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Abstract—Complexity is an inherent property in wireless het-
erogeneous networks (HetNets). In this paper, we investigate
the application of the agent-based modeling (ABM) tool for
optimization of complex and dynamic HetNets. The proposed
framework contains a diversity of game-theoretic, machine learn-
ing, and rule-based algorithms within the same model. We present
and analyze a HetNet ABM model that runs parallel rein-
forcement learning (RL) algorithms for spectrum deployment,
interference management, resource allocation, and load balanc-
ing at both micro and macrocell levels. In our proposed model,
two RL-based algorithms work jointly to manage the co-tier and
cross-tier interferences. The macrocell runs the first algorithm
to control the transmission power of the small cells. The second
RL algorithm is run by small cells to assign the users to the
sub-bands with less interference levels. Simultaneously, the user
association is decided by the users depending on the available
resources at the cells and user preferences. The model is then
evaluated under various network load conditions to deduce rela-
tionships between the cell loads, aggregate bit rate, latency, and
user association. Moreover, the system is assessed in a dynamic
network scenario with moving users and is confirmed to pos-
sess the ability to attain convergence with sufficient performance
levels.

Index Terms—HetNets, complexity, agent-based-modeling,
multi-agent-systems, 5G and beyond.

I. INTRODUCTION

HETEROGENEOUS networks (HetNets) and small cell
densification is a pillar technology in 5G and Beyond

telecommunication systems. Cell densification aims to con-
tinuously improve key network parameters, such as network
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coverage, capacity, latency, and load distribution. Several tech-
nical challenges are in the way of the deployment of small cell
networks. The interference management and self-organization
in HetNets are the two of the main technical challenges dis-
cussed in [1], [2]. Further, the small cell network capabilities
of self-organization, self-configuration, and self-analysis affect
the system efficiency.

There are several parameters to study and trade-offs to
resolve when optimizing a HetNet [3]. The main goal is
to cross optimize HetNet parameters and functions; resource
allocation [4], [5], interference management [6], [7], [8],
latency [9], user association [10] and cell load balancing [11],
mobility and handovers [12], energy efficiency [13], [14], costs
of deployment [15], and coexistence with other radio access
technologies [16]. In such a high dimensional design space
these key performance indicators (KPIs) compete with each
other, making it difficult to satisfy the peak values for all of
them simultaneously [17]. Moreover, in a realistic scenario,
different nodes (users or cells) have diverse priorities and goals
upon which the optimal solution is defined. Therefore, a suit-
able modeling paradigm is required within which the problem
can be entirely formalized to yield an optimal operating
solution.

There are several modeling paradigms for such complex
scenarios [18]. One of the main modeling paradigms is the
game-theoretic framework that studies strategies and interac-
tions among players who behave rationally towards maximiz-
ing their benefits [19]. A game-theoretic analysis can capture
the Nash equilibrium conditions and states, but it is limited in
showing the system’s dynamic behavior. Although game the-
ory is a powerful tool, its application in HetNets faces some
challenges, whether in cooperative [20] or non-cooperative
schemes [21]. For example, the assumption of purely ratio-
nal agents is not always reflected in practical networks. Then,
when it comes to the utility functions, there is the modeling
challenge of how a node assigns values for performance lev-
els and how that would affect the validity and efficiency
of the Nash equilibrium. Moreover, wireless networks are
both complex and random, which leads to complex nonlinear
mathematical analysis.

A widely used machine learning-based paradigm is Multi-
agent Reinforcement Learning (RL). This model depends on
agents to study how players make decisions in their environ-
ment to maximize a utility function [22]. RL is a powerful tool
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that can reach policies and strategies that are beyond simple
human decision making strategies [23]. In this paradigm, the
agents utilize a comprehensive state-action reward table (or
Q-table) that is a mapping of actions with expected rewards.
Based on this, the agent chooses one of the available actions
given to it. Consequently, it moves to a new state with
a different reward. The goal of the agent eventually is to
gather as much cumulative reward as possible. There are
some challenges that face a multi-agent RL system [24], [25].
The relevant ones are the high-dimensional state and action
space in 5G and beyond HetNets [26], which introduces non-
practical computational complexity and high learning duration.
Another challenge is the proper choice of reward functions,
especially when we have different types of agents.

Rule-based modeling differs from the previous paradigms
in terms of intelligence and rationale of the agents [27]. The
players are not required to maximize some utility function or
to follow a learning algorithm. Instead, the players follow a
set of well-defined rules by the system designers. The system
modelers’ focus is to choose a proper set of rules that collec-
tively reach optimality rather than designing a utility or reward
function. This approach is practical when the modeled players
do not have the computational capacity to act intelligently but
lacks other benefits of learning-based approaches.

Our vision in this paper is to present a modeling paradigm
that embraces the inherent complexity of heterogeneous
networks. We develop a novel agent-based modeling (ABM)
method to develop an extensive model where we can integrate
a large number of HetNets parameters to investigate and study
their complex interactions. We first propose the client-driven
ABM-based model followed by a detailed discussion on its
mechanism and dynamics. The developed model is then ana-
lyzed on multiple KPIs and compared with models from the
literature. ABM is a method that models micro-scale interac-
tions among a population of agents to study a complex system
emergent behavior on a macro level [28]. ABMs are analyzed
in simulation environments, and the players/agents follow rules
that do not essentially refer to utility functions. Furthermore,
different classes of agents can be defined with a diverse set
of rules. Embracing the complexity concept allows us to build
and study a more comprehensive model that mimics reality
and gives more insight into the system. In the next subsection,
we elaborate on the advantages offered by ABM in complex
multi-objective optimization paradigms.

A. The Motivation Behind ABM

The study of complex adaptive systems and complexity the-
ory is growing in many fields of science [29], [30], [31].
Realistic systems are non-linear and complex, therefore, com-
plexity theory is applied to a wide range of applications. The
growing studies are, for examples, in fields of economics [32],
[33], cities management [34], social networks [35], transporta-
tion [36], [37], networks congestion [38], social sciences [39],
and computation [40].

In [41], Mikulecky states that “Complexity is the property
of a real-world system that is manifest in the inability of any
one formalism being adequate to capture all its properties”.

This principle applies quite adequately to the problem of
modeling complex wireless HetNets, where base stations and
users have a range of interdependent interactions and relation-
ships. ABMs, unlike game theory, allow the designer to model
several interacting games within the same model without hav-
ing to construct an analytical framework. It also supports the
testing of different player heuristics without assuming cogni-
tive abilities. As a consequence, it can run real-world business
simulations and analyze them across all network parameters.
The ABM models incorporate:

• a group of agents,
• a set of rule-based actions that do not have to be

rational-based,
• adaptive rules (optional), and
• an environment and a containing network.
There are differences between ABM and simulation-based

learning paradigms. The ABM players’ actions do not have
to follow a reward function. Players can apply simple rules,
like following their neighboring agents, which does not require
any involved rationale. Moreover, ABMs are flexible to create
different games within the same network and experiment. We
can summarize the benefits of ABM for HetNets design and
optimization in the following points.

1) It helps in building nonlinear complex systems with
heterogeneous agents and complex interactions.

2) We can mix rule-based behaviors and machine learning
(ML) based adaptive approaches for different types of
agents within the same model. The relationship between
ABM and complex adaptive systems is discussed in [42].

3) ABM transforms the awareness of the problem from
merely solving an analytic optimization problem to
studying the system dynamics, oscillations and insta-
bilities, and interactions needed to reach an emergent
behavior on the macro level.

4) It bridges the gap between theoretically reduced models
and industry deployable models.

B. Contributions and Organization

We list below the salient contributions of our work in this
paper.

1) We propose a novel ABM model with comprehen-
sive rules of agent behaviors and interactions at both
macro and small cell levels. The model aims at solv-
ing a complex HetNets problem of joint optimization
of cell association, resource allocation, and interference
management.

