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Abstract—This paper presents a federated learning (FL)
framework that uses multiple self-reporting crowdsourcing mo-
bile and web apps to collaboratively construct a fine-grained
COVID-19 vulnerability prediction map. The use of FL pro-
vides a reliable prediction by aggregating training results from
multiple apps, while at the same time circumventing data privacy
regulations that prevent user information from multiple apps to
be shared with each other. Such a fine-grained vulnerability map
identifies early on high-risk areas, helping to reduce the spread
of the disease. To mitigate data bias from each self-reporting
app, an adaptive worker selection algorithm that leverages
neighbouring datasets to obtain a balanced data distribution
is proposed. Further, a differential privacy scheme is adopted to
protect user information. The simulation results show that the
proposed framework outperforms the widely used FedAvg FL
algorithm by 6% on prediction accuracy while preserving user
privacy.

I. INTRODUCTION

The recent COVID-19 pandemic has caused a public health

crisis around the world. It is critical to identify early on

high-risk areas and to forecast future cases, which is also

called vulnerability risk. COVID-19 heatmaps that show the

locations of people with high risk being infected have helped

the public understand COVID-19 transmission in commu-

nities. The heatmaps also allow healthcare organizations to

proactively allocate medical resources to stop the virus from

spreading.

The success of the COVID-19 vulnerability map construc-

tion relies on comprehensive COVID-19 data. The maps

are normally generated based on infection information from

local governments or the Centers for Disease Control and

Prevention (CDC). However, current vulnerability maps fail to

provide reliable and detailed information. Existing maps only

show confirmed cases at the county level. They don’t provide

fine-grained levels of vulnerability and lack of adequate

coverage of patients who are asymptomatic. Consequently,

there has been an increase in the number of various mobile

and web self-reporting applications (apps) that report crowd-

sourced symptom data. Such crowd-sourcing apps collect a

tremendous amount of data tagged with specific geographic

information and play a major role in monitoring COVID-19.

It becomes promising to construct a fine-grained vulnerability

map leveraging data from multiple apps to reliably predict

vulnerability [1].

Recently, machine learning (ML) models have been used

to construct COVID-19 maps that predict the future trend of

the disease. Nevertheless, using only a single app to collect

the user dataset to train the ML models has drawbacks. Data

collected from a single app represents a limited geographic

community or a particular group. One promising solution is

to make the predictions more reliable through collaboration

among multiple crowdsourcing apps. However this approach

raises several new challenges. The first is the privacy con-

cern. Crowdsourced symptom related data contains sensitive

information and transferring this information is regulated by

the government. This regulation prevents data from multiple

crowdsourcing apps to be shared. Another issue is that the

crowdsourcing data may not distribute uniformly among de-

vices, which occurs when the users of an app are from a par-

ticular community and represent a similar demographic. This

could lead to misrepresentation of certain groups, potentially

generating an inaccurate map. For instance, data collected

from an app that is used by senior citizens could contain more

infected people than those from an app predominantly used

by school students. Consequently, if the apps used by seniors

have more users, the prediction results become biased toward

the seniors, which makes the prediction unreliable [2]. Last

but not least, in some rural areas, there may be not enough

crowdsourcing data collected and the small dataset could

cause the overfitting problem in ML models. For example,

Facebook has created a COVID-19 interactive map. However,

since it only uses one app to collect information, many areas

either do not have data or do not have sufficient data to make

accurate representations of the COVID-19 spread [3].

To overcome the issues above, we propose to develop

a publicly-available federated learning (FL) framework that

enables multiple self-reporting apps to cooperate with each

other. FL is a state-of-the-art ML approach that seeks to

address the problems of data governance and privacy by

training algorithms collaboratively without exchanging raw

input data [4] [5]. Most recently, several approaches utilizing

FL have been developed for COVID-19 applications, such as

using X-ray image analysis to detect lung infections [6]. To

the best of our knowledge, our approach using FL method

to construct a reliable and accurate COVID-19 vulnerability

map is unique. The framework contains a central server and

local ML models running on individual mobile or web app
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providers. A long-short term memory (LSTM) model [7] is

utilized to train the ML model in our framework. To mitigate

the biased training data distribution in FL, we propose an

adaptive worker selection algorithm that leverages the train-

ing results from selected workers in certain neighborhoods

(a worker is defined as an individual crowdsourcing app

provider). The algorithm reduces the prediction bias intro-

duced by an underrepresented local training dataset. It also

helps mitigate the overfitting problem due to the relatively

small datasets. To protect user information, a differential

privacy scheme (DP) [8] is utilized in the adaptive worker se-

lection algorithm. Extensive simulations are conducted based

on publicly-available datasets to evaluate the performance of

the proposed framework. The results demonstrate that the

proposed framework not only outperforms the state-of-the-art

FL FedAvg algorithm by 6% on prediction accuracy, but also

preserves user privacy.

