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ABSTRACT

The ability to incrementally learn new classes is vital to all real-
world artificial intelligence systems. A large portion of high-impact
applications like social media, recommendation systems, E-commerce
platforms, etc. can be represented by graph models. In this paper, we
investigate the challenging yet practical problem, Graph Few-shot
Class-incremental (Graph FCL) problem, where the graph model is
tasked to classify both newly encountered classes and previously
learned classes. Towards that purpose, we put forward a Graph
Pseudo Incremental Learning paradigm by sampling tasks recur-
rently from the base classes, so as to produce an arbitrary number of
training episodes for our model to practice the incremental learning
skill. Furthermore, we design a Hierarchical-Attention-based Graph
Meta-learning framework, HAG-Meta. We present a task-sensitive
regularizer calculated from task-level attention and node class pro-
totypes to mitigate overfitting onto either novel or base classes. To
employ the topological knowledge, we add a node-level attention
module to adjust the prototype representation. Our model not only
achieves greater stability of old knowledge consolidation, but also
acquires advantageous adaptability to new knowledge with very
limited data samples. Extensive experiments on three real-world
datasets, including Amazon-clothing, Reddit, and DBLP, show that
our framework demonstrates remarkable advantages in comparison
with the baseline and other related state-of-the-art methods.
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1 INTRODUCTION

Graph-structured data, such as citation graphs [36], biomedical
graphs [34], and social networks [9, 28], are nowadays ubiquitous
in different real-world applications. Recently, a spectrum of Graph
Neural Networks (GNNs) [1, 3, 9, 10, 16, 41, 45] has been proposed
to model graph-structured data by transforming node features and
propagating the embedded features along the graph structure. As
a central task in graph machine learning, semi-supervised node
classification aims to infer the missing labels for unlabeled nodes.
By capturing the information carried by both labeled and unlabeled
nodes as well as the relations between them, GNNs are able to
achieve superior performance over other approaches.

However, most of the existing work on node classification pri-
marily focuses on a single task, where the model is tasked to classify
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the unlabeled nodes to a fixed set of classes [13, 16, 25, 51]. In prac-
tice, real-wold graphs grow rapidly and novel node classes could
emerge incrementally in different time periods. For example, E-
commerce platforms like Amazon can be naturally modeled by
graphs, where products are represented as nodes, and the interac-
tions between products (e.g., viewed by the same customers) are
represented as edges. As newly emerged product categories will be
continually added to the platform, the underlying GNN models need
to handle a sequence of incremental learning sessions for product
categorization, where each session introduces a set of novel classes.
It is worth mentioning that, different from those base classes (in
the first learning session) provided with abundant labeled data,
only a few labeled samples are available for those newly emerged
classes in any incremental learning session. Ideally, the desired
GNN model is supposed to be capable of accurately recognizing
those novel classes introduced in a new session while preserving
the performance on all the "seen” node classes in previous sessions.
Such Graph Few-shot Class-incremental Learning (Graph FCL) prob-
lem has critical implications in both the academic and industrial
communities. However, little effort has been devoted to this topic.

The main challenges of the Graph FCL problem center around
the so-called stability-plasticity dilemma [27], which is a trade-off
between the preservation of previously learned graph knowledge
and the capability of acquiring new knowledge. Specifically, the
novel classes in each new learning session have much fewer nodes
compared to the base classes, resulting in a severe class-imbalance
problem [12, 37, 44]. This may engender two potential problems:
(1) on the one hand, if trained on all the data samples naively, the
learned graph model could be substantially biased towards those
base classes with significantly more nodes, resulting in the inertia to
learn new node classes [37]. Moreover, to retain the existing knowl-
edge, many of the methods from few-shot incremental learning
[31, 46, 47] use a fixed feature encoder, which will not be updated
after being pre-trained on base classes. Such a design will also
exacerbate the difficulty of adapting the model to the new incre-
mental learning tasks; (2) on the other hand, as the node classes
from new tasks only have few-labeled samples, imposing the graph
learning model to focus on new tasks will easily lead to overfitting
to those new tasks and erase the existing knowledge for previ-
ously learned classes, which is known as Catastrophic Forgetting
[8, 14, 18]. Considering the complex interactions between the nodes
on graph-structured data, such learning errors would also be prop-
agated on the graph and result in serious performance degradation.
Thus, it is vital to explore and develop a new approach that can
quickly adapt to the new class-incremental learning tasks while
avoiding the forgetting of existing knowledge.
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To address the aforementioned challenges of the studied problem,
we first propose a new Graph Pseudo Incremental Learning (GPIL)
training paradigm, which can facilitate the graph learning model to
better adapt to new tasks. Initially, we split the original base dataset
into base classes and pseudo novel classes with disjoint label spaces.
Then, we pretrain the encoder on the base classes, and keep it
trainable during the pseudo incremental learning process. For each
episode during meta-training, all the few-shot node classification
tasks are sampled from pseudo novel classes and base classes to
mimic the incremental process in the evaluation phase. This way
we obtain abundant meta-training episodes to learn a transferable
model initialization for the incremental learning phase. We then
propose a Hierarchical Attention Graph Meta-learning framework,
HAG-Meta, which can effectively handle the stability-plasticity
dilemma. Specifically, our framework uses a dynamically scaled
cross-entropy loss regularizer where the scale factors[20, 24] are
multiplied to each task-level loss to adjust their contribution for
model training. Ideally, the scaling factors can help the model to
down-weight the contribution of easy or insignificant tasks while
focus on those hard or important tasks. Due to the fact that tasks in
the Graph FCL problem have a hierarchical structure (nodes form
classes, classes form tasks), we propose a hierarchical attention
module that automatically captures the importance of different
tasks and learns the scaling factors. On one hand, the Task-Level
Attention (TLA) will estimate the importance of each task based
on their aggregated prototypes and output the scaling factors to
balance the contribution of different tasks. On the other hand, the
Node-Level Attention (NLA) aims to learn prototypes that main-
tain a better balance between existing and novel knowledge within
nodes and provide them to TLA. Being progressively trained in
GPIL, the hierarchical attention module can gradually obtain the
generalizability to produce the scaling factors for both encountered
tasks and subsequent tasks. Training with this dynamically scaled
regularizer, the proposed model will not only achieve better old
knowledge consolidation but also acquire principled adaptability
to new knowledge with merely limited data samples. The effective-
ness of the proposed framework is validated with comprehensive
experiments on three real-world datasets. The contribution of this
work can be summarized as follows:

e Problem: We present a novel Graph Few-shot Incremen-
tal Learning problem and formulate it with node classifica-
tion tasks, where the model is tasked to accomplish node
classification on base classes and all few-shot novel classes
encountered during incremental sessions.

o Algorithm: We propose Hierarchical Graph Attention mod-
ules tailored for the Graph FCL problem, and design a Graph
Pseudo Incremental Learning paradigm to enable effective
training to mimic the environment in the evaluation phase.

e Evaluation: Experiments on the Amazon-clothing, Reddit,
and DBLP datasets show that the proposed framework sig-
nificantly outperforms the baseline and other related state-
of-the-art methods by a considerable margin.

2 RELATED WORK
2.1 Class-incremental Learning

Incremental learning (IL) [31, 46], also known as continual learn-
ing or lifelong learning, has drawn growing attention recently.
IL aims to train machine learning models to acquire new knowl-
edge while preserving the utmost existing knowledge. In this work,
we mainly focus on Class-incremental Learning (CIL) where novel
classes emerge in subsequent sessions and the model is tasked to
fulfill classification on all the classes it has encountered, rather than
Task-incremental Learning (TIL), where usually a task identifier is
available, so the model can have multiple classifiers and finish the
final classification on classes in a single task [15]. The mainstream
of CIL methods can be categorized into two families. The first fam-
ily includes replay-based methods [22, 30, 32, 35], which maintain a
subset of previous samples, and train models together with samples
in the new session. The other family of methods is regularization-
based methods [2, 18], where various regularizers are proposed
to regularize the parameters of a neural network so that more im-
portant parameters concerning the previous task can be protected
when models are trained on each new task. A common choice of
regularizer is a Knowledge Distillation (KD) [11] based loss proposed
in LwF [19]. iCaRL [30] is the first work that combines both replay
and KD regularization methods, and puts forward the data imbal-
ance problem between old classes and novel classes in CIL. A series
of work focuses on this problem [44, 48]. [31, 46, 47] further extend
the situation to the Few-shot Class-incremental Learning (FCL) set-
ting on image domain. For the FCL setting, KD performance will
degrade tremendously due to the extreme scarcity of samples in
novel classes. Instead, to overcome catastrophic forgetting, those
methods usually adopt a decoupling method, where the encoder is
fixed after pre-training, and extra modules are involved for learning
incremental classes during meta-training. However, directly apply-
ing those FCL methods to the graph domain can lead to drastic
performance degradation. Nodes in a graph are not i.i.d. data as
usually assumed for images. Their representations are learned via
sampling and aggregation from their neighbors. Fixing the encoder,
if nodes in novel classes in an impending session are densely linked
with nodes in base classes, their representation can have evident
overlap, and the boundaries between those classes will be blurred.
Since no existing work is suitable for FCL on graphs, our paper
aims at bridging this gap.

2.2 Graph Few-shot Learning

Graph Neural Network (GNN) [1, 3, 9, 10, 16, 41, 45] is a family
of deep neural models tailored for graph-structured data, which
has been widely used in various applications, such as recommenda-
tion [42], anomaly detection [4], and text classification [5]. Gener-
ally, GNNs exploit a recurrent neighborhood aggregation strategy
to preserve the graph structure information and transform the
nodes’ attributes simultaneously. For instance, variants of GCN
[1, 3, 10, 16], GraphSAGE [9], GAT [41], and GIN [45] put forward
different aggregation schemes to try to enhance the representation
power of GNN. However, all those conventional GNNs may easily
fail to learn expressive node representation when the labeled nodes
are extremely scarce. Recently, increasing research attention has
been devoted to graph few-shot learning problems. Especially, the
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episodic meta-learning paradigm [38] has become the most popu-
lar strategy for this problem, which transfers knowledge learned
from many similar FSL tasks. Based on it, Meta-GNN [50] applies
MAML [7] to tackle the low-resource learning problem on graph.
Furthermore, RALE [21] uses GNNs to encode graph path-based
hubs and capture the task-level dependency, to achieve knowledge
transfer. GPN [6] adopts Prototypical Networks [33] to make the
classification based on the distance between the node feature and
the prototypes. AMM-GNN [43] leverages an attribute-level atten-
tion mechanism to characterize the feature distribution differences
between different tasks and learns more meaningful transferable
knowledge across tasks. However, all those methods cannot be
generalized to the Class-incremental learning scenarios, where the
model is tested not only on the novel classes in the current task
but also on all the classes in previous tasks. Catastrophic forgetting
will erase the knowledge specific for previously learned classes.