2) We create a dynamic client-driven paradigm where
different agent based processes are defined for user ter-
minals, small cells and macrocells in the architecture.
Different processes are proposed at the UEs (user equip-
ments) for real-time information collection and resource
request decisions.

3) We model user association as a utility function that
incorporates cell throughput and latency. ABM enables
us to measure the service queuing in time and calculate
load-induced queuing latency as a parameter. We incor-
porate users with different request rates and feedback
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evaluation metrics via heterogeneous modeling of users
in ABM.

4) We employ two concurrent reinforcement based algo-
rithms for sub-band power management at the macrocell
level and user assignment to sub-bands at the small
cell level for efficient resource allocations. Multi-armed
bandit problems are formulated for both cases which
are tackled using Q-learning algorithms, which offer
rewards on actions that increase aggregate signal-to-
interference-and-noise ratio (SINR) for the network.

5) The proposed RL + rule-based mechanism is ana-
lyzed in terms of aggregate SINR, per cell throughput,
inter-tier network load distribution and service latency.
Simulation results show that the proposed solution
improves the overall spectral efficiency of the network
while allowing a better dynamic load balance between
small cell and macrocell tier.

The paper’s organization is as follows. In Section II, the related
literature is reviewed. Then in Section III, the HetNet system
model is presented. The proposed agent-based model is dis-
cussed in Section IV, followed by Section V which is dedicated
to simulations and results. Finally, we conclude the paper in
Section VI.

II. RELATED WORK

This section reviews the literature of game-theoretic mod-
els and multi-agent reinforcement learning approaches first.
Then we review the literature for the optimization methods cell
association, resource allocation, and interference management.

A. Game-Theoretic Approaches

The most commonly used game-theoretic methods in
HetNets can be classified as centralized or distributed schemes
or cooperative or non-cooperative games [43]. In [4], a cen-
tralized scheme is proposed where the optimum downlink
resource allocation is determined based on channel param-
eters. The authors investigated the trade-off between power
consumption, transmission rate, and service quality. Inter-
cell interference (ICI) management game theoretic approaches
were presented in [6], [7], [13], [44], [45]. The work in [5]
formalizes resource allocation as an auction-based algorithm
with power-bandwidth constraints. In [46], a non-cooperative
game is presented in which the players strive to minimize
transmitted power while maintaining the required data rate. In
order to ensure the convergence of the non-cooperative game, a
virtual referee was suggested. A base station ON/OFF switch-
ing (sleeping) method was suggested in [47] as part of an
energy-saving game called the satisfaction game.

B. Multi-Agent Reinforcement Learning Approaches

There have also been several studies on Multi-Agent
Reinforcement Learning for HetNets. In [48], ICI is managed
in a small cell architecture using a reinforcement learning
process, in which a minimum SINR is given to macro-
cell users, and the SINR of small cells is maximized. Cells
in [49] make resource assignment choices in order to improve
SINR and QoS. A self-organization approach is paired with

reinforcement learning in this study. In [50], macro- and
picocells sense their environment and solve the problem of
interference management and cell association through the
usage of RL. In [51], through a decentralized Q-learning
algorithm, small cells optimize their transmission power to
maximize their capacity while keeping the interference at
macrocell users’ within reasonable limits. In [52], using multi-
agent RL, downlink power and data rates are adapted. The
study in [16] considers the coexistence of WiFi with cellular
networks, with different QoS requirements for each HetNet
user. In [15], an agent-based bargaining process is used to
investigate the economic aspects of small cell deployment and
spectrum leasing.

Next, we review the optimization processes for HetNets.

C. User Association and Resource Allocation

The conventional user association policy connects the
users to the cell corresponding to the highest downlink
received power [53]. Utility maximization association was also
proposed in [54], [55], [56]. In the well-known biased user
association, also called cell range expansion [57], cells are
assigned bias factors, and users associate to the maximum
received power weighted by the bias factor. For spectrum
allocation, there are three schemes in literature; i) orthogonal
deployment (OD), ii) co-channel deployment (CCD), and iii)
partially shared deployment (PSD). In OD, the small cells’
spectrum is orthogonal to the macrocells’ spectrum, which
is not a spectrally efficient deployment. In PSD, the macro-
cells share part of their spectrum with the small cells tier as
in [58], [59]. In CCD, the whole spectrum is shared between
the two tiers, which is more spectrally efficient but creates the
problem of interference management. In [60], OD and CCD
are evaluated with the assumption of conventional user associ-
ation, and it shows that the CCD scheme improves the system
throughput. Some studies aimed at jointly optimizing resource
allocation and user association [61], [62], [63], [64].

D. Interference Management

As mentioned, sharing the spectrum between the macrocell
tier and small cells tier introduces interference that should be
managed. There are several studies and solutions in the lit-
erature on how to manage cross-tier and co-tier interference.
The power of transmission at small cells is adjusted to reach
specific performance levels without degrading the macrocell
users’ SINR levels. The following studies presented solutions
for the cross-tier interference. In [48], two performance met-
rics were considered for small cells, the individual Shannon
transmission rate, and the aggregate transmission rates of all
the small cells. The study in [65] proposed a non-convex
optimization method to maximize the aggregate throughput.
Also, in [66] a distributed multi-agent learning approach
is used to achieve maximum transmission link throughput.
In [67], a distributed iterative power control scheme (uplink) is
proposed, with dynamic pricing set by the interfered macro-
cells. The work in [68] offers a game-theoretic approach to
jointly manage spectrum access, user scheduling, and power
allocation to maximize the users’ satisfaction.
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For co-tier interference management, in [69], a distributed
method is studied by managing the intra-cluster channel
allocation. In [70], co-tier interference is managed through
a coalition game between the small cells. In [71], inter-
cell interference is mitigated by maximizing the available
throughput ratio to the user’s required data rate. In [72], an
optimization problem is formulated for resource management
where multiple QoS classes can be supported for different
categories of users. In [73], [74], small cells use orthogo-
nal resources initially, then later, they attempt to reuse the
resources by coordinating with the neighboring small cells.

Since it is not straightforward to exploit state-of-the-art
approaches in practical networks due to challenges related
to complex non-linear mathematical analysis and infinitely
high computation complexity with uncontrollable delay, in
this work, we exploit the agent-based modeling method that
not only reduces the complexity but is also practical and,
hence, it is possible to incorporate in future wireless networks.
Contrary to the existing literature, we propose a model that
analyzes and optimizes the concurrent multi-agent processes,
interference management, cell association resource allocation,
spectrum deployment, and load balancing, all at the same
time. Our model also runs comprehensive rules of agent
behaviors and interactions for resource allocation, spectrum
deployment, and load balancing at both micro and macrocell
levels.

III. SYSTEM MODEL

In this section, a distributed system model is proposed to
study a complex, realistic HetNet, where the decision-making
is partly assigned to the edges of the network (users and small
cells). The two-tier network is composed of three agents; i)
macrocells (MCs), ii) small cells (SCs), and iii) user equipment
(UEs). The network is serving a group of UEs with differ-
ent characteristics, i.e., having different applications for each
UE. The spectrum is shared between macrocells and small
cells and reused several times within the same macrocell to
increase the network spectral efficiency. In the following sub-
sections, a description of the system elements and assumptions
are detailed.