II. SYSTEM MODEL & PRIVACY PRELIMINARY

A. System Model

The proposed FL framework coordinates the collaboration

of multiple COVID-19 self-reporting apps to construct a

fine-grained and periodically-updated vulnerability prediction

map (VPM), as shown in Fig. 1. More specifically, in the

VPM, the targeted area G is divided into K non-overlapping

cells, denoted by the set G = {g1, · · · , gk, · · · , gK}. The FL

framework contains a central server and many app providers.

Furthermore, the central server creates a broker for each cell

and manages the broker operations. There are K number of

brokers, denoted by B = {b1, · · · , bk, · · · , bK}.

For the k-th cell gk, the broker bk is responsible for

performing an area vulnerability prediction via FL. The cen-

tral server supervises the crowdsourcing apps as they join

the framework. An app is allowed to join the framework

if it contains user-reported COVID-19 symptoms data and

provides the central server with a list of its workers. A worker

is denoted as d and it collects and stores self-reporting data.

The workers can be from different apps and each worker

can store user reports gathered from more than one cell. The

central server sends the workers’ IDs to the corresponding

broker. The workers available in the bk broker are denoted

as Dk = {d1k, · · · , dmk , · · · , dMk

k }, where dmk denotes the m-

th worker in cell gk and Mk is the number of participating

workers in cell gk. The broker bk coordinates the workers

Dk to jointly train the FL model. A broker doesn’t know

about any user data information since such information is

stored locally on each worker and won’t be shared to the

broker during training. Further to mitigate bias, we propose

an adaptive worker selection algorithm, shown in section IV.

After training, the broker bk sends the prediction results to

the central server to build the vulnerability map.

The COVID-19 symptom data is collected by COVID-19

crowdsourcing apps. Each app launches an online question-

naire that asks users which COVID-like symptoms they have

along with their location information. We assume the users

trust the app to protect their private information and accurately

Fig. 1. Federated learning framework for COVID-19 vulnerability map
construction.

report their symptoms. The app’s users are distributed over

the region G. At each period, a total of N participants upload

their records. We denote the report stored in the j-th app

device from the i-th participant as rji = (tji , s
j
i ), where tji is

the recording timestamp and sji = (sji1, · · · , sjip) represents

the symptom information with the p covid-related symptom

attributes. Each reported rji is tagged with a location lji . In

a fine-grained VPM, the spatial unit is set to the street or

township level, such as a zip code. Each cell gk is tagged

with a certain vulnerability prediction level Vk. The entire

VPM is modeled as V � [V1, · · · , VK ].

B. Differential Privacy Preliminaries

The state-of-the-art DP [8] is used as our privacy model in

this paper. It gives a rigorous privacy guarantee against what

an adversary can infer after observing the published statistics

of the users’ dataset. The definition of DP is shown as follows.

Definition 1: Suppose privacy parameter ε ≥ 0, a random-

ization algorithm A satisfies ε-differential privacy. For any

neighboring database x, y that differ in at most one element,

and for any subset of outputs O ⊆ range(A),

Pr[A(x) ∈ O] ≤ eεPr[A(y) ∈ O], (1)

The different choices of privacy budget ε determine dif-

ferent privacy preservation levels. A smaller privacy budget

ε indicates the probability of the outputs of the randomized

algorithm A with two different datasets is close to each other.

This suggests stronger privacy protection. On the other hand,

a high privacy preservation level would largely compromise

the data utility.

Definition 2 (Global sensitivity): The global sensitivity of

a query function f , given two neighboring databases x, y is

Δf = max
‖x−y‖=1

|x− y|.
The global sensitivity of a function f represents the maxi-

mal difference of the outputs that a single input value changes

in calculating the query function f , which only depends on

the query function but not the dataset. The sensitivity Δf
determines the scale of differential privacy noise needed to

efficiently hide the individual information.

