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Abstract—Preventing COVID-19 disease from spreading in
communities will require proactive and effective healthcare re-
sources allocations, such as vaccinations. A fine-grained COVID-
19 vulnerability map will be essential to detect the high-risk
communities and guild the effective vaccine policy. A mobile-
crowdsourcing-based self-reporting approach is a promising so-
lution. However, an accurate mobile-crowdsourcing-based map
construction requests participants to report their actual locations,
raising serious privacy concerns. To address this issue, we propose
a novel approach to effectively construct a reliable community-
level COVID-19 vulnerability map based on mobile crowdsourced
COVID-19 self-reports without compromising participants’ lo-
cation privacy. We design a geo-perturbation scheme where
participants can locally obfuscate their locations with the geo-
indistinguishability guarantee to protect their location privacy
against any adversaries’ prior knowledge. To minimize the data
utility loss caused by location perturbation, we first design an
unbiased vulnerability estimator and formulate the location per-
turbation probability generation into a convex optimization. Its
objective is to minimize the estimation error of the direct vulner-
ability estimator under the constraints of geo-indistinguishability.
Given the perturbed locations, we integrate the perturbation
probabilities with the spatial smoothing method to obtain reliable
community-level vulnerability estimations that are robust to a
small-sampling-size problem incurred by location perturbation.
Considering the fast-spreading nature of coronavirus, we inte-
grate the vulnerability estimates into the modified susceptible-
infected-removed (SIR) model with vaccination for building a
future trend map. It helps to provide a guideline for vaccine
allocation when supply is limited. Extensive simulations based
on real-world data demonstrate the proposed scheme superiority
over the peer designs satisfying geo-indistinguishability in terms
of estimation accuracy and reliability.

Index Terms—Mobile crowdsourcing, Location privacy, Differ-
ential privacy, Optimization, Small area estimation.

I. INTRODUCTION

The pandemic of the coronavirus (COVID-19) has raised
an unprecedented global crisis in various aspects (e.g., public
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health and economy). Vaccination is widely regarded as one of
the most effective methods in curbing the spread of COVID-
19. To date, a new variant of SARS-CoV-2 has been detected
and spread over forty countries and regions in the world
[1]. The top priority is to achieve a high vaccination rate to
protect people from spreading the virus to others. However,
many countries and regions are still facing the challenge of
judicious distribution of SARS-CoV vaccines [2]. Given that
the finite vaccine storage and transportation, it will take a long
time to obtain enough doses of the vaccine to vaccinate the
entire society. For the non-vaccine-producing countries, the
vaccine comes in batches. Although World Health Organiza-
tion (WHO) has announced relevant guidelines for vaccine
distribution in disrupting disease transmission [3], it will be
imperative to refine these guidelines according to the actual
risk level of different communities that are vulnerable to
COVID-19. Hence, early and rapid identification of the most
“vulnerable” communities is vital for the judicious allocation
of limited medical resources (e.g., vaccines).

The early identification of suspected cases during an epi-
demic is often depicted as a heatmap with the locations of
vulnerability risk predictions [4]. The success of COVID-
19 vulnerability map construction relies on comprehensive
health information. However, it is extremely time-consuming
to identify “the most vulnerable” people and their residential
communities by physically “scanning” all the communities
for vaccine allocation, especially for economically disadvan-
taged underrepresented communities. It may seriously affect
COVID-19 data detection and fail to make an early response
to contain the next potential “outburst” spots.

Most recently, the Internet of Medical Things (IoMT) served
as an extension, and specialization of the Internet of Things
(IoT) has been used to combat COVID-19 disease [5]. [oMT
helps collect informative medical and symptom data by using
IoT devices (e.g., electronic thermometer and wearable detec-
tion sensors) for COVID-19 disease detection. Moreover, with
the aid of mobile crowdsourcing [6], [7], more related sources
of information can be collected from real-world environments
via employing mobile users to participate in data acquisition
and used to provide various COVID-19 applications. For ex-
ample, by distributing real-time surveys to ubiquitous mobile
users via a mobile crowdsourcing platform, it only takes a few
seconds to obtain a current snapshot of the number of people in
each area who are at higher risk of COVID-19. It later can be
used to build prioritized policy for vaccination. The feasibility
of this approach lies in the popularity of mobile/IoMT devices
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and the wide expectation that people may be willing to share
their self-reported data related to COVID-19 with the public to
help combat the COVID-19. During the outbreak of COVID-
19, Facebook has released an interactive coronavirus symptom
map via the crowdsourced data from an opt-in survey [8],
More than 1 million people had responded to the survey within
the first two weeks. The tremendous data size and diverse
information tagged with fine geographic information make it
possible for fine-grained map construction.

However, the mobile crowdsourcing based COVID-19 map
construction is not perfect. Existing researches such as [9],
[10] analyzed and estimated the severity of the disease in
specific areas using self-reported data via an online survey.
Others like [11], [12] focus on leveraging various statistic
or machine learning tools to enhance the accuracy of the
risk assessment. These solutions require mobile participants
to upload their COVID-related data and their exact location
information to untrusted platforms. Such location information
is sensitive, based on which an attacker can infer users’ iden-
tities when demographic or other readily available attributes
are on the file. It will lead to serious privacy concerns, and the
mobile participants may be reluctant to contribute any data to
the mobile crowdsourcing platform [13], [14]. Therefore, it is
necessary to ensure users’ location privacy to retain and attract
mobile participants. Differential privacy (DP), which provides
quantified data privacy with strong theoretical guarantees, has
been recognized as a promising protection scheme without
assumptions about the attackers’ background information.
Consequently, several differentially private location obfusca-
tion mechanisms [15], [16] have been proposed to protect
users’ locations under the DP guarantee. However, applying
differentially private location perturbation schemes on vul-
nerability map construction is challenging. The crowdsourced
data are used as the sampling observations to estimate the
population vulnerability distribution in the targeted area. With
the location obfuscation scheme, the observation based on the
perturbed locations would inevitably affect the quantity of the
high-risk observations and degrade the utility of population
vulnerability estimation . Moreover, the location perturbation
scheme in a fine-grained map may reduce the sample sizes
in some small regions and leads to an unreliable population
vulnerability estimation. Thus, it is critical to consider the
utility and reliability of population vulnerability estimation
in the design of participants’ location privacy preservation
schemes for vulnerability map construction.

