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Abstract—Preventing COVID-19 disease from spreading in
communities will require proactive and effective healthcare re-
sources allocations, such as vaccinations. A fine-grained COVID-
19 vulnerability map will be essential to detect the high-risk
communities and guild the effective vaccine policy. A mobile-
crowdsourcing-based self-reporting approach is a promising so-
lution. However, an accurate mobile-crowdsourcing-based map
construction requests participants to report their actual locations,
raising serious privacy concerns. To address this issue, we propose
a novel approach to effectively construct a reliable community-
level COVID-19 vulnerability map based on mobile crowdsourced
COVID-19 self-reports without compromising participants’ lo-
cation privacy. We design a geo-perturbation scheme where
participants can locally obfuscate their locations with the geo-
indistinguishability guarantee to protect their location privacy
against any adversaries’ prior knowledge. To minimize the data
utility loss caused by location perturbation, we first design an
unbiased vulnerability estimator and formulate the location per-
turbation probability generation into a convex optimization. Its
objective is to minimize the estimation error of the direct vulner-
ability estimator under the constraints of geo-indistinguishability.
Given the perturbed locations, we integrate the perturbation
probabilities with the spatial smoothing method to obtain reliable
community-level vulnerability estimations that are robust to a
small-sampling-size problem incurred by location perturbation.
Considering the fast-spreading nature of coronavirus, we inte-
grate the vulnerability estimates into the modified susceptible-
infected-removed (SIR) model with vaccination for building a
future trend map. It helps to provide a guideline for vaccine
allocation when supply is limited. Extensive simulations based
on real-world data demonstrate the proposed scheme superiority
over the peer designs satisfying geo-indistinguishability in terms
of estimation accuracy and reliability.

Index Terms—Mobile crowdsourcing, Location privacy, Differ-
ential privacy, Optimization, Small area estimation.

I. INTRODUCTION

The pandemic of the coronavirus (COVID-19) has raised

an unprecedented global crisis in various aspects (e.g., public
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health and economy). Vaccination is widely regarded as one of

the most effective methods in curbing the spread of COVID-

19. To date, a new variant of SARS-CoV-2 has been detected

and spread over forty countries and regions in the world

[1]. The top priority is to achieve a high vaccination rate to

protect people from spreading the virus to others. However,

many countries and regions are still facing the challenge of

judicious distribution of SARS-CoV vaccines [2]. Given that

the finite vaccine storage and transportation, it will take a long

time to obtain enough doses of the vaccine to vaccinate the

entire society. For the non-vaccine-producing countries, the

vaccine comes in batches. Although World Health Organiza-

tion (WHO) has announced relevant guidelines for vaccine

distribution in disrupting disease transmission [3], it will be

imperative to refine these guidelines according to the actual

risk level of different communities that are vulnerable to

COVID-19. Hence, early and rapid identification of the most

“vulnerable” communities is vital for the judicious allocation

of limited medical resources (e.g., vaccines).

The early identification of suspected cases during an epi-

demic is often depicted as a heatmap with the locations of

vulnerability risk predictions [4]. The success of COVID-

19 vulnerability map construction relies on comprehensive

health information. However, it is extremely time-consuming

to identify “the most vulnerable” people and their residential

communities by physically “scanning” all the communities

for vaccine allocation, especially for economically disadvan-

taged underrepresented communities. It may seriously affect

COVID-19 data detection and fail to make an early response

to contain the next potential “outburst” spots.

Most recently, the Internet of Medical Things (IoMT) served

as an extension, and specialization of the Internet of Things

(IoT) has been used to combat COVID-19 disease [5]. IoMT

helps collect informative medical and symptom data by using

IoT devices (e.g., electronic thermometer and wearable detec-

tion sensors) for COVID-19 disease detection. Moreover, with

the aid of mobile crowdsourcing [6], [7], more related sources

of information can be collected from real-world environments

via employing mobile users to participate in data acquisition

and used to provide various COVID-19 applications. For ex-

ample, by distributing real-time surveys to ubiquitous mobile

users via a mobile crowdsourcing platform, it only takes a few

seconds to obtain a current snapshot of the number of people in

each area who are at higher risk of COVID-19. It later can be

used to build prioritized policy for vaccination. The feasibility

of this approach lies in the popularity of mobile/IoMT devices
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and the wide expectation that people may be willing to share

their self-reported data related to COVID-19 with the public to

help combat the COVID-19. During the outbreak of COVID-

19, Facebook has released an interactive coronavirus symptom

map via the crowdsourced data from an opt-in survey [8],

More than 1 million people had responded to the survey within

the first two weeks. The tremendous data size and diverse

information tagged with fine geographic information make it

possible for fine-grained map construction.

However, the mobile crowdsourcing based COVID-19 map

construction is not perfect. Existing researches such as [9],

[10] analyzed and estimated the severity of the disease in

specific areas using self-reported data via an online survey.

Others like [11], [12] focus on leveraging various statistic

or machine learning tools to enhance the accuracy of the

risk assessment. These solutions require mobile participants

to upload their COVID-related data and their exact location

information to untrusted platforms. Such location information

is sensitive, based on which an attacker can infer users’ iden-

tities when demographic or other readily available attributes

are on the file. It will lead to serious privacy concerns, and the

mobile participants may be reluctant to contribute any data to

the mobile crowdsourcing platform [13], [14]. Therefore, it is

necessary to ensure users’ location privacy to retain and attract

mobile participants. Differential privacy (DP), which provides

quantified data privacy with strong theoretical guarantees, has

been recognized as a promising protection scheme without

assumptions about the attackers’ background information.

Consequently, several differentially private location obfusca-

tion mechanisms [15], [16] have been proposed to protect

users’ locations under the DP guarantee. However, applying

differentially private location perturbation schemes on vul-

nerability map construction is challenging. The crowdsourced

data are used as the sampling observations to estimate the

population vulnerability distribution in the targeted area. With

the location obfuscation scheme, the observation based on the

perturbed locations would inevitably affect the quantity of the

high-risk observations and degrade the utility of population

vulnerability estimation . Moreover, the location perturbation

scheme in a fine-grained map may reduce the sample sizes

in some small regions and leads to an unreliable population

vulnerability estimation. Thus, it is critical to consider the

utility and reliability of population vulnerability estimation

in the design of participants’ location privacy preservation

schemes for vulnerability map construction.

To address these issues, in this work, we develop a fine-

grained COVID-19 vulnerability map construction scheme

via mobile crowdsourcing while preserving participants’ lo-

cation privacy. Specifically, we design a location-privacy-

preserving mobile crowdsourcing framework for COVID-19

data collection, where mobile participants locally obfuscate

their locations using our differentially private location per-

turbation scheme. The utility-assured differentially private

location perturbation scheme is efficiently generated at the

server side without violating the users’ privacy. Hence there is

no additional computing overhead on the mobile participants’

side. Moreover, we leverage the spatial correlation between

neighboring areas, incorporating the geo-perturbation proba-

bilities with the spatial weighting matrix, to mitigate the small

sample issue incurred by the location perturbation scheme. It

further enhance the reliability of the vulnerability estimation.

Our salient contributions are summarized as follows.