3 PROBLEM STATEMENT

Formally, a graph G = (V, &, X), where V, &, and X denote the set
of nodes, edges and node features respectively, can be alternatively
represented by G = {A, X}, where A is the adjacency matrix. The
Graph FCL task assumes the existence of a sequence of homoge-
neous datasets within a graph, i.e., D = (DY, DL, . DL, DT}
In any session i, Ci, the label space of the dataset D' has no
overlapping with the label space of any other session, i.e., Vi, j €
{0, .., T},i # j,C' N CJ = @. Then, the dataset in each learning ses-
sion can be represented as D= {Aci, Xci}, where A denotes
the attributes of nodes whose labels belong to the label space C*. No-
tably, in the first session, the dataset DOisa relatively large dataset
where a sufficient amount of data is available for normal semi-
supervised node classification training. The classes in DY are the
base classes. Datasets in following sessions, Die D,i+0,are few-
shot datasets, the classes in which are named as novel classes. Now,
we present the formal definition of a Few-shot Class-incremental
Node Classification task:

Definition 3.1. Few-shot Class-incremental Node Classifica-
tion on Graphs: For a specific session i, given a graph G = (A, X),
and a set of support nodes with labels, S I from the label space C i
the model is tasked to predict labels for the nodes in corresponding
query set Q'. The label space of the query set @' includes the base
set CY, all the novel sets in previous sessions {Cl, c2?, .., Ci_l},
and the novel set encountered in the current session C*.

For each session i, we have such a Few-shot Class-incremental
Node Classification task 7. In the corresponding support set S?,
we denote the number of novel classes as N and the number of
support nodes in each class as K. This task is named as an N-way
K-shot incremental node classification task. Alternatively, learning
through that sequence of datasets can be represented as a sequence
of tasks: i.e., T = {70,771, .., 7°..., TT}. In essence, we want our
graph model able to retain a decent performance when fulfilling
the classification on both base and novel classes.

4 METHODOLOGY

In this section, we introduce a Hierarchical Attention Graph Meta-
learning framework, HAG-Meta for solving Graph FCL problem.
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We first describe our proposed training procedures in Section 4.1.
Then, we present the model proposed in Section 4.2. The overview
of HAG-Meta is shown in Figure 1. Pseudocode-style algorithm
descriptions are given in Algorithm 1 and Appendix C.

4.1 Graph Pseudo Incremental Learning

Data Splits: To solve the Graph FCL problem, We split the dataset
D into two folds, Dpyse and Dy, e, With disjoint categories. Dy, g
is randomly split into Dpase/rrs Dpase/val> a0d Dpggerest fOr pre-
training. Dy has three splits of Dyoei/trs Dnovel fvals Proveltests
with disjoint categories. To simulate the Graph FCL problem, the tar-
get few-shot data {D!, ..., D’.., DT} are sampled from Dhiovel/tests
and the corresponding nodes and edges are masked during pre-
training and meta-training. The base data D consists of Dpgqe
and Dpoper/sr» Where our proposed Graph Pseudo Incremental
Learning is conducted. Details are given next.

Pre-training: We pre-train a GNN-based encoder gg on the split
Dpase/tr» following the normal semi-supervised node classification
process. The encoder is still trainable after pre-training.

Meta-training: To learn an initialization with more transferable
meta-knowledge within the graph, here, we propose the Graph
Pseudo Incremental Learning (GPIL) paradigm, where a model
would be trained on Dypye/ s a0d Diygpei /¢~ Similar to the episodic
meta-learning strategy, during each session i, we randomly sample
N novel categories from D,,44¢1/¢r, and K nodes per category to

form a novel support set S:wvel = {(xj., y;)}yzﬁK The query set
is composed of samples from the base categories, the novel cate-
gories from the previous sessions, and N novel categories in the
current session. We sample K samples from all those categories
to form a query set Q' = Ql’;ase U wavel. The novel categories
in each session will be merged into the base categories for the
next session. We will cache those novel support nodes in Srimz;el
for the classification of old classes in later sessions. So similarly,
Si= S;;ase U Sfl . During each session i, the parameters are
updated by the loss proposed in Section 4.2.1 for the classification
of queries in Q'. During training, we reset the base categories and
novel categories whenever the number of left novel categories is
less than N. In this way, the proposed model can be trained on an
arbitrary number of episodes despite the limitation of the number
of novel categories in D,,4¢1/¢r» Which is crucial for training the
attention models (See details in Section 4.2).

Evaluation: For each evaluation session, we randomly sample
N novel categories from D,ppe1/rest (0F Dipogeljval for validation).
The proposed model is fine-tuned on the sample. Base samples
for test are sampled from Dy gse/test (0F Dpase/var for validation)
and Dy,gpel/train- For the next session, those novel categories are

merged into base categories.