To address these issues, in this work, we develop a fine-
grained COVID-19 vulnerability map construction scheme
via mobile crowdsourcing while preserving participants’ lo-
cation privacy. Specifically, we design a location-privacy-
preserving mobile crowdsourcing framework for COVID-19
data collection, where mobile participants locally obfuscate
their locations using our differentially private location per-
turbation scheme. The utility-assured differentially private
location perturbation scheme is efficiently generated at the
server side without violating the users’ privacy. Hence there is
no additional computing overhead on the mobile participants’
side. Moreover, we leverage the spatial correlation between
neighboring areas, incorporating the geo-perturbation proba-

bilities with the spatial weighting matrix, to mitigate the small
sample issue incurred by the location perturbation scheme. It
further enhance the reliability of the vulnerability estimation.
Our salient contributions are summarized as follows.

o We propose a novel location privacy-preserving vulnera-
bility map construction scheme. Briefly, we leverage the
help of mobile crowdsourcing to virtually find out the
most vulnerable people and estimate the vulnerability
levels of COVID-19 in a targeted area without disclosing
the participants’ location differential privacy.

o We develop a differentially private geo-perturbation
scheme, which allows mobile crowdsourcing participants
to locally perturb their locations meanwhile providing
useful and reliable vulnerability estimations. To this end,
we establish an unbiased estimator of vulnerability level
and formulate the geo-perturbation probability generation
as a convex optimization to minimize the variance of
the unbiased estimator under the geo-indistinguishability
constraints. The gradient descent method is employed to
find the optimal perturbation probabilities.

o Given the obfuscated locations, we employ the Bayesian
smoothing method to integrate the geo-perturbation prob-
abilities to the spatial weighting matrix and auxiliary data
from the publicly available census, which can improve
the estimation reliability when the crowdsourcing data
in a subarea is small after location perturbation. Further,
we show how the reliable vulnerability estimation can be
applied to vaccine allocation and integrate the vulnerabil-
ity estimates with the susceptible-infected-removed (SIR)
model to generate the future trend map.

o Extensive simulations are conducted based on real-world
datasets to evaluate the performance of our scheme. Com-
pared with different location privacy preserving mech-
anisms, the proposed location scheme can reduce the
about 20% estimation variance for vulnerability map
construction. The results also demonstrate the tradeoff
between DP and risk estimation reliability.

The rest of this paper is organized as follows: In Section II,
the related work is discussed. In Section III, the preliminary
of location differential privacy and overall system model are
presented. In Section IV, the location perturbation scheme and
the problem formulation are described as well as the effective
iterative algorithm is proposed to find the optimal solution. In
Section V, the Bayesian smoothing model for community-level
vulnerability inference, vaccine allocation policy and future
prediction on SIR model are discussed. In Section VI, the
experiment based on the true database are analyzed and the
paper is concluded in Section VII.

II. RELATED WORK

From the COVID-19 risk assessment respective, existing
works have adopted the compartmental models or machine
learning tools to quantify the risk under COVID-19 and predict
the next potential COVID-19 disease outbreak spots. The data
source used in the risk assessment framework is dependent
mainly on the daily confirmed and death cases [11], [17].
However, the data collection above is time-consuming and
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biased since it lacks the coverage of the population with
asymptomatic or mild symptoms. Some works have leveraged
cost-effective data collection approaches, e.g., mobile/online
surveys and social media platforms, and developed COVID-
19 symptom maps to investigate the dynamics of the COVID-
19 [10], [18]. For example, Jahanbin et al. in [18] used Twitter
comments to estimate the severity of the disease in certain
areas. Facebook and CMU university have collaborated to
launch a symptom reporting survey to estimate the number
of COVID-like illnesses. For survey data processing, they
discarded the areal results with survey responses under 100
to avoid unreliable estimation. However, the previous works
assume the data collector is always trustworthy and enables
mobile users to contribute their COVID-related data tagged
with their exact locations, causing privacy concerns. To keep
user anonymity, the data collectors aggregate the users’ loca-
tion information to high levels (e.g., the state or city scale)
before publishing the map. While such aggregation provides
risk assessments from the macroscopic perspective, it can
disable data analysis of COVID-19 at the micro level.

From the location privacy perspective, the early works on
preserving location privacy in disease mapping were geo-
donuts [19] and k-anonymity based location anonymity [20].
However, the cloaking mechanisms such as geo-donuts have
limitations and fail to provide privacy protections against
the adversary with the background information knowledge
about the target user’s location distribution [21]. Recently,
location differential privacy schemes have been proposed to
provide rigorous privacy protection independent of an adver-
sary’s prior knowledge. However, the perturbation variance
is exponentially increasing with a large domain size. It is
challenging to maintain a high data utility, and it is also
unclear how reliable the estimation will be. Bordenabe et al.
[21] studied the privacy and utility tradeoff and formulated
the location perturbation problem to minimize the distance
between the original and perturbed locations. The optimization
problem used the graph-based approximation to reduce the
solving complexity and thus cannot guarantee optimality. Gu
et al. [22] also investigated the tradeoff between privacy and
utility when estimating frequency query for location check-
ins. However, their query utility is dependent on the unknown
true frequencies and cannot be directly evaluated.

Unlike these existing works above and our previous
work [23], in our map construction, the proposed location
perturbation probability is generated with considering the
utility of the aggregated estimation under the geo perturbation
scheme. Such perturbation probability generation is formulated
as an estimation error minimization problem that is indepen-
dent on the unknown true information. A gradient descent
method is employed to seek for the optimal solutions. More-
over, we consider the small sampling size problem incurred
by the geo perturbation scheme and allow the crowdsourced
aggregator to use the Bayesian smoothing method to adjust
the community-level estimates rather than directly discard
them. The vulnerability map also includes the uncertainty
information of our community-level estimates to demonstrate
the reliability of the estimator.
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III. PRELIMINARIES & SYSTEM OVERVIEW
A. Location Differential Privacy Preliminaries

With the principle of the standard centralized differential
privacy [24], local DP (LDP) especially allows each user to
perturb her private data locally via a randomized mechanism
without the requirement of trustworthy third-party entities. The
definition of LDP is shown as follows.

Definition 1 (LDP [25]): Suppose a privacy parameter € >
0, a randomization algorithm M satisfies e-local differential
privacy. For any pair of inputs X, Y and any output S €
range(M),

PriM(Y) = 5]

Intuitively, the above definition states that when € is smaller,
the probabilities of which two different inputs, X and Y, have
the same output via the randomized algorithm M are closer
to each other. Hence, privacy preservation level is controlled
by the privacy parameter e. A smaller € leads to higher privacy
preservation as it is harder for an adversary to determine
whether a user has this sensitive input, given an output S.
LDP is recently deployed in the application of loca-
tion privacy [15]. Based on the principle of LDP, geo-
indistinguishability is designed to preserve users’ location pri-
vacy against adversaries with background information. Math-
ematically, in geo-indistinguishability scheme, a user n can
perturbhis real location to another one based on a pre-set
randomized location obfuscation algorithm M (i.e., M maps
location a to g with given probabilities) and then shares the
perturbed location ¢ in public. With the LDP guarantee, if
an adversary observes user n is in g, the adversary cannot
distinguish whether ¢ is the true location of n, even if he
knows the randomized algorithm M. According to Definition
1, geo-indistinguishability is formally defined as follows:
Definition 2 (e-geo-indistinguishability [15]): With  the
privacy parameter € > 0, a randomized location obfuscation
algorithm M satisfies e-LDP on the concerned area that
includes a set of locations O, if for any two different locations
ag, ap € © and an arbitrary location g, the following holds:

PriMlao) = gl _ caao.ap) 2
PriM(ah) =g = ¢ 7 o

where d(ag, af,) denotes the Euclidean distance between loca-
tions ag and ay).

