods of time. More accurate
predictions can be achieved with the LSTM model as the
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prediction takes into account the COVID-19 symptom history
data [11].

V. PERFORMANCE EVALUATION

We now examine the performance of the proposed frame-
work for the construction of the privacy-preserving vulnera-
bility map. The software used for performance evaluation is
Python. We regard the City of Houston as the target area
for estimating the risk level at each super neighborhood.
Houston’s government has divided the city into 88 super
neighborhoods [12]. Each neighborhood has the attributes of a
grid ID and boundary GPS coordinates. Each neighborhood’s
age distribution is utilized in the adaptive worker selection
algorithm. The simulation results are based on the publicly
available Demystata COVID-19 dataset [13] that includes
COVID-19 cases within the US aggregated by zip code. We
estimate the super neighborhood COVID-19 cases based on
the percentage of population in the zip code. We simulate
the user symptom data by using the number of COVID-19
cases in each age group reported by Harris County Public
Health [14]. We develop a mobile crowdsourcing app that
allows users to report symptoms and the app displays the
COVID-19 vulnerability map. The mobile app is implemented
using Android Studio and Google Maps.

Experiment setup The data bias scenario is an impor-
tant aspect of federated learning. To evaluate our proposed
approach to handle this problem, we simulate biased user
symptom data in the experiment. We first generate a large
number of users and then partition them equally into four
age groups, which are the same age groups provided by the
Houston super neighborhood report [12]. The groups are:
“under 5 yrs”, 5 to 17 yrs”, 718 to 64 yrs” and 765 & over”.

To simulate the balanced user age in each area, we sample
users from each age group by following the age group
distribution in each super neighborhood [12], and assign them
into the corresponding area. To simulate the unbalanced user
age data in an area, we assign a large number of users from
a specific age group into the area, to change the area’s age
distribution. After that, we add Covid-like symptoms to each
user based on the number of COVID-19 cases in each age
group provided by Harris County Public Health [14]. To
simulate the missing values in user data, we randomly select
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TABLE I
TRAINING PARAMETERS
Notation Description
M total number of workers in a zip code
My, the number of workers selected in the training pro-
cess
M. the number of neighboring workers selected in the
training process
E local epoch
by broker epoch

users and drop their data points at arbitrary timestamps. We
finally assign the user data into the workers in each area.

We use the simulated test set to conduct performance
analysis. We allocate 70% of the data for training and the
remaining 30% of the data for testing. Our scheme is evaluated
by comparing it with the FedAvg FL algorithm as the baseline.
We use the model training results for one area to demonstrate
our proposed approach. Table 1 shows the notations of the
parameters used in the experiment.

Prediction accuracy Figure 2 shows the prediction accu-
racy improvement in one area. The blue line is the vulner-
ability level from the testing data and the green line is our
proposed approach and the red line represents the FedAvg
results. Our results are much closer to the testing results with
the root mean square error (RMSE) reduced from 0.372 x 10*
to 0.125 x 10%. On average there is 6% improvement in predi-
cation accuracy. FedAvg, a standard FL. method, becomes less
accurate when it uses underrepresented or imbalanced data to
train ML model. This results in misleading conclusions and
the model can not be trusted to provide a reliable prediction.
Our approach provides a reliable prediction by using both the
data pre-processing method and the adaptive worker selection
algorithm to mitigate the biased dataset issue. The data pre-
processing method includes upsampling of small datasets and
regression imputation to estimate the missing values in the
workers’ user data.

Adaptive worker selection We use the distribution of
Dy, (Px||Py) to present the changes of equilibrium degree
when selecting more workers, as illustrated in Fig. 3. Py is
the given age distribution in area g and P, is a broker’s
age distribution, which is obtained by the selected workers
(M + Mjs) from both area g; and the neighboring areas
gi- The distribution results on the left are generated from the
FedAvg approach, which uses only the local area workers;
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while the results on the right three boxes use our adaptive
worker selection approach to add more neighboring workers.
The results show that the proposed algorithm can significantly
re-balance the user age distribution, e.g., from 0.44 to 0.13,
with an increase in neighboring workers. The results suggest
that if balanced user data is selected from the workers, the
broker can create a good global model with reduced bias to
achieve accuracy improvement.

We also study the impact of applying differential privacy on
the broker’s P}, value with a smaller privacy budget ¢ = 0.6, as
shown in Fig. 4. We found that with the increase of neighbor-
ing workers (e.g. > 10 workers), applying DP to P, preserves
the user age distribution information without deteriorating
the final accuracy because the user age distribution becomes
balanced with more workers.

Time overhead Our FL framework requires three major
additional tasks: data pre-processing, adaptive worker selec-
tion and extra training epochs using neighboring workers. The
time required for data pre-processing is negligible since it is
conducted in the initialization phase before the training starts.
The adaptive worker selection uses a greedy strategy. The
time complexity of the searching process is O((d%’“’)z). A
broker performs the adaptive worker selection only once when
the user age distributions on workers are not dynamically
and rapidly changing. Otherwise, the broker needs to search
for neighboring workers in each FEj training round. In FL
learning, the most time-consuming part is training a local
model in each worker. We use T to denote the average training
time of a local epoch in a worker. The total time spent on the
training round is E, x B x T.

Vulnerability prediction map Figure 5 and Figure 6
show our mobile app that displays the Google map with the
estimated average vulnerability of COVID-19 in the 88 super
neighborhoods of Houston. Fig. 5 utilizes the collected user
symptom data to directly estimate the vulnerability risk level.
Fig. 6 depicts a week-long future vulnerability trend predicted
by the LSTM model. The future trend reflects the estimated
percentage of vulnerable population towards COVID-19.

VI. CONCLUSION

We have developed a novel FL framework that constructs a
privacy preserving fine-grained COVID-19 vulnerability map
by leveraging multiple crowdsourcing mobile and web apps.
The FL-based fine-grained vulnerability map construction
utilizes a large amount of survey data available while at the
same time providing a privacy guarantee. It has provided a
more reliable vulnerability prediction than existing methods.
The potential imbalanced or biased datasets from each indi-
vidual self-reporting app has been addressed by an adaptive
worker selection algorithm that ensures the aggregated age
distribution correctly represents the age distribution in the
fine-gained area. A dataset pre-processing mechanism has
been also employed to mitigate the potential small dataset
problem. To protect user’s privacy, a DDP scheme has been
applied to the age distribution parameter. The simulation
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results of the proposed FL framework with LSTM training
models show a 6% improvement in accuracy over the widely
used FedAvg algorithm.
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