A. Network Model

The modeled HetNet is a 2-tier network with macrocells
forming the main network and small cells used as the second
tier cells, as shown in Fig. 1. The MCs are distributed in a
way that they have low overlapping areas, and the full network
spectrum is reused orthogonally between them. The system
is based on the LTE (long-term evolution) time-frequency
resource block numerology. The spatial distribution of the UEs
follows a stationary Poisson point process (SPPP) ΦUE ∈ R

2

with intensity λUE . While for SCs, the spatial distribution is
based on a repulsive point process, which maintains a mini-
mum separation distance dmin between them. We consider the
Matern hard core (MHC) type II [75] for the repulsive point
process. The MHC point process is generated by dependent
thinning [76] of a SPPP Φp ∈ R

2 with intensity λp . The MHC

Fig. 1. Two tier network architecture, representing the main (desired) link
as a solid line and the interferers with dotted lines.

point process Φm ∈ R
2, will then have the intensity:

λm =
1− e−λpπd2

min

πd2min

. (1)

B. Cell Association

UEs have different preferences regarding SINR, latency, and
the number of requested resource blocks (RBs). Affected by
what the cells are offering, the UEs decide the cell associ-
ation. The cells have the responsibility of coordinating and
distributing the spectrum between each other. Also, they man-
age the network load balancing and interference levels at the
UEs, aiming to satisfy the different UEs’ satisfaction levels
and reach specific cell performance levels.

C. Channel Model

The large scale path loss PL used in our model is the
simplified free space model [77]:

PL(dB) = κ+ 10ζ log10(d), (2)

where ζ is the path loss exponent, and κ is a unitless factor that
depends on the average channel attenuation, frequency of oper-
ation, and antenna characteristics. d is the distance between
the UE and the serving cell. The macrocell spectrum organi-
zation ensures orthogonality between MC links; therefore, the
inter-cell interference on the first tier level is assumed to be
null.

In the presented downlink scheme, the interferences induced
by spectrum reuse are cross-tier interference and co-tier
interference. The cross-tier interference is caused by macro-
cell m at the user of small cell si : is given as Isi ,m , and by a
small cell at a macrocell user is given as Im,si . In comparison,
the co-tier interference from a small cell to a user of another
small cell is given as Isi ,sj . The main (desired) link is repre-
sented as a solid line in Fig. 1, while the interference links
are represented with dotted lines. The SINRs γn,m , and γn,s
at the nth user served by macrocell m and the small cell s, on
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the rth resource block, are formalized respectively as:

γ
(r)
n,m =

|h(r)n,m |2p(r)m

N
(r)
n,m +

∑
s∈S |h(r)n,s |2p(r)s

, (3)

and

γ
(r)
n,s =

|h(r)n,s |2p(r)s

N
(r)
n,s +

∑
m∈M |h(r)n,m |2p(r)m +

∑
j∈S ,j �=s |h(r)n,s |2p(r)s

,

(4)

where S is the set of small cells and M is the set of macrocells,
N

(r)
n is the noise variance, and hi ,m , and hi ,s are the channel

coefficients from the macrocell and small cells, respectively,
to user n. The channel coefficients are determined from the
large scale model via h = 10−PL/20. p(r)m , and p

(r)
s are the

transmit powers of the macrocell and small cells over resource
block r respectively.

The transmit power levels will be managed to decrease the
interference and maintain an aggregate satisfaction level all
over the network.

D. User Requests

The user n creates u requests per unit time t, with rate λr .
The random variable u follows the Poisson process

P(u) =
(λr t)

ue−λr t

u
. (5)

For each user, the number of requested resource blocks x is
a truncated normal distribution over the interval 0 < x < ∞,
with mean μ

(n)
x and standard deviation σ

(n)
x . The values μ(n)x ,

and σ
(n)
x change from one user to another depending on the

user application. Hence, they can be considered as random
variables of another process with distribution for a set of users.
For simplicity, we assume the same values μ

(n)
x , and σ

(n)
x for

all the users.

E. Spectrum Allocation

The proposed model describes a client-driven HetNet, where
the users’ requests and feedback drive the power and spectrum
management processes. Unlike the traditional design approach,
where a central authority makes decisions for the users based
on a global objective (e.g., cell association decisions). The
client-centric approach is a distributed system that makes use
of the ongoing advances in the intelligence capabilities of
network edge devices [78]. Instead of loading a centralized
agent with an exponentially growing optimization complex-
ity, the clients can coordinate or compete over the network
resources (bandwidth, SINR, latency, etc.). UEs in real scenar-
ios have different preferences and decision criteria depending
on their applications. This motivates a client-driven scheme
where each UE tries to maximize its satisfaction, and cells
coordinate with each other to maintain their service levels. UEs
decide which cell to associate with, depending on the cell’s
level of service and the UEs’ local utility functions. Therefore,
in our design, the UE-cell negotiations and interactions define
how the system behaves.

Fig. 2. User equipment flowchart; a) Collecting information about cells,
b) Service request and usage.

IV. PROPOSED AGENT BASED ARCHITECTURE

The proposed system architecture is described with several
processes performed by each agent (UE, MC or SC) and a set
of interactions between those agents. Each process is formal-
ized with a flowchart, and an agent’s behavior can be summed
by several processes running asynchronously and in parallel.
As in any ABM, the transitions between the flow chart states
are dependent on the current state and the inputs from other
processes.

A. Agent Based Processes at the User Terminals

A UE is assumed to be exchanging information with sev-
eral nearby cells (macrocells or small cells) over the control
channel, but it receives the service only from one of those
cells. UEs make requests for service over the control chan-
nels, and they choose to be served by the best offeror. The
service is characterized by three main variables: 1) the number
of resource blocks (RBs), 2) signal-to-noise ratio (SNR), and
3) latency. All RBs occupy the same number of sub-carriers
during a given time duration. The expected SNR value is cal-
culated at the receiver. Latency in our work’s context is the
time it takes from the cell receiving the UE decision until the
RB reaches the UE, which only depends on the queuing of
the UE requests.

A UE agent is composed of two flow charts, as shown
in Fig. 2. The first one manages the list of cells the UE is
communicating with over the control channels. The second
flow chart represents service requests’ flow, receiving offers,
decision-making, and reporting satisfaction levels. The cell list
management flow chart runs when the UE is in idle mode. This
certainly means that, at any time instant, either the first or the
second flow chart is running.

The states can access a list of properties / local variables
for each UE. The variables are position (geograhical location),
mean request rate λr , mean requested RBs, the standard devi-
ation of the amount of requested RBs, a list of nearest N cells,
and utility function weights. The behaviors, inputs, and out-
puts of each state are described in Fig. 2. The flow chart in
Fig. 2(a), is composed of a loop that, first, measures the receive
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power levels Prx over the control channels of the nearby cells:

Prx ,c = |hu,c |2.Ptx ,c , (6)

where the subscript c corresponds to cells, Ptx is the transmit
power level, and hu,c is the channel fading between user u
and the cell c. Then it sorts the nearby cells by their Prx ,c

values and selects the first N corresponding cells. Finally, the
UE updates the list values of the nearest N cells.

The flow chart in Fig. 2(b) describes a resource block
request and utilization cycle. The UE is initially at the ‘Idle’
state. Then it moves to the ‘Make Request RBs’ state when a
countdown timer reaches zero. The timer value is a random
variable τ that corresponds to the interval time between two
requests. It is assigned a new value after the timer expires,
following the exponential distribution

f (τ) = λ
(n)
r e−λ

(n)
r τ , (7)

where λ
(n)
r is the request rate for user n. Using an exponential

distribution for τ ensures a Poisson distribution for the number
of requests per unit time, shown in eq. (5).

The cells then send offers that depend on their transmit
power levels, as we will observe in the following sections.
The offer G is the vector

Gc = (RBs , f1, fend , t1, tend ,Ptx ), (8)

composed of the number of offered resource blocks RBs, the
start and end in the frequency domain given by f1 and fend
respectively, the start and end in the time domain given by t1
and tend respectively, and the cell transmit power Ptx . The
UE then collects all the offers at the ‘Receive offers’ state,
chooses the best offer, and sends an accept response to the
corresponding cell.

