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Theory of two-photon absorption with broadband squeezed vacuum
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We present an analytical quantum theoretic model for nonresonant molecular two-photon absorption (TPA)
of broadband, spectrally multimode squeezed vacuum, including low-gain (isolated entangled photon pairs)
and high-gain (bright squeezed vacuum or BSV) regimes. The results are relevant to the potential use of
entangled-light TPA as a spectroscopic and imaging method. We treat the scenario that the exciting light is
spatially single mode and is nonresonant with all intermediate molecular states. In the case of high gain, we
find that in the case that the linewidth of the final molecular state is much narrower than the bandwidth of
the exciting light, bright squeezed vacuum is found to be equally (but no more) effective in driving TPA
as is a quasimonochromatic coherent-state (classical) pulse of the same temporal shape, duration, and mean
photon number. Therefore, in this case the sought-for advantage of observing TPA at extremely low optical
flux is not provided by broadband bright squeezed vacuum. In the opposite case that the final-state linewidth is
much broader than the bandwidth of the BSV exciting light, we show that the TPA rate is proportional to the
second-order intensity autocorrelation function at zero time delay g(2)(0), as expected. We derive and evaluate
formulas describing the transition between these two limiting cases, that is, including the regime where the
molecular linewidth and optical bandwidth are comparable, as is often the case in experimental studies. We also
show that for g(2)(0) to reach the idealized form g(2)(0) = 3 + 1/n̄, with n̄ being the mean number of photons
per temporal mode, it is required to compensate the dispersion inherent in the nonlinear-optical crystal used to
generate the BSV.
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I. INTRODUCTION

Two-photon absorption (TPA) is a widely used method
in spectroscopy, as it can yield results that are not available
via linear (one-photon) absorption methods. For “classical”
(coherent-state) fields and broadband absorbers, the rate of
TPA is proportional to the square of the instantaneous inten-
sity of the electromagnetic field. To achieve high intensities
while keeping the average flux low, short pulses can be used to
increase the efficiency of the process. However, for ultrashort
pulses and narrowband absorbers, the increase in efficiency
is limited by the spectral overlap between the two-photon
transition and the driving field. To increase the TPA efficiency,
it has been proposed to use broadband photon pairs that are
time-frequency quantum entangled—such that the sum of
their frequencies is equal to the material’s two-photon reso-
nance frequency—to drive two-photon absorption. Recently,
efforts to implement two-photon spectroscopy and imaging
have met with some skepticism regarding its practicality, due
to the extremely low event rates predicted by standard theories
and supported by some recent experiments [1–3]. This paper
addresses whether significant advantages can be obtained in
this regard by instead using so-called bright squeezed vacuum
(BSV) to drive TPA.

The concept of entangled two-photon absorption (ETPA)
is well established theoretically in the low-flux regime of
isolated photon pairs (in which distinct pairs do not overlap
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within the field’s correlation time or within the molecule’s
response time) [4–9]. Fei et al. emphasized a simple heuristic
model in which the rate of ETPA is represented approximately
as [6]

R = σe
F

A0
+ σ (2)

(
F

A0

)2

, (1)

where F is the total photon rate (photons s–1), A0 is the effec-
tive beam area (m2), σe is called the ETPA cross section (m2)
arising from isolated-entangled-pair photons, and σ (2) is the
TPA cross section (m4 s) arising from accidental coincidences
of photons. In the case of monochromatic classical light, σ (2)

is equal to the conventional TPA cross section, first derived
by Göppert-Mayer [10]. For molecules in solution σ (2) is typ-
ically exceedingly small—on the order of 1–1000 GM (where
1GM = 10–58 m4 s) [11].

In a previous study we derived an upper bound on the (low-
flux) isolated-entangled-pair cross section σe in the case that
the molecular final-state TPA linewidth is narrow compared
to the entangled photon pair’s bandwidth. Using perturbation
theory under standard assumptions assuming homogeneously
broadened molecular energy eigenstates yields the bound
[1,12]

σe �
σ (2)

A0
2B, (2)

where B is the full bandwidth of the entangled photon pair
(EPP) spectrum in units of Hz. Quantitative estimates using
this upper bound indicate that with EPP fluxes limited to the
isolated-pair regime and realistic sample concentrations event
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rates are orders of magnitude below the detection threshold of
typical photon-counting systems. This prediction is consistent
with experimental efforts reported in [2,3], although other
experiments have seemed to indicate otherwise [13,14].

While it is the case that temporal-spectral correlation em-
bodied in quantum entanglement can significantly increase the
TPA rate as a result of effective spectral compression at the
two-photon resonance frequency, the above analysis predicts
that the rates of ETPA for typical molecules are nevertheless
too small for practical experimental observation in the low-
flux isolated-pair regime [12,15,16].

To overcome the too-small TPA rates when using entan-
gled photon pairs in the low-flux isolated-pair regime, it is
natural to wonder if using bright squeezed vacuum (BSV)
states of light can yield large enhancements while creating
more-readily observable ETPA rates. BSV is defined as a
squeezed state of light that has zero mean field but a high
number of photon pairs per mode [17]. Prior theories that
address ETPA in the high-gain parametric downconversion
(PDC) (that is, BSV) regime include those of Dayan [18] and
Schlawin and Mukamel [7]. Dayan derived expressions for
two-photon interactions (TPA as well as sum-frequency gen-
eration) induced by broadband downconverted light that was
generated from a narrow-band (long-pulse) pump laser. Dayan
concluded that for such time-frequency-entangled sources the
rate of such processes is the sum of two contributions—a
“coherent” term, which depends on the coherent overlap of
temporal-spectral components of the field and thus is affected
strongly by dispersion-induced time delays; and an “incoher-
ent” term, which depends only on the overlap of the field’s
intensity with itself and is thus less sensitive to dispersion.
The characteristic timescale of the coherent term is the inverse
bandwidth of the EPP field, while the characteristic timescale
of the incoherent term is the much longer duration of the
intensity envelope. Furthermore, Dayan pointed out that at
low flux, the rate of TPA driven by the coherent term scales
linearly with the mean photon flux, while the incoherent term
scales quadratically, making a connection with the previously
cited study by Fei et al. [6] in Eq. (1).

Schlawin and Mukamel considered ETPA in a different
regime, where the PDC producing broadband BSV is pumped
by an ultrashort (ps or fs) laser pulse [7]. An accurate de-
scription in this case requires the use of a singular-value
decomposition to discover the appropriate time-frequency
(temporal) mode basis in which to represent the set of in-
dependent two-mode squeezing (Bogoliubov) transformations
present in the BSV field that drive the TPA. They found sim-
ilar scaling of ETPA rates with EPP flux as found by Dayan
and expressed in Eq. (1).

The present paper presents a reexamination and clarifica-
tion of the ETPA problem along lines most similar to Dayan’s,
with several key differences: We use a single-spatial-mode
model for multitemporal-mode squeezed light that enables
the TPA calculations to be carried out explicitly and ana-
lytically while making only well-controlled approximations.
Our results confirm that the heuristic formula in Eq. (1) is
accurate under appropriate conditions, as our rigorous result,
Eq. (44), reproduces it along with explicit expressions for the
proportionality factors. We derive formulas describing how
the quantum enhancement of ETPA arises in both the low- and

high-flux regimes of PDC, and we derive a simple expression
for the crossover between linear and quadratic scaling with
flux, consistent with previous results, for example [5]. We
clarify the roles of the coherent and incoherent contributions
to the TPA rate under conditions of broad or narrow TPA
final-state linewidths, and how these relate to the conventional
understanding based on the value of g(2)(0).

The above-discussed theories focus on the scenario that the
exciting light is nonresonant with all intermediate molecular
states. That is also our focus here. The case of resonant inter-
mediate states was treated recently by Drago and Sipe [19],
whose results reduce to many of ours in the nonresonant limit.

We confirm the known result that when the molecular
final-state linewidth is very broad, such that the molecule
responds instantaneously to fluctuations of the light, the TPA
rate is proportional in general to the second-order (inten-
sity) correlation function g(2)(0). For spectrally multimode
BSV we prove that compensation of the dispersion inherent
in the nonlinear-optical crystal used to generate the BSV is
required to reach a threefold rate enhancement [g(2)(0) = 3]
relative to coherent-state light. A threefold enhancement has
been predicted or measured previously for BSV relative to
coherent-state or pseudo-coherent-state light [20–24]. We de-
termine the amount of dispersion compensation needed to
reach this optimum using a realistic model of spectrally mul-
timode BSV.

We address the following question: In the opposite limit,
when the molecular TPA linewidth is narrow compared to a
much broader bright squeezed vacuum spectrum, how great an
enhancement of TPA does BSV provide relative to a coherent-
state pulse? We derive and evaluate formulas describing the
transition between the narrow-band and broadband limits, in-
cluding the regime where the molecular linewidth and optical
bandwidth are comparable, as is often the case in experimental
studies of entanglement-enhanced molecular TPA.