The e-geo-indistinguishability aims to protect the actual
location by hiding among the set of locations © due to their
similar probability distributions for perturbed locations. From
Definition 2, it is easily observed that as the distance d(ay, aj)
of two different locations ay and a(, is smaller, they are more
indistinguishable since their output distributions are closer to
each other. Moreover, it has been theoretically shown that e-
geo-indistinguishability can protect users’ sensitive location
information against adversaries with arbitrary prior knowledge.
Suppose that the adversary has prior knowledge about a
user’s location distribution 7. After the adversary observes the
obfuscated location s, the information gain of his posterior
knowledge o over 7 is bounded by efdmax e ojm < g€max
(dmax 18 the maximum distance of any two locations in ©),
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Fig. 1. Vulnerability map construction via privacy preserving mobile
crowdsourcing.

regardless of what the prior 7 is [15]. Please refer to [15] for
the theoretical proof.

B. System Overview

In this work, we proposed to develop a mobile crowd-
sourcing assisted privacy preserving COVID-19 vulnerability
estimation scheme, which includes a mobile crowdsourcing
platform and a number of participants distributed over the
concerning area, as shown in Fig. 1. To virtually detect
the most vulnerable area and estimate vulnerability levels
in the target area, the crowdsourcing aggregator leverages
mobile crowdsourcing to collect multi-dimensional user profile
related to vaccine allocation such as personal health data,
age, gender, employment status, etc. Suppose that all the
participants are willing to engage in mobile crowdsourcing,
the collected user profile from the participants is truthfully
reported. Since the vulnerability estimation is related to the
location, the mobile crowdsourcing platform needs the ge-
ographic information of the participants and aggregates the
participants’ user profiles within the same locations. Such
geographic information is closely related to either home or
work address. The participants’ identities can be easily inferred
when combing the location information, user profile and other
available attributes. Assume that the crowdsourcing aggregator
is semi-honest which implies he follows the proposed protocol
but tries to infer the participants’ identities via the uploaded
location, which results in severe user privacy leakage. To
reduce information leakage, the participants are allowed to
perturb their location information by following a well-designed
geo-perturbation scheme.

Assume that there are N mobile users who are distributed
over the targeted area 4. The targeted area A is divided
into G non-overlapping cells, denoted by the set A =
{ai,a2, -+ ,ac}. Let G = {1,---,4,---,G} denote the
indices of cells. Each cell a; is tagged with a certain COVID-
19 vulnerability level 6;. The entire vulnerability prediction
map (VPM) is modeled as & £ [f;,---,0g]. In a fine-
grained VPM, the spatial unit is set to the street or township
level. Let n be user index, and if n’s reporting location
falls into the range of the a;-th cells, we can roughly regard
user n’s location as the a;-th cells, denoted by [, = a;.
Denote h,, = [h,1,- -+ , hnas] be the n-th user profile related
to COVID-19 data analysis such as demographic data (e.g.,
gender, age, occupation, employment status) and pre-existing

health conditions. Given the user profile h,, the user n can
obtain his risk of infection r,, via a predetermined function
f:h, e DM & r, € {—1,1} which is pre-configured
by the crowdsourcing aggregator, where 1 represents high
risk and -1 is low risk. With a slight abuse of notation, we
denote the set of crowdsourcing participant as N, where
neN,={1,2,---,N,} and N, < N, and the location-data
pair of the participant n as (l,,7,). Then, according to the
location-data pairs of the crowdsourcing participants n € N,
the aggregator will estimate and predict the vulnerability value
as @ 2 [0;,--- ,0g] and construct the corresponding VPM.

This work focuses on the problem of preserving the users’
location privacy while providing effective community-level
vulnerability estimation, which can effectively provide guide-
lines of vaccine allocation strategies. Briefly, the crowd-
sourcing platform launches the task, i.e., gathering personal
health data via mobile applications and IoMT sensors. The
crowdsourcing participants fulfill their user-profiles and locally
perturb their true location information based on the proposed
geo-obfuscation scheme. Then, they upload their user profile
tagged with the obfuscated locations to the crowdsourcing plat-
form. After receiving participants’ user profiles, the aggregator
estimates the community-level vulnerability levels based on
the vaccine allocation strategies.

Note that, since the location obfuscation scheme is deployed
locally on participants’ side, no additional sensitive informa-
tion is revealed to the crowdsourcing aggregator. Hence, users’
location privacy can be well protected. However, the observed
locations in the crowdsourcing platform may be different from
the actual locations. It may result in a biased estimation
since the crowdsourcing aggregator is indistinguishable from
the actual and obfuscated locations. Moreover, it affects the
collected data size in each cell. The direct estimation of the
cells with a small sample size becomes unreliable, leading
to unacceptable data utility for determining vaccine allocation
strategies. In the following, we address these issues to improve
the accuracy and reliability of community-level estimation
from two perspectives: (1) We integrate the community-
level estimation error minimization in our proposed geo-
perturbation scheme, which will be shown in Sec. IV. (2)
We adjust the community-level estimation by considering
the location perturbation effect, spatial correlation of the
neighboring areas, and social-economic risk factors. Therefore,
biased location information and insufficient sample size have a
small impact on community-level estimation degradation and
vaccine allocation inefficiency, which is discussed in Sec. V.

IV. UTILITY-ASSURED GEO-PERTURBATION SCHEME
DESIGN

Before collecting participants’ location-data pairs, a proba-
bilistic perturbation function P needs to be generated for the
crowdsourcing participants to provide location DP guarantee.
Here, the semi-honest platform can take charge of generating
the perturbation function P without violating users’ privacy.
That is because DP can provide a theoretical guarantee to
protect user’s sensitive information, i.e., location information
in this paper, against the adversaries who know P. In other
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TABLE I
PARAMETER NOTATIONS.
System parameters
Np(Np) Set (numbers) of crowdsourcing users
A={a;}5, Set of non-overlapping cells
hopyTin,ln User profile, infection risk, and location of user n
(I, Tn) Location-data pair of user n
G(é) True (estimated) vulnerability levels
g Set of location indices
Geo-perturbation parameters
€ Differential privacy budget
[psi, Pm']iczl Location perturbation probabilities
s; Encoding vector of user n whose (I, = a;,ry)
Yn Perturbed vector of user n
Si(S,-,) True (estimated) count of (a;, 1)
Z; True count of (a;, —1)
0;1(0;,-1) Observed counts of y[i] = 1 (y[i] = —1)
d(-,-) Distance function
Bayesian smoothing parameters
E; Expected count of (a;, 1)
W = [w;;]¢*¢ Spatial weight matrix
X Vector auxiliary coefficients
Bi Vector regression variables
w; (v;) Spatial correlated (uncorrelated) random effect
e; Residual variation
SIR model parameters
N; The population of cell a;
Vi(vi) Control parameters for vaccine intervention (recovery)
P, Pl PR | e e

4) Aggregation
Og;q3 = Count(yli] = 1)
0y;,—1y= Count(yli] = —1)

1) Perturbation Scheme Generation

5) Estimator

€ = {p,, ps} m

Usid S; from Eqn. (10)
€: budget for location perturbation

Pr Ds : perturbation probabilities

% aggregator

{Pr s} Y

J. Usern

2) Encoding
<l,, T,>— s (vector)

3) Perturbation

{s, prPs} 2Y

Fig. 2. The overview of geo-perturbation scheme.

words, users can get privacy protection under the perturbation
function P even if it is generated by the untrust platform. Note
that a large perturbation noise can provide strong DP guarantee
while it would perturb the original location to a point that is
far away from the original one, degrading the data utility.