Now depending on the diverse UE applications, the top
offers could be quite contrasting for different UEs. For
instance, some users may accept the lowest latency offer even
if it has lower data rates; while others accept the service with a
higher data rate, not caring about latency. The UE chooses the
best offer based on the following mathematical utility function:

U (c) = arg max
c

(
RBsc × wr log2(1 + 10(γc/10))

1 + wd (tend − t)

)

. (9)

This function sets the UE service preferences by assigning
the weights: wr for the expected throughput at the receiver,
and wd for latency. The SNR value is estimated from the
transmission power and path loss information between each
cell and the user (γc = Ptx − PL). The wr and wd val-
ues are proportional to the importance of each corresponding
factor. Note that the value (tend − t) represents how long it
takes for the RBs to reach the UE. During the ‘Use resources’
state, the UE measures the quality of service affected by the
interference levels. Then it is shared with the serving cell in the
‘Feedback’ state. Finally, before the UE returns to the ‘Idle’
state, it reports its feedback to the serving cell. The feedback
holds information about the interference levels, the SINR, the
delay, and any satisfaction parameters that the cell uses to
optimize the network.

Fig. 3. Cells sub-band allocation and reuse.

Additionally, in order to incorporate handover processes and
strategies, we must include processes that interact over the ser-
vice duration and make decisions based on handover strategies.
However, it will make the model more complex. Therefore, in
this work, we assume that the UEs move only during their idle
phase. We also assume that after the RBs are assigned by the
serving cell, there will be no messaging between the UE and
the cell until the feedback reporting step. Consequently, the
flowchart that collects information about the cells is assumed
to run only while the UE is idle.

B. Sub-Band Management Agent Based Processes at the
Macro- and Small Cells

In our design, the cells are responsible for two main
tasks: interference management and cell load balancing.
In a spectrally efficient system, the small cells share
the spectrum with the upper-tier (macrocells). Inspired
by the previous studies mentioned in the introduction
section [58], [59], [61], [62], [63] and in the context of our
ABM modeling flexibility, in this subsection, we first pro-
pose interactions among the cells to manage the interference
and the load balancing at the same time, with the help of
the UEs feedback. We then propose comprehensive agent-
based flowcharts for the proposed interactions. In the downlink
scheme, the macrocells’ bands are divided into sub-bands Sb
higher in granularity than a resource block. The sub-bands
are meant to be reused several times in a way that satisfies
the cross-tier interference and co-tier interference thresholds,
and they should also be allocated in consistency with the cell
load and the traffic around that cell. The diagram in Fig. 3
shows two reuse levels where the sub-bands are to be allo-
cated to the small cells over several phases. In the first reuse
phase, the small cells and the macrocells coordinate to min-
imize the cross-tier interference by adjusting the small cells’
transmit power levels. The macrocell users’ feedback on the
interference levels is used to adjust the small cells’ transmis-
sion powers. The decisions for power level allocations are
taken at the MCs level, while the SC requests initiate the
sub-band assignment due to load requirements.
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Fig. 4. Sub-band assignment to small cells flow charts.

When sub-bands of the first reuse phase are full, the macro-
cell can start leasing from the second reuse sub-band. In this
phase, the MC manages the co-tier interference levels reported
by the SC connected UEs. This is accomplished by adjusting
the transmit power levels of the reused sub-bands.

1) Small Cells Sub-Band Management: The processes in
Fig. 4 manages the sub-bands assignment and release. A SC
keeps monitoring its total load and the per-sub-band load as
shown in Fig. 4(b). When it increases above a specific thresh-
old LH a request for sub-band assignment is sent to the
parent MC. On the other hand, if the total load of the small
cell decreases below a specific threshold LL the SC sends a
permission to the MC to release the least utilized sub-band.

Then the MC reacts to the sub-band assignment request, as
shown in Fig. 4(a), by assigning one of the free sub-bands.
The MC assigns the first reuse sub-bands then reassigns the
same sub-band when the first reuse pool is occupied, as men-
tioned before. Moreover, it responds to the release permission
by releasing the sub-band, and making it free to be reassigned
to another SC upon request. The two processes in Fig. 4 com-
plement each other and manage the sub-band assignment and
release behavior.

C. Reinforcement Learning Processes

Reinforcement learning (RL) is used for two processes; first,
to adjust the power levels in the reuse schemes; second, to
assign the users to the sub-bands with highest performance
level. Due to the nature of the algorithms where we have a list
of actions that we need to choose from, the multi-armed ban-
dit method is used as our model-free reinforcement learning
method [79].

Multi-armed bandit is equivalent to a one-state Markov
Decision Process [80]. This version of RL is chosen because
of its simplicity and low computational complexity. Instead of
having a state-action space, a multi-armed bandit algorithm
has only one action space to choose from, hence the term
’arm’. Learning is done over rounds; in each round, an arm
is chosen, and the corresponding rewards are collected during
the round duration.

The proposed two RL algorithms have two different action
spaces. The algorithm RL1, responsible for adjusting the

Fig. 5. Power management RL flow chart.

power levels for the reused sub-bands, has the action space
of power transmit levels for each sub-band. Whereas algo-
rithm RL2, which is responsible for assigning the users to the
sub-bands with the highest performance level, has the action
space of choosing one of the serving cell’s sub-bands. In the
following subsections, we discuss these RL processes in more
detail.

1) Small Cell Transmit Power Management: This process
is running under the macrocell agents. The flow chart in Fig. 5
starts by assigning initial power levels for the small cells. Then
it enters a loop of collecting rewards and updating the small
cell power values.

The usage of a multi-armed bandit allows passing rewards
and punishments (negative rewards) to learn the small cells’
optimum power levels. As shown in the UE processes given in
Fig. 2, the users create feedback information that is collected
by the cells. This information is then reformulated by the cells
as rewards for the MCs’ RL process. The eventual goal of
the algorithm is to maximize the rewards. The macrocell’s
multi-armed bandit algorithm components are as follows.

• Action: Ai = {a(p)i }p∈{P1,P2,...,Pk}, where a
(p)
i repre-

sents the power transmit level for the reused ith sub-band
SBi , from a set of transmit power levels, and k is the
number of the power levels.

• Rewards Ri .
• Value function Q: Holds an evaluation for the expected

reward for each action.
• Explorer factor ε.
The value function is updated via the recursive equation:

Qt+1(Ai ) = (1− α)Qt (Ai ) + α(Ri ), (10)

where α is a discount factor.
The reward function used for the proposed model is the

aggregate SINR for all RBs in sub-band SBi , over the last
learning episode Te :

Ri =
∑

t1>t−Te

∑

RB∈SBi

γRB ,t1 . (11)

The power management RL algorithm is shown below
in Algorithm RL1. Deploying this algorithm determines the
proper reuse power levels to achieve the maximum reward
over each sub-band.
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Algorithm 1: RL1 Small Cell Sub-Band Power
Management Learning Algorithm

initialization Q(.) = 0;
initialize the reuse power levels P(Sb)
for each Sub-band Sb define power levels list
Ai ∈ [P1,P2 · · ·Pk ]
while 1 do

for i ∈ Sub-bands do
if rand(.)< ε then

Explore: choose action from the Ai () list
randomly;

else
Exploit: choose action
Ai (t + 1) = arg max

ai
Qt+1;

end
Receive rewards Ri (t + 1);
Update Q table: Qt+1(Ai ) = (1−α)Qt (Ai ) +α(Ri )

end
end

The multi-armed bandit algorithm first initiates the Q-table,
the actions list of power levels, and the initial transmit powers.
The algorithm then loops over the sub-bands by exploring the
rewards of random power levels or exploiting the previously
learned experiences.

In the second reuse case, two small cells transmit different
power values for each sub-band. Therefore, the action space
is two dimensional:

Ai ,j ∈
[
(PFi1

,PFj1
), (PFi1

,PFj2
) · · · (PFi1

,PFjK
)

· · · (PFiK
,PFjK

)
]
. (12)

where i and j are the notation of the same sub-band for two
different small cells, Fi and Fj . Finally, it is worth mention-
ing that, the utilization of the sub-band at the small cell is a
measure of a successful power allocation by Algorithm RL1.