We find that in this limit the BSV is equally effective in
driving TPA as a quasimonochromatic coherent-state (clas-
sical) pulse of the same temporal shape and mean photon
number. Thus, in this case there is no relative enhancement.
Therefore, the sought-for advantage of observing TPA at low
optical flux continues to be elusive.

II. MODEL FOR ENTANGLED TWO-PHOTON
ABSORPTION

We first review briefly the “standard” model for two-
photon absorption, used in many successful studies. While
the historically first treatment of TPA used second-order per-
turbation theory for molecular pure-state quantum amplitudes
and a final density of states [10] as reviewed in [11], we
follow the method in which fourth-order perturbation theory
is applied to the molecular-state density operator, allowing
for a treatment of homogeneous dephasing linewidths of the
transitions involved [7,8,25,26].

As reviewed in [15] and used in [1,12], when the sum of
the two photons’ frequencies is near resonance with the TPA
transition, and the individual fields are far from any inter-
mediate resonance, as in Fig. 1, the dominant term in the
perturbation expansion is the so-called double-quantum co-
herence (DQC) term, which represents direct excitation to the
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FIG. 1. (a) “Direct” two-photon-excitation process in which pho-
tons of frequency ω and ω̃ are absorbed simultaneously with no
resonant intermediate state. (b) Coherent contribution of BSV which
arises from frequency-anticorrelated photon pairs. (c) Incoherent
contribution of the BSV, which arises from frequency-noncorrelated
pairs, contributes significantly to TPA only if the molecular line
(shaded region) is broad enough to respond to nonoptimal frequency
combinations.

f state by simultaneous absorption of two photons without
creating “real” population in the intermediate states. We con-
sider this term only, which yields for the probability to find
the molecule in the f state following the excitation pulse,

PTPA =σ (2) γ f g

A2
0

Re
∫

−dω′
∫

−dω

∫
−dω̃

C(4)(ω′, ω̃′, ω, ω̃)

γ f g − iω f g + iω + iω̃
,

(3)

where C(4) is given below. For compactness we denote ω̃′ =
ω + ω̃ − ω′ and denote −dω = d/2π . Here ω f g is the fre-
quency and γ f g the dephasing rate between the ground state g
and final state f . The variable frequencies of the two photons
that lead to excitation are ω, ω̃. The effective beam area at the
molecule’s location is A0. Note again that we treat the case
of spectrally multimode but spatially single-mode squeezed
vacuum.

The conventional TPA cross section is [11]

σ (2) =
(

ω0

h̄ε0nc

)2 1

2γ f g

∣∣∣∣∣
∑
e

de f dge
ωeg − ω0

∣∣∣∣∣
2

(4)

for excitation by monochromatic light far from resonance
with all intermediate molecular states, where ω0 is the central
frequency (rad/s) of the exciting field’s spectrum, the electric-
dipole matrix elements are d jk , n is the medium’s refractive
index at the center frequency, ε0 is the vacuum permittivity,
and c is the vacuum speed of light. Equation (3) is consistent
with that, for example, in [7] in the case of nonresonant
intermediate states, as we treat here.

The nature of the exciting field is embodied in the four-
frequency correlation function,

C(4)(ω′, ω̃′, ω, ω̃) =Tr[ρ̂F ĉ
†
(ω′)ĉ

†
(ω̃′)ĉ(ω)ĉ(ω̃)]

→ 〈�|ĉ†
(ω′)ĉ

†
(ω̃′)ĉ(ω)ĉ(ω̃)|�〉, (5)

where ρ̂F is the density operator for the field state, and the last
line applies in the case of a pure state �. As in Appendix A,
the creation and annihilation operators ĉ†, ĉ are related to the
electric field operator at the location of the molecule, to good

approximation, by

Ê (+)(t ) = L0

∫
−dωĉ(ω)e−iωt , (6)

where L0 = (h̄ω0/2ε0ncA0)
1/2. For a single molecule located

at r0, the proper definition of the effective beam area is given
by (1/A0)1/2 ≡ u(r0), where the mode amplitude is normal-
ized in the transverse spatial coordinates, ∫ |u(r)|2d2x = 1.
We assume the field is polarized linearly with a single fixed
orientation, and the d jk in Eq. (4) represent the electric-dipole
matrix elements projected onto the field polarization. The
bosonic commutator is [ĉ(ω), ĉ

†
(ω′)] = 2πδ(ω − ω′).

III. LOW- AND HIGH-GAIN SQUEEZING
REGIMES OF PDC

In type-0 or type-I spontaneous parametric downconver-
sion (PDC) in a second-order nonlinear-optical crystal photon
pairs are generated having the same linear polarization,
leading to a large bandwidth determined by second-order
dispersion [27]. These processes can be designed via phase
matching to occur predominantly into a single collinear
forward-traveling spatial mode, such that the photons have
no distinguishing labels other than frequency [28]. Alterna-
tively, phase matching for type 0 or type I can be adjusted so
copolarized photon pairs are emitted and detected off axis on
opposite sides of the pump beam; then a distinguishing label
is the direction of propagation. Finally, type-II PDC creates
orthogonally polarized photon pairs either on or off axis.

We focus on the case of type-0 or type-I copolarized, co-
propagating photon pairs in the main part of the paper because
of its simplicity. The other cases have similar predictions and
are discussed in Appendix B.

To treat BSV-induced TPA that includes both low- and
high-gain regimes, the Heisenberg picture is most useful to
describe the action of the PDC crystal. As mentioned, an
exact treatment requires numerical solutions of the propaga-
tion equations and is most generally described in terms of a
singular-value decomposition (SVD) using temporal modes
[29,30]. Schlawin and Mukamel used SVD in a Gaussian
approximation to calculate frequency-resolved photon corre-
lations and TPA probabilities [7]. Instead of SVD, Dayan used
a quasi-steady-state approximation, valid if the pump laser
pulse has an arbitrary shape but is slowly varying and long
compared to the coherence time (inverse bandwidth) of the
PDC light [18].

We use a different approach, which allows deriving explicit
closed-form expressions for the ETPA rate, while requiring
only a few well-understood approximations. We consider that
the pump for the PDC is continuous wave (cw), allowing
a straightforward solution of the broadband squeezing equa-
tions of motion. To model the PDC light as a pulse of duration
T, we send the cw PDC beam through a shutter that opens
suddenly and closes after a time T, as shown in Fig. 2. When
assuming that the shutter opening time is long compared to
the coherence time, this approach enables us to use Eq. (3) to
calculate analytically the probability of excitation after a time
T. The results are valid in both low- and high-gain regimes,
and importantly allow us to understand quantitatively how the
two regimes merge at moderate gain, leading to a derivation of
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FIG. 2. Modeled experimental setup. The initial field (in the vacuum state) enters the second-order nonlinear-optical crystal pumped by a
cw laser and is phase matched for degenerate type-0 or type-1 spontaneous parametric downconversion (PDC), in which the collinear generated
light has a single, linear polarization. The pump is blocked and the PDC passes through an open-close shutter that is open for a duration T,
then passes through an optional dispersion-compensating optic, and into the two-photon-absorbing molecular sample.

the linear-and-quadratic scaling relation in Eq. (1). The same
model, but without the time shutter, was used by Boitier et al.,
to describe two-photon interferometery with a two-photon-
absorbing detector, and their results are consistent with ours in
the case of an absorber linewidth much greater than the BSV
bandwidth [31]. The figure also shows an optional dispersion-
compensating device that may be inserted prior to interacting
with the molecular sample.

Referring to Fig. 2, the PDC crystal, with nonlinear coef-
ficient χ (2)(ω), pumped by a monochromatic cw laser with
field amplitude Ep0 and angular frequency ωp = 2ω0, causes
a Heisenberg-picture transformation of the input (vacuum)
field operators â(ω) to output field operators b̂(ω); then the
field passes through a temporal shutter transforming the field
operators to ĉ(ω). As reviewed in Appendix A, the squeezing
transformation is given by the frequency-dependent two-mode
squeezing transformation [32]:

b̂(ω) = f (ω)â(ω) + g(ω)â
†
(2ω0 − ω). (7)

The gain functions are, for collinear type-0 or type-I phase
matching and crystal length z,

f (ω) = cosh[s(ω)z] − i
�k(ω)

2s(ω)
sinh[s(ω)z],

g(ω) = i
γ (ω)

s(ω)
sinh[s(ω)z],

(8)

where �k(ω) is the phase mismatch of wave numbers k(ω),

�k(ω) = kp − 2π/� − k(ω) − k(2ω0 − ω), (9)

where kp = k(2ω0) and � is the period of the poling in
a quasi-phase-matched crystal, which compensates for the
nominal mismatch k(2ω0) − 2k(ω0). For collinear type-0 or
type-1 the phase mismatch is approximated by �k(ω) ≈
−k′′(ω − ω0)2, where k′′ = ∂2[n(ω)ω/c]/∂ω2 is the group-
velocity dispersion. The spectral gain coefficient is denoted
as

s(ω) =
√

γ 2 − �k(ω)2/4,

≈
√

γ 2 − κ2(ω − ω0)4, (10)

using the abbreviation κ ≡ k′′/2. The (real) gain coefficient
is γ = (ω0/c)χ0Ep0, where χ0 is proportional to χ (2) and is
assumed to be independent of frequency in the region of inter-
est. Type-II and noncollinear type-0 or type-I phase matching
are treated in Appendix B.