4.2 Model

The baseline model we deploy is based on Prototypical Network
(PN) [33]. We replace the multilayer perceptron (MLP) encoder in
the original PN with a GNN encoder gg. We call it Proto-GNN for
convenience. Then, given a graph G = (A, X), the latent features
can be defined as:

Z=gp(A,X) (1)
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Figure 1: (a) Illustration of Few-shot Class-incremental Node Classification Task. (b) The illustration of our framework: HAG-
Meta, as in Section 4.2. (c) Structure of the Task-Level Attention module, computed with self-attention layer, as in Section 4.2.1.
(d) Structure of the Node-Level Attention module. We adopt GCN layers to generate the weight, as in Section 4.2.2.

As mentioned in [33], the vanilla way to compute a prototype for a
category is the average over all the features of nodes in the category:

1
P57 2, % @
J€SK
Where Sy is the set of all the support nodes index in category k
and |Sg| is its cardinality. Then, a distance function d is used to
generate the distribution over classes for a query node vg based on
a softmax over distances to the prototypes in the latent space:
exp(-d(zg, py))

2k exp(=d(zq, pyr))
For the choice of d, we use squared Euclidean distance, which has
been shown as a simple and effective distance function [33].

To overcome the class-imbalance challenge in Section 1, we here
propose our Hierarchical-Attention based Graph Attention module.
The goal is to learn a strong regularizer that can dynamically scale
the contribution for nodes in different tasks. Tasks in the Graph
FCL problem naturally have a hierarchical structure(nodes form
classes, classes form tasks). Thus, we propose a two-level hierar-
chical attention mechanism: Task-Level Attention and Node-Level
Attention to estimate the importance of different tasks.

p(y =klg) = ®)

4.2.1 Task-Level Attention. To deal with the challenge that our
model may overfit onto base or novel classes, we here propose
the Task-Level Attention (TLA) to estimate the importance of
classes learned in different tasks. Ultimately, we want to learn a
series of scaling factors for the loss, which should be competent to
automatically down-weight the contribution of easy or insignificant
tasks during meta-training and rapidly focus the model on hard
or important tasks. As described in the training procedure, during
meta-training, the query nodes are from classes in all the previous
training sessions. In this case, we find that a task-weighted loss
will serve the purpose. For a PN, the prototypes matrix, P! = {p;c}

(P! € RISkIXh where h is the size of prototype features), of the
support nodes, S*, in a certain session i, serves as the classifier

for the queries, Q. Hence, we can make the hypothesis that the
prototypes in sessions are representative enough to express the
knowledge of the task 7. Based on the self-attention by [40], TLA
aims at learning the attentions (scaling factors) whi e W, (Vj €
[1i],W e RlXi) between the current task, 7, and all the tasks the
model has been trained on, {7'1, T2, .., Ti}, including the current
task. The desirable property of TLA is that the attention mechanism
is inductive and permutation invariant, which suits the Graph FCL
problem where novel tasks and classes come in sequence. The
structure of the TLA model is shown in Figure 1 (c). We use g, to
denote the TLA generator. Because the number of classes in the
base is much larger than that of each novel task, we first use MLPs
to project the prototypes of all the tasks into the same size:

w = MLP(p’),Vj € [1,1] (4)

Where u/ is the projections of the prototypes p/ at session j. Then,
the weights W can be computed as:

_ exp (ul - u/) 5)

Zj”:l exp (uf - u/’)

whJ

For each task, the weight ‘W is determined by the number of classes
in the task, and then normalized by the number of classes in that
task (different classes in the same task share the same weight):

We = w 6

= 1o (6)
where |C/] is the number of classes in session j, and W € R**ICI
is the expanded weight vector of W. |C| is the number of all the
classes having been seen. And W is the target scaling factor of
classes within the task. With all the factors W¢ computed, finally
we introduce our TLA Loss, which is the Cross-Entropy Loss (CEL)
scaled by the TLA scaling factors W:

Lria= ) we- [y -log(gi) + (1 - ye) log(1 - ;)] (7)
keC
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The final loss is:
L=Lcpr+Lr14

= > (14w - [ye - log(y) + (1 - ) log(1 - )]~ ®)
keC
Ly will function as the initialization of task contribution weight,
and L1714 will turn into a regularizer, which adjusts the contribu-
tion according to the importance of tasks.

4.2.2  Node-Level Attention. While TLA can weigh the importance
of different graph tasks, it cannot fully capture the knowledge
within the graph structure, which may lead to the inaccurate im-
portance measured for tasks. To incorporate TLA with the graph
knowledge, we propose to use a Node-Level Attention (NLA),
A={A}je 8!, to adjust the representation of the prototype
features learned from the GNN encoder gg in each session i, where
Aj is the attention weight of the novel support nodes v; to the
prototype. We want the NLA to maintain the balance of existing
knowledge and novel knowledge for each node. The schematic
diagram of NLA can be found in Figure 1 (d). We propose to use
the Graph Convolutional Network (GCN) [16] to calculate the fi-
nal NLA. The propagation rule in the /th layer of our GCN can be
represented as:

1 I,1-1 -1
b =o' R+ 3wl Jdd;)) ©)
J'EN;
where, at the Ith GCN layer, hﬂ- is the latent NLA representation

of node v}, o’ is an activation function, R! is the learned weight
matrix, Nj is a set of nodes adjacent to node v, dj and dj are the
node degrees of node v; and node vj- respectively. We set h? = Xj.
Then, we use an MLP to project the latent NLA in the last (Lth)
GCN layer into scalar:

Aj = MLP(hY) (10)

Next, we apply the centrality adjustment method proposed in [26]:

/fj = o(log(degree(vj) +€) - A;j) (11)

where o is the sigmoid function, € is a small constant. Finally we

use softmax function to normalize the NLA:
_ exp(4;)

Zj’ESi exp(/lj/)

Then, we modify the original strategy, Eq.(2), to calculate prototype

in PN with NLA:

Aj (12)

P = Z Ajz; (13)
JE€Sk
With the adjusted prototypes, we can then use Eq.(3) to get the final
label. An overview of the incremental training procedure of each
session is given in Appendix C.