In this work, we propose a geo-perturbation scheme (GEP).
The goal of GEP design is to get useful estimation of
community-level vulnerability. The overall procedure is shown
in Fig. 2. The first step is to generate the perturbation probabil-
ities matrix that is optimized via Alg. 1. In the second step, the
mobile users encode their own location-data pair (I, ) into a
G-length vector and then perturb the G-length vectors accord-
ing to the perturbation probabilities matrix locally. In the last
step, after receiving the perturbed vectors from crowdsourcing
users, The aggregator utilize the pre-determined estimators to
obtain the risk levels in each community.

In the following, we start with the aggregated estimator
design and the formulation of perturbation probabilities gen-
eration. Inspired by Unary Encoding (UE) scheme in [26],
our probabilistic perturbation function is defined as P =
[psi, pri)$,. Hence, compared with the perturbation matrix
P’ € RE*% the computation complexity of P is greatly
reduced due to fewer parameters. Different from the original
UE scheme in [26], the proposed GEP assigns different
perturbation probabilities to different bias. It is the key point to
achieve while still providing the e-geo-indistinguishability for
location privacy guarantee. Moreover, the existing perturbation
schemes, such as [26], [27], are not suitable for vulnerability
estimation since they only handle the proportion or count of
participants whose location pair satisfies (I,, = a;, ), while
we consider the more complicated frequency estimation of
whose location pair satisfies (I, = a;,r, = 1).

A. Mechanism Design

The location-data pair (I, r) is first encoded to a G-length
vector (the subscript 7 is omitted for brevity in the rest of this
section),

s'=10,---,0,7,0,---,0], 3)

where vector s* represents the vector whose i-th entry is r,
and other entries are Os. Then, each bit of the encoded vector
s’ is perturbed into 1, -1 or 0 independently to get the output
vector y with probabilities:

Dsis if y[il=r
P(yldls[i] =r) = (1 —psi)/2, if ylil=—r, @
(I —psi)/2, if ylif =0
prif2, i yli] =1
PO =0) = { prj2, i yll=-1.
1—pr, if y[i=0

For two different vector s?, where only the i¢-th bit is r
(1 or -1), and s’ where i, j € g, the probability ratio of
distinguishing the encoding location-data pair of s’ and s’
by observing the perturbed vector y is

7

P(yls') _ P(y[ills’)P(y[s]ls’) ©)
P(yls?’) — P(ylil|s’)P(ylills’) '
P(yli] = r|s")P(y[j] = 0]s") 7
P(yli] = r|s’) P(y[j] = 0ls/)
_ 4psl(1 B prj) 7 (8)

prz(l - psj)

where the second equations holds if and only if y[i] = r and
y[7] = 0. Then, the location privacy constraint is

Apsi(1 — prj)

pm(l — Ps j)

For the estimation of the true vulnerability count of the cell

a;, denotes the true counts of location-data pairs (a;,1) of

all the participants as S;. Let O;; = Count(y[i] = 1), and

0O;—1 = Count(y[i] = —1) be the observed counts in the

crowdsourcing platform. Then we have the following lemma
for the estimation of S;.

<edbd) i jeg. )
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Lemma 1: The unbiased estimator of S; is
& — Oin1+0;-1—Nppri | Oi1—0;
’ 1 + Psi — 2pm 3psz -1 '

(10)

Proof: Denote the true counts of location-data pairs
(a;,—1) of all the participants as Z;. According to the pertur-
bation probabilities (4) and (5), we have,

E[O;1] = Sipsi + Z; 2L + (N, — S; — Z;) Bt
E[0s, 1] = Si*=2 + Zipsi + (N — Si — Zi) Bt
From which we get:
E[$] = E[O;1 + O;,—1] = Nppri . E[O;1 — O;,_1]
‘ 14 psi — 2ppi 3psi — 1
Si+2;  Si—27;
5 5 (11)
Therefore, 5’1 is an unbiased estimator of S;. [ |

Here, we consider the crowdsourcing aggregator uses MSE

to evaluate the utility of the estimates S;, i.e., the less MSE
the better utility. Note that the MSE is calculated by the
summation of variance and the square of its bias. Moreover,

the MSE of unbiased estimator S; is equal to its variance
Oi;1 — 04,1
3]731' —1

Oi1 + 04,1 — Nppri

MSE(S;) = Var
( ) 1+ Psi — 2p'ri

. (12)

For convenience, denote By = O; 1 + O; _1, Ba = O;1 —
0;,-1, Ch = ﬁ and Cs = 31771'71’ then we have
Var[$;] = C?Var|B,] + C2Var|B,] + C,C5Covp, ,. (13)

We generalize the results from [27]:

1 *pfi
Var[B1] = Np(pri = ;) + (Si + Zi) (== + i = pra)
(14)
1
Var[Bs] < Nppp;i + §(Sz + Z;)(1 + psi — 2pri), (15)
1 _pgi
COVBth = T(Sl + Zi)(?’psi - 1)a (16)

to upper bound the second terms in Eqn. (13). Note that only
Var[Bs] is computed by its upper bound. According to (14)-
(16), we have

(Si + Zi)pri(1 — pri)
(1 + Psi — 2pri)2
Nyppri (Si + Zi)(1 + psi — 2pri)
(3psi - 1)2 2(3psz - 1)2
(Si +Zi)(1 = p3:)(2 + psi — 2pyi)
4(1 +p31 - 2pri)2 )
Afterwards, we can get the optimal perturbation funtion P
by solving the following optimization problem:

< Npprz<1 - pm)

Var[S;
ar[ } ~ (1 + Psi — 2pm’)2

A7)

G
min  MSE(S) £ > Var[5}] (18a)
Ps;Pr 1
st 4psi(1 = prj) < yijpri(1 = psj), Vi, j € G,  (18b)
0<pi <05<ps <1,VjeQG, (18c)
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where v;; = e, p, = [pg,--,ps¢] and p, =
[Pr1,- -+ ,prc] are the two variables of the location per-
turbation probabilities. Constraint (18b) provides the e-geo-
indistinguishablity in the Definition 2 for location privacy.
Constraint (18c) ensures for better data utility. Note that the
unknown values S; and Z; in Eqn. (17) makes it hard to find
the optimal perturbation probabilities. Next, we address this
challenge by obtaining a variant of MSE in Eqn. (18a) that is
independent of the unknown parameters.