In the proposed FL framework, the brokers are assumed

to be semi-honest, i.e., honest-but-curious about the users

individual information [9] and the workers can only trust
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themselves. Thus, secure multi-party computation (SMC) with

DP is more suitable in our case. Particularly, we exploit

the distributed differential privacy (DDP) framework with

Laplace perturbation scheme in [10], where the workers

generate partial noise from Laplace distribution. Then the

workers inject it to their data locally such that the aggregated

Laplace noise is large enough to guarantee DP. Meanwhile a

secure aggregation algorithm is introduced to ensure the only

information the aggregator (i.e., the broker) can observe is the

statistical results, which is shown in Section IV-C.

III. COVID-19 RISK LEVEL ESTIMATION

The first step is the individual risk assessment, in which

the collected symptoms are mapped into a vulnerability level.

Since the self-reporting questionnaires launched by each app

are not exactly the same, we assume that the symptoms

contained in the questionnaires are similar to the symptoms

provided by the CDC, such as cough, fever with high body

temperature, chest pain and shortness of breath. Specifically,

given the reported symptoms X = {xi, 1 ≤ i ≤ N}, the

worker would determine the vulnerability of each participant

via a predetermined function h : X → (0, 1). The vul-

nerability score of each user is evaluated as the number of

reported symptoms divided by the total number of symptoms

in the predefined list. If the participant has tested positive

for COVID-19, then h = 1. By associating users with grid

cells based on locations l, each worker estimates the grid-

level vulnerability from the individual estimates, and then the

broker aggregates the workers’ results as Vk =
∑nk

i=1 h(xi)

Nk

where Nk denotes the total population in the grid cell gk and

nk is the number of participants in the grid.

The questionnaires include the participant’s age informa-

tion, which is used in our training algorithm to reduce bias

in the data collected from multiple apps, helping to achieve

a balanced representation in the model development. This

method will be described in the next section.

IV. VULNERABILITY PREDICTION

The use of the standard FL framework for vulnerability

prediction could result in a degradation in accuracy because of

the imbalance of the datasets from multiple apps. To address

this issue, an adaptive worker selection algorithm is proposed

and a DDP scheme is utilized to protect the user information.

A data pre-processing approach is also exploited to handle

the small dataset issue. A LSTM model is used in our FL

framework for vulnerability prediction.

A. Adaptive Federated Learning

We start with utilizing the federated averaging (FedAvg)

[5] method as a baseline to predict the COVID-19 vulnerabil-

ity risk. Later, our model will improve on the FedAvg method.

In the following description, we use one broker as an example

to illustrate our FL process. Each cell has a ML model, called

a global model. Each individual worker’s ML model is called

a local model. A worker can be selected for more than one

cell’s FL model training process. The broker and the workers

Algorithm 1 Adaptive Federated Averaging

Require: pk is the size of workers in cell k and p′k is the size

of workers from the g’s neighborhood cells k′ for training;

E is the size of local epochs; the Uk are the workers in

cell k, and the U ′
k are the workers in k’s neighborhood

cells k′.
Ensure: FL model ω

1: procedure BROKERUPDATE:

2: Initialize ω0

3: for each round t = 1, 2, ... do
4: Uk ← (random pk workers)

5: if (Adaptive Worker Selection) then
6: U ′

k ← (KLD used to select p′k workers in

7: neighbor cells k′)
8: else
9: U ′

k ← 0
10: end if
11: for each worker d ∈ Uk and d′ ∈ U ′

k in parallel

do
12: ωd

t+1 ← WorkerUpdate(d, ωt, k)

13: ωdk′
t+1 ← WorkerUpdate(d′, ωt, k

′)
14: end for
15: if (Adaptive Worker Selection) then

16: ωt+1 ← α
∑ n

di
k

nk
ωdi
t+1 + β

∑ n
dj

k′
nk′ ω

dk′
j

t+1

17: else
18: ωt+1 ← ∑ nk

n ωk
t+1

19: end if
20: end for
21:

22:

23: procedure WORKERUPDATE:(d, ω, k)

24: B ← (split data Rd
k into batches size of B)

25: for each local epoch i from 1 to E do
26: for batch b ∈ B do
27: ω ← ω − η · ∇L(ω)
28: end for
29: end for
30: return ω to server

encrypt the communication messages containing the model

parameters to provide data security.