• We propose a novel location privacy-preserving vulnera-

bility map construction scheme. Briefly, we leverage the

help of mobile crowdsourcing to virtually find out the

most vulnerable people and estimate the vulnerability

levels of COVID-19 in a targeted area without disclosing

the participants’ location differential privacy.

• We develop a differentially private geo-perturbation

scheme, which allows mobile crowdsourcing participants

to locally perturb their locations meanwhile providing

useful and reliable vulnerability estimations. To this end,

we establish an unbiased estimator of vulnerability level

and formulate the geo-perturbation probability generation

as a convex optimization to minimize the variance of

the unbiased estimator under the geo-indistinguishability

constraints. The gradient descent method is employed to

find the optimal perturbation probabilities.

• Given the obfuscated locations, we employ the Bayesian

smoothing method to integrate the geo-perturbation prob-

abilities to the spatial weighting matrix and auxiliary data

from the publicly available census, which can improve

the estimation reliability when the crowdsourcing data

in a subarea is small after location perturbation. Further,

we show how the reliable vulnerability estimation can be

applied to vaccine allocation and integrate the vulnerabil-

ity estimates with the susceptible-infected-removed (SIR)

model to generate the future trend map.

• Extensive simulations are conducted based on real-world

datasets to evaluate the performance of our scheme. Com-

pared with different location privacy preserving mech-

anisms, the proposed location scheme can reduce the

about 20% estimation variance for vulnerability map

construction. The results also demonstrate the tradeoff

between DP and risk estimation reliability.

The rest of this paper is organized as follows: In Section II,

the related work is discussed. In Section III, the preliminary

of location differential privacy and overall system model are

presented. In Section IV, the location perturbation scheme and

the problem formulation are described as well as the effective

iterative algorithm is proposed to find the optimal solution. In

Section V, the Bayesian smoothing model for community-level

vulnerability inference, vaccine allocation policy and future

prediction on SIR model are discussed. In Section VI, the

experiment based on the true database are analyzed and the

paper is concluded in Section VII.

II. RELATED WORK

From the COVID-19 risk assessment respective, existing

works have adopted the compartmental models or machine

learning tools to quantify the risk under COVID-19 and predict

the next potential COVID-19 disease outbreak spots. The data

source used in the risk assessment framework is dependent

mainly on the daily confirmed and death cases [11], [17].

However, the data collection above is time-consuming and
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biased since it lacks the coverage of the population with

asymptomatic or mild symptoms. Some works have leveraged

cost-effective data collection approaches, e.g., mobile/online

surveys and social media platforms, and developed COVID-

19 symptom maps to investigate the dynamics of the COVID-

19 [10], [18]. For example, Jahanbin et al. in [18] used Twitter

comments to estimate the severity of the disease in certain

areas. Facebook and CMU university have collaborated to

launch a symptom reporting survey to estimate the number

of COVID-like illnesses. For survey data processing, they

discarded the areal results with survey responses under 100

to avoid unreliable estimation. However, the previous works

assume the data collector is always trustworthy and enables

mobile users to contribute their COVID-related data tagged

with their exact locations, causing privacy concerns. To keep

user anonymity, the data collectors aggregate the users’ loca-

tion information to high levels (e.g., the state or city scale)

before publishing the map. While such aggregation provides

risk assessments from the macroscopic perspective, it can

disable data analysis of COVID-19 at the micro level.

From the location privacy perspective, the early works on

preserving location privacy in disease mapping were geo-

donuts [19] and k-anonymity based location anonymity [20].

However, the cloaking mechanisms such as geo-donuts have

limitations and fail to provide privacy protections against

the adversary with the background information knowledge

about the target user’s location distribution [21]. Recently,

location differential privacy schemes have been proposed to

provide rigorous privacy protection independent of an adver-

sary’s prior knowledge. However, the perturbation variance

is exponentially increasing with a large domain size. It is

challenging to maintain a high data utility, and it is also

unclear how reliable the estimation will be. Bordenabe et al.

[21] studied the privacy and utility tradeoff and formulated

the location perturbation problem to minimize the distance

between the original and perturbed locations. The optimization

problem used the graph-based approximation to reduce the

solving complexity and thus cannot guarantee optimality. Gu

et al. [22] also investigated the tradeoff between privacy and

utility when estimating frequency query for location check-

ins. However, their query utility is dependent on the unknown

true frequencies and cannot be directly evaluated.

Unlike these existing works above and our previous

work [23], in our map construction, the proposed location

perturbation probability is generated with considering the

utility of the aggregated estimation under the geo perturbation

scheme. Such perturbation probability generation is formulated

as an estimation error minimization problem that is indepen-

dent on the unknown true information. A gradient descent

method is employed to seek for the optimal solutions. More-

over, we consider the small sampling size problem incurred

by the geo perturbation scheme and allow the crowdsourced

aggregator to use the Bayesian smoothing method to adjust

the community-level estimates rather than directly discard

them. The vulnerability map also includes the uncertainty

information of our community-level estimates to demonstrate

the reliability of the estimator.

III. PRELIMINARIES & SYSTEM OVERVIEW

A. Location Differential Privacy Preliminaries

With the principle of the standard centralized differential

privacy [24], local DP (LDP) especially allows each user to

perturb her private data locally via a randomized mechanism

without the requirement of trustworthy third-party entities. The

definition of LDP is shown as follows.

Definition 1 (LDP [25]): Suppose a privacy parameter ε ≥
0, a randomization algorithm M satisfies ε-local differential
privacy. For any pair of inputs X , Y and any output S ∈
range(M),

Pr[M(X) = S]

Pr[M(Y ) = S]
≤ eε. (1)

Intuitively, the above definition states that when ε is smaller,

the probabilities of which two different inputs, X and Y , have

the same output via the randomized algorithm M are closer

to each other. Hence, privacy preservation level is controlled

by the privacy parameter ε. A smaller ε leads to higher privacy

preservation as it is harder for an adversary to determine

whether a user has this sensitive input, given an output S.
LDP is recently deployed in the application of loca-

tion privacy [15]. Based on the principle of LDP, geo-

indistinguishability is designed to preserve users’ location pri-

vacy against adversaries with background information. Math-

ematically, in geo-indistinguishability scheme, a user n can

perturbhis real location to another one based on a pre-set

randomized location obfuscation algorithm M (i.e., M maps

location a to g with given probabilities) and then shares the

perturbed location g in public. With the LDP guarantee, if

an adversary observes user n is in g, the adversary cannot

distinguish whether g is the true location of n, even if he

knows the randomized algorithm M. According to Definition
1, geo-indistinguishability is formally defined as follows:

Definition 2 (ε-geo-indistinguishability [15]): With the

privacy parameter ε ≥ 0, a randomized location obfuscation

algorithm M satisfies ε-LDP on the concerned area that

includes a set of locations Θ, if for any two different locations

a0, a
′
0 ∈ Θ and an arbitrary location g, the following holds:

Pr [M(a0) = g]

Pr [M(a′0) = g]
≤ eεd(a0,a

′
0), (2)

where d(a0, a
′
0) denotes the Euclidean distance between loca-

tions a0 and a′0.
The ε-geo-indistinguishability aims to protect the actual

location by hiding among the set of locations Θ due to their

similar probability distributions for perturbed locations. From

Definition 2, it is easily observed that as the distance d(a0, a
′
0)

of two different locations a0 and a′0 is smaller, they are more

indistinguishable since their output distributions are closer to

each other. Moreover, it has been theoretically shown that ε-
geo-indistinguishability can protect users’ sensitive location

information against adversaries with arbitrary prior knowledge.