2) User to Sub-Band Association: Another factor that
should be considered is that the UEs can have different
performance levels for different sub-bands at the same cell.
This is affected by the distribution of the set of users served by
the cell and their distances from the interfering cell. Therefore,
there should be a method to allocate each UE on the sub-band
that suits its position with respect to the other agents (cells
and UEs) in the network. The proposed process is based on
an RL method, and like before, we choose the multi-armed
bandit algorithm for that purpose. The process flow chart is
shown in Fig. 6. The process starts by assigning the served
users to the available sub-bands randomly. Then it keeps col-
lecting the service feedback from the UEs and formulating the
rewarding function from them. Each UE has its own Q-table
that gets updated from the reward functions. The Q-table holds
the values reflecting the learned performance per sub-band.

Note that if the process’s computational overhead is an issue
at the SCs, it can offload the learning process to each UE.
In that case, the UE always informs the serving cell of its
preferences instead of keeping a record for each UE at each
cell. The learning algorithm components for the nth user are
as follows:

Fig. 6. UE assignment to sub-band RL flow chart.

Algorithm 2: RL2 User Sub-Band Choice Learning
Algorithm

initialization Q(.) = 0;
define list of sub-bands at this cell
while 1 do

if rand(.)< ε then
Explore: Chose action from the An () list randomly;

else
Exploit: Choose action An (t + 1) = arg max

an
Qt+1;

end
Receive rewards Rn (t + 1);
Update Q table: Qt+1(An ) = (1− α)Qt (An ) + α(Rn )
Update list of sub-bands

end

• Actions: An = {a(s)n }s∈{1,...,NS} , where a
(s)
n represents

the action of switching to one of the cell sub-bands.
• Rewards Rn : The received SINR level or satisfaction

vector.
• Value function Q: Holds an evaluation for the expected

reward for each action.
• Explorer factor ε.

The proposed reward function for this algorithm is:

Rn =
γ

1 + wd td
, (13)

where γ is the SINR, and td represents the delay experienced
by the UE during the last served RBs. The factor (1 + wd td )
normalizes the SINR level by the latency level to ensure that
the users associate to the sub-bands, not only based on the
SINR but also the sub-band load induced latency. The learning
algorithm is described in Algorithm RL2.

D. Resource Blocks Allocation

We close the system model with the small cell RB assign-
ment process illustrated in Fig. 7, which basically elaborated
on the mechanism of the SC response to UE requests. The SC
process keeps listening to the UE requests. Once it receives
a request, it finds the sub-band which is suitable for this UE.
The suitable sub-band is already determined in the RL process
described in Section IV-C2.

Now based on the SC current load, an offer is formulated.
Ideally, if the SC is not congested, the offered RBs will be
the same number as the requested RBs. However, if the SC is
congested, a discounted offer with fewer RBs can be made.
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Fig. 7. RB assignment flow chart.

The analysis of discounted offers is out of the scope of this
study and will be analyzed in future versions of this work. The
offer, previously expressed in eq. (8), has information about
transmit power Ptx , latency (t1, tend ), and band of service
(f1, fend ).

It is also worth mentioning that the selected RBs will join
a queue if those RBs are being utilized by another UE in the
current time instance. After the offers from several cells are
sent to the UE, and the UE makes a decision. The selected
SC receives the response and assigns the requested RBs to the
UE. In comparison, the other SCs will time-out and terminate
the request. Finally, after the UE has finished using the RBs,
the SC receives the users’ feedback. The feedback contains
values for the reward functions given in eqs. (11) and (13).
Therefore, it has the SINR γ, the delay td , and the delay
weight factor wd .

E. On Convergence of Multi-Armed Bandit Algorithm

The multi-armed bandit was first presented under the con-
cept of sequential sampling in [81], and strategies were
discussed to attain convergence. Later, bounds for the expected
regret were studied in [82], where the regret, as a function of
time, is the difference between the recent reward and the ideal
maximum reward. In [83], the multi-armed bandit problem
was studied under the probably approximately correct model.
It was shown that it is sufficient for n arms to be sampled
O( n

ε2
log(1δ )) times in order to reach an ε-optimal arm with

probability (1 − δ). The same lower bound for the expected
number of trials was also presented by [84]. In [85], successive
elimination and median elimination processes were proposed
showing improved expected error bounds.

F. Distributed Computing

In this section, we discuss a distributed computing
framework for the reinforcement learning algorithms RL1 and
RL2. We propose a practical deployment for reward collection
and value function updates, though this should not be the only
way to deploy the aforementioned algorithms. First, we discuss
the rewards distributed computation and its timing schedule for
the RL1 power management algorithm. Then we do the same
for the RL2 UE sub-bands preferences algorithm.

From the value function, eq. (10), the operations needed to
calculate Qt+1 are: a database read to fetch the Qt values,

Fig. 8. RL Algorithm 1 computational framework.

Fig. 9. RL1 Algorithm Events timing over one learning episode, where +©,

�©, �©, and �©represent γ
(1)
uen calculation, sending to the upper tier, receiving

from the lower tier, and updating the value function respectively.

rewards Ri summation operations in eq. (11) and eq. (13),
and pair of multiplication operations with α. The final R is a
single value that corresponds to an action in Ai , therefore, the
multiplication operations by α are not as intensive as calculat-
ing Ri . To determine Ri , the summation operations required
to collect info from all the UEs can be massive for dense
networks. The number of summations required is the num-
ber of users in the network multiplied by the average number
of feedbacks in one learning episode. So, here we focus on
distributing the rewards calculations.

1) RL1 Computational Framework: For RL1, the rewards
in eq. (11) are distributed as shown in Fig. 8 between the
users and the two tiers of the SCs, and MC. In a specific
learning episode, scheduled by the MC, the UEs sum the SINR
experienced on a sub-duration Tη . The summation process for
this tier at user n is formalized as follows:

γ
(3)
uen =

∑

t∈Tη

γuen (t), (14)

and shown in the timing diagram in Fig. 9 with the symbol
+© on the UEs’ timeline. The superscript indicates the tier
level, where 1 is for the MCs, 2 is for the SCs or a MC that
supports service, 3 is for the UEs. At the end of this sub-
duration, the summed rewards are uploaded to the upper tier
of the small cells, this is represented by symbol �©. After
a propagation delay and when all the summed values arrive,
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represented by �©, the SC sums those values. The summation
operation in this tier is formalized as:

γ
(2)
cellβ

=
∑

n∈N

γ
(3)
uen , (15)

where user n is a member of the SC set of users N . The
summation duration leaves a gap in the timeline, after which
the values are uploaded to the MC, represented by �©. On
the MC timeline, the rewards are received from the small
cells in groups after each sub-duration, represented with �© on
the MC timeline. The purpose of the sub-duration is to intro-
duce pipelining between the collection of data durations and
computation durations, hence increasing the rewards sampling
duration. At the end of the learning episode, the MC uses all
the received rewards and calculates the vector total rewards
over each SB using:

γ(1) =
∑

β∈B
γ
(2)
cellβ

, (16)

where the cell β belongs to the set of serving cells B under
the upper MC, with the MC as a serving cell included.

As a result, the RL1 summations are distributed between
the agents as follows; a UE on average has a number of sum-
mations that is equal to the value of feedbacks per learning
episode, a 2nd tier node (serving cell) has a number of sum-
mations that is equal to the served UEs, and a 1st tier node
(MC) has a number of summations that is equal to the cells
being managed under it.

We notice from the timelines that in a practical network,
with information propagation delays and computational dura-
tions, the reward sampling duration is a subset from the whole
learning episode duration. However, as long as the reward sam-
pling duration is same for each episode, the ratio between
the value function elements will be the same. This is under
the assumption of constant or slow varying network statistical
characteristics over the learning episode duration. The reward
sampling duration will act as a scaling factor for Q but it does
not affect the algorithm decisions.