The proposed FL process involves four steps, as shown in

Algorithm 1:

1) The broker server selects a set of workers Mk =
{d1, d2, · · · , dpk

} from the total available workers Dk

for training, where pk is the total number of workers

selected.

2) The broker server starts a model training process with

a preset of model parameter weights ω. Each worker

d downloads the primary model with the weights and

hyperparameters from the broker server. The hyper-

paramters include the local min-batch size B, the num-

ber of local epochs E, and the learning rate α.

3) The workers train the model locally using their own
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data.

a) The workers split their data into batches of size B
b) During each local round of training, the workers

utilize stochastic gradient descent ∇L(ω) to cal-

culate the loss and to compute new local weights.

c) After a set of local epochs E, each worker uploads

the generated weights to the broker.

4) The broker gathers the locally trained models and

aggregates them to obtain a shared global model.

a) The broker utilizes the FedAvg method to ag-

gregate worker weights by ωt+1 =
∑

(nd/n)ω
d
t

where ωt+1 is the global model weights, ωd
t+1 is

worker d’s model weights, nd is worker d’s local

data size, and n is the global data size.

b) The broker iterates step (2) until a preset epoch

number Ek or an accuracy condition is reached.

The FedAvg method works under the assumption that the

global data distribution on each cell is balanced, even though

the local data on the workers may be disproportionate [5].

However, for crowdsourced COVID-19 symptom data, the

global data distribution can be biased. For instance, there

might be not enough data in some areas or the data dis-

proportionately represent a certain group in a specific area.

To overcome this issue, we propose a data pre-processing

method and an privacy preserving adaptive worker selection

algorithm, as discussed below.

B. Data Pre-processing

The workers prepare their datasets before the broker

launches the training task. The data pre-processing method

includes upsampling and regression imputation. If the workers

have relatively small amounts of user data, the workers aug-

ment their data sizes by upsampling. If their datasets contain

missing values, the workers apply a regression imputation,

which replaces missing values with a predicted value based

on a regression line.

C. Privacy Preserving Adaptive Worker Selection

We assume that each grid cell has an established age

distribution Pk. A biased distribution occurs when the training

data doesn’t follow Pk. We observe that there normally exists

at least another cell next to the cell gk, which has the

same or similar COVID-19 vulnerability level as cell gk.

Based on this observation, we introduce an adaptive worker

selection algorithm that allows the broker bk to find additional

workers from cell gk’s neighboring workers to make the global

distribution of collected data close to Pk. We use gk′ to denote

the cell gk’s neighbor cells. Often times there can be more

than one neighboring cell.

Before selecting the new workers, the broker bk first

queries the age distribution P̃k from the collected data of

the selected workers. Moreover, to protect the sensitive age

information of each participant, based on the SMC scheme

(e.g., homomorphic encryption), each selected worker owns a

private key skd to encrypt the DP version of age distribution

information and the broker uses the key sk0 to decrypt the

statistics when receiving all of the cipher contents from the

workers. As a random variable with Laplace distribution can

be simulated using other random variable from the same

distribution [10], the worker dpm
can generate a random

noise zmk ∼ Lap(α) locally. Denote Lap(α) = −α sgn(U)
ln(1 − 2|U |), where α is set to ε/Δf , sgn denotes the sign

function and U is a random variable with uniform distribution

ranging (−1/2, 1/2). In the adaptive worker selection scheme,

since the broker bk is interested in age distribution, the

sensitivity Δf is 1/y and y is the dimension of the probability

space. After generating the DP noise zmk , each worker sends

the noisy data P̂m
k = Pm

k + zmk encrypted with private key

pkd to the broker bk. Then the broker decrypts the summation

data P̂k with the key sk0 and the aggregated noise follows

Lap(α) =
√
Bpk

− 1
∑

Lap(α) where the random variable

Bpk
is taken from beta distribution with parameters 1 and

(pk − 1) [10]. Thus, the broker only learns the summation

of the age distribution under DP protection and no additional

personal information can be inferred.