Suppose that the adversary has prior knowledge about a

user’s location distribution π. After the adversary observes the

obfuscated location s, the information gain of his posterior

knowledge σ over π is bounded by eεdmax , i.e., σ/π ≤ eεdmax

(dmax is the maximum distance of any two locations in Θ),
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Fig. 1. Vulnerability map construction via privacy preserving mobile
crowdsourcing.

regardless of what the prior π is [15]. Please refer to [15] for

the theoretical proof.

B. System Overview

In this work, we proposed to develop a mobile crowd-

sourcing assisted privacy preserving COVID-19 vulnerability

estimation scheme, which includes a mobile crowdsourcing

platform and a number of participants distributed over the

concerning area, as shown in Fig. 1. To virtually detect

the most vulnerable area and estimate vulnerability levels

in the target area, the crowdsourcing aggregator leverages

mobile crowdsourcing to collect multi-dimensional user profile

related to vaccine allocation such as personal health data,

age, gender, employment status, etc. Suppose that all the

participants are willing to engage in mobile crowdsourcing,

the collected user profile from the participants is truthfully

reported. Since the vulnerability estimation is related to the

location, the mobile crowdsourcing platform needs the ge-

ographic information of the participants and aggregates the

participants’ user profiles within the same locations. Such

geographic information is closely related to either home or

work address. The participants’ identities can be easily inferred

when combing the location information, user profile and other

available attributes. Assume that the crowdsourcing aggregator

is semi-honest which implies he follows the proposed protocol

but tries to infer the participants’ identities via the uploaded

location, which results in severe user privacy leakage. To

reduce information leakage, the participants are allowed to

perturb their location information by following a well-designed

geo-perturbation scheme.

Assume that there are N mobile users who are distributed

over the targeted area A. The targeted area A is divided

into G non-overlapping cells, denoted by the set A =
{a1, a2, · · · , aG}. Let G = {1, · · · , i, · · · , G} denote the

indices of cells. Each cell ai is tagged with a certain COVID-

19 vulnerability level θi. The entire vulnerability prediction

map (VPM) is modeled as θ � [θ1, · · · , θG]. In a fine-

grained VPM, the spatial unit is set to the street or township

level. Let n be user index, and if n’s reporting location

falls into the range of the ai-th cells, we can roughly regard

user n’s location as the ai-th cells, denoted by ln = ai.
Denote hn = [hn1, · · · , hnM ] be the n-th user profile related

to COVID-19 data analysis such as demographic data (e.g.,

gender, age, occupation, employment status) and pre-existing

health conditions. Given the user profile hn, the user n can

obtain his risk of infection rn via a predetermined function

f : hn ∈ DM → rn ∈ {−1, 1} which is pre-configured

by the crowdsourcing aggregator, where 1 represents high

risk and -1 is low risk. With a slight abuse of notation, we

denote the set of crowdsourcing participant as Np, where

n ∈ Np = {1, 2, · · · , Np} and Np ≤ N , and the location-data

pair of the participant n as 〈ln, rn〉. Then, according to the

location-data pairs of the crowdsourcing participants n ∈ Np,

the aggregator will estimate and predict the vulnerability value

as θ̂ � [θ̂1, · · · , θ̂G] and construct the corresponding VPM.

This work focuses on the problem of preserving the users’

location privacy while providing effective community-level

vulnerability estimation, which can effectively provide guide-

lines of vaccine allocation strategies. Briefly, the crowd-

sourcing platform launches the task, i.e., gathering personal

health data via mobile applications and IoMT sensors. The

crowdsourcing participants fulfill their user-profiles and locally

perturb their true location information based on the proposed

geo-obfuscation scheme. Then, they upload their user profile

tagged with the obfuscated locations to the crowdsourcing plat-

form. After receiving participants’ user profiles, the aggregator

estimates the community-level vulnerability levels based on

the vaccine allocation strategies.

Note that, since the location obfuscation scheme is deployed

locally on participants’ side, no additional sensitive informa-

tion is revealed to the crowdsourcing aggregator. Hence, users’

location privacy can be well protected. However, the observed

locations in the crowdsourcing platform may be different from

the actual locations. It may result in a biased estimation

since the crowdsourcing aggregator is indistinguishable from

the actual and obfuscated locations. Moreover, it affects the

collected data size in each cell. The direct estimation of the

cells with a small sample size becomes unreliable, leading

to unacceptable data utility for determining vaccine allocation

strategies. In the following, we address these issues to improve

the accuracy and reliability of community-level estimation

from two perspectives: (1) We integrate the community-

level estimation error minimization in our proposed geo-

perturbation scheme, which will be shown in Sec. IV. (2)

We adjust the community-level estimation by considering

the location perturbation effect, spatial correlation of the

neighboring areas, and social-economic risk factors. Therefore,

biased location information and insufficient sample size have a

small impact on community-level estimation degradation and

vaccine allocation inefficiency, which is discussed in Sec. V.

IV. UTILITY-ASSURED GEO-PERTURBATION SCHEME

DESIGN

Before collecting participants’ location-data pairs, a proba-

bilistic perturbation function P needs to be generated for the

crowdsourcing participants to provide location DP guarantee.

Here, the semi-honest platform can take charge of generating

the perturbation function P without violating users’ privacy.

That is because DP can provide a theoretical guarantee to

protect user’s sensitive information, i.e., location information

in this paper, against the adversaries who know P . In other
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TABLE I
PARAMETER NOTATIONS.

System parameters

Np(Np) Set (numbers) of crowdsourcing users

A = {ai}G
i=1 Set of non-overlapping cells

hn, rn, ln User profile, infection risk, and location of user n

〈ln, rn〉 Location-data pair of user n

θ(θ̂) True (estimated) vulnerability levels

G Set of location indices

Geo-perturbation parameters

ε Differential privacy budget

[psi, pri]
G
i=1 Location perturbation probabilities

sin Encoding vector of user n whose 〈ln = ai, rn〉
yn Perturbed vector of user n

Si(Ŝi) True (estimated) count of 〈ai, 1〉
Zi True count of 〈ai,−1〉

Oi,1(Oi,−1) Observed counts of y[i] = 1 (y[i] = −1)

d(·, ·) Distance function

Bayesian smoothing parameters

Ei Expected count of 〈ai, 1〉
W = [wij ]

G×G Spatial weight matrix

Xi Vector auxiliary coefficients

βi Vector regression variables

ui(vi) Spatial correlated (uncorrelated) random effect

ei Residual variation

SIR model parameters

Ni The population of cell ai

Vi(γi) Control parameters for vaccine intervention (recovery)

PS
i [t], P I

i [t], PR
i [t]

The number of the susceptible,infected,
and removed individuals of ai at time t

Fig. 2. The overview of geo-perturbation scheme.

words, users can get privacy protection under the perturbation

function P even if it is generated by the untrust platform. Note

that a large perturbation noise can provide strong DP guarantee

while it would perturb the original location to a point that is

far away from the original one, degrading the data utility.