Note the symmetries s(2ω0 − ω) = s(ω), f (2ω0 − ω) =
f (ω), and g(2ω0 − ω) = g(ω), valid for type-0 or type-I phase

matching, and note that unitarity of the transformation is en-
sured by the relation

| f (ω)|2 − |g(ω)|2 = 1. (11)

If the initial field state is the vacuum, a squeezed vacuum
state is generated; vacuum fluctuations are amplified, creating
correlated pairs of photons. With a cw pump, the stationary
PDC field has a spectral flux S(ω) (photons per second per
frequency interval) related to the two-frequency correlation
function by

〈vac|b̂†
(ω)b̂(ω′)|vac〉 = S(ω)2πδ(ω − ω′), (12)

and

S(ω) = |g(ω)|2 = γ 2

∣∣∣∣ sinh[s(ω)z]

s(ω)

∣∣∣∣
2

. (13)

Plots of the spectrum are shown in Fig. 3.
The total photon rate (photons s–1) is given by the inte-

grated spectrum,

F =
∫

|g(ω)|2−dω. (14)

FIG. 3. PDC spectra in the low- and high-gain regimes, with
characteristic widths w and b, respectively. In the low-gain regime,
the spectrum is well approximated by sinc2[(ω − ω0)2] and w is de-
fined by its first zero crossing. In the high-gain regime, the spectrum
is well approximated by a super-Gaussian as in Eq. (19), and b is
defined by the e –1 crossing. Crystal length z = 0.01 m. Low gain:
γ z = 10−4, high gain: γ z = 10.
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In the low-gain limit (γ → 0) the spectrum becomes [32]

S(ω) ≈ (γ z)2
(
sin[κ (ω − ω0)2z]

κ (ω − ω0)2z

)2

. (15)

The characteristic width parameter for this low-gain spec-
trum is (rad/s)

w =
√

π/κz, (16)

which narrows slowly as the medium length z increases.
The full width at half maximum in rad/s is 2

√
1.39/κz =

2
√
1.39/πw ≈ 1.34w. The total photon rate in this case is

F low gain = (2/3π )(γ z)2w. (17)

For later reference, the forms of s(ω), f (ω), and g(ω) in
the low-gain limit are

s(ω) → iκ (ω − ω0)
2,

f (ω) → exp[iκ (ω − ω0)
2z],

g(ω) → iγ (ω)z
sin[κ (ω − ω0)2z]

κ (ω − ω0)2z
. (18)

Referring to Eq. (7), we see that in the low-gain limit
f (ω) represents linear dispersion of the input field (which in
our case is vacuum) and g(ω) represents the lowest order of
photon pair generation as determined by phase matching.

In the high-gain limit (γ z 
 1) the spectrum becomes
“super-Gaussian” [32],

S(ω) ≈ 1
4 exp (2γ z) exp[−(ω − ω0)

4/b4], (19)

with a width parameter

b = (γ /κ2z)
1/4 = (γ z/π2)

1/4
w. (20)

The half width at half maximum is [γ ln(2)/κ2z]1/4 =
b[ln(2)]1/4 ≈ 0.91b. The high-gain approximation holds in-
side the center spectral region defined as |ω − ω0| <

(γ /κ )1/2 = b(γ z)1/4, which fully contains most of the energy.
The total photon rate in this case is (using the gamma

function �(5/4) ≈ 0.9064) [32]

F high gain ≈ 0.91(b/4π ) exp (2γ z). (21)

The growth of the total intensity is nearly exponential in
gain and in medium length, altered slightly by the bandwidth
factor b.

For later reference, the forms of s(ω), f (ω), and g(ω) in
the high-gain limit are

s(ω) → γ ,

f (ω) → 1

2
exp[γ z] exp

[
−

(
κ2z

2γ

)
(ω − ω0)

4

]
,

g(ω) → i f (ω). (22)

IV. TEMPORALLY GATED SQUEEZED FIELD

To model the interaction of the cw squeezed field with the
molecule for a finite time, we impose the action of a sudden
open-or-closed temporal gate, which multiplies the field by a

function W̃ (t ) that equals 1 inside the window {−T/2, T/2}
and zero otherwise. Initially we assume that higher-order
linear dispersion within or subsequent to the PDC crystal is
minimal and need not be compensated by use of an adjustable
dispersive delay line. Compensation of dispersion is treated in
Sec. XI. The time gate creates a “rectangular” pulse of oth-
erwise stationary squeezed light, which is simpler to handle
theoretically than a squeezed field created by a pulsed pump
field, as considered in [7] or [18]. The gate function in the
frequency domain is

W (ω) =
∫ ∞

−∞
W̃ (t )eiωt dt = T sinc[ωT/2]. (23)

The temporal gating action leads to a convolved operator,

ĉ(ω) =
∫

−dω′W (ω − ω′)b̂(ω′)

≈ f (ω)
∫

−dω′W (ω − ω′)â(ω′)

+ g(ω)
∫

−dω′W (ω − ω′)â
†
(2ω0 − ω′), (24)

where in the second line we assumed that T is much greater
than the light’s coherence time (inverse of its spectral width)
and thus took the gain functions outside the integrals. (To
model an ultrashort rectangular pulse “chopped” from a cw
source, the analysis could be carried out without this approx-
imation, but this case is not our focus and the result would
not agree with models using a short pump pulse.) This form
motivates defining filtered creation and annihilation operators,

Â(ω) =
∫

−dω′′W (ω − ω′′)â(ω′′)

B̂
†
(ω) =

∫
−dω′′W (ω − ω′′)â

†
(2ω0 − ω′′), (25)

so

ĉ(ω) = f (ω)Â(ω) + g(ω)B̂
†
(ω). (26)

Strictly speaking, we should include extra additive terms
in Eq. (25) to account for the field operators that impinge on
the temporal gate during times in which it is closed. These
Langevin “vacuum-field noise terms” would ensure unitar-
ity such that the commutator of Â(ω) and Â

†
(ω′) would be

2πδ(ω − ω′). We can omit those extra terms here because
they do not contribute to detectable photons nor to excitation
of the molecules. Without including these extra terms, the
commutator is found to be spectrally and temporally broad-
ened. Denoting it by D(ω − ω̃), it is given by

[Â(ω), Â
†
(ω̃)] ≡ D(ω − ω̃)

=
∫

−dω′W (ω − ω′)W (ω̃ − ω′)

= T sinc[(ω − ω̃)T/2], (27)

which is normalized as D(0) = T and∫
−dωD(ω − ω̃) = 1,∫

−dωD(ω − ω̃)2 = T,

(28)
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and acts like a (fat) delta function when multiplying broader
functions such as f (ω) and g(ω).

BecauseW (ω) is symmetric, we have B̂(ω) = Â(2ω0 − ω)
and thus

ĉ(ω) = f (ω)Â(ω) + g(ω)Â
†
(2ω0 − ω), (29)

which is a two-mode Bogoliubov (squeezing) transformation
involving frequencies symmetrically displaced from the cen-
ter frequency [33]. Then, using Eq. (10), one can show that

[ĉ(ω), ĉ
†
(ω′)] = [| f (ω)|2 − |g(ω)|2]D(ω − ω′)

= D(ω − ω′), (30)

consistent with ĉ(ω) being a filtered field operator.
Starting in the time domain, one can prove, using

Parseval’s theorem, that the mean number of photons in the
gated squeezed-light pulse of duration T equals

N =
∫

−dω〈vac|ĉ†
(ω)ĉ(ω)|vac 〉

= T
∫

−dω|g(ω)|2, (31)

consistent with the form of the mean photon rate (photons s–1)
given in Eq. (14).

Regarding the number of photons in a pulse, there are three
regimes of interest: (1) ultralow flux PDC wherein the whole
pulse contains one or fewer photon pairs, (2) intermediate
flux wherein the whole pulse contains many photon pairs but
each field mode has less than one photon as a consequence
of low squeezing gain, and (3) high flux wherein the each
field mode contains many photon pairs as a consequence of
high squeezing gain. To quantify these regimes, we note that
the effective number of temporal-spectral modes M is equal
to the time-bandwidth product, M = BT , where B is the full
bandwidth in Hz of the squeezed field [equal approximately
to 1.34w/2π as given by Eq. (16)]. Thus, the mean number of
photons per temporal mode, denoted n̄est, is estimated as

n̄est ≈ N

M
= N

BT
= F

B
, (32)

where F is the photon rate (photons s–1) in Eq. (14). This
form can be understood as the mean number of photons per
coherence time 1/B.