B. Problem Reformulation

In this part, we consider RAPPOR’s implementation [28]
such that py; + p,; = 1 ; Intuitively, we treat the information
that the participants’ location is in the cell 7 or not is equally
sensitive thus ps; = 1 — p,;. We add the corresponding
constraints pg; + p; = 1,Vi € G in problem (18). Then, the
overall MSE can be rewritten as,

G 2 )
&y Np(l—psi) (Sz"’_Zl)(Q + Dsi _psi)
MSE(S) = ; G 17 T e
G
Np(1 — pf) 2+ psi — P
< p\- " Psi) 2+ Psi — Psi '
a ; Gpor = 1)2 T a@p — 1) J e (19

Here, the second inequality is due to Zil Si + Z; = Ny,
The variant MSE can be regarded as the MSE in the worst
case. Then the optimization problem (18) is reformulated as

G
; Np(1 — %)
min Z m + max

Ps,Pr =1
s.t. (18b), (18¢),
Dsi +pri = 1,Vi€G. (20b)

We can further simplify the constraints (18b) and (20b) and
obtain new constraints as follows,

2+ psi — pgi

4(?%__1)} N, (20a)

(Psi +Psj) Vi — (Vij — 4)psibsj < Vij, Vi, €G.  (21)

To circumvent this difficulty due to the product of the two
variables py; and py;, the big-M formulation [29] is utilized
to decompose this product. We introduce b;; = pg;ps; as aux-
iliary variable and impose the following additional constraints:

bij < psi,Vi,j€G, (22)
bi; < psj,Vi,j€G, (23)
bij > psi +psj —1,Vi,j €3, (24)
0<b; <1,Vi,jeg. (25)
Then, we substitute b;; into the constraint (21) and have
(Psi +psj) Vi — (Vi — 4)bij < 7vij, Vi, j €G. (26)

This is an affine function with respect to the new optimization
variables b = {b;;};_,. We note that the constraints (21) and
(26) are equivalent when the constraints (22)-(25) are satisfied.
Consequently, the perturbation generation problem is rewritten
as the following problem:

G
. A Np(1 - P3i)
s ES L G T T
st (18¢), (22) — (26), (27b)

0.25(2 4 psi — p2)(Bpsi — 1) < 2,¥i € G, (27c)
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where z is new variances for relaxing the max function. In the
next section, we will use a standard gradient descent method
to obtain the optimal solution to problem (27).

C. Solution of Location Perturbation Optimization

In this section, we utilize the gradient descent method to
find the optimal perturbation probabilities ps. We first show
the problem (27) is a convex problem.

The first-order derivative of the objective in the problem
(27) with respect to ps can be expressed as

85 2Np (3 — psz)

Opsi T (Bpsi —1)3 8

The corresponding Hessian with respect to pg; is computed by

9%E
o 0 . 0
92E
) 0 6p§2 e 0
vpsé' = ) > 0. 29)
92E
0 0 s

Obviously, the Hessian matrix in Eqn. (29) is positive definite
in the feasible region. Hence, the problem (27) is a convex
problem. Next, the gradient descent method is utilized to find
the global optimal solutions. The Lagrange dual is derived as

L(p87b Z7C17C27C37C47H7V17yz)
G 2
Np(1—pai)
— »N P s1
¢ p+; (Bpsi —1)2
G G
+ > > kil(psi + psj — big — 1)y + bij]
i= lj 1
+ZZ<7,] ps7.+p5j i' +ZZ pm
i=1 j=1 =1 j=1
G G
ZZ = psj) + G biy — +Z” psi =1
G
+) v (24 pai — 1% — 42(3psi — 1)) (30)
i=1
where rj, ¢, ¢, ¢, ¢y, vl and v} are the Lagrangian mul-

tipliers for the constraints (27b)-(27c¢), respectively. Since the
problem (27) is convex and satisfies the Slater condition, the
strong duality holds between the primal and dual problems.
The optimal perturbation probabilities p, are obtained by
solving the Lagrangian dual problem.

In the following, we obtain the optimal perturbation scheme
ps and Lagrange multipliers at first, then then Lagrange
multipliers are updated via gradient descent methods.

1) Variable update: Taking the derivation of the Lagrange
function L(ps, b, z,¢t, ¢2,¢3, ¢4, k, 1, v2) wrt. py; yields
G

2NP (3 — psi) 9 ) X
- (Bpsi — 1) Zl(gij — KijYij — Gij — Cji)
J=

+ 2+ v (—2ps — 122+ 1).

oL
apsi

3D
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By letting % = 0, we derive the quartic equation of ps; as

C) (3psi -

which can be analytically solved in closed-form of pg; via
Ferrari method [30].

Clearly, the optimization problem is a linear function of
bi; and z. Therefore, the following problem can be solved
efficiently by interior point methods.

(20t pg; — 1)3 — 2N,ps; + 6N, = 0, (32)

r{)lin & (33)
s.t,  (27b) — (27¢).

2) Lagrange variable update: With the p; and b* ob-
tained from (32) and (33), we start to update the Lagrange
multipliers (¢, ¢2, ¢3,¢%, k,v1, v2). The Lagrange dual is
always convex. Subsequently, the gradlent method is applied to
update the Lagrange dual variables according to the following
formulations. That is, for the given ps; = p} and b = b*

t (k + 1)-th iteration, Cl (k+1), ¢(k+1), ¢(k+1),
fj(k: +1), kij(k+1), v, (k + 1) and v (k + 1) are obtained

by
Ch(k+1) = [¢L(k) — n(psi +psj — by — 1)] 7, (34)
GGk +1) = [¢B(k) = n(biy — psi)] ", (35)
Gk +1) = [ (k) — nbi; —psy)] (36)
kij(k 4+ 1) = [rij(k) — n((psi + psj — bij — V)yiz + bij)] T,
37
Chlk+1) = [vh (k) — (b — )], (38)
ik +1) = [V} (k) = (2 + psi — p% — 42(3psi — 1))] T,
(39)
v2(k +1) = [V2(k) — n(psi — 1] " (40)

where 1 > 0 is the step size for updating Lagrange variables
during the iterations. Using the above functions to iteratively
update the Lagrange variables until the stopping conditions
reaches, we can obtain the optimal solutions. Then by sub-
stituting the optimal (¢1(*), ¢2(0), ¢30) ¢4 () P10 12()
into Eqn. (32), the optimal perturbation scheme pg*) and
pg*) =1- pg*) can be obtained. The details on generat-
ing the location perturbation probabilities are summarized in
Alg. 1. The complexity of Alg. 1 is evaluated as follows. The
complexity for solving ps, b and Lagrangian variables, where
the computing complexity to solve ps and b according to is
O(G?) and the updating complexity of Lagrangian variable
is O(G?). Hence the calculation complexity of this iterative
process is O(G?).