In this work, we propose a geo-perturbation scheme (GEP).

The goal of GEP design is to get useful estimation of

community-level vulnerability. The overall procedure is shown

in Fig. 2. The first step is to generate the perturbation probabil-

ities matrix that is optimized via Alg. 1. In the second step, the

mobile users encode their own location-data pair 〈l, r〉 into a

G-length vector and then perturb the G-length vectors accord-

ing to the perturbation probabilities matrix locally. In the last

step, after receiving the perturbed vectors from crowdsourcing

users, The aggregator utilize the pre-determined estimators to

obtain the risk levels in each community.

In the following, we start with the aggregated estimator

design and the formulation of perturbation probabilities gen-

eration. Inspired by Unary Encoding (UE) scheme in [26],

our probabilistic perturbation function is defined as P =
[psi, pri]

G
i=1. Hence, compared with the perturbation matrix

P′ ∈ R
G×G, the computation complexity of P is greatly

reduced due to fewer parameters. Different from the original

UE scheme in [26], the proposed GEP assigns different

perturbation probabilities to different bias. It is the key point to

achieve while still providing the ε-geo-indistinguishability for

location privacy guarantee. Moreover, the existing perturbation

schemes, such as [26], [27], are not suitable for vulnerability

estimation since they only handle the proportion or count of

participants whose location pair satisfies 〈ln = ai, rn〉, while
we consider the more complicated frequency estimation of

whose location pair satisfies 〈ln = ai, rn = 1〉.

A. Mechanism Design

The location-data pair 〈l, r〉 is first encoded to a G-length

vector (the subscript n is omitted for brevity in the rest of this

section),

si = [0, · · · , 0, r, 0, · · · , 0], (3)

where vector si represents the vector whose i-th entry is r,
and other entries are 0s. Then, each bit of the encoded vector
si is perturbed into 1, -1 or 0 independently to get the output
vector y with probabilities:

P (y[i]|s[i] = r) =

⎧⎪⎪⎨
⎪⎪⎩

psi, if y[i] = r

(1− psi)/2, if y[i] = −r

(1− psi)/2, if y[i] = 0

, (4)

P (y[i]|s[i] = 0) =

⎧⎪⎪⎨
⎪⎪⎩

pri/2, if y[i] = 1

pri/2, if y[i] = −1

1− pri, if y[i] = 0

. (5)

For two different vector si, where only the i-th bit is r
(1 or -1), and sj where i, j ∈ G, the probability ratio of

distinguishing the encoding location-data pair of si and sj

by observing the perturbed vector y is

P (y|si)
P (y|sj) =

P (y[i]|si)P (y[j]|si)
P (y[i]|sj)P (y[j]|sj) (6)

≤ P (y[i] = r|si)P (y[j] = 0|si)
P (y[i] = r|sj)P (y[j] = 0|sj) (7)

=
4psi(1− prj)

pri(1− psj)
, (8)

where the second equations holds if and only if y[i] = r and

y[j] = 0. Then, the location privacy constraint is

4psi(1− prj)

pri(1− psj)
≤ eεd(i,j), ∀i, j ∈ G. (9)

For the estimation of the true vulnerability count of the cell

ai, denotes the true counts of location-data pairs 〈ai, 1〉 of

all the participants as Si. Let Oi,1 = Count(y[i] = 1), and
Oi,−1 = Count(y[i] = −1) be the observed counts in the

crowdsourcing platform. Then we have the following lemma

for the estimation of Si.
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Lemma 1: The unbiased estimator of Si is

Ŝi =
Oi,1 +Oi,−1 −Nppri

1 + psi − 2pri
+

Oi,1 −Oi,−1

3psi − 1
. (10)

Proof: Denote the true counts of location-data pairs

〈ai,−1〉 of all the participants as Zi. According to the pertur-

bation probabilities (4) and (5), we have,⎧⎨
⎩ E[Oi,1] = Sipsi + Zi

1−psi

2 + (Np − Si − Zi)
pri

2 ,

E[Oi,−1] = Si
1−psi

2 + Zipsi + (Np − Si − Zi)
pri

2 .

From which we get:

E[Ŝi] =
E[Oi,1 +Oi,−1]−Nppri

1 + psi − 2pri
+

E[Oi,1 −Oi,−1]

3psi − 1

=
Si + Zi

2
+

Si − Zi

2
= Si. (11)

Therefore, Ŝi is an unbiased estimator of Si.
Here, we consider the crowdsourcing aggregator uses MSE

to evaluate the utility of the estimates Ŝi, i.e., the less MSE
the better utility. Note that the MSE is calculated by the
summation of variance and the square of its bias. Moreover,
the MSE of unbiased estimator Ŝi is equal to its variance

MSE(Ŝi) = Var

[
Oi,1 +Oi,−1 −Nppri

1 + psi − 2pri
+

Oi,1 −Oi,−1

3psi − 1

]
. (12)

For convenience, denote B1 = Oi,1 + Oi,−1, B2 = Oi,1 −
Oi,−1, C1 = 1

1+psi−2pri
and C2 = 1

3psi−1 , then we have

Var[Ŝi] = C2
1Var[B1] + C2

2Var[B2] + C1C2CovB1,B2 . (13)

We generalize the results from [27]:

Var[B1] = Np(pri − p2ri) + (Si + Zi)(
1− p2si

4
+ p2ri − pri),

(14)

Var[B2] ≤ Nppri +
1

2
(Si + Zi)(1 + psi − 2pri), (15)

CovB1,B2 =
1− p2si

4
(Si + Zi)(3psi − 1), (16)

to upper bound the second terms in Eqn. (13). Note that only

Var[B2] is computed by its upper bound. According to (14)-

(16), we have

Var[Ŝi] �
Nppri(1− pri)

(1 + psi − 2pri)2
− (Si + Zi)pri(1− pri)

(1 + psi − 2pri)2

+
Nppri

(3psi − 1)2
+

(Si + Zi)(1 + psi − 2pri)

2(3psi − 1)2

+
(Si + Zi)(1− p2si)(2 + psi − 2pri)

4(1 + psi − 2pri)2
. (17)

Afterwards, we can get the optimal perturbation funtion P
by solving the following optimization problem:

min
ps,pr

MSE(Ŝ) �
G∑
i=1

Var[Ŝi] (18a)

s.t. 4psi(1− prj) ≤ γijpri(1− psj), ∀i, j ∈ G, (18b)

0 ≤ pri ≤ 0.5 ≤ psi ≤ 1, ∀j ∈ G, (18c)

where γij = eεd(i,j), ps = [ps1, · · · , psG] and pr =
[pr1, · · · , prG] are the two variables of the location per-

turbation probabilities. Constraint (18b) provides the ε-geo-
indistinguishablity in the Definition 2 for location privacy.

Constraint (18c) ensures for better data utility. Note that the

unknown values Si and Zi in Eqn. (17) makes it hard to find

the optimal perturbation probabilities. Next, we address this

challenge by obtaining a variant of MSE in Eqn. (18a) that is

independent of the unknown parameters.