2) RL2 Computational Framework: For RL2, it runs
between the UEs’ tier and the serving cells’, as shown in
Fig. 10. The rewards are collected from the UEs following
eq. (13), then it is uploaded to the serving cell as shown in
the timeline in Fig. 11. The reward collection over this tier is
formulated as:

R
(3)
uen =

∑

t∈Tζn

γ(t)

1 + wd td (t)
, (17)

where Tζn is the RL2 learning episode duration of user n.
We can also observe that this algorithm is meant to run in a
faster manner than the power management algorithm, and that
the learning episode duration is shorter in order to have sev-
eral Q value updates within the RL1 episode. In other words,
every time the power levels are changed by RL1, the users
try to update their favorite sub-bands via RL2. In the timeline
in Fig. 11, symbol +© represents the summation operation is
eq. (17). Symbols 1©, 2©, and 3© represent the uploads to cell
1, cell 2, and cell 3 respectively. The symbol �© represents a
value function update.

Fig. 10. RL Algorithm 2 computational framework.

Fig. 11. RL Algorithm 2 Events timing, where +© represents the collection
of UE rewards. 1©, 2©, and 3© are the info upload operation to the consecutive
cells. �© is the value function update operation.

3) Energy Concerns: For value function update operations,
depending on the UE energy capabilities, there are several
choices for which node should update the value functions, the
duration of the learning episode, and the number of rewards
gathered before each upload. For this algorithm, UEs can act
independently with different Q update rates, hence, different
learning episode duration and summations to upload oper-
ations ratios. Each strategy will affect energy consumption
differently, and there will be a compromise between energy
consumption and the conversion rate for the whole system.
The detailed analysis of this is beyond the scope of this work
and is left for a future study.

A reward gathering node (UE or cell) spends its power on
summation operations and upload to the upper-tier operations.
For the UEs, we propose to save the energy consumption
of uploading through the air by buffering the rewards and
summing their values, as in eq. (14) and eq. (17), then upload-
ing them. Further energy optimization can be achieved by
adjusting the ratio of the summation operations to the upload
operations. This will require the introduction of energy con-
sumption models of the UE agents. Increasing the ratio of
summation operations to upload operations should save energy
at the UEs, but it may affect the conversion rate of the whole
network. The compromise between energy consumption and
network conversion rate is also worth investigating in a future
study.
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4) Cloud Computing: In our architecture, intensively com-
putational operations can have one of the following two
options, depending on its power and computational capa-
bilities. If the node is able to handle the reward gathering
computations or Q function updates, the operation can take
place at the cell. Otherwise the computations can be offloaded
to a cloud service or cloudlets. A cloudlet is a small-scale
cloud data center positioned at the edge of the network, intend-
ing to support computing resources with low propagation
delays.

When the rewards calculations of RL2 are run by cloud
services instead of running by the UE, the UEs will only have
to upload the values of γ and td . This will assume a direct
link between the UEs and the cloudlets as shown in Fig. 10.

The value function updates can be saved on the MCs or they
can be uploaded to remote datastores, depending on the MC
capabilities and the amount of Q function history that needs
to be saved. Theoretically, only the final Q value needs to be
stored, but the history is useful for monitoring and debugging
purposes.

The UE decision operation in the “service request and
usage” flow chart, has a utility function that is calculated. In
this step, the UE evaluates the received offers using eq. (9).
This computation can be transferred to a cloudlet for a low
computational capability UE. However, unlike the previous
cases of RL calculations, delegating this computation will
increase the latency of the service. This is because this opera-
tion belongs to the service plane, while the RL computations
belong to the control plane.

Moreover, several deployment technologies can be utilized
to implement our proposed architecture. The telecommunica-
tion industry is evolving toward highly decentralized systems
like distributed network Function virtualization (NFV). Our
proposed processes can also be implemented as virtual
network functions (VNF) that get deployed as virtual machines
VMs or containers in a network functions virtualization infras-
tructure (NFVI), or on the cloud, as mentioned in the previous
section. The network topologies and connections for the cloud
or the NFVI should take into consideration the propagation
delays of the computations, and the virtualization overheads
and their effect on the RL convergence rates [86].

NFV can be build using the microservices paradigm to
deploy their functions as services. The services in a microser-
vices architecture are fine-grained, and the protocols are light.
Asynchronous protocols like Advanced Message Queuing
Protocol (AMQP) or synchronous protocols like HTTP/REST
are used to communicate between services. Services are built
and deployed independently from one another, and each
service has its own database. Another deployment architec-
ture that can be considered is the novel multi-agent-based
autonomic network management system MANA-NMS [87].

In the next section, we simulate the proposed system with
different scenarios and utility functions.

V. SIMULATIONS AND DISCUSSIONS

This section presents simulations of the proposed ABM
architecture, and evaluates its behavior in different scenarios

Fig. 12. Simulation environment.

and modes. For the simulator, we used MATLAB to build an
object-oriented program. Agents were defined as classes with
methods corresponding to the agents’ procedures. Moreover,
input and output objects were included for each class to
handle the communication between agents. An environment
code was written to instantiate the agent classes and assign
their positions and characteristics from predefined statistical
properties.

In real life, the network entities/agents run in parallel while
in a computer program codes run sequentially. Therefore, a
scheduler was created to mimic the system parallelism. The
scheduler loops over all agents every single time unit and the
called agent will read its input ports and do the procedure
related to the received message. The order of the agents in the
loop is randomized in every iteration to avoid any biases.

The scheduler works with the asynchronous update
mode [88]. It manages the cell agents that should run with
higher rates than the UE agents, because it has one-to-many
relationships. Finally, post processing codes are responsible
for parsing the history objects in each agent to plot the results
shown in this section.

We evaluate one network structure with several numbers of
users. This creates several scenarios with different numbers of
sub-band reuse. The simulated network contains a macrocell,
and under it, there are five small cells, as shown in Fig. 12. The
small cell distances from the macrocell are in an increasing
order; d1 < d2 < d3 < d4 < d5. For the sake of compari-
son we fix the positions of the cells for the entire simulations.
This section is divided into two subsections. In the first, we
simulate a static deployment of the spectrum. Then, in the sec-
ond, we simulate a scenario where the dynamics of spectrum
deployment are demonstrated.

A. Static Spectrum Deployment

In this subsection, different reuse cases are considered by
fixing the macrocell sub-band reuse to specific numbers. Then
we evaluate the network for each case with different numbers
of users.

1) Single Reuse Case: First, for the single reuse scheme,
the macrocell has its spectrum divided into six sub-bands, and
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TABLE I
SIMULATION PARAMETERS

it is sharing one sub-band with each small cell. The sixth sub-
band is not reused, and it is left for the macro users who
cannot share their spectrum with any of the small cell users.
This corresponds to the partial spectrum deployment (PSD)
scheme mentioned in the literature review section. Second, a
scenario where spectrum is reused twice is considered, then
finally, we simulate a co-channel spectrum deployment where
spectrum is reused five times (the number of small cells). The
environment and agent parameters are tabulated in Table I.

After running the simulation environment with 1000 UEs
for a duration of 5000 T, where T is one resource block dura-
tion, the network converges to the results shown in Fig. 13(f).
The distribution of the users over the first four sub-bands is
shown in each of the sub-figures. The marker color and shape
corresponding to the cell association is explained in the figure
legend. One can observe that the small cell users are clustered
around their cells. At the same time, the numbers of users
associated to a small cell are proportional to its distance from
the macrocell due to interference levels. Also, the macrocell
users on a specific sub-band have lower densities around the
small cell using this sub-band due to Algorithm 2.

The results in Fig. 14 show the number of users associ-
ated with the small and macrocells for different numbers of
network users. A higher number of users is associated with the
macrocells, and as their number increases, the load becomes
more balanced between the two tiers.