The proposed geo-perturbation mechanism effectively in-
tegrates utility optimization into location differential privacy
preservation. It also benefits from the UE for reducing
the computing complexity. Another widely used scheme for
achieving geo-indistinguishability in the literature is Planar
Laplace (PL), where the injected noise for perturbed location is
generated from a planar Laplacian distribution [15]. Compared
to PL, our mechanism is promising to notably minimize
the vulnerability estimation error while preserving individual
location privacy in mobile crowdsourcing.
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Algorithm 1 Geo-Perturbation Algorithm (GPA)
1: Input: Privacy budget ¢; accuracy indicator ¢
2: Output: optimal location perturbation probability pg*)
and pg*)
3: Initialization: the Lagrange multipliers ¢*(0), ¢2%(0),
¢%(0).¢*(0). x(0), v*(0) and ©2(0)

4: repeat
5. Obtain the location perturbation probability ps(k) in
(32

6:  Get the optimal solutions b(k) via (33)
7. Update ¢1,¢2,¢3,¢%, k, v and v? using (34)-(40)
b until | Le-GIb e bbbty |

, S

L(ps(k),b(k))
9: Return: p'* and pg*)

V. OBFUSCATION-AWARE VULNERABILITY MAP
CONSTRUCTION

In this section, we propose to improve the reliability of the
community-level vulnerability estimation by considering the
spatial correlation between neighboring areas and integrate the
geo-perturbation probabilities to weight the effect of neighbor-
ing areas. Then, we describe how to effectively allocation the
vaccine based on the vulnerability estimation.

A. Obfuscation-aware Bayesian Smoothing Model for Vulner-
ability Estimation

Given the infection risk of each crowdsourcing participant
is a binary outcome, we assume that the true observation of
population at high risk S; of the cell 7 is derived from the
following Poisson distribution,

S; ~ Poisson(E;6;), 41

where E; is related to a expected number of the people at high
risk and 6; is the area-specific relative risk (i.e.,vulnerability
level) [31]. E; is considered to eliminate the differences in
area-specific characteristics such as population and defined as,

G
E; = Ni%a
21:1 N, %

where N, is the size of population in cell i. The vulnerability
level 8; = S;/E; is the ratio of observed sample and expected
sample counts. If the vulnerability level 6; is greater than one,
it means the corresponding cell 7 is at high-risk since, in reality,
its incidence is higher than expected.

However, introducing the location perturbation scheme leads
to a relatively small effective sample size in a specific area, the
community-level vulnerability estimation becomes unreliable.
To address this issue, we try to “smooth” the estimation
via incorporating the information from the targeted area .A.
Moreover, as coronavirus infection spreads in clusters, the
vulnerability estimation of each cell is spatially correlated.
Hence, neighboring areas have a larger impact on the vulner-
ability estimates in a particular cell 7 than those disconnected
and remote cells. Besides, given our proposed GEP in the
previous section, participants are more likely to perturb their
locations to the adjacent cells with larger probabilities. Thus,

(42)
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we can borrow the information from the neighboring areas
to improve the vulnerability level estimation. The Bayesian
smoothing method [31] is employed to adjust the vulnerability
estimation by introducing spatial random effects to charac-
terize spatial autocorrelation of the vulnerability estimations
between different cells.

Denote u; as the spatial random effect. To model similar
spatial effects in neighbouring areas, we assume the structured
spatial random effects have arisen from a Gaussian Markov
random field. The spatial correlation is formalised via the well-
known intrinsic conditional autoregressive model (ICAR) prior
distribution proposed by [32], on the spatial random effects
djegWisli o2

Yjeg Wi | Djeg Wij
where u_; denotes the values of spatial random effect u;’s in
all other areas with j # ¢ and the ICAR prior is constrained
by Zil u; = 0 to preserve the identifiability of the random
effects. w;; is the element of the spatial weight matrix W. The
spatial matrix W describes the neighborhood structure among
the cells. It reflects the degree of spatial influence between
spatial units.

Traditionally, the neighborhood structures are either defined
as the first-order adjacency matrices (cells that share the same
boundary) or the geographical distance-based matrices. They
share the same assumption that the corresponding location
information of the individual observations is accurate, which
does not fit in the location privacy-preserving vulnerability
estimation. Since the individual risk factor may be shifted to
a different location in the privacy-preserving crowdsourcing
system, it introduces an additional spatial influence represented
by the perturbation probabilities. It is desired to find a spatial
weight matrix that captures both the geographic distances and
perturbation distances. Hence, we design simple methods to
integrate our proposed GEP to the spatial weight matrix, which
is given as:

Vie g, (43)

wij = (dijmiz) ™", (44)

where 7;; = psi(1 — prj)/(Pri(1 — psj)). Psi and p,; are the
perturbation probabilities generated from Alg. 1.

Followed by the Besag-York-Mollié (BYM) model [33], we
have the function of log-relative risk to incorporate spatially
correlated random effects, as follows

log(6;) = X7 Bi +ui +v; + e,

where X; = (X1, -+ ,Xik) is a vector auxiliary coeffi-
cients, 3; = (8i1,- -+, Pik) is a vector regression variables,
v; ~ N(0,02) denotes the spatially uncorrelated heterogeneity
and u; denotes the spatially correlated heterogeneity. The final
error term e; captures residual variation. Here, we replace the
value of S; in Eqn. (42) with unbiased estimator S; derived
from Eqn. (10) and obtain the estimated Ei and 9}- = 5‘1 / EZ-,
respectively. In the Bayesian smoothing methods, we set
weakly informative priors for the parameters 3, o2 and o2 as
B~ N(0,100), 5 ~ Gamma(ay, b,), 2> ~ Gamma(a.,b,),
respectively. Then' the posterior distribution of these param-
eters and of #;,Vi € G can be estimated via Markov chain
Monte Carlo (MCMC) algorithms, respectively.

(45)
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B. Application on Dynamic COVID-19 epidemic model with
vaccine intervention

Our vulnerability estimation framework can also be useful
to develop the policy for efficient and equitable distribution
of limited vaccines. For example, since various effective
attributes, such as age profile, employment status, median
household income, high risk occupation, average education
level (see Section VI for more details), are considered in the
proposed vulnerability estimation framework, vaccine doses
can be allocated proportionally to the high risk population
based on the vulnerability estimation in descending order.