V. FOUR-FREQUENCY CORRELATION FUNCTION

The four-frequency correlation function, Eq. (5), needed
to calculate g(2)(0) and the TPA rate, can be expressed using
|�〉 = |vac〉,

C(4)(ωa, ωb, ωc, ωd ) = 〈vac|ĉ†(ωa)ĉ
†(ωb)ĉ(ωc)ĉ(ωd )|vac〉

≡ 〈ϕ(ωa, ωb)|ϕ(ωc, ωd )〉, (33)

where

|ϕ(ωc, ωd )〉 = ĉ(ωc)ĉ(ωd )|vac〉
= |ϕ1(ωc, ωd )〉 + |ϕ2(ωc, ωd )〉, (34)

where

|ϕ1〉 = f (ωc)g(ωd )D(ωc + ωd − 2ω0)|vac〉,
|ϕ2〉 = g(ωc)g(ωd )Â

†
(2ω0 − ωc)Â

†
(2ω0 − ωd )|vac〉. (35)

To derive the |ϕ1〉 result we used, from Eq. (27),

Â(ωc)Â
†
(ωd )|vac〉 ≡ D(ωc − ωd )|vac〉. (36)

Because |ϕ1〉 and |ϕ2〉 are orthogonal, we have for the four-
frequency correlation function C(4)(ωa, ωb, ωc, ωd ) = Ccoh +
Cincoh, where

Ccoh = 〈ϕ1(ωa, ωb) |ϕ1(ωc, ωd )〉
= f ∗(ωb)g

∗(ωa)D(ωb + ωa − 2ω0) f (ωc)g(ωd )

× D(ωc + ωd − 2ω0)

≈ f ∗(2ω0 − ωa)g
∗(ωa) f (ωc)g(2ω0 − ωc)

× D(ωb + ωa − 2ω0)D(ωc + ωd − 2ω0), (37)

and

Cincoh = 〈ϕ2(ωa, ωb) |ϕ2(ωc, ωd )〉
= g∗(ωb)g

∗(ωa)g(ωc)g(ωd )

× 〈vac|Â(2ω0 − ωb)Â(2ω0 − ωa)Â
†
(2ω0 − ωc)

× Â
†
(2ω0 − ωd )|vac〉

≈ |g(ωc)|2|g(ωd )|2[D(ωc − ωa)D(ωb − ωd )

+ ξ D(ωc − ωb)D(ωa − ωd )]. (38)

In deriving these results we swapped ωa, ωb and used
ωb → 2ω0 − ωa, ωd → 2ω0 − ωc, along with the fact that
f (ω) and g(ω) are assumed to be broad compared to the D
functions (for large T).

The sum of the products ofD functions inCincoh arises from
the nonzero commutator of Â(ω) and Â

†
(ω̃) in Eq. (27). Here

we note (see Appendix B for proof) that for type-II or off-axis
type-0 or type-I phase matching, the result for Cincoh lacks
the second product of the D functions, because in those cases
Â(ω) and Â

†
(ω) are labeled by distinguishing indices, so the

relevant commutator equals zero. In the above we therefore
inserted a “flag” ξ , which equals 1 for the indistinguishable
cases (collinear, copolarized type-0 or type-I) and equals zero
for the distinguishable cases. We show in Sec. VI that when
the squeezed-light bandwidth is large compared to the TPA
linewidth the term Cincoh contributes negligibly to the TPA
rate. In the opposite case it does make a significant contri-
bution, as we show in Sec. IX.

VI. TPA BYWEAK OR BRIGHT SQUEEZED VACUUM

The probability for two-photon excitation of the final
molecular state following the time-gated squeezed-state pulse
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is evaluated, using Eq. (3), as PTPA = Pcoh + Pincoh, where

Pcoh = σ (2) γ f g

A2
0

Re
∫

−dω′
∫

−dω

∫
−dω̃

Ccoh(ω′, ω̃′, ω, ω̃)

γ f g − iω f g + iω + iω̃
,

Pincoh = σ (2) γ f g

A2
0

Re
∫

−dω′
∫

−dω

∫
−dω̃

Cincoh(ω′, ω̃′, ω, ω̃)

γ f g − iω f g + iω + iω̃
. (39)

Using the forms of the correlation functions, noting again that f (ω) and g(ω) are broad compared to the D functions for
sufficiently large T, using the symmetry g(2ω0 − ω) = g(ω), and inserting ω̃′ = ω + ω̃ − ω′, we find

Pcoh = σ (2) γ f g

A2
0

Re
∫

−dω′
∫

−dω

∫
−dω̃

f ∗(2ω0 − ω′)g∗(ω′) f (ω)g(2ω0 − ω)D(ω + ω̃ − 2ω0)D(ω + ω̃ − 2ω0)

γ f g − iω f g + iω + iω̃

≈ σ (2)T

A2
0

γ 2
f g

γ 2
f g + (ω f g − 2ω0)2

∣∣∣∣
∫

−dω f (ω)g(ω)

∣∣∣∣
2

, (40)

and

Pincoh = σ (2) γ f g

A2
0

Re
∫

−dω′
∫

−dω

∫
−dω̃

|g(ω)|2|g(ω̃)|2[D2(ω′ − ω) + ξD2(ω′ − ω̃)]

γ f g − iω f g + iω + iω̃

≈ (1 + ξ )
σ (2)T

A2
0

∫
−dω

∫
−dω̃

γ 2
f g

γ 2
f g + (ω f g − ω − ω̃)2

|g(ω)|2|g(ω̃)|2. (41)

We can see that in the low-gain regime, where f (ω) ≈ 1,
the coherent contribution Pcoh scales linearly in the photon
flux |g(ω)|2, whereas Pincoh scales quadratically in the photon
flux |g(ω)|4, and in the high-gain regime, where f (ω) ≈ g(ω),
both contributions scale quadratically. It is worth noting that
the coherent and incoherent contributions play similar roles in
sum-frequency generation, as studied theoretically and exper-
imentally [18,34,35].

While the foregoing expressions can be evaluated generally
to account for the spectral overlap of the squeezed light and
the molecular absorption profile, we first focus on the case
where the exciting squeezed field has a much broader band-
width than the two-photon transition linewidth and twice its
center frequency is resonant with the two-photon transition.
In this case, the frequency anticorrelation between photons
within a pair makes their combined action act as if monochro-
matic light is driving the TPA. We call this effect spectral
compression and discussed it in detail in [1]. In this case we
have, because the Lorentzian acts like a delta function,

Pcoh ≈ σ (2)T

A2
0

∣∣∣∣
∫

−dω f (ω)g(ω)

∣∣∣∣
2

,

Pincoh ≈ 1 + ξ

2

σ (2)T

A2
0

γ f g

∫
−dω|g(ω)|4. (42)

In Fig. 4 we show plots of the coherent and incoherent
contributions to the TPA probability using Eq. (42) (within
its regimes of validity) and realistic parameters for a typical
dye molecule for large squeezed-light bandwidth are large
compared to the linewidth of the molecular transition.

Note that in the low-gain regime the excitation probability
is independent of pulse duration T for fixed N. That is because
the entangled photons arrive in tight pairs regardless of the ar-
rival times of each pair. The crossover from linear to quadratic

scaling is evident, consistent with Eq. (1) and known from
prior studies.

Also plotted in Fig. 4 (as the red dashed line) is the predic-
tion for excitation by a quasimonochromatic coherent state,
using Eq. (112) from [15], valid for a rectangular classical-
light pulse with duration T much longer than the inverse
linewidth of the absorber. In this case the probability is

Pcoherent state = σ (2)

A2
0

(
N

T

)2

T . (43)

Note that Eq. (40) predicts a TPA probability versus pump
frequency that is Lorentzian and has the same linewidth as
the molecular transition, which can be much narrower than
the bandwidth of the BSV. Such a narrow TPA spectrum was
observed in the experiment by Dayan et al. [36].

Crucially, in the high-gain regime the quasimonochromatic
coherent-state result is the same as the squeezed-state re-
sult. Thus, a major conclusion of the present study is that
broadband squeezing gives no advantage in TPA rate com-
pared to a quasimonochromatic coherent-state pulse of the
same duration and energy. The only difference is that in
broadband squeezing the spectral density of light is spread
over a wide bandwidth and contains frequency correlations,
while in the coherent state the light is concentrated in a near-
monochromatic spectrum.