2) Second Reuse Case: We then increase the number of
users above 1600 user. With the rate of requests and number
of RBs in Table I, the single reuse case is not sufficient for
catering to user demands, and the small cells start requesting
for more spectrum from the macrocell. At this point, the sec-
ond reuse is enabled, and more sub-bands are offered for the
small cells. The users’ distribution over the sub-bands and cells

Fig. 13. Users distribution, single reuse case.

Fig. 14. User association, in a single reuse case.

are shown in Fig. 15(f). Here we can observe that the learning
algorithms of the small cells that are closer to the macrocell
settled at a transmission power with lower coverages. This
allows for lower co-tier interference and better coexistence
with the macrocell tier.

The progression of aggregate network SINR for 1800 users
is shown in the curve in Fig. 16. During the duration from
t = 0 to t = 5000T, the exploration factor of Algorithm 1
decreases linearly from unity to null. After that, the algorithm
starts exploiting the knowledge it gained during the explo-
ration phase. Therefore, we observe a rise in the network
SINR during the exploration phase, and it saturates during
exploitation. The other two curves show the aggregate SINR
over the macrocell and the small cells in the same figure. The
throughput is exchanged between the macrocell and the small
cells until it reaches a combination that maximizes the sum
of both. The number of active users is shown in Fig. 17. For
the simulated request rate, the number of active users at any
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Fig. 15. Users distribution, 2nd reuse enabled.

Fig. 16. Aggregate SINR progression in time (1800 user).

point in time is around 12. Still, during the learning phase,
the users association keeps moving between the first tier and
the second tier until the transmission powers finally converge
to the solution that maximizes the utility function given in
Algorithm 1.

To evaluate the load balancing in the second reuse case,
we simulate different numbers of network users and deter-
mine the number of associated users in the two tiers, as
shown in Fig. 18. Here, due to the increase of the small cells
sub-bands, the users’ association is more tilted towards the
small cells’ tier. As the number of users increases, more users
are associated with the macrocell.

3) Full Reuse Case: We skip the third and fourth
reuse cases and enable the sub-band reuse five times. This

Fig. 17. Number of active users.

Fig. 18. User association, in a second reuse case.

Fig. 19. Users distribution, 5th reuse enabled.

corresponds to CCD deployment. The user distribution for the
fifth reuse case is shown in Fig. 19(d) for only the first two
sub-bands, as it looks almost the same for the other sub-bands.
One can observe that the macrocell users are associated in
large proportion with the first sub-band, where they experience
less inter-tier interference. This is due to the low transmission
power of small cells over this sub-band. Hence, we observe a
lower number of small cell users in this sub-band. The opposite
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Fig. 20. User association, a full reuse case.

Fig. 21. Network aggregate throughput.

behavior is observed for the second sub-band, where a larger
proportion of users are associated with small cells.

User association is re-evaluated for this full reuse case in
Fig. 20. Despite the abundance of small cell sub-bands, the
network reaches a solution where fewer users are associated
with the small cell tier due to the high co-tier interference.
But as the number of users increases, more users become
associated with the small cells tier.

Next, we sweep over the number of users to analyze the
aggregate network rate versus the number of users and the
per-cell rate versus the corresponding network utilization for
several reuse cases. The results are shown in Fig. 21. Several
observations can be deduced from the figure. First, during the
single reuse operation, there is a maximum number of users
that can be served before the increase in aggregate rate starts to
decline. At that point, second reuse should be enabled, and the
small cells with high traffic should be assigned sub-bands that
are reused for the second time. By moving to the second curve
at the second reuse case, the users are distributed over more
sub-bands which increases the aggregate throughput. However,
the increase is nonlinear due to higher interference levels. The

Fig. 22. Per-cell rate.

Fig. 23. Average user latency.

second reuse also saturates at a specific network load. The
reasoning is the same as the single reuse curve. For the full
reuse case (5th reuse), aggregate throughput is lower as com-
pared to 1st and 2nd reuse scenarios for corresponding network
utilization. This is due to the increase in interference levels at
full reuse. However, higher reuse is essential to serve more
users as evident by higher network utilization values in the
figure.

We can also extract the relationship between the whole
network load and the per-cell spectral efficiency plotted in
Fig. 22. The numbers reported in the industry [89] are also
shown in the figure as a reference. The gain over the reported
industry rates is due to the emergent coordination between the
small cell power assignment and sub-band user association
algorithms.

Latency is also affected by the network load at different
reuse cases. Fig. 23 shows the average latency per user in
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RB duration T, versus network load. As the utilization of
the resources increases in the single reuse case, the requests’
queuing results in an increase in latency. The same happens to
the second and the full reuse cases. It is also worth mentioning
that more users were using the macrocell than the small cells
for the first and the full reuse cases. Therefore, latency values
for both cases were higher than the second reuse case, where
the user distribution between the two tiers was more balanced.

4) Comparison With Benchmark in the Literature: For com-
parison with solutions in the literature, we compare between
the proposed utility functions, having the aggregate SINR
reward function for Algorithm RL1 and eq. (13) with ωd =
0.05 for Algorithm RL2, and the following utility functions
from the literature:

• Maximum SINR for small cell users given that the
macrocell users do not drop below a specific SINR (10
dB simulated) due to interference, by Bennis [48].

• Inter-cell interference coordination (ICIC) [50], [90],
which is similar to our work, composed of two parts:
sub-channel allocation and power assignment algorithms.

These frameworks have been adapted in our architecture
to be comparable with our proposed algorithms. For the first
study, the utility function of Algorithm 1 is as in [48], with
the assumption that the interference information of macrocell
users is shared with the small cells. Algorithm 2 is deactivated
as it has no relevance in this study. The utility function used
for Algorithm 1 is as follows:

U1 = arg max
pi∈P

∑

t1>t−Te

∑

k∈K

log2(1 + γ
(RB)
k )1{γ(RB)

m >Γth}
,

(18)

where the indicator function 1{condition}, is 1 when the con-
dition is true and 0 otherwise. Γth is the minimum allowed
macrocell user SINR.

For the ICIC, in the context of our architecture, power
assignment is managed by RL Algorithm 1, with the utility
function as minimum aggregate interference over a sub-band,
while the sub-channel allocation is managed by Algorithm 2
using the utility function to minimize the interference level per
user. A delay factor wdICIC

was added to manage the load dis-
tribution between the sub-band and to manage the latency. The
utility functions used for Algorithm 1 and 2 are as follows:

V1 = arg min
pi∈P

∑

t1>t−Te

∑

RB∈SBi

IRB ,t1 + (wdICIC
td ), (19)

V2 = arg min
sn∈S

(IRB + (wdICIC
td )). (20)

Without the wd factor, the load is not guaranteed to be
balanced between the sub-bands; hence, high per-user latency
values can occur.

The results of the comparisons are shown in Fig. 24 and
Fig. 25, for the per-user throughput cumulative distribution
function (CDF), and per-user latency complementary cumu-
lative distribution function (CCDF). The average throughput
for the simulated number of users (1000 users) is found to be
higher for the maximum aggregate SINR utility function case.
On the other hand, the ICIC framework has a slightly lower
number of low throughput users. This is due to the focus of

Fig. 24. Per-user throughput CDF.

Fig. 25. Latency CCDF.

the ICIC algorithm on minimizing the interference. The work
in [48] has a higher number of low throughput users due to
not deploying a sub-band or a sub-channel algorithm, as in
Algorithm 2.

Finally, the per-user latency CCDF is a measure of the effi-
ciency of load distribution between the macrocell and small
cells; and amongst small cells. The two aggregate SINR based
methods achieved lower latency values than the minimum
interference-based method. The usage of Algorithm 2 added
latency due to the behavior of the users of preferring to utilize
sub-bands that are not reused more than the reused sub-bands.
This can result in some non-uniformity in sub-band utilization,
hence the slight increase in latency. We can observe this effect
more prominent in the case of the ICIC algorithm, where this
imbalance can be managed by modifying the utility function
in Algorithm 2 to take sub-band association decisions based
on the delay. Hence, we observe a prominent effect of wd on
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Fig. 26. Latency vs. ωd joint distribution, given that UEs’ ωd is uniformly
distributed over the range [0.01 0.2] (Full reuse case).

the latency results. In h next section we give more insight on
the latency distribution.