B. Problem Reformulation
In this part, we consider RAPPOR’s implementation [28]

such that psi + pri = 1 ; Intuitively, we treat the information
that the participants’ location is in the cell i or not is equally
sensitive thus psi = 1 − pri. We add the corresponding
constraints psi + pri = 1, ∀i ∈ G in problem (18). Then, the
overall MSE can be rewritten as,

MSE(Ŝ) =

G∑
i=1

Np(1− p2si)

(3psi − 1)2
+

(Si + Zi)(2 + psi − p2si)

4(3psi − 1)

≤
G∑

i=1

Np(1− p2si)

(3psi − 1)2
+max

{
2 + psi − p2si
4(3psi − 1)

}
Np. (19)

Here, the second inequality is due to
∑G

i=1 Si + Zi = Np.

The variant MSE can be regarded as the MSE in the worst

case. Then the optimization problem (18) is reformulated as

min
ps,pr

G∑
i=1

Np(1− p2si)

(3psi − 1)2
+max

{
2 + psi − p2si
4(3psi − 1)

}
Np (20a)

s.t. (18b), (18c),

psi + pri = 1, ∀i ∈ G. (20b)

We can further simplify the constraints (18b) and (20b) and

obtain new constraints as follows,

(psi + psj)γij − (γij − 4)psipsj ≤ γij , ∀i, j ∈ G. (21)

To circumvent this difficulty due to the product of the two

variables psi and psj , the big-M formulation [29] is utilized

to decompose this product. We introduce bij = psipsj as aux-

iliary variable and impose the following additional constraints:

bij ≤ psi, ∀i, j ∈ G, (22)

bij ≤ psj , ∀i, j ∈ G, (23)

bij ≥ psi + psj − 1, ∀i, j ∈ G, (24)

0 < bij ≤ 1, ∀i, j ∈ G. (25)

Then, we substitute bij into the constraint (21) and have

(psi + psj)γij − (γij − 4)bij ≤ γij , ∀i, j ∈ G. (26)

This is an affine function with respect to the new optimization

variables b = {bij}Gi,j=1. We note that the constraints (21) and

(26) are equivalent when the constraints (22)-(25) are satisfied.

Consequently, the perturbation generation problem is rewritten

as the following problem:

min
ps,b,z

E �
G∑
i=1

Np(1− p2si)

(3psi − 1)2
+ zNp (27a)

s.t. (18c), (22)− (26), (27b)

0.25(2 + psi − p2si)(3psi − 1)
−1 ≤ z, ∀i ∈ G, (27c)
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where z is new variances for relaxing the max function. In the

next section, we will use a standard gradient descent method

to obtain the optimal solution to problem (27).

C. Solution of Location Perturbation Optimization

In this section, we utilize the gradient descent method to

find the optimal perturbation probabilities ps. We first show

the problem (27) is a convex problem.

The first-order derivative of the objective in the problem

(27) with respect to ps can be expressed as

∂E
∂psi

= −2Np (3− psi)

(3psi − 1)3
. (28)

The corresponding Hessian with respect to psi is computed by

	2
ps
E =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2E
∂p2

s1
0 · · · 0

0 ∂2E
∂p2

s2
· · · 0

...
...

. . .
...

0 0 · · · ∂2E
∂p2

sG

⎤
⎥⎥⎥⎥⎥⎥⎦

 0. (29)

Obviously, the Hessian matrix in Eqn. (29) is positive definite

in the feasible region. Hence, the problem (27) is a convex

problem. Next, the gradient descent method is utilized to find

the global optimal solutions. The Lagrange dual is derived as

L(ps,b, z, ζ
1, ζ2, ζ3, ζ4,κ,ν1,ν2)

= zNp +
G∑
i=1

Np(1− p2si)

(3psi − 1)2

+

G∑
i=1

G∑
j=1

κij [(psi + psj − bij − 1)γij + bij ]

+
G∑
i=1

G∑
j=1

ζ1ij(psi + psj − bij − 1) +
G∑
i=1

G∑
j=1

ζ2ij(bij − psi)

+
G∑
i=1

G∑
j=1

[ζ3ij(bij − psj) + ζ4ij(bij − 1)] +
G∑
i=1

ν2i (psi − 1)

+
G∑
i=1

ν1i
(
2 + psi − p2si − 4z(3psi − 1)

)
, (30)

where κij , ζ
1
ij , ζ

2
ij , ζ

3
ij , ζ

4
ij , ν

1
i , and ν2i are the Lagrangian mul-

tipliers for the constraints (27b)-(27c), respectively. Since the

problem (27) is convex and satisfies the Slater condition, the

strong duality holds between the primal and dual problems.

The optimal perturbation probabilities ps are obtained by

solving the Lagrangian dual problem.

In the following, we obtain the optimal perturbation scheme

ps and Lagrange multipliers at first, then then Lagrange

multipliers are updated via gradient descent methods.
1) Variable update: Taking the derivation of the Lagrange

function L(ps,b, z, ζ
1, ζ2, ζ3, ζ4,κ,ν1,ν2) w.r.t. psi yields

∂L

∂psi
= −2Np (3− psi)

(3psi − 1)3
−

G∑
j=1

(ζ2ij − κijγij − ζ1ij − ζ3ji)

+ ν2i + ν1i (−2psi − 12z + 1). (31)

By letting ∂L
∂psi

= 0, we derive the quartic equation of psi as

(2ν1i psi − c)(3psi − 1)3 − 2Nppsi + 6Np = 0, (32)

which can be analytically solved in closed-form of psi via

Ferrari method [30].

Clearly, the optimization problem is a linear function of

bij and z. Therefore, the following problem can be solved

efficiently by interior point methods.

min
b,z

E (33)

s.t., (27b)− (27c).

2) Lagrange variable update: With the p�
s and b� ob-

tained from (32) and (33), we start to update the Lagrange

multipliers (ζ1, ζ2, ζ3, ζ4,κ,ν1,ν2). The Lagrange dual is

always convex. Subsequently, the gradient method is applied to

update the Lagrange dual variables according to the following

formulations. That is, for the given ps = p�
s and b = b�

at (k + 1)-th iteration, ζ1ij(k + 1), ζ2ij(k + 1), ζ3ij(k + 1),
ζ4ij(k + 1), κij(k + 1), ν1ij(k + 1) and ν2i (k + 1) are obtained
by

ζ1ij(k + 1) =
[
ζ1ij(k)− η(psi + psj − bij − 1)

]+
, (34)

ζ2ij(k + 1) =
[
ζ2ij(k)− η(bij − psi)

]+
, (35)

ζ3ij(k + 1) =
[
ζ3ij(k)− η(bij − psj)

]+
, (36)

κij(k + 1) = [κij(k)− η((psi + psj − bij − 1)γij + bij)]
+
,

(37)

ζ4ij(k + 1) =
[
ν1ij(k)− η(bij − 1)

]+
, (38)

ν1i (k + 1) =
[
ν1i (k)− η(2 + psi − p2si − 4z(3psi − 1))

]+
,

(39)

ν2i (k + 1) =
[
ν2i (k)− η(psi − 1)