VII. ANALYTICAL RATE EXPRESSION
IN BROADBAND LIMIT

A central result of the present study is an analytical formula
for the rate of TPA in the case that the TPA linewidth is
much narrower than the squeezed-light bandwidth. We find,
as derived later in this section, for the ETPA probability per
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FIG. 4. Predicted mean number of molecules excited by TPA per pulse for a final-state TPA linewidth that is much narrower than the
BSV bandwidth but broader than the effective PDC pump bandwidth, from Eq. (42). Realistic experimental parameters are as follows: 10
μm effective beam radius (assumed collimated), 1 cm cuvette, and 10 mmol concentration of molecules assumed to have 9 GM TPA cross
section. TPA probability per molecule is evaluated from Eq. (42), assuming that twice the squeezed-light center frequency is resonant with
the two-photon transition. In each case the solid blue curve is the coherent ETPA contribution, the dashed yellow curve is the incoherent
ETPA contribution, and the dotted red line is “classical” coherent-state TPA with a quasimonochromatic pulse duration T that matches the
duration of the laser that pumps the PDC process. Panel (a) shows a representative case. A transition in scaling from linear in photon number to
quadratic is apparent at N ∼ 125, which corresponds to a mean occupation of one photon per temporal mode. (b) shows the effect of changes
in the absorber’s linewidth, which affects only the incoherent contribution. For this plot we held σ (2) constant, which implies from Eq. (4)
that the dipole strengths are varied to compensate for varying γ f g. (c) shows the effect of increasing the low-gain bandwidth parameter w of
the squeezed light, varied by varying the crystal length z. The TPA efficiency of the coherent contribution is increased in the low-gain regime
and remains the same in the high-gain regime, while the incoherent contribution decreases in efficiency. (d) shows the effect of increasing
the time window T. In the low-gain regime the coherent contribution remains unchanged; however, the high-gain efficiency is reduced by
increasing T, and the crossover to quadratic scaling occurs at a higher relative photon number. Both incoherent and classical efficiency are
reduced.

molecule,

Pcoh ≈
(

N

A0T

)
σ (2)

A0

3

4

w

π
T + σ (2)

(
N

A0T

)2

T, (44)

which is consistent with Eqs. (1) and (2) upon identifying the
rate of photons as F = N/T and the effective bandwidth in
Hz as B/2π ≈ 3w/4π (depending on the convention used to
define bandwidth), where w = √

π/κz is the squeezed-light
bandwidth in the low-gain regime, from Eq. (16).

We plot a quantity proportional to that in Eq. (44) in Fig. 5,
showing good agreement with the numerical evaluation.

The crossover between linear and quadratic scaling of the
TPA rate with flux is found by equating the two terms on the
right-hand side of Eq. (44). This gives

Ncrossover = 3

4π
wT . (45)

The crossover occurs when the number of photons per
mode begins to exceed roughly 1, in agreement with previous
studies [4,5,7,18].

In Appendix D we show that the discrepancy between the
numerical and our approximate form can be reduced from
about 15% as seen in Fig. 5 to less than 3% by including an
optimum amount of dispersion compensation subsequent to
the PDC crystal.

We derived Eq. (44) as follows. First consider the low-gain
limit of the coherent term:

Plow gain
coh = σ (2)N

A2
0

∣∣∫ −dω f (ω)g(ω)
∣∣2∫ −dω|g(ω)|2

≈ σ (2)N

A2
0

∣∣∫ −dωg(ω)
∣∣2∫ −dω|g(ω)|2 = σ (2)N

A2
0

3

4π
w. (46)

To arrive at this result we used the low-gain expressions
for f (ω) and g(ω) in Eq. (18) and replaced f (ω) by 1 under
the assumption that the linear (second-order group delay)
dispersion of the squeezed field has been removed by use of a
pulse compressorlike dispersive delay line [37].
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FIG. 5. Predicted mean number of molecules excited by TPA per
pulse given realistic experimental parameters: 10 μm beam radius,
1 cm cuvette length, 9G M TPA cross section, and 10 mmol con-
centration, for numerical evaluation of Eq. (42) (solid blue curve), as
well as the analytical expression given in Eq. (44) (dotted dark-blue
curve). The analytical expression for TPA probability is in good
agreement with the numerical results, limited primarily by the ac-
curacy of the approximation of the width function. The black dashed
line shows the low-gain limiting behavior and the dash-dotted dark-
gray line shows the high-gain limiting behavior. The inset shows the
ratio of the analytical function and the numerical results over a wide
range of values. The maximum deviation is near the crossover point
(in the inset the light-gray dashed line) and is within 15% of the
numerical value. No dispersion compensation has been applied.

Next consider the high-gain limit of the coherent term,

Phigh gain
coh = σ (2) N

2

A2
0T

μ2, (47)

where

μ =
∣∣∫ −dω f (ω)g(ω)

∣∣∫ −dω|g(ω)|2 ≈ 1, (48)

and we used the high-gain expressions for f (ω) and g(ω)
in Eq. (22) and carried out the integrals. To obtain the main
result, Eq. (44), we simply sum the low- and high-gain ex-
pressions for Pcoh, since one or the other dominates in the two
regimes of interest.

It remains to show that the incoherent terms, which scale as
N2, are negligible compared to the coherent terms. This term
gives a rate per molecule,

Rincoh = Pincoh
T

= 1 + ξ

2
σ (2)

(
N

A0T

)2

β, (49)

where

β = γ f g

∫ −dω|g(ω)|4(∫ −dω|g(ω)|2)2
≈

{
γ f g1.26

√
πκz = γ f g1.26 π

w
, low gain

γ f g1.10π (κ2z/γ )1/4 = γ f g1.10π
b , high gain

, (50)

where we again used Eq. (18) for the low-gain expressions
assuming dispersion is compensated (see Sec. X), and Eq. (22)
for the high-gain expressions, carried out the integrals, and
identified the bandwidth b = (γ /κ2z)1/4 in the high-gain limit
(that is, γ z 
 1) from Eq. (20). We need only compare this
expression to the N2 scaling coherent term in Eq. (44), that
is, σ (2)(N/A0T )2. Indeed, the factor β is much less than 1 in
both regimes, because the bandwidth of the squeezed field is
assumed here to be much greater than the molecular linewidth,
w, b 
 γ f g.

VIII. SECOND-ORDER INTENSITY AUTOCORRELATION
FUNCTION g(2)(0)

As a precursor to deriving the TPA rate in the case that
the squeezed-light bandwidth is small compared to the TPA
linewidth, and thus the molecular response to the intensity
is near instantaneous, we calculate the second-order inten-
sity autocorrelation function at zero time delay. It is found,
using the four-frequency correlation function, to be (see Ap-
pendix D)

g(2)(0) = 〈Ê (−)(0)Ê (−)(0)Ê (+)(0)Ê (+)(0)〉
〈Ê (−)(0)Ê (+)(0)〉2

= (1 + ξ ) +
∣∣∫ −dω f (ω)g(ω) exp[i(ω − ω0)2D2]

∣∣2(∫ −dω|g(ω)|2)2 ,

(51)

where we inserted a factor to represent a dispersion-
compensating device inserted as in Fig. 2, with D2 being its
second-order (group delay) dispersion (see Sec. X). A simi-
lar result is found in [31] but without detailed evaluation or
consideration of dispersion compensation. In Appendix D we
show that to good approximation g(2)(0) can be written, by
using the f (ω) and g(ω) solutions given above, as

g(2)(0) = (2 + ξ ) + 1

n̄
, (52)

where n̄ is the mean number of photons per mode,

n̄ = N

(3w/4π )T
= F

(3w/4π )
, (53)

which is independent of the time-gate duration T, as expected.
This result can be seen to be consistent with the mean number
of photons per temporal mode in Eq. (32). Recalling the
full bandwidth at half maximum in terms of w following
Eq. (16), we see the two forms are in good agreement because
3w/4π ≈ 1.34w/2π , the same within 12%. (The particular
value depends on the functional form of the squeezed-light
spectrum.)

For type-2 PDC or noncollinear type-0 or -1 PDC, where
photons are distinguishable (ξ = 0), we have g(2)(0) = 2 +
1/n̄. For collinear type-0 or -1 PDC, where photons are indis-
tinguishable (ξ = 1), this result reproduces the result known
in idealized single-mode squeezing theory, g(2)(0) = 3 + 1/n̄
[22,23]. It is worth noting that the form Eq. (52) can be
obtained only when compensating the dispersion optimally
at each value of parametric gain, to maximize the magni-
tude of the instantaneous intensity fluctuations. Without such
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Analytical 

FIG. 6. Log-linear plot of g(2)(0) as a function of the mean
number of photons per pulse of squeezed light, plotted for differing
assumptions regarding the value of dispersion D2, with remaining
parameters held constant. “Uncompensated’ is calculated numeri-
cally and assumes no dispersion compensation. “Compensated” is
calculated numerically, and uses optimal second-order dispersion
compensation, also found numerically. “Analytical” assumes the an-
alytical model, g(2)(0) = 3 + 1/n̄. Inset: Log-log plot of optimally
compensated curve with the same axes as the main 1/n scaling can
be seen in the low-gain regime in good agreement with theoretical
predictions. For these plots we assumed T = 10 ps, although both
axes simply scale linearly with the value of T.

compensation it is found that g(2)(0) drops below the value
(2 + ξ ) for intermediate values of n̄.