5 EXPERIMENTS

In this section, we present the evaluation of our framework: HAG-
Meta. We first introduce the used datasets and compared methods.
Then, we show the result and analysis of the comparative study.
Furthermore, we conduct comprehensive ablation experiments to
validate the effectiveness of individual components in the proposed
framework and study their characteristics. Also, we compare the
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Algorithm 1 HAG-META

Input: Dataset D, number of sessions M for GPIL, number of
target evaluation sessions T for evaluation, random initialized
GNN model gy, random initialized TLA weighter g4, and NLA
weigter gy

Output: Trained models: gg, g4, and gy,

// Data split
1: Split dataset O into Dpgse/rrs Dpase/val> Doase/test>
Dnovel/tr: Dm)vel/val: and Dnouel/test~
// GNN back bone Pre-training
2: Pre-train gg on Djyse /s in normal supervised learning.
// Meta training (GPIL)
3. while i < M do
4 Sample a Graph FCL task from Dy,4e1/¢r and Dpgse s ac-
cording to Section 4.1: ‘7;; = (S, Q).
5. Do one incremental training session:
AL gg, 9> 9y = INCREMENTALSESSION(?;;',, 99> 99> 9y)
6: end while
// Evaluation
7: while j < T do
8 Sample a Graph FCL task from D,,5p¢1/resr a0d Dypgse/rest
according to Section 4.1: 7,7, = {8/, Q’}.
9: Do one incremental training session:
A, go, 9¢s Gy = INCREMENTALSESSION('ﬁést, 96> 94> 9y)
10: end while

result of our model with that of the best baseline under different
N-way K-shot settings. Finally, to illustrate the advantage of our
model, we visualize the learned embeddings.

5.1 Experiment Settings

Evaluation Datasets. We conduct our experiments ! on three
widely used graph Few-shot learning datasets: Amazon-Clothing
[23], DBLP [36], and Reddit [9]. More details about the datasets can
be found in Appendix A. The statistic are shown in Table 1.

Compared Methods. In this paper, we compare our HAG-Meta
framework with the following methods:

e Prototypical Networks on graphs: As discussed in Section 4.2,
we implement Proto-GNN with two different encoders: GCN
[16] and GAT [41], to reveal the inability of GNN to deal
with the Graph FCL problem. We denote them as Proto-GCN
and Proto-GAT.

State-of-the-art Graph Few-shot learning methods: Meta-
GNN [50] and GPN [6].

e Continual learning methods on graph: ER-GNN [49], and
classic iCaRL [30] with the encoder substituted by a GNN.
These models do not consider the Few-shot learning setting.
Few-shot Class-incremental Learning: CEC [47]. It is one of
the state-of-the-art methods but is primarily for the image
domain, so we replace the encoder with a GNN encoder.

1Codes are avalable at https://github.com/Zhen-Tan-dmml/GFCIL
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Amazon Clothing  DBLP Reddit
# Nodes 24,919 40,672 232,965
# Edges 91,680 288,270 11,606,919
# Features 9,034 7,202 602
# Labels 77 137 41
Pre-train 20 37 11
Meta-train 30 50 10
Evaluation 27 50 20

Table 1: Statistics of the expermental datasets.

5.2 Implementation Details

In Table 1, we list the specific data split strategy for each dataset,
following Section 4.1. Here, |Cpgse| is the number of classes for
pre-training, |Cpoger/¢r| the number of classes for meta-training,
and |Cpogel/test| the number of target few-shot classes for evalua-
tion. E.g., for the Amazon-Clothing dataset, we pre-train our GNN
encoder on 20 categories of nodes, which are viewed as base cate-
gories. Another 30 categories are used for meta-train for providing
pseudo novel categories. For evaluation, the model will be fine-
tuned on a sequence of tasks consisting of nodes in the remaining
27 target categories. We stop the encoder pre-training when its
validation accuracy stops improving for more than 10 epochs. For
model implementation, please refer to Appendix B for detail.

Evaluation Protocol: We evaluate the model after each session
with the test set D’ (sampled from Dhovel/test)- To reduce fluctua-
tion, all the accuracy (Acc.) scores reported are averaged over 10
random seeds. We also calculate a performance dropping rate (PD)
that measures the absolute accuracy drops in the last session w.r.t.
the accuracy before the first evaluation session, i.e., PD = A — AT
where A is the classification accuracy in the last Meta-train ses-
sion and AT is the accuracy in the last session. To make the result
more explicit, we define a new term: Relative Performance Drop-
ping rate (RPD), which is the PD normalized by the initial accuracy,
ie, RPD = £3.