]+
. (40)

where η ≥ 0 is the step size for updating Lagrange variables

during the iterations. Using the above functions to iteratively

update the Lagrange variables until the stopping conditions

reaches, we can obtain the optimal solutions. Then by sub-

stituting the optimal (ζ1(�), ζ2(�), ζ3(�), ζ4,κ(�),ν1(�),ν2(�))

into Eqn. (32), the optimal perturbation scheme p
(�)
s and

p
(�)
r = 1 − p

(�)
s can be obtained. The details on generat-

ing the location perturbation probabilities are summarized in

Alg. 1. The complexity of Alg. 1 is evaluated as follows. The

complexity for solving ps,b and Lagrangian variables, where

the computing complexity to solve ps and b according to is

O(G2) and the updating complexity of Lagrangian variable

is O(G2). Hence the calculation complexity of this iterative

process is O(G2).
The proposed geo-perturbation mechanism effectively in-

tegrates utility optimization into location differential privacy

preservation. It also benefits from the UE for reducing

the computing complexity. Another widely used scheme for

achieving geo-indistinguishability in the literature is Planar

Laplace (PL), where the injected noise for perturbed location is

generated from a planar Laplacian distribution [15]. Compared

to PL, our mechanism is promising to notably minimize

the vulnerability estimation error while preserving individual

location privacy in mobile crowdsourcing.

Authorized licensed use limited to: University of Houston. Downloaded on August 30,2022 at 20:41:56 UTC from IEEE Xplore.  Restrictions apply.



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3158895, IEEE Internet of
Things Journal

8

Algorithm 1 Geo-Perturbation Algorithm (GPA)

1: Input: Privacy budget ε; accuracy indicator ι

2: Output: optimal location perturbation probability p
(�)
s

and p
(�)
r

3: Initialization: the Lagrange multipliers ζ1(0), ζ2(0),
ζ3(0),ζ4(0), κ(0), ν1(0) and ν2(0)

4: repeat
5: Obtain the location perturbation probability ps(k) in

(32)

6: Get the optimal solutions b(k) via (33)

7: Update ζ1, ζ2, ζ3, ζ4,κ, ν1 and ν2 using (34)-(40)

8: until
∥∥∥L(ps(k),b(k))−L(ps(k+1),b(k+1))

L(ps(k),b(k))

∥∥∥
2
≤ ι

9: Return: p(�)
s and p

(�)
r

V. OBFUSCATION-AWARE VULNERABILITY MAP

CONSTRUCTION

In this section, we propose to improve the reliability of the

community-level vulnerability estimation by considering the

spatial correlation between neighboring areas and integrate the

geo-perturbation probabilities to weight the effect of neighbor-

ing areas. Then, we describe how to effectively allocation the

vaccine based on the vulnerability estimation.

A. Obfuscation-aware Bayesian Smoothing Model for Vulner-
ability Estimation

Given the infection risk of each crowdsourcing participant

is a binary outcome, we assume that the true observation of

population at high risk Si of the cell i is derived from the

following Poisson distribution,

Si ∼ Poisson(Eiθi), (41)

where Ei is related to a expected number of the people at high

risk and θi is the area-specific relative risk (i.e.,vulnerability

level) [31]. Ei is considered to eliminate the differences in

area-specific characteristics such as population and defined as,

Ei = Ni

∑G
i=1 Si∑G
i=1 Ni

, (42)

where Ni is the size of population in cell i. The vulnerability

level θi = Si/Ei is the ratio of observed sample and expected

sample counts. If the vulnerability level θi is greater than one,

it means the corresponding cell i is at high-risk since, in reality,
its incidence is higher than expected.

However, introducing the location perturbation scheme leads

to a relatively small effective sample size in a specific area, the

community-level vulnerability estimation becomes unreliable.

To address this issue, we try to “smooth” the estimation

via incorporating the information from the targeted area A.

Moreover, as coronavirus infection spreads in clusters, the

vulnerability estimation of each cell is spatially correlated.

Hence, neighboring areas have a larger impact on the vulner-

ability estimates in a particular cell i than those disconnected

and remote cells. Besides, given our proposed GEP in the

previous section, participants are more likely to perturb their

locations to the adjacent cells with larger probabilities. Thus,

we can borrow the information from the neighboring areas

to improve the vulnerability level estimation. The Bayesian

smoothing method [31] is employed to adjust the vulnerability

estimation by introducing spatial random effects to charac-

terize spatial autocorrelation of the vulnerability estimations

between different cells.

Denote ui as the spatial random effect. To model similar

spatial effects in neighbouring areas, we assume the structured

spatial random effects have arisen from a Gaussian Markov

random field. The spatial correlation is formalised via the well-

known intrinsic conditional autoregressive model (ICAR) prior

distribution proposed by [32], on the spatial random effects

ui | u−i ∼ N

(∑
j∈G wijuj∑
j∈G wij

,
σ2
u∑

j∈G wij

)
, ∀i ∈ G, (43)

where u−i denotes the values of spatial random effect ui’s in

all other areas with j �= i and the ICAR prior is constrained

by
∑G

i=1 ui = 0 to preserve the identifiability of the random

effects. wij is the element of the spatial weight matrix W. The

spatial matrix W describes the neighborhood structure among

the cells. It reflects the degree of spatial influence between

spatial units.

Traditionally, the neighborhood structures are either defined

as the first-order adjacency matrices (cells that share the same

boundary) or the geographical distance-based matrices. They

share the same assumption that the corresponding location

information of the individual observations is accurate, which

does not fit in the location privacy-preserving vulnerability

estimation. Since the individual risk factor may be shifted to

a different location in the privacy-preserving crowdsourcing

system, it introduces an additional spatial influence represented

by the perturbation probabilities. It is desired to find a spatial

weight matrix that captures both the geographic distances and

perturbation distances. Hence, we design simple methods to

integrate our proposed GEP to the spatial weight matrix, which

is given as:

wij = (dijπij)
−1, (44)

where πij = psi(1− prj)/(pri(1− psj)). psi and pri are the

perturbation probabilities generated from Alg. 1.

Followed by the Besag-York-Mollié (BYM) model [33], we

have the function of log-relative risk to incorporate spatially

correlated random effects, as follows

log(θi) = XT
i βi + ui + vi + ei, (45)

where Xi = (Xi1, · · · , XiK) is a vector auxiliary coeffi-

cients, βi = (βi1, · · · , βiK) is a vector regression variables,

vi ∼ N(0, σ2
v) denotes the spatially uncorrelated heterogeneity

and ui denotes the spatially correlated heterogeneity. The final

error term ei captures residual variation. Here, we replace the

value of Si in Eqn. (42) with unbiased estimator Ŝi derived

from Eqn. (10) and obtain the estimated Êi and θ̂i = Ŝi/Êi,

respectively. In the Bayesian smoothing methods, we set

weakly informative priors for the parameters β, σ2
u and σ2

v as

β ∼ N (0, 100), 1
σ2
u
∼ Gamma(au, bu),

1
σ2
v
∼ Gamma(av, bv),

respectively. Then the posterior distribution of these param-

eters and of θi, ∀i ∈ G can be estimated via Markov chain

Monte Carlo (MCMC) algorithms, respectively.
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B. Application on Dynamic COVID-19 epidemic model with
vaccine intervention

Our vulnerability estimation framework can also be useful

to develop the policy for efficient and equitable distribution

of limited vaccines. For example, since various effective

attributes, such as age profile, employment status, median

household income, high risk occupation, average education

level (see Section VI for more details), are considered in the

proposed vulnerability estimation framework, vaccine doses

can be allocated proportionally to the high risk population

based on the vulnerability estimation in descending order.