These results are illustrated in Fig. 6, where we plot the
compensated and uncompensated forms of g(2)(0) versus the
mean total photon number per pulse, N = T

∫ |g(ω)|2−dω.
The uncompensated g(2)(0) dips significantly below 3 be-
cause dispersion in the PDC crystal stretches the photon wave
packets reducing their peak fluctuation intensities. For the
compensated form, we optimize numerically the value of D2

at each value of photon number to maximize the magnitude
of the instantaneous intensity fluctuations. These results will
be important when we consider its relation to two-photon
absorption.

We can understand why the result found here from explicit
calculation of our multispectral-mode BSV model agrees with
the idealized single-mode result, g(2)(0) = 3 + 1/n̄. While
the single-mode result is well understood for single-spectral
mode, the same holds for the single-temporal mode. For
instantaneous detection, as modeled by g(2)(0) or ultrafast
detection in a window shorter than a coherence time 1/B, the
detected field is effectively filtered to a single temporal mode.

IX. TRANSITION FROM BROADBAND TO
NARROW-BAND EXCITATION OF TPA

Here we treat the transition to the case that the squeezed-
light bandwidth is much narrower than the TPA molecular
linewidth, wherein the molecules respond instantaneously to
fluctuations of the light. We confirm and generalize the known
result that in this limit, the TPA rate is proportional to the

second-order (intensity) correlation function g(2)(0) (when
dispersion compensation is invoked), leading in the case of
BSV to a 3× enhancement of TPA relative to quasimonochro-
matic coherent-state light [17,20,21,31].

From Eqs. (40) and (41) we derive in this limit,

Pcoh + Pincoh = σ (2)T

A2
0

(
N

T

)2 γ 2
f g

γ 2
f g + (ω f g − 2ω0)2

×
[(

T

N

)2∣∣∣∣
∫

−dω f (ω)g(ω)

∣∣∣∣
2

+ (1 + ξ )

]

= σ (2)T

A2
0

(
N

T

)2 γ 2
f g

γ 2
f g + (ω f g − 2ω0)2

g(2)(0),

(54)

where we used the form of g(2)(0) in Eq. (D1). We pointed
out in Sec. VIII and verified in Appendix D that g(2)(0) de-
pends on the extent of dispersion compensation applied to the
squeezed light prior to interacting with the TPA sample.

Given that the proportionality of the TPA rate to g(2)(0)
applies only for ultrabroad TPA linewidths and narrow
squeezed-light bandwidths, we next study the transition to
this limit, including intermediate cases. In Fig. 7, we plot
the number of TPA events, by evaluating Eqs. (40) and (41)
numerically, using the same parameters as in Fig. 4, for vary-
ing values of the molecular final-state linewidth, holding the
classical cross section σ (2) constant, as before. It is observed
that in the limit of large final-state linewidth the incoherent
contribution equals twice the coherent contribution, leading
to a net enhancement of a factor of 3, as expected.

If one wants to scale the results plotted in Figs. 4 and 7
to account for different values of classical cross section σ (2),
pulse duration T, and effective beam area A0, simply note that
all probabilities are proportional to σ (2)/A2

0. In addition, if
one wants to account for inhomogeneous broadening of the
molecular transition, one should integrate Eqs. (40) and (41)
over ω f g weighted by the inhomogeneous distribution of ω f g

values.

X. EFFECTS OF DISPERSION AND ITS COMPENSATION

It is expected that linear dispersion will decrease the TPA
efficiency by spreading photon pairs in time. A question re-
mains concerning the relative effects of dispersion in the low-
and high-gain regimes and its separate effects on the coherent
and incoherent contributions. To account for such effects in
squeezed-light-driven TPA, we incorporate dispersive propa-
gation into the two-photon state by replacing ĉ(ω), f (ω), and
g(ω) in Eq. (26) by [15]

ĉ(ω) → ĉ(ω) exp[i(D2/2)(ω − ω0)
2],

f (ω) → f (ω) exp[i(D2/2)(ω − ω0)
2], (55)

g(ω) → g(ω) exp[i(D2/2)(ω − ω0)
2],

in all the earlier results, where D2 is the second-order
(group delay) dispersion of the transmitting optical system.
D2 > 0 corresponds to positive chirp as caused by propagating
through a typical piece of glass.
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(a) (b)

FIG. 7. The expected number of TPA events, using the same parameters as in Fig. 4, varying values of the molecular final-state linewidth
γ f g. Panel (a) is a slice through Fig. 4(b) at the lower end of the range of photons per pulse in that figure, showing again that for low photon
flux the coherent contribution always dominates, even for larger final-state linewidths. Panel (b) is a slice through Fig. 4(b) at the upper end of
the range of photons per pulse in that figure, allowing larger final-state linewidths, leading to the incoherent contribution becoming comparable
to or exceeding the coherent contribution. In the limit of large final-state linewidth the incoherent contribution equals twice the coherent
contribution, leading to a net enhancement of a factor of 3, as expected.

Then we see from Eq. (41) that dispersion does not affect
the incoherent contribution Pincoh for long pulses and limited
dispersion. A similar result was found in [35]. From Eq. (40)
we see that the coherent contribution Pcoh is reduced by a
factor

r =
∣∣∫ −dω f (ω)g(ω) exp[iD2(ω − ω0)2]

∣∣2∣∣∫ −dω f (ω)g(ω)
∣∣2 (56)

relative to the case of no dispersion. In the low-gain case
this result has been evaluated analytically using a Gaussian
approximation for the phase-matching function and the spec-
trum of the PDC pump field in [15].

We find that the amount of dispersion compensation re-
quired to optimize the TPA probability varies with pump
intensity. In general, this factor must be evaluated numer-
ically. However, the low- and high-gain approximations
can be used to estimate the needed dispersion compensa-
tion for those cases. In the low-gain approximation f (ω) ≈
exp[iκ (ω − ω0)2, which serves as a purely dispersive factor,
and can be offset with dispersion of equal magnitude and
opposite sign. On the other hand, in the high-gain limit,
f (ω) ≈ g(ω) with both quantities being purely imaginary,
resulting asymptotically in no effective dispersion requiring
compensation.

In the low-gain limit the sinc function in g(ω) of Eq. (18)
has slowly decaying, oscillating tails that are unphysical far
from the spectral center. Therefore we restrict the integral in
Eq. (56) to the still-large frequency range [ω0/2, 3ω0/2] to
avoid numerical problems.

The dependence of TPA probability [from Eq. (56)] on
added dispersion for compensation is plotted in Fig. 8. For the
low-gain limit we find the result that adding a small amount
of negative dispersion increases the probability by about 2%
for the example considered, and then, perhaps surprisingly,
remains independent of further added negative dispersion until
a certain threshold is reached at which point the probability
begins decreasing. The boundaries of the flat-top region cor-
respond to photon pairs generated at the entrance or exit of

the PDC crystal and reflect the quantum indistinguishability of
these possibilities. This behavior is not seen for the high-gain
case, where most pairs are produced near the crystal exit.

We consider the effects of dispersion compensation further
in Appendix D.

XI. CONCLUSIONS

We presented a model for two-photon absorption of quasi-
steady-state squeezed vacuum that is valid in both high- and
low-gain regimes. The results, given as closed-form expres-
sions, are evaluated easily numerically. A main finding is
that if the squeezed vacuum is much broader spectrally than
the molecular final-state linewidth, then bright (high-gain)
squeezed vacuum is no more effective in driving TPA than is
a quasimonochromatic coherent-state (classical) pulse of the
same temporal shape and mean photon number. In this case

FIG. 8. Probability reduction factor r versus added dispersion
D2, from Eq. (56). Crystal length z = 0.01 m, Low gain: γ z = 10−4,
high gain: γ z = 10.
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we derived analytical expressions for the TPA rate that match
the numerical results well; this is sufficient for explaining the
transition from linear to quadratic scaling of TPA rate with
PDC photon flux. Our model agrees with and generalizes pre-
vious work, is simpler to implement than numerical treatments
requiring a singular-value decomposition of the PDC temporal
modes, and captures the relevant dynamics for TPA driven
by “long” quasimonochromatic pulses of squeezed light. A
significant conclusion is that the sought-for advantage of ob-
serving TPA at extremely low optical flux is not provided by
broadband bright squeezed vacuum.