After receiving the age information P̂k from the selected

workers, it uses a greedy strategy to find more suitable

workers. The broker searches the cell’s neighboring workers to

select the ones that make the combined distribution following

the established age distribution Pk. It uses the KullBack-

Leibler divergence (KLD) to measure the difference between

the probability distributions of Pk and Pb = (P̂k + P d
k′), as

follows:

argmin
i

DKL(Pk‖(P̂k + P d
k′)), i ∈ Dk′ , (2)

where P d
k′ is the worker’s probability distribution from the

neighboring cell gk′ . Once the broker finds a new worker, it

updates its distribution Pb. It repeats this process until Pb is

close to Pk or when a pre-defined number of total neighboring

workers is met. Using adaptive worker selection, the broker

bk gathers the trained models from the workers inside and

also outside of cell gk. It ensembles the trained parameters

from both types of workers, as shown below:

ωt+1 ← α

Pk∑
i=1

ndi

k

nk
ωdi
t+1 + β

Pk′∑
j=1

n
dj

k′

nk′
ω
dj

t+1, (3)

where α+β = 1 and α ≥ β. The broker assigns more weights

to the training results from its own cell gk.

With the additional selected training data from neighbor-

hood workers, a broker aggregates more training models,

which will make the global model more reliable. It can also

help mitigate the overfitting problem caused by small datasets

in certain areas. The ensemble results improve the prediction

accuracy and reduce error in the learning models.

We utilize the LSTM model to predict the COVID-19

vulnerability level. The LSTM model [7] is an extension of

the recurrent neural network (RNN) model that introduces

memory cells. Our model uses the memory cells to store

COVID-19 symptoms for long periods of time. More accurate

predictions can be achieved with the LSTM model as the
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Fig. 2. Prediction accuracy. Fig. 3. KL divergence: ˜Pk‖Pk . Fig. 4. RMSE with DP on ˜Pk .

prediction takes into account the COVID-19 symptom history

data [11].

V. PERFORMANCE EVALUATION

We now examine the performance of the proposed frame-

work for the construction of the privacy-preserving vulnera-

bility map. The software used for performance evaluation is

Python. We regard the City of Houston as the target area

for estimating the risk level at each super neighborhood.

Houston’s government has divided the city into 88 super

neighborhoods [12]. Each neighborhood has the attributes of a

grid ID and boundary GPS coordinates. Each neighborhood’s

age distribution is utilized in the adaptive worker selection

algorithm. The simulation results are based on the publicly

available Demystata COVID-19 dataset [13] that includes

COVID-19 cases within the US aggregated by zip code. We

estimate the super neighborhood COVID-19 cases based on

the percentage of population in the zip code. We simulate

the user symptom data by using the number of COVID-19

cases in each age group reported by Harris County Public

Health [14]. We develop a mobile crowdsourcing app that

allows users to report symptoms and the app displays the

COVID-19 vulnerability map. The mobile app is implemented

using Android Studio and Google Maps.

Experiment setup The data bias scenario is an impor-

tant aspect of federated learning. To evaluate our proposed

approach to handle this problem, we simulate biased user

symptom data in the experiment. We first generate a large

number of users and then partition them equally into four

age groups, which are the same age groups provided by the

Houston super neighborhood report [12]. The groups are:

”under 5 yrs”, ”5 to 17 yrs”, ”18 to 64 yrs” and ”65 & over”.

To simulate the balanced user age in each area, we sample

users from each age group by following the age group

distribution in each super neighborhood [12], and assign them

into the corresponding area. To simulate the unbalanced user

age data in an area, we assign a large number of users from

a specific age group into the area, to change the area’s age

distribution. After that, we add Covid-like symptoms to each

user based on the number of COVID-19 cases in each age

group provided by Harris County Public Health [14]. To

simulate the missing values in user data, we randomly select

TABLE I
TRAINING PARAMETERS

Notation Description
M total number of workers in a zip code
Mk the number of workers selected in the training pro-

cess
Mk′ the number of neighboring workers selected in the

training process
E local epoch
Eb broker epoch

users and drop their data points at arbitrary timestamps. We

finally assign the user data into the workers in each area.

We use the simulated test set to conduct performance

analysis. We allocate 70% of the data for training and the

remaining 30% of the data for testing. Our scheme is evaluated

by comparing it with the FedAvg FL algorithm as the baseline.