Further, we can integrate the estimation of high-risk popu-
lation, S;, and the vaccine allocation policy, guided by com-
munity vulnerability estimation 6;, with a dynamic COVID-
19 epidemic model to predict and analyze the future trend of
COVID-19 dynamics with vaccine intervention. We consider
a modified multi-community SIR model. The SIR model can
track the change over time of the susceptible (S), infected
(D), and removed (R) populations. Here, the community level
vulnerability estimation, 5‘1 presents an initial state estimation
of susceptible population of COVID-19. Let N;[t] be the pop-
ulation of the community a; at time ¢, including residents and
travelers. According to the SIR disease transmission model,
we have three epidemiological compartments, denoted P [t],
P![t], PE[t], as the number of individuals in the susceptible,
infected and removed compartments of a; at time ¢, respec-
tively. The total population is N;[t] = P7[t] + P![t] + PE[t]
and remains constant for all ¢ > 0. In a given community a;
at time ¢, the disease transmissioln is modeled using standard
incidence, given by 25:1 Qig ];;i [[H P?[t], where the contact
rate «;, is the proportion of adequate contacts between a
susceptible individual from a; and an infected patient from
another community a4 [34]. Besides, we introduce the constant
control parameter V; for vaccines intervention to reduce the
pool of susceptible individuals in a; at time ¢. For simplicity,
we omit the birth and death rate in the transmission model.
Hence, the multi-community SIR model associated to a; is,

G I
Pflt+1] = P[t] - Zaigifg g PS[t] - ViPP[t],  (46)
g=1 9
¢ Pt
P+ 1= P+ Y a2 P -l @
g=1
Pt + 1] = P[] + P[] + ViP]TH], (48)

where ~; represents the probability of recovery.

In this modified SIR model, we only consider a static and
determine vaccine allocation strategy and study its impact
on the future COVID-19 spreads. Due to the transmission
dynamic, the vaccine allocation policy can be adaptive refined
based on the future trend predicted by the SIR model, and we
leave for future investigations.

VI. PERFORMANCE EVALUATION

We now examine the performance of the proposed privacy-
preserving vulnerability map construction. The evaluation is
accomplished in a computer equipped with Intel Core i7

ublication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/ri
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TABLE II
MODEL COMPLEXITY AND FIT UNDER DIFFERENT SPATIAL WEIGHT
MATRICES.
Scheme DIC PD
w/o DP | 207.2889 | 26.3906
BW 337.8469 | 42.4853
GEP 271.6429 | 28.0060
DW 276.1321 | 31.2564

CPU of 2.7GHz. MATLAB is used to solve the optimization
problem. Python and R language are used to construct the
spatial estimation models.

We exploit the Tokyo Metropolitan Area (TMA) as the
targeted area. Specifically, TMA is divided into 145 districts
according to the Tokyo Metropolitan Government [35]. The
demographic profiles, i.e., age structure, population density,
and gender population and occupation, are utilized as the
auxiliary variables, based on [36], [37]. The population demo-
graphic profiles can be obtained from the Japanese census [35].
The user profiles are based on the publicly available data from
an ongoing real-world survey from YouGov [38]. This global
survey starts from early April 2020 and covers 29 countries
and interviewing around 21,000 people each week [38]. We
query the data from January to May 2021. It involves the
surveillance stream of geographic information and personal
health data (including age, gender, health conditions, occupa-
tion). We further generate a synthetic location dataset based
on the queried information and assume that the user location
information is under two different spatial distributions: the
first is distributed uniformly and the second is distributed
concentrated in TMA, where 85% users are distributed on 10
small communities in TMA. Unless otherwise specified, we
consider 8000 participants and the concentrated distribution
in the following analysis. 2020.

We compare our proposed GEP with the following schemes:
1) w/o DP utilizes the original data to estimate the vulnera-
bility level and construct the BYM models; 2) BW utilizes the
perturbed data under the GEP scheme and applies a different
spatial weight matrix that neighbours are defined as cells that
share the same boundary in the BYM model; 3) DW uses the
perturbed data under GEP scheme and employs the distance-
based spatial weight matrix without consider the perturbing
probabilities; 4) PLM utilizes the Planar Laplace Mechanism
[15] where the perturbation probabilities p;; oc e~ ¢dis/dmax
and dp,.x is the maximum distance between any two cells in
the target area G; and 5) LE [22] develops a location perturba-
tion mechanism that satisfies local e-geo-indingushiability via
an inverse approach and derives perturbation matrix.

A. Model-to-fitness

The Bayesian model runs under a single MCMC chain with
50,000 iterations. Deviance Information Criterion (DIC) [39]
is used to measure the Bayesian model goodness of fit, which

describes how well the BYM model fits the crowdsourcing

data. The formulation of DIC is given by
DIC = —2logp(0]|®) + 2pp, (49)

where ® = (81, -,B¢,0u4,0,) indicates the unknown
Bayesian model parameters and pp is the effective number of
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TABLE III
MODEL PARAMETER ESTIMATION RESULTS.

Effect Estimation | 95% credible interval
(Intercept) 0.9032 [0.1799,1.14728]
age 0.208 [0.168, 0.230]
population density 0.423 [0.414,0.517]
male population 0.227 [0.204,0.233]
occupation 0.158 [0.112 0.311]
o2 0.0217 [0.0029, 43.8486]
a? 0.1415 [0.0023, 1.4816]
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Fig. 3. MSE vs number of users. Fig.4. MSE vs spatial distribution.

parameters. The first term in Eqn. (49) measures the posterior
mean deviance, which can also be denoted as D [39] and
the second term reflects the model complexity or degrees of
freedom. When a value of pp is small relative to the number
of data points, it means that the prior structure can provide suf-
ficient information about the parameters. The model can well
borrow strength from the spatial autocorrelation information.
Hence a smaller DIC indicates a better model.

For a given privacy budget ¢ = 1, we compare the model
with different spatial weight matrices with LDP. First, we
observe that the value pp is much smaller than the total
number of districts, shown in Table II. It demonstrates that the
spatial autocorrelation structure in the Bayesian method can
well represent the COVID-19 vulnerability data. Besides, our
proposed GEP scheme considers the utility of vulnerability es-
timation and hence retains the spatial correlation information.
Compared with the boundary-based spatial weight in the BW
scheme, we observe that the distances-based spatial weight
matrix can better represent the spatial correlation structure
of the vulnerability estimates and result in a smaller DIC.
Since GEP integrates the perturbation probabilities in the
spatial weighting matrix served as a proper prior structure, the
model of GEP better represents the crowdsourced vulnerability
estimates with a smaller value of pp compared to DW. The
posterior estimates of the unknown parameters for the GEP
model to fit the survey data are shown in Table III. The
corresponding 95% credible intervals of the model parameters
are also included in the table.

B. Impact of Location Privacy Perturbation

Then, we evaluate the impact of DP on the estimation utility
in terms of the MSE of S in (9) and estimation reliability. The
empirical results are averaged for 100 times.
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Fig. 5. CV vs privacy budget. Fig. 6. DIC vs spatial distribution.