We also considered the case of a narrow squeezed-state
spectrum and an ultrabroad molecular TPA linewidth. In
this case we confirmed the known result that the TPA rate
is proportional to the second-order intensity autocorrelation
function at zero time delay g(2)(0). We find that for g(2)(0) to
reach the idealized form g(2)(0) = 3 + 1/n̄, with n̄ being the
mean number of photons per mode, dispersion compensation
is required to ensure the intensity fluctuations attain their
maximum values. Importantly, we also presented formulas
and plots of TPA probabilities in the intermediate regime
where the exciting light and the molecular TPA linewidth are
comparable, showing in Fig. 7 the transition between the two
limiting cases.

We can draw several conclusions about which cases lead
to significant enhancement by time-frequency entanglement:
A narrow two-photon absorption linewidth, coupled with a
broad downconversion bandwidth, provides maximum poten-
tial for advantage relative to a coherent laser pulse having
the same bandwidth. Since the maximum classical TPA ef-
ficiency is limited by the TPA linewidth, a narrow linewidth
limits the maximum classical efficiency. With a PDC pump
pulse matched to this linewidth, and a broad phase-matching
bandwidth, the number of photons per pulse can be large
before crossing over to the high-gain regime, after which the
efficiency approaches the efficiency of a classical pulse of the
same temporal duration (with narrow bandwidth), and sees no
large enhancement over classical light, as seen in Fig. 4.

Careful engineering of the PDC parameters can tune the
maximum flux achievable in the low-gain regime. However,
the flux at which low-gain ETPA no longer outperforms
TPA from an optimal classical pulse is highly dependent on
the linewidth of the two-photon transition. And notably, for
typical magnitudes of the two-photon cross section, a measur-
able ETPA signal in the low-gain regime remains difficult to
achieve, as explained in [1–3].

Perhaps the most interesting aspect of bright squeezed vac-
uum ETPA is the ability to efficiently drive a TPA process
using a field that has low spectral density at all frequencies.
In contrast to the equivalent classical field, which must be
narrower than the TPA linewidth to achieve optimal efficiency,
the squeezed-light field can be broadband. Nevertheless, in
typical cases this aspect will not serve to eliminate the optical
damage that a flux high enough to create observable TPA can
cause.

As argued in [17], parametric downconversion and ampli-
fication does provide a convenient method for creating light
with the ability to achieve simultaneously high temporal and
spectral resolution for applications in spectroscopy, which

may prove to have useful benefits in spectroscopy and mi-
croscopy.

Finally, we comment that analogous effects of classical
spectral correlation or quantum entanglement of driving fields
can play significant roles in stimulated Raman scattering,
wherein the difference of optical frequencies (rather than the
sum) should be sharply defined, opposite to the case of TPA
[38–40].

The data supporting this study are contained within the
article.
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APPENDIX A: THEORY OF SQUEEZINGWITH
INDISTINGUISHABLE PHOTONS

The propagation theory for broadband squeezing has
been treated many times [30]. We follow those given in
[41,32,18,31]. For collimated or waveguided beams in the
absence of nonlinear interactions, the (vector) electric field
operator within a given frequency band (spectral region with
range around 5% or 10% of the carrier frequency) with center
frequency ωJ is well approximated as [42–44]

Ê(+)(r, t ) = i
∑
m

∫
BJ

dω

2π

√
h̄ωJ

2cε0nJ
âm(ω)e−iωtwm(x)

× exp[ikm(ω)z], (A1)

where nJ is the refractive index at the center frequency,
and the propagation constant includes dispersion, km(ω) =
ωnm(ω)/c, where nm(ω) may be considered an effec-
tive refractive index to account for modal dispersion (in
a waveguide) as well as material dispersion. The spa-
tial mode functions are orthogonal in the transverse plane,∫
d2x w∗

n (x) · wm(x) = δnm.
For a collinear type-0 or type-1 PDC, the photons are

indistinguishable except for their frequencies, and the dis-
tinguishing m subscripts should be dropped. We write in a
one-dimensional approximation,

Ê (+)(z, t ) ≈ L0

∫
−dωâ(z, ω)e−iωt , (A2)

where L0 = h̄ω0/2cε0nA0, ω0 is the center frequency of the
downconverted light, and A0 is the effective beam area. To
evaluate the field amplitude at an off-axis point r, the effective
beam area is replaced by (1/A0)1/2 ≡ u(r), where the mode
amplitude u(r) [whichwm(x) is proportional to] is normalized
in the transverse spatial coordinates, ∫ |u(r)|2d2x = 1. We
have absorbed the spatial propagation into the definition of
â(z, ω). The operator evolution in this case was formulated in
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the 1990s [32], which we summarize here, with a few updates,
including quasi-phase-matching.

The Maxwell-Heisenberg equation of motion, expressed in
the frequency domain, is[

∂

∂z
− ik(ω)

]
â(z, ω)

= i
ω0

c

∫
−dω′χ (z)Ẽp(z, 2ω

′)â†(z, 2ω′ − ω), (A3)

where k(ω) = k0 + (ω − ω0)k′ + (ω − ω0)2k′′/2 with k′ and
k′′ being first and second derivatives of k(ω) and Ẽp(z, 2ω′)
is the Fourier transform of the pump pulse. For a monochro-
matic pump, define Ẽp(z, 2ω′) = Ep0eikpz2πδ(ω′ − ω0) and
the equation becomes[

∂

∂z
− ik(ω)

]
â(z, ω) = i

ω0

c
χ (z)Ep0e

ikpzâ†(z, 2ω0 − ω).

(A4)

Quasi-phase-matching can be modeled by using a nonlin-
earity modulated with spatial period � = 2π/K ,

χ (z) = χ02 cos(Kz) = χ0e
−iKz + c.c., (A5)

neglecting high-order terms in the Fourier expansion, which
are nonresonant. Denoting a gain constant as γ = ω0χ0Ep0/c,
and dropping the nonresonant second term in Eq. (A5), we
have[

∂

∂z
− ik(ω)

]
â(z, ω) = iγ ei(kp−K )zâ†(z, 2ω0 − ω). (A6)

The solution to Eq. (A6) is

â(z, ω) = ei[kp−K+k(ω)−k(2ω0−ω)]z/2

× [ f (ω)â(0, ω) + g(ω)â†(0, 2ω0 − ω)]

≈ ei[k0+k′(ω−ω0 )]z[ f (ω)â(0, ω)+g(ω)â†(0, 2ω0 − ω)],
(A7)

where �k(ω) = kp − K − k(ω) − k(2ω0 − ω) and f , g are
the same as in Eq. (8). In writing the input-output relation,
Eq. (7), we dropped the factor exp[ik0z + ik′(ω − ω0)z], as
it corresponds only to a common group delay during prop-
agation through the nonlinear medium. That is, we denote
â(z, ω) = exp[ik0z + ik′(ω − ω0)z]b̂(ω) and â(ω) = â(0, ω).

APPENDIX B: ETPAWITH DISTINGUISHABLE PHOTONS

For type-II phase matching or noncollinear type-0 or type-1
PDC, the photons are distinguishable by virtue of their polar-
ization, their direction of propagation, or both. In these cases
the derivation in [32] can be generalized easily, as sketched
here. See also [45]. Photons (or modes) may be classified as
signal (s) or idler (i), for which there are separate creation
operators, which commute between types. The two-mode
squeezing transformation is generalized to broadband fields
as

b̂s(ω) = f (ω)âs(ω) + g(ω)â†i (2ω0 − ω),

b̂i(ω) = f (ω)âi(ω) + g(ω)â†s (2ω0 − ω),
(B1)

where [â j (ω), â†k (ω
′)] = 2πδ(ω − ω′)δ jk . The f and g func-

tions are the same as in Eq. (8) for noncollinear type-0 or
type-1 PDC, whereas for type II they need to be modified
to include first-order dispersion (group-velocity mismatch),
which typically results in a narrower spectrum. The time-
gated operators can be shown to be

ĉs(ω) = f (ω)Âs(ω) + g(ω)Â†
i (2ω0 − ω),

ĉi(ω) = f (ω)Âi(ω) + g(ω)Â†
s (2ω0 − ω),

(B2)

where

Âs(ω) =
∫

−dω′W (ω − ω′)âs(ω′),

Âi(ω) =
∫

−dω′W (ω − ω′)âi(ω′),
(B3)

with [Âs(ω), Â†
i (ω̃)] = 0 and [Âs(ω), Â†

s (ω̃)] =
[Âi(ω), Â†

i (ω̃)] = T sinc[(ω − ω̃)T/2]. The mean number
of photons in each field is Ns = Ni = T

∫ −dω|g(ω)|2.
The four-frequency correlation function is again given by

Eq. (5), in which now ĉ†(ω) = ĉ†s (ω) + ĉ†i (ω). Of the four
terms in the correlation function, the ones that contain fre-
quency anticorrelations and thus enhanced TPA are of the
form

C(4)
si (ω′, ω̃′, ω, ω̃) = 〈vac|ĉ†s (ω′)ĉ†i (ω̃

′)ĉi(ω)ĉs(ω̃)|vac〉
= Csi,coh +Csi,incoh, (B4)

where

Csi,coh ≈ f ∗(2ω0 − ω′)g∗(ω′) f (ω)g(2ω0 − ω)

× D(ω̃′ + ω′ − 2ω0)D(ω + ω̃ − 2ω0)

Csi,incoh = g∗(ω̃′)g∗(ω′)g(ω)g(ω̃)

× 〈vac|Âi(2ω0 − ω̃′)Â†
i (2ω0 − ω̃)Âs(2ω0 − ω′)

× Â†
s (2ω0 − ω)|vac〉

= g∗(ω̃′)g∗(ω′)g(ω)g(ω̃)D(ω̃ − ω̃′)D(ω′ − ω).
(B5)

Note there is no added term of the form D(ω − ω̃′)D(ω′ −
ω̃) as there is in the collinear type-0 or type-I cases because
the Âs(ω), Â†

i (ω̃) operators commute. Thus the flag appearing
in Eq. (38) has value ξ = 0 in this case.