We use the model training results for one area to demonstrate

our proposed approach. Table 1 shows the notations of the

parameters used in the experiment.

Prediction accuracy Figure 2 shows the prediction accu-

racy improvement in one area. The blue line is the vulner-

ability level from the testing data and the green line is our

proposed approach and the red line represents the FedAvg

results. Our results are much closer to the testing results with

the root mean square error (RMSE) reduced from 0.372×104

to 0.125×104. On average there is 6% improvement in predi-

cation accuracy. FedAvg, a standard FL method, becomes less

accurate when it uses underrepresented or imbalanced data to

train ML model. This results in misleading conclusions and

the model can not be trusted to provide a reliable prediction.

Our approach provides a reliable prediction by using both the

data pre-processing method and the adaptive worker selection

algorithm to mitigate the biased dataset issue. The data pre-

processing method includes upsampling of small datasets and

regression imputation to estimate the missing values in the

workers’ user data.

Adaptive worker selection We use the distribution of

DKL(Pk‖Pb) to present the changes of equilibrium degree

when selecting more workers, as illustrated in Fig. 3. Pk is

the given age distribution in area gk and Pb is a broker’s

age distribution, which is obtained by the selected workers

(Mk + Mk′ ) from both area gk and the neighboring areas

gk′ . The distribution results on the left are generated from the

FedAvg approach, which uses only the local area workers;

Authorized licensed use limited to: University of Houston. Downloaded on August 30,2022 at 20:44:38 UTC from IEEE Xplore.  Restrictions apply.



while the results on the right three boxes use our adaptive

worker selection approach to add more neighboring workers.

The results show that the proposed algorithm can significantly

re-balance the user age distribution, e.g., from 0.44 to 0.13,

with an increase in neighboring workers. The results suggest

that if balanced user data is selected from the workers, the

broker can create a good global model with reduced bias to

achieve accuracy improvement.

We also study the impact of applying differential privacy on

the broker’s P̃k value with a smaller privacy budget ε = 0.6, as

shown in Fig. 4. We found that with the increase of neighbor-

ing workers (e.g. ≥ 10 workers), applying DP to P̃k preserves

the user age distribution information without deteriorating

the final accuracy because the user age distribution becomes

balanced with more workers.

Time overhead Our FL framework requires three major

additional tasks: data pre-processing, adaptive worker selec-

tion and extra training epochs using neighboring workers. The

time required for data pre-processing is negligible since it is

conducted in the initialization phase before the training starts.

The adaptive worker selection uses a greedy strategy. The

time complexity of the searching process is O((d
Mk′
k′ )2). A

broker performs the adaptive worker selection only once when

the user age distributions on workers are not dynamically

and rapidly changing. Otherwise, the broker needs to search

for neighboring workers in each Eb training round. In FL

learning, the most time-consuming part is training a local

model in each worker. We use T to denote the average training

time of a local epoch in a worker. The total time spent on the

training round is Eb × E × T .

Vulnerability prediction map Figure 5 and Figure 6

show our mobile app that displays the Google map with the

estimated average vulnerability of COVID-19 in the 88 super

neighborhoods of Houston. Fig. 5 utilizes the collected user

symptom data to directly estimate the vulnerability risk level.

Fig. 6 depicts a week-long future vulnerability trend predicted

by the LSTM model. The future trend reflects the estimated

percentage of vulnerable population towards COVID-19.

VI. CONCLUSION

We have developed a novel FL framework that constructs a

privacy preserving fine-grained COVID-19 vulnerability map

by leveraging multiple crowdsourcing mobile and web apps.

The FL-based fine-grained vulnerability map construction

utilizes a large amount of survey data available while at the

same time providing a privacy guarantee. It has provided a

more reliable vulnerability prediction than existing methods.

The potential imbalanced or biased datasets from each indi-

vidual self-reporting app has been addressed by an adaptive

worker selection algorithm that ensures the aggregated age

distribution correctly represents the age distribution in the

fine-gained area. A dataset pre-processing mechanism has

been also employed to mitigate the potential small dataset

problem. To protect user’s privacy, a DDP scheme has been

applied to the age distribution parameter. The simulation

Fig. 5. Vulnerability map. Fig. 6. Future trend map.

results of the proposed FL framework with LSTM training

models show a 6% improvement in accuracy over the widely

used FedAvg algorithm.
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