1) Evaluation on count estimation: For count estimation,
PLM and LE utilize the estimator SEF (SPLM) — Q¢
(Qac) where @, and Q¢ are the inverse matrices of pertur-
bation probability under PLM and LE schemes, respectively.
c = [e1, - ,cq] and ¢; = Zi:;l 1(l, = i) and [, is the
perturbed location of user n. Let S; be the actual vulnerability
count of district 7. The empirical utilities are computed as
the total MSE, = Y% (S; — 5;)2/N. Fig. 3 shows MSE,
of the stimated S with different numbers of crowdsourcing
participants under the same privacy level ¢ = 0.6. From
Fig 3, it is easily observed that our proposed mechanism
outperforms the state-of-the-art mechanisms (PLM and LE)
with the smallest MSE.. However, LE and PLM do not
consider the data utility and thus the generated noise is too
large and results in a large MSE.. We also compared the
actual MSE (MSE.) and the theoretical MSE in Eqn. 20a.
The gap is small and the average error is less than 4%, which
validates the effectiveness of our unbiased estimator design
and the proposed optimization.

2) Evaluation on spatial distribution: Next, we compare
the MSE,. of vulnerability count estimations S under different
user spatial distributions. The results are shown in Fig. 4. We
observe that different user spatial distributions could affect the
estimation performance. With the designed unbiased estimator
in the proposed GEP scheme, the MSE,. under two spatial
distributions is small and their values are similar. It implies that
the data distribution has a small impact on the vulnerability es-
timation. While the vulnerability estimation of the LE scheme
heavily depends on the data distribution. Thus, the unbiased
estimator is essential to reduce the MSE efficiently. Such an
unbiased estimator reduces the impact of various distributions
on the MSE., and provides stable performance with a small
constant value of MSE.

Figure 6 displays DIC under different spatial distributions.
The auxiliary information and spatial structure are the same
among difference schemes. Combing with the results in Fig.
4, we observe that, empirically, our proposed GEP scheme
maintains high utility of vulnerability estimation and makes
the BYM model well represent the data and lead to a small
value of DIC. Since the LE and PLM result in data utility
loss with large MSE, the prior spatial correlation cannot well
represent the crowdsourced and perturbed data, and lead to
poor model fits.

3) Evaluation on estimation reliability: For the reliability
of model-based estimation, we use the average coefficients
of variation (CVs). Recall that the first term in (49) is the
sum of the posterior mean deviance D. Smaller D means less
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(a) Map w/o privacy model.

Fig. 7.

0.0 0.067 0.105 0.191 0.297 >0.300

(b) Map with privacy model.
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0.0 0.0067 0.0085 0.010.02164 >0.05

(c) Future trend with privacy model.

Mobile crowdsourcing vulnerability map. The color of each district indicates a category defined by the vulnerability level, estimated by the BYM

model in Eqn. (44). The values were divided into six categories,and the color of each district indicates its associated category, from light purple/green (low
vulnerability level) to dark purple/green (high vulnerability level). The orange dots in the Fig. 7(b) demonstrate the difference between Fig. 7(a) and Fig. 7(b).

TABLE IV
MODEL COMPLEXITY AND FIT UNDER DIFFERENT LOCATION
PERTURBATION SCHEMES.

Areal Estimation DIC PD
w/o DP 6.20 207.2889 | 26.3906
PLM 13.96 781.3247 | 99.6231
LE 9.60 427.2889 | 53.1422
GEP 6.19 231.6429 | 29.0260

estimation variance and more reliable estimation. The CV of
the MSE estimates as cv = D/f, where @ is the estimation
mean of 6,. An estimate with CV over 25% is regarded as
unreliable and cannot be published [39]. The results are shown
in Fig. 5 and w/o DP is regarded as the optimal baseline. From
Definition 1, we know a smaller value of € uses a larger DP
noise to provide a stronger privacy guarantee. In other words,
a user is more likely to perturb his location to another position
that is far away from the actual location, which may reduce
the sampling size in a subset of small districts and make the
vulnerability estimation unreliable. Fig. 5 shows that when €
is less than 1, the value of CVs under all the DP schemes is
greater than 30, indicating unreliable estimations. These CVs
decrease and move close to the baseline as € increases among
all the schemes. Since the aggregator treats every obfuscated
location report as a real one, the aggregated results may
deviate from the actual value when the uploaded geographic
information of a participant is far away from its exact location.
With a small privacy budget ¢, the estimation is more likely to
be biased and less reliable due to the spatial error. Thus, there
exists a tradeoff between estimation reliability and location
privacy. Our proposed GEP scheme shows the best tradeoff
compared with PLM and LE.

Table IV presents model fit and complexity analysis of three
different schemes. We find that the values pp of w/o DP is
much smaller than the total number of districts, suggesting
that the spatial autocorrelation prior of BYM model presents
a good modeling without model overfitting. Since the proposed
GEP model minimizes data quality loss of vulnerability esti-
mation and integrates the perturbation probabilities into spatial
weight matrix. The values pp of the proposed model is similar
to that of w/o DP scheme. However, PLM and LE fail to

consider the data utility and make the spatial autocorrelation
prior hard to fit the data, which leads to a high DIC and pp.

We also display the community-level COVID-19 vulnerabil-
ity maps of TMA in Fig. 7. Fig. 7(c) demonstrates the future
trend in seven days predicted from the SIR model with vaccine
intervene. The future trend reflects the estimated percentage
of vulnerable populations towards the COVID-19. The privacy
parameter ¢ in Fig. 7(b) is set to be 0.7. Orange dots in
the Fig. 7(b) demonstrate the difference between Fig. 7(a)
and Fig. 7(b), which are the maps with or without privacy
model, respectively. We can observe that the difference (the
number of orange dots) is small, and the spatial trend in
Fig. 7(b) is similar to Fig. 7(a). It shows that the privacy model
maintains useful information to learn about the spatial trend
and vulnerability level. It also illustrates that, by appropriately
controlling the value of privacy parameters ¢, our proposed
scheme can achieve reliable estimates while preserving the
participants’ location privacy well.

VII. CONCLUSION

We have developed a mobile crowdsourcing assisted vulner-
ability map construction scheme for vaccine allocation while
preserving the crowdsourcing participants’ location privacy.
The utility-assured geo-perturbation scheme has been devel-
oped to protect users’ private location locally. The proposed
geo-perturbation probability generation has been formulated
as convex optimization, and the gradient descend method is
adopted to find the optimal geo-perturbation probabilities. The
Bayesian smoothing method has been employed to mitigate the
effect of small sample sizes due to the location perturbation
scheme. In addition, a simple obfuscated-aware spatial weight
matrix has been integrated into the Bayesian smoothing model
to improve the reliability of vulnerability estimation. Then,
the improved vulnerability estimation has been directly used
to guide strategies for equitable allocation of vaccines and,
jointly with the SIR model, to predict the future risk trend.
The simulation results based on the real-world dataset validate
the advantage of our perturbed location scheme, compared
with the existing ones. Particular, our framework outperforms
Laplace obfuscation, by achieving 38% higher average estima-
tion reliability and 65% higher model-based estimation under
the same privacy guarantee.
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