The other terms that contribute to TPA are
of the form 〈vac|ĉ†s (ω′)ĉ†s (ω̃

′)ĉs(ω)ĉs(ω̃)|vac〉 and
〈vac|ĉ†i (ω′)ĉ†i (ω̃

′)ĉi(ω)ĉi(ω̃)|vac〉, which correspond to TPA
by pairs of signal-only or idler-only photons. Because these
combinations lack the benefit of frequency anticorrelation,
their contributions are small, of the same order as would
appear in TPA by broadband thermal-like light (see
Appendix C). This statement is consistent with the fact
that the signal (or idler) field alone has thermal-like statistics
[46].
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For example, one of these terms is, using the fact that the
Âs(ω), Â†

i (ω̃) operators commute,

C(4)
ss = 〈vac|ĉ†s (ω′)ĉ†s (ω̃

′)ĉs(ω)ĉs(ω̃)|vac〉
C(4)
ss = g∗(ω̃′)g∗(ω′)g(ω)g(ω̃)

× 〈vac|Âi(2ω0 − ω̃′)Âi(2ω0 − ω′)Â†
i (2ω0 − ω)

× Â†
i (2ω0 − ω̃)|vac〉

≈ |g(ω)|2|g(ω̃)|2[D(ω − ω′)D(ω̃′ − ω̃)

+ D(ω − ω̃′)D(ω′ − ω̃)], (B6)

which is of the form of the incoherent term Cincoh in Eq. (38),
and so contributes little to the TPA rate.

APPENDIX C: TPA WITH BROADBAND
THERMAL-LIKE STATE

To verify the statement in Appendix B that TPA by signal-
only or idler-only photons is equivalent to TPA by broadband
thermal-like light, we represent the thermal light using a clas-
sical random process, which is known to be consistent with
quantum theory because such light has a representation as
a Glauber-Sudarshan P distribution that is positive and well
behaved (it is simply Gaussian) [47].

Representing the random process as EBB(ω) in the fre-
quency domain, its two-frequency correlation function is delta
correlated because the process is stationary in time,

〈E∗
BB(ω

′)EBB(ω
′′)〉 = 2πP(ω′)δ(ω′ − ω′′), (C1)

where P(ω) is the field’s power spectrum. The time-gated field
is E (ω) = ∫−dω′EBB(ω′)W (ω − ω′) and its two-frequency

correlation function is

C(2) = 〈E∗(ω1)E (ω2)〉

=
∫

−dω′P(ω′)W (ω1 − ω′)W (ω2 − ω′)

≈ P

(
ω1 + ω2

2

)∫
−dω′W (ω1 − ω′)W (ω2 − ω′)

≈ P

(
ω1 + ω2

2

)
W (ω1 − ω2), (C2)

where we used the fact that the spectrum is slowly varying and
much broader than the gate function for a time-gate duration
much longer than the correlation time (inverse of spectral
width) of the thermal light.

The two-frequency correlation function is, using the
Gaussian-moment theorem,

C(4) = 〈E∗(ω′)E∗(ω̃′)E (ω)E (ω̃)〉
= 〈E∗(ω′)E (ω)〉〈E∗(ω̃′)E (ω̃)〉

+ 〈E∗(ω′)E (ω̃)〉〈E∗(ω̃′)E (ω)〉
≈ P(ω)P(ω̃)[W (ω′ − ω)W (ω̃′ − ω̃)

+W (ω′ − ω̃)W (ω̃′ − ω)]. (C3)

This result is of the same form as the incoherent term
Eq. (B6) or Eq. (38), thus verifying the claimed equivalence.

APPENDIX D: SECOND-ORDER INTENSITY
AUTOCORRELATION FUNCTION g(2)(0)

The second-order intensity autocorrelation function for
the instantaneous intensity at zero time delay g(2)(0) for
broadband squeezed light is found from the four-frequency
correlation function using the Fourier relation Ê (+)(0) =
L0

∫ −dω ĉ(ω), giving, after some algebra,

g(2)(0) = 〈Ê (−)(0)Ê (−)(0)Ê (+)(0)Ê (+)(0)〉
〈Ê (−)(0)Ê (+)(0)〉2

=
∫
–dω′ ∫ –dω̃′ ∫ –dω

∫
–dω̃〈vac|ĉ†

(ω′)ĉ
†
(ω̃′)ĉ(ω)ĉ(ω̃)|vac〉(∫

–dω
∫
–dω̃〈vac|ĉ† (ω)ĉ(ω̃)|vac〉)2

= (1 + ξ ) + T 2

N2

∣∣∣∣
∫

−dω f (ω)g(ω)

∣∣∣∣
2

= (1 + ξ ) +
∣∣∫ −dω f (ω)g(ω)

∣∣2(∫ −dω|g(ω)|2)2 . (D1)

We note that the same result is obtained when using the
field operators b̂(ω) before the time gate because the gate
duration is assumed large compared to the field’s coherence
time.

Group-velocity delay occurring in the PDC crystal can
reduce g(2)(0) by a small amount, creating apparent differ-
ences with the standard formula for idealized single-mode
squeezing for collinear type-0 or -1 PDC, where photons are
indistinguishable (ξ = 1) [22,23]:

g(2)(0)ideal = 3 + 1

n̄
. (D2)

We thus introduce a dispersive term to give the dispersion-
compensated form,

g(2)(0)comp= (1 + ξ )+
∣∣∫ −dω f (ω)g(ω) exp[iD2(ω − ω0)2]

∣∣2(∫ −dω|g(ω)|2)2 ,

(D3)

as stated in Eq. (51), where D2 represents the second-order
(group delay) of a dispersion-compensating device such as a
prism pair.

In Fig. 4 in the main text we plotted the compensated and
uncompensated forms of g(2)(0) versus the mean total photon
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number per pulse. We found there that the compensated ver-
sion does not drop below 3, and follows the expected idealized
form 3 + 1/n̄ when we take the number of photons per mode
to be approximated by

n̄ ≈ N

(3wT/4π )
= F

(3w/4π )
, (D4)

consistent with Eq. (32) within a factor of 2π .
This result confirms that the effective number of modes

is well approximated by Mmodes = N/n̄ = (3w/4π )T ≈ BT .
Eq. (D4) is not an empirical fit but is derived as follows. Using
from Eq. (44)∣∣∣∣

∫
−dω f (ω)g(ω)

∣∣∣∣
2

≈
(
N

T

)
3

4

w

π
+

(
N

T

)2

, (D5)

and from Eq. (32),

n̄ ≈ N

BT
=

∫ −dω|g(ω)|2
B

, (D6)

we obtain, from Eq. (D1),

g(2)(0) = (1 + ξ ) +
(
T

N

)2[(
N

T

)
3

4

w

π
+

(
N

T

)2]

= (2 + ξ ) +
(

3

4π

wT

N

)
= (2 + ξ ) +

(
BT

N

)

= (2 + ξ ) +
(
1

n̄

)
. (D7)

This derivation verifies the idealized g(2)(0) result for
broadband spectrally multimode squeezing using a realis-
tic model and finding an excellent approximation to an

FIG. 9. Same as Fig. 5 but with dispersion compensation im-
plemented and optimized at every value of N, showing that the
approximate analytical formula is within 3% of the numerical op-
timized result for all values of photon number.

otherwise complicated numerical evaluation of the dispersion-
compensated case.

As we noted earlier, the TPA probabilities plotted in Fig. 4
can also be optimized by including dispersion compensation,
although the uncompensated results as plotted using the sim-
pler closed forms, Eq. (42), are already within 15% of the
compensated results. In Fig. 9 we show the probability with
optimized dispersion compensation, where the discrepancy
between numerical and our approximate form is reduced to
less than 3% when assuming an optimum amount of disper-
sion compensation subsequent to the PDC crystal.
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