Further, we can integrate the estimation of high-risk popu-

lation, Ŝi, and the vaccine allocation policy, guided by com-

munity vulnerability estimation θ̂i, with a dynamic COVID-

19 epidemic model to predict and analyze the future trend of

COVID-19 dynamics with vaccine intervention. We consider

a modified multi-community SIR model. The SIR model can

track the change over time of the susceptible (S), infected

(I), and removed (R) populations. Here, the community level

vulnerability estimation, Ŝi, presents an initial state estimation

of susceptible population of COVID-19. Let Ni[t] be the pop-
ulation of the community ai at time t, including residents and

travelers. According to the SIR disease transmission model,

we have three epidemiological compartments, denoted PS
i [t],

P I
i [t], P

R
i [t], as the number of individuals in the susceptible,

infected and removed compartments of ai at time t, respec-
tively. The total population is Ni[t] = PS

i [t] + P I
i [t] + PR

i [t]
and remains constant for all t ≥ 0. In a given community ai
at time t, the disease transmission is modeled using standard

incidence, given by
∑G

g=1 αig
P I

i [t]
Ni[t]

PS
i [t], where the contact

rate αig is the proportion of adequate contacts between a

susceptible individual from ai and an infected patient from

another community ag [34]. Besides, we introduce the constant
control parameter Vi for vaccines intervention to reduce the

pool of susceptible individuals in ai at time t. For simplicity,

we omit the birth and death rate in the transmission model.

Hence, the multi-community SIR model associated to ai is,

PS
i [t+ 1] = PS

i [t]−
G∑

g=1

αig

P I
g [t]

Ng[t]
PS
i [t]− ViP

S
i [t], (46)

P I
i [t+ 1] = P I

i [t] +

G∑
g=1

αig

P I
g [t]

Ng[t]
PS
i [t]− γiP

I
i [t], (47)

PR
i [t+ 1] = PR

i [t] + γiP
I
i [t] + ViP

S
i [t], (48)

where γi represents the probability of recovery.

In this modified SIR model, we only consider a static and

determine vaccine allocation strategy and study its impact

on the future COVID-19 spreads. Due to the transmission

dynamic, the vaccine allocation policy can be adaptive refined

based on the future trend predicted by the SIR model, and we

leave for future investigations.

VI. PERFORMANCE EVALUATION

We now examine the performance of the proposed privacy-

preserving vulnerability map construction. The evaluation is

accomplished in a computer equipped with Intel Core i7

TABLE II
MODEL COMPLEXITY AND FIT UNDER DIFFERENT SPATIAL WEIGHT

MATRICES.

Scheme DIC pD

w/o DP 207.2889 26.3906

BW 337.8469 42.4853

GEP 271.6429 28.0060

DW 276.1321 31.2564

CPU of 2.7GHz. MATLAB is used to solve the optimization

problem. Python and R language are used to construct the

spatial estimation models.
We exploit the Tokyo Metropolitan Area (TMA) as the

targeted area. Specifically, TMA is divided into 145 districts

according to the Tokyo Metropolitan Government [35]. The

demographic profiles, i.e., age structure, population density,

and gender population and occupation, are utilized as the

auxiliary variables, based on [36], [37]. The population demo-

graphic profiles can be obtained from the Japanese census [35].

The user profiles are based on the publicly available data from

an ongoing real-world survey from YouGov [38]. This global

survey starts from early April 2020 and covers 29 countries

and interviewing around 21,000 people each week [38]. We

query the data from January to May 2021. It involves the

surveillance stream of geographic information and personal

health data (including age, gender, health conditions, occupa-

tion). We further generate a synthetic location dataset based

on the queried information and assume that the user location

information is under two different spatial distributions: the

first is distributed uniformly and the second is distributed

concentrated in TMA, where 85% users are distributed on 10

small communities in TMA. Unless otherwise specified, we

consider 8000 participants and the concentrated distribution

in the following analysis. 2020.
We compare our proposed GEP with the following schemes:

1) w/o DP utilizes the original data to estimate the vulnera-

bility level and construct the BYM models; 2) BW utilizes the

perturbed data under the GEP scheme and applies a different

spatial weight matrix that neighbours are defined as cells that

share the same boundary in the BYM model; 3) DW uses the

perturbed data under GEP scheme and employs the distance-

based spatial weight matrix without consider the perturbing

probabilities; 4) PLM utilizes the Planar Laplace Mechanism

[15] where the perturbation probabilities pij ∝ e−εdij/dmax

and dmax is the maximum distance between any two cells in

the target area G; and 5) LE [22] develops a location perturba-

tion mechanism that satisfies local ε-geo-indingushiability via

an inverse approach and derives perturbation matrix.

A. Model-to-fitness
The Bayesian model runs under a single MCMC chain with

50,000 iterations. Deviance Information Criterion (DIC) [39]

is used to measure the Bayesian model goodness of fit, which

describes how well the BYM model fits the crowdsourcing

data. The formulation of DIC is given by

DIC = −2 log p(θ|Φ) + 2pD, (49)

where Φ = (β1, · · · ,βG, σu, σv) indicates the unknown

Bayesian model parameters and pD is the effective number of
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TABLE III
MODEL PARAMETER ESTIMATION RESULTS.

Effect Estimation 95% credible interval

(Intercept) 0.9032 [0.1799,1.14728]

age 0.208 [0.168, 0.230]

population density 0.423 [0.414,0.517]

male population 0.227 [0.204,0.233]

occupation 0.158 [0.112 0.311]

σ2
u 0.0217 [0.0029, 43.8486]

σ2
v 0.1415 [0.0023, 1.4816]
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parameters. The first term in Eqn. (49) measures the posterior

mean deviance, which can also be denoted as D̄ [39] and

the second term reflects the model complexity or degrees of

freedom. When a value of pD is small relative to the number

of data points, it means that the prior structure can provide suf-

ficient information about the parameters. The model can well

borrow strength from the spatial autocorrelation information.

Hence a smaller DIC indicates a better model.

For a given privacy budget ε = 1, we compare the model

with different spatial weight matrices with LDP. First, we

observe that the value pD is much smaller than the total

number of districts, shown in Table II. It demonstrates that the

spatial autocorrelation structure in the Bayesian method can

well represent the COVID-19 vulnerability data. Besides, our

proposed GEP scheme considers the utility of vulnerability es-

timation and hence retains the spatial correlation information.

Compared with the boundary-based spatial weight in the BW
scheme, we observe that the distances-based spatial weight

matrix can better represent the spatial correlation structure

of the vulnerability estimates and result in a smaller DIC.

Since GEP integrates the perturbation probabilities in the

spatial weighting matrix served as a proper prior structure, the

model of GEP better represents the crowdsourced vulnerability

estimates with a smaller value of pD compared to DW. The

posterior estimates of the unknown parameters for the GEP

model to fit the survey data are shown in Table III. The

corresponding 95% credible intervals of the model parameters

are also included in the table.