5.3 Comparative Results

In this section, we present the comparison between our framework
and the other four categories of baseline methods described in Sec-
tion 5.1. To the best of our knowledge, we are the first to investigate
the Graph Few-shot Class-incremental Learning Problem. To fairly
compare those methods, all methods except the basic GAT model
share the same pre-trained GNN encoder as the proposed frame-
work HAG-Meta, a 2-layer GCN. Also, when experimented on each
dataset, they share the same random seeds for data split, leading to
identical evaluation data. We justify the advantage of the proposed
framework from the following aspects:

Performance Degradation in Graph Few-shot Learning (GFSL)
methods: A general observation is that, for those GFSL methods,
their accuracy decreases substantially as new sessions emerge, es-
pecially for the first several sessions. Even though through meta-
training, they have gained generalizability to a certain extent, the
performance degrades constantly as the number of classes involved
increases. This implies that the existing GFSL methods cannot main-
tain discriminative boundaries between all the base classes and
novel classes. Without consolidated knowledge of classes in base
and early sessions, traditional GFSL methods suffer grievously from
Catastrophic Forgetting, as it adapts to classes in the latest episode.

Limitation in existing Incremental Learning methods. ER-GNN
is one of the pioneers to task graph neural network models with a
sequence of tasks. It adopts several Experience Replay methods to
try to consolidate existing knowledge. However, the accuracy of
ER-GNN diminishes tremendously when it is applied to a few-shot
setting. Besides, iCaRL combines a piece of memory and knowl-
edge distillation to consolidate existing knowledge. However, the
limited number of samples in novel classes will affect the knowl-
edge distillation process, leading to its overfitting onto old classes.
Furthermore, the CEC method is one of the state-of-the-art few-
shot Class-incremental learning methods for the image domain. It
assumes that the data is i.i.d. distributed, which makes it overlook
the topological relationships among tasks and nodes. It adopts a
decoupling strategy, where the encoder is fixed after pre-training
to retain existing knowledge. So when it is applied to graphs, the
representation of nodes in base classes is fixed through all following
sessions. But in graphs, the representation of novel classes nodes
tightly depends on their neighboring nodes, which might belong to
the base classes. This leads to indiscriminative boundaries between
the base and the novel classes and unsatisfactory accuracy.

Advantages of the proposed HAG-Meta: Generally, HAG-Meta
outperforms all baseline methods by a large margin, in terms of ac-
curacy, PD, and RPD. Compared to the GFSL methods, the proposed
penalty term L7714 can effectively prevent catastrophic forgetting
by regularization. In contrast with ER-GNN and iCaRL, our GPIL
paradigm provides sufficient episodes to train the model such that
it can learn an appropriate initialization to adapt to few-shot novel
data. Also, we discard the decoupling strategy of the mainstream
incremental learning methods on the image domain, like CEC. In
contrast, we add node level attention, NLA, to learn the task and
class dependency within the graph topological structure. The re-
sults in Table 2 verify that HAG-Meta is robust against increasing
numbers of sessions with novel classes in the Graph FCL problem.

5.4 Ablation Study

In this section, we conduct more experiments to investigate the
effectiveness of different components in our framework. We present
the results of experiments on Amazon-Clothing datasets, under the
3-way 5-shot setting (similar results can be observed on the other
datasets and settings). The results are shown in Table 3. For each
method, the models share the same data splits for evaluation.

Specifically, the variant Proto-GNN stands for the Prototypical
Graph Neural Networks baseline described in Section 4.2. NLA
and TLA represent Node-Level Attention and Task-level Atten-
tion, respectively. A method without the TLA means the loss is
the vanilla cross-entropy loss, without the L7 4 regularizer, see
Eq.(8). A method without the NLA means there is no prototype
representation adjustment. All the prototype representations are
the vanilla average of the encoder output, see Eq.(2). For methods
without GPIL, the model is directly fine-tuned on datasets with
target novel classes in different sessions.

According to the results shown in Table 3, we can observe that
each component in our proposed framework, HAG-Meta, is effective
when tackling the Graph FCL problem:

e GPIL: Comparison between methods with and without GPIL
shows that GPIL can improve the accuracy. With more episodes
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Amazon-Clothing dataset (3-way 5-shot)
Acc. in each session (%) 7 improvement
Method 0 1 2 3 4 5 6 7 8 g — PPl RPDL " ph ey
Proto-GAT 60.22 4432 4187 3828 3515 32.25 30.67 2854 26,54 2543 3479 57.77 (+1.43/+18.13)
Proto-GCN  60.52 43.11 4241 3980 36.91 33.84 3147 29.67 27.18 2576 3476 57.44 (+1.40/+17.80)
Meta-GNN  79.62  65.29 63.46 5849 5636 54.13 51.76 49.50 4632 43.07 36.55 4590 (+3.19/+6.26)
GPN 80.76 66.98 64.46 62.63 60.03 5548 5235 50.76 48.15 4583 34.93 4325 (+1.57/+3.61)
ER-GNN 8137 73.62 70.84 63.63 61.86 5824 54.29 51.58 4886 46.26 35.11 43.14 (+1.75/3.50)
iCaRL 79.43 7392 66.87 63.19 60.28 56.04 5348 5033 47.75 4582 33.61 4231 (+0.25/+2.67)
CEC 82.05 7328 7046 64.85 62.19 60.29 5486 52.27 50.69 48.22 34.28 4177 (+0.92/+2.13)
Ours 84.15 75.32 7135 67.32 64.03 6142 56.23 54.63 52.65 50.79 33.36 39.64
DBLP dataset (5-way 5-shot)
Acc. in each session (%) T improvement
Method 0 1 2 3 1 5 6 7 8 o — PPl RPDL " ph ey
Proto-GAT 3875 32.04 23.64 19.65 19.43 18.64 1886 1859 1835 1823 20.52 5296 (+3.41/+21.62)
Proto-GCN 39.02 33.11 2427 20.14 20.03 19.12 18.76 1832 1850 18.66 20.36 52.17 (+3.25/+20.83)
Meta-GNN  40.75 34.28 33.68 32.18 30.45 2845 2434 23.18 23.07 2223 18,52 4544 (+1.41/+14.10)
GPN 4139 3453 32.18 32.00 31.25 30.67 29.16 27.64 2534 23.13 18.26 44.12 (+1.15/12.78)
ER-GNN 46.74 4170 38.55 36.82 35.03 34.28 3332 31.59 30.67 2886 17.88 38.25 (+0.77/6.91)
iCaRL 45.76  40.03 37.92 36,56 34.81 3322 3210 30.57 29.34 2824 1752 3829 (+0.41/+6.95)
CEC 46.45 40.25 38.28 36.67 35.26 34.48 3224 31.68 30.84 28.76 17.69 38.08 (+0.58/+6.74)
Ours 54.59 47.89 46.45 45.05 43.83 41.38 39.67 39.07 38.15 3748 17.11 31.34
Reddit dataset (2-way 3-shot)
Acc. in each session (%) T improvement
Method 0 1 2 3 1 5 6 7 ) g — PPl RPDL " ph ey
Proto-GAT 48.23 42.07 37.52 33.43 3238 31.05 2832 2642 2439 2247 25.76 53.41 (+5.14/+19.43)
Proto-GCN  48.04 4277 3735 3504 33.62 31.21 28.04 2586 2442 2261 2543 5294 (+4.81/+18.96)
Meta-GNN  53.14 4856 45.63 4252 4042 3820 3512 3221 30.68 29.45 23.69 44.58 (+5.07/+10.60)
GPN 55.28 51.84 4636 43.71 41.18 39.07 37.82 35.04 3248 31.65 23.63 4275 (+3.01/+8.77)
ER-GNN 52.86 47.29 45.28 4356 41.08 40.02 38.42 36.77 33.26 3047 2239 4236 (+1.77/+8.38)
iCaRL 54.62 50.58 48.72 46.23 4484 42,16 40.29 38.65 3574 3328 21.34 39.07 (+0.72/+5.09)
CEC 57.68 53.13 50.63 4837 46.76 43.13 41.28 39.68 37.42 36.61 21.07 36.53  (+0.45/+2.55)
Ours 60.68 53.26 52.68 50.82 49.37 47.25 4586 43.16 42.28 40.06 20.62 33.98
Table 2: Comparative Results on the three datasets under different N-way K-shot settings.
Acc. in each session (%) T
Method 5 - - : : . - 5 ;— PDl RPD|
Proto-GNN 60.52 43.11 4241 3980 3691 33.84 3147 29.67 27.18 2576 34.76 57.44
Proto-GNN + GPIL 78.24 68.77 6248 55.20 5148 4565 42.89 37.42 34.62 3252 45.72 58.44
Proto-GNN + NLA 76.68 6533 62.04 60.64 5688 5337 50.65 46.96 43.26 4040 36.28 47.31
Proto-GNN + TLA 7554 63.87 60.78 58.27 56.24 5341 51.78 48.61 44.18 4135 34.19 45.26
Proto-GNN + NLA + GPIL 80.75 74.16 70.48 64.88 61.56 57.71 54.65 50.25 48.89 44.5 36.25 44.89
Proto-GNN + TLA + GPIL 7994 73.67 70.01 65.21 6233 5824 5414 5133 48.65 4532 34.62 4331
Proto-GNN + NLA + TLA 77.03 7224 68.75 63.02 6038 56.41 53.96 49.23 4548 4293 34.10 44.27
Proto-GNN + NLA + TLA + GPIL 84.15 75.32 7135 67.32 64.03 6142 56.23 54.63 52.65 50.79 33.36 39.64

Table 3: Ablation results on Amazon-Clothing dataset (3-way 5-shot).

of training, GPIL equips the hierarchical-attention module
with better initialization to capture the importance among
nodes and tasks.

o TLA and NLA: Generally, the scores show that both attention
components help improve accuracy. Specifically, comparing
methods with solely NLA or TLA, we can find that, at first
several sessions, methods with NLA have higher scores, but

their scores decrease at a sharper rate compared to methods
with only TLA. This shows that NLA is better in terms of
capturing the latent information within the graph data from
limited novel class samples, but it suffers from catastrophic
forgetting. In contrast, methods with TLA can maintain a
higher score at later sessions, which echoes the purpose of
our design, that the TLA loss can alleviate the forgetting
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Figure 2: Parameter analysis on three real-world datasets: (a) Amazon-Clothing (b) DBLP (c) Reddit. For each dataset we ex-

periment under three N-way k-shot settings.

problem by focusing more on important hard-to-learn tasks
than insignificant easy-to-learn tasks.

e Our framework, HAG-Meta, containing NLA, TLA, and GPIL,
as shown in the last line in Table 3, achieves the best perfor-
mance. Through effective training in GPIL, the hierarchical
attention components, TLA and NLA, have learned an initial-
ization that can capture the topological information within
the input graph to adapt to few-shot novel classes and miti-
gate forgetting of the existing knowledge simultaneously.