5) Queuing Latency for Different UEs With Different ωd
Values: Here we shed more light on the latency distribution
between the users and its relationship with the latency weight
value ωd . This value was presented in two cases, the first is the
decision operation in eq. (9) and the second is in the reward
eq. (13) and eq. (17). For both cases, the value ωd represented
the UE’s preference of low latency or tolerance for high latency.

For the full reuse case scenario, we create a number of users
with ωd as a random variable distributed uniformly from 0.01
to 0.2. The measured queuing latency is in T. Here we evaluate
the joint distribution between user latency and the user’s ωd
parameter for two different traffic loading. For this simulation,
we use the decision function in eq. (9) with ωr = 1, and the
rewards in eq. (13) and eq. (17).

We can observe in Fig. 26 that the users with low ωd expe-
rience higher latency, with an average that depends on the
network load. On the other hand, the users with higher ωd
values has higher chances of being served with low latency
RBs. Hence, devices with stringent latency requirements can
be assigned to relatively higher ωd values to meet their latency
demands.

B. Dynamic Spectrum Deployment

In the previous subsection, we fixed a different num-
ber of reuses for sub-bands to characterize the network

Fig. 27. Users distribution for three sub-bands.

behavior for each scenario. In this subsection, we enable the
sub-band assignment and release requests at the small cells
by assigning upper and lower load limits. The upper load
limit Lu = 45% defines the threshold above which the small
cell requests sub-band assignment from the macrocell. The
lower load limit Ll = 8% is the threshold below which
the small cell releases the least used sub-band. The posi-
tions of the cells and channel characteristics are the same as
in Table I. For this scenario, users’ distribution is nonuni-
form to examine how the network balances the load and runs
its learning algorithms in an inherently unbalanced network.
The 300 users are initially condensed in the upper right cor-
ner of the simulated area shown in Fig. 27(a), Fig. 27(c),
and Fig. 27(e).

We give the network a duration of 10000 T to train and
stabilize. Then, the users are gradually allowed to move from
the upper-right corner to the lower-left corner as shown in
Fig. 27(b), Fig. 27(d), and Fig. 27(f). Note that, we assume in
this simulation that the UEs move only during their idle mode.
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Fig. 28. Cell association progress in time.

TABLE II
INITIAL SUB-BAND ASSIGNMENT

As a UE changes its position, it measures the received signal
from the surrounding entities and updates its cell list. During
this migration, we examine the network load, aggregate SINR,
cell association, and sub-band deployment. The users change
their positions at a constant rate, and the last user arrives at
t = 30000 T.

Three sub-bands are considered for this scenario, which
are initially assigned as shown in Table II. The exploitation
to exploration duration ratio increases as the network stabi-
lizes. During the exploration episodes, the exploration factor is
ε = 1, while during the exploitation episodes, it is ε = 0. The
macrocell processes sub-band assignment or release requests
at the end of each episode. After the sub-band deployment
map changes, the network starts an exploration episode to
update the Q-tables of the new map. Algorithm 2 has a fixed
exploration factor of ε = 0.3 for the complete simulation.

The events and actions that take place in the network
are listed in Table II. The resultant user cell association
plots, aggregate SINR, and small cell load curves are shown
in Fig. 23, Fig. 24, and Fig. 25, respectively. Below we
explain those results side by side. The network starts with
the aforementioned initial conditions. Then, at t = 4000 T, the
macrocell assigns SB3 to SC5 due to high load. Then, another
exploration episode starts and ends at t = 6000 T. As a result,
the load of SC5 drops from 90% to 30%, and the user asso-
ciation becomes balanced between MC, SC5, and SC1. Most
users are located in SC1 at this point in time. Although this
re-assignment was beneficial from load balancing perspective,

the aggregate SINR dropped 8 dB from the maximum SINR
achieved in the previous exploration episode.

At t = 8000 T, an exploitation episode ends, and SB2 is
assigned to SC5 as its load is still above Lu . Consequently,
the load drops, but the learning algorithms find its maximum
utilities at a less balanced cell association for this new sub-
band mapping.

At t = 10000 T, users start to gradually migrate from the top
right corner to the bottom left corner of the simulated area. As
a result, we can observe a gradual increase in cell association
of SC3, which is less gradual from 10000T to 25000T.

At t = 20000 T, SB2 is released from SC5 due to
the decreased load. Once this happens, a new solution is
reached where the user association is better balanced between
the macrocell and the small cell tier. This is observed at
t = 20000 T, and t = 22000 T. This harmony is lost at
t = 25000 T when Sb3 and Sb2 were assigned to SC3 and
SC2 respectively, to decrease their loads. It also interrupts the
increase in SINR. The final aggregate SINR is 8 dB less than
the maximum reached at t = 24000 T. Soon after, the users
settle at their final positions.

We can conclude from the presented analysis that the RL
processes can cope with the changes in the network as they
maximize their utility functions in a given sub-band deploy-
ment setup. Moreover, The sub-band deployment processes
manage to keep cell loads below limits, but it can interrupt
the aforementioned utility functions’ local maximums. Hence,
for future work, there is a need to add intelligence to those
processes to choose the best sub-band-to-small cell mapping.

VI. CONCLUSION

Accurate network models are crucial for the development
of the standards and finding solutions for heterogeneous
network design compromises. This paper sheds light on the
complex nature of HetNets and proposes an ABM frame-
work through which a complex dynamic network can be
formalized. Agent-based modeling is a computational tool
that can build an extensive model incorporating diverse levels
of rationality at the agents (network nodes), and can model
rule-based behaviors along with machine learning algorithms
for different agents. Moreover, local interactions between the
nodes create an emergent behavior on the network macro
level.

A client-driven system model was proposed wherein the
cells are responsible for power and spectrum management
based on the users’ requests and feedback. Resource allo-
cation and load balancing are the results of the interaction
between the cells and the users. Small cells transmit pow-
ers were managed by training a Q-learning algorithm on
a multi-armed bandit problem to maximize the network’s
aggregate throughput. Another Q-learning algorithm on a
different multi-armed bandit problem drove user sub-band
association to maximize the SINR and minimize the user’s
latency. Both these reinforcement learning algorithms were
executed concurrently at macro and small cell levels for effi-
cient sub-band power and RB assignment. Moreover, load
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Fig. 29. Aggregate SINR for the proposed scenario versus time.

Fig. 30. Small cells loads versus time.

balancing was managed with prescribed rules at the cell
level.

In the simulations section, the emergent behavior was shown
in the users’ distribution within sub-bands and geographi-
cal space. The progression of the aggregate SINR by the
learning algorithms was analyzed. It was observed that after
a certain training duration, the load distribution and aggre-
gate SINR stabilized. We also analyzed the tradeoff between
throughput, latency and network utilization, indicating the
possible transition points between different reuse cases. A
comparison with other literature benchmarks showed that the
proposed reinforcement based learning paradigm outperforms
in terms of per-user throughput at a minute cost of user
latency.

In addition to the aforementioned, a dynamic scenario
was considered where the positions of users were chang-
ing constantly in time. Consequently, the network traffic was
shifting from some cells to others. The dynamic sub-band
assignment, cell association, and network throughput were
demonstrated and analyzed. We also pointed out that the sub-
band assignment processes were acting sub-optimally and that
there is room to enhance it by adding more intelligence to the
process.

We conclude that agent-based modeling is a versatile
tool that should be considered for future complex wire-
less communication systems development and optimization.
It will help with problems, such as moving the intelligence
further to the edges of the network, and the design of
HetNets assisted with device-to-device communication. Also,
the ability to do the computations in a parallel distributed
manner enables evaluating the developed solutions on dense
networks.
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