B. Impact of Location Privacy Perturbation

Then, we evaluate the impact of DP on the estimation utility

in terms of the MSE of Ŝ in (9) and estimation reliability. The

empirical results are averaged for 100 times.
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1) Evaluation on count estimation: For count estimation,

PLM and LE utilize the estimator ŜLE (ŜPLM ) = QLc
(QGc) where QL and QG are the inverse matrices of pertur-

bation probability under PLM and LE schemes, respectively.

c = [c1, · · · , cG] and ci =
∑N

n=1 1(l̂n = i) and l̂n is the

perturbed location of user n. Let Si be the actual vulnerability

count of district i. The empirical utilities are computed as

the total MSEe =
∑G

i=1(Ŝi − Si)
2/N . Fig. 3 shows MSEe

of the stimated Ŝ with different numbers of crowdsourcing

participants under the same privacy level ε = 0.6. From

Fig 3, it is easily observed that our proposed mechanism

outperforms the state-of-the-art mechanisms (PLM and LE)
with the smallest MSEe. However, LE and PLM do not

consider the data utility and thus the generated noise is too

large and results in a large MSEe. We also compared the

actual MSE (MSEe) and the theoretical MSE in Eqn. 20a.

The gap is small and the average error is less than 4%, which

validates the effectiveness of our unbiased estimator design

and the proposed optimization.

2) Evaluation on spatial distribution: Next, we compare

the MSEe of vulnerability count estimations Ŝ under different

user spatial distributions. The results are shown in Fig. 4. We

observe that different user spatial distributions could affect the

estimation performance. With the designed unbiased estimator

in the proposed GEP scheme, the MSEe under two spatial

distributions is small and their values are similar. It implies that

the data distribution has a small impact on the vulnerability es-

timation. While the vulnerability estimation of the LE scheme

heavily depends on the data distribution. Thus, the unbiased

estimator is essential to reduce the MSE efficiently. Such an

unbiased estimator reduces the impact of various distributions

on the MSEe, and provides stable performance with a small

constant value of MSE.

Figure 6 displays DIC under different spatial distributions.

The auxiliary information and spatial structure are the same

among difference schemes. Combing with the results in Fig.

4, we observe that, empirically, our proposed GEP scheme

maintains high utility of vulnerability estimation and makes

the BYM model well represent the data and lead to a small

value of DIC. Since the LE and PLM result in data utility

loss with large MSE, the prior spatial correlation cannot well

represent the crowdsourced and perturbed data, and lead to

poor model fits.

3) Evaluation on estimation reliability: For the reliability

of model-based estimation, we use the average coefficients

of variation (CVs). Recall that the first term in (49) is the

sum of the posterior mean deviance D̄. Smaller D̄ means less
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(a) Map w/o privacy model. (b) Map with privacy model. (c) Future trend with privacy model.

Fig. 7. Mobile crowdsourcing vulnerability map. The color of each district indicates a category defined by the vulnerability level, estimated by the BYM
model in Eqn. (44). The values were divided into six categories,and the color of each district indicates its associated category, from light purple/green (low
vulnerability level) to dark purple/green (high vulnerability level). The orange dots in the Fig. 7(b) demonstrate the difference between Fig. 7(a) and Fig. 7(b).

TABLE IV
MODEL COMPLEXITY AND FIT UNDER DIFFERENT LOCATION

PERTURBATION SCHEMES.

Areal Estimation DIC pD

w/o DP 6.20 207.2889 26.3906

PLM 13.96 781.3247 99.6231

LE 9.60 427.2889 53.1422

GEP 6.19 231.6429 29.0260

estimation variance and more reliable estimation. The CV of

the MSE estimates as cv = D̄/θ̄, where θ̄ is the estimation

mean of θg . An estimate with CV over 25% is regarded as

unreliable and cannot be published [39]. The results are shown

in Fig. 5 and w/o DP is regarded as the optimal baseline. From

Definition 1, we know a smaller value of ε uses a larger DP

noise to provide a stronger privacy guarantee. In other words,

a user is more likely to perturb his location to another position

that is far away from the actual location, which may reduce

the sampling size in a subset of small districts and make the

vulnerability estimation unreliable. Fig. 5 shows that when ε
is less than 1, the value of CVs under all the DP schemes is

greater than 30, indicating unreliable estimations. These CVs

decrease and move close to the baseline as ε increases among

all the schemes. Since the aggregator treats every obfuscated

location report as a real one, the aggregated results may

deviate from the actual value when the uploaded geographic

information of a participant is far away from its exact location.

With a small privacy budget ε, the estimation is more likely to

be biased and less reliable due to the spatial error. Thus, there

exists a tradeoff between estimation reliability and location

privacy. Our proposed GEP scheme shows the best tradeoff

compared with PLM and LE.
Table IV presents model fit and complexity analysis of three

different schemes. We find that the values pD of w/o DP is

much smaller than the total number of districts, suggesting

that the spatial autocorrelation prior of BYM model presents

a good modeling without model overfitting. Since the proposed

GEP model minimizes data quality loss of vulnerability esti-

mation and integrates the perturbation probabilities into spatial

weight matrix. The values pD of the proposed model is similar

to that of w/o DP scheme. However, PLM and LE fail to

consider the data utility and make the spatial autocorrelation

prior hard to fit the data, which leads to a high DIC and pD.
We also display the community-level COVID-19 vulnerabil-

ity maps of TMA in Fig. 7. Fig. 7(c) demonstrates the future

trend in seven days predicted from the SIR model with vaccine

intervene. The future trend reflects the estimated percentage

of vulnerable populations towards the COVID-19. The privacy

parameter ε in Fig. 7(b) is set to be 0.7. Orange dots in

the Fig. 7(b) demonstrate the difference between Fig. 7(a)

and Fig. 7(b), which are the maps with or without privacy

model, respectively. We can observe that the difference (the

number of orange dots) is small, and the spatial trend in

Fig. 7(b) is similar to Fig. 7(a). It shows that the privacy model

maintains useful information to learn about the spatial trend

and vulnerability level. It also illustrates that, by appropriately

controlling the value of privacy parameters ε, our proposed

scheme can achieve reliable estimates while preserving the

participants’ location privacy well.

VII. CONCLUSION

We have developed a mobile crowdsourcing assisted vulner-

ability map construction scheme for vaccine allocation while

preserving the crowdsourcing participants’ location privacy.

The utility-assured geo-perturbation scheme has been devel-

oped to protect users’ private location locally. The proposed

geo-perturbation probability generation has been formulated

as convex optimization, and the gradient descend method is

adopted to find the optimal geo-perturbation probabilities. The

Bayesian smoothing method has been employed to mitigate the

effect of small sample sizes due to the location perturbation

scheme. In addition, a simple obfuscated-aware spatial weight

matrix has been integrated into the Bayesian smoothing model

to improve the reliability of vulnerability estimation. Then,

the improved vulnerability estimation has been directly used

to guide strategies for equitable allocation of vaccines and,

jointly with the SIR model, to predict the future risk trend.

The simulation results based on the real-world dataset validate

the advantage of our perturbed location scheme, compared

with the existing ones. Particular, our framework outperforms

Laplace obfuscation, by achieving 38% higher average estima-

tion reliability and 65% higher model-based estimation under

the same privacy guarantee.
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