5.5

In this section, we present extensive experiments to analyze the
sensitivity of our HAG-Meta to the number of node classes (N-way)
and support(query) set size (K-shot). For better comparison, we
include the accuracy for both our HAG-Meta and the best compara-
ble model CEC under different N-way K-shot settings for all three
real-world datasets. As the result shown in Figure 2, our model out-
performs CEC in every setting we test. Plus, with more supervisory
signals, the classification accuracies of both models are higher with
larger support and query set.

Parameter Analysis

5.6 Visualization

To illustrate the effectiveness of our framework, we use the t-SNE
[39] method to visualize the embedding after the second session
of evaluation for the large-scale Reddit dataset under the 2-way
5-shot setting. As shown in Figure 3, each color signifies a class. It’s
evident that our model is capable to produce projection embedding
that elicits much more discriminative decision boundaries than our
best baseline model CEC.

6 CONCLUSION

In this work, we propose a new problem, the Graph Few-shot Class-
incremental Learning (Graph FCL) problem, aiming at obtaining a
graph model that can adapt to new tasks with a restricted number of
labeled training samples in novel classes, and simultaneously keep
a good performance on old tasks. We formalize it with the node
classification task and propose a novel framework called HAG-Meta.
We present a novel Graph Pseudo Incremental Learning paradigm,
which allows our model to learn a generalizable initialization for
the evaluation phase. Then we propose a hierarchical-attention-
based module to solve the class-imbalance problem in Graph FCL.

60

40

20

-20

—40

-60

-75 =50 -25 0 25 50 75 -50 =25 0 25 50 75

(a) CEC (b) ours

Figure 3: t-SNE embedding visualization: (a) CEC (b) ours.

Primarily, the Task-Level Attention will be trained to estimate the
importance between different tasks for backpropagation, while the
Node-Level Attention incorporates the Task-Level Attention with
the ability to capture the knowledge within the graph structure. A
dynamically scaled loss regularizer is then computed from the task
importance and automatically adjusts the contribution of different
tasks for training. We conduct experiments on real-world datasets
to demonstrate the effectiveness and advantage of our framework.

Despite the promising results, the Graph FCL problem is far
from being solved. In particular, many other graph settings are
worth considering, such as the dynamic graph scenario, where the
graph structure is continually evolving in different learning sessions.
Besides, more sophisticated methods to design the regularizer, like
from the perspective of causality, are worth considering. Also, we
plan to study the scenario where the model cannot explicitly store
any of the training data [30], e.g. for privacy issues. A potential
direction could be to investigate the efficient methods to store or
reproduce embedded features [17, 29].
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A DATASETS DESCRIPTION

In this section, we provide a detailed description of all those three
datasets we experiment on. We follow the pre-processing proce-
dures in [6].

e Amazon-Clothing [23] is a product network built with the
products in “Clothing, Shoes, and Jewelry” on Amazon. In
this dataset, each product is considered as a node and its
description is used to construct the node attributes. We use
the substitutable relationship (“also viewed”) to create links
between products.

e DBLP [36] is a citation network between academic papers
where each node represents a paper, and the links are the ci-
tation relations among different papers. The paper abstracts
are used to construct node attributes. The class label of a
node is defined as the paper venue.

e Reddit [9] is a large-scale post-to-post graph constructed
with data sampled from Reddit, within which posts are rep-
resented by nodes and two posts are connected if they are
commented by the same user. Each post is labeled with a
community ID.

B IMPLEMENTATION DETAIL

For the model implementation, we implement the proposed frame-
work in PyTorch. Specifically, the graph encoder gy consists of two
GCN layers [16] with dimension size 32 and 16, respectively. Both
of them are activated with the ReLU function. Regarding the TLA,

We use a 3-layer MLP to map the base prototypes into the same size
as the novel prototypes in each session, namely, N. For the NLA,
it consists of one fully connected layer and two GCN aggregation
layers [16]. For each aggregation layer, we use ReLU function as
the activation function.

The framework is trained with Adam optimizers whose learning
rates are set to be 0.005 initially with a weight decay of 0.0005.
And the coeflicients for computing running averages of gradient
and square are set to be 1 = 0.9, f2 = 0.999. For each dataset, we
meta-train the model over 1000 episodes with an early-stopping
strategy.

C PSEUDO-CODE STYLE DESCRIPTION OF
EACH INCREMENTAL SESSION

Algorithm 2 INCREMENTALSESSION

Input: Sampled task 7 = {S,Q}, gy, g4, and gy
Output: Accuracy A, trained models: gg, g4, and gy.
// One session of Graph FCL
1: Compute representation of nodes in S and Q with gy.
2. Compute A and p, with gy.
3. Compute ‘W, and labels for nodes in Q' with 9
4: Compute TLA Loss and total Loss, L4 and £, with Eq.(7)
and Eq.(8) for backprop.
5: Compute labels for nodes in Q and corresponding accuracy A.
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