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ABSTRACT

High-accuracy calculations are performed for the four lowest 3
D states of the beryllium atom. All-

electronexplicitly correlatedGaussian (ECG) functions are employed to expand the functions and the
non-relativistic internal Hamiltonian used in the calculations, which is obtained by rigorously sepa-
rating out the centre-of-mass motion from the laboratory-frame Hamiltonian, explicitly depends on
the finite nuclear mass of 9Be. The nonrelativistic wave functions of the considered states of 9Be are
generated variationally with the nonlinear parameters of the Gaussians optimised using a procedure
that employs the energy gradient determined with respect to these parameters. The nonrelativistic
wave functions are used to calculate the leading relativistic corrections employing the perturbation
theory at the first-order level. Only corrections that do not produce fine/hyperfine splitting of the
energy levels are considered. The corrections are added to thenonrelativistic energies and the results
are used to calculate the so-called ‘centre of gravity’ transition energies with respect to the 9Be 1

S

ground state. A comparisonwithhigh-quality experimental results shows agreement towithin about
0.6 cm−1.
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1. Introduction

In this work, we continue our studies of the spectrum

of the beryllium atom. The states which are considered

are the lowest 3D Rydberg states. As precision spec-

troscopy of the light elements is quickly advancing, the

need to refine the high-accuracy quantum-mechanical

CONTACT Ludwik Adamowicz ludwik@email.arizona.edu Department of Chemistry and Biochemistry and Department of Physics, University of
Arizona, Tucson, AZ 85721, USA, Centre for Advanced Study (CAS), The Norwegian Academy of Science and Letters, Oslo N-0271, Norway

calculations has been an important direction of the the-

oretical research. The spectrum of the beryllium atom

has been expensively studied using the state-of-the-art

high resolution spectroscopy methods and has been fre-

quently used to validate the new theoretical models used

in atomic calculations [1]. As the neutral four-electron
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beryllium atom is a relatively simple system, it is usu-

ally possible to achieve in the calculations an adequate

level of convergence of the results in terms of the num-

ber of basis functions provided that the type of functions

used in the calculations are capable of very accurately

describing the electron correlation effects and have suf-

ficient flexibility to be adjusted to describe individual

states. Such flexibility is usually due to the basis func-

tions containing adjustable linear and non-linear param-

eters that can be variationally optimised in the calcula-

tion. In our atomic calculations, we have employed all-

electron explicitly correlated Gaussian functions (ECGs).

The variational optimisation of the Gaussian exponential

parameters performed by the minimisation of the non-

relativistic energy of the considered state of the atom has

been key to achieving high accuracy in our atomic ECG

calculations (see, e.g., Ref. [1]). The optimisation has

involved the use of the analytically determined energy

gradient calculated with respect to the Gaussian param-

eters. Due to the use of the gradient, the basis sets used

in our calculations could have been extended to include

a large number of ECGs [2–5].

High accuracy atomic calculations also require an

accurate account of the leading relativistic and quantum

electrodynamics (QED) corrections, as well as the cor-

rections due to the finite mass of the nucleus [6–9]. In

our calculations, the account for the effects of the finite

nuclear mass is not done is the standard way by employ-

ing the perturbation-theory approach, but involves the

use in the nonrelativistic variational calculations of a

total nonrelativistic Hamiltonian representing the inter-

nal state of the system that explicitly depends of the

nuclear mass. That Hamiltonian is obtained by separat-

ing out the centre-of-mass motion from the laboratory-

frame Hamiltonian. The procedure involves transform-

ing the lab-frame Hamiltonian expressed in terms of

Cartesian coordinates to a new coordinate system whose

first three coordinates are the lab-frame coordinates of

the centre of mass and the remaining 3n-3 coordinates

are internal coordinates. Some more details about the

approach used in our atomic calculations are described

in the next section.

We have studied the Rydberg D states of the beryl-

lium atom before using ECGs. First we reported results

of nonrelativistic calculations carried out for some

lowest 1D states [10]. As those calculations did not

include the relativistic corrections, the results disagree

with the experimental values by more than the uncer-

tainties of the experimental results. In recent calcula-

tions [11], we considered the lowest nine 1D states and

the inclusion of the leading spin-independent relativistic

energy corrections significantly improved the agreement

with the experimental results. In the present work, the

calculations involving the relativistic spin-independent

corrections are extended to four lowest 3D states of

beryllium.

Measurements of the interstate transitions energies of

the berylliumatomhave been performed in several works

over the last half century. Bozman et al. [12] and Johans-

son [13] measured an array of the beryllium transitions

with 0.01–0.02 cm−1 precision. The measurements per-

formed by Johansson included a transition involving the

lowest 1D state, i.e. the 2s2p 1P → 2s3d 1D transition.

Measurements of the transitions involving the lowest
1D beryllium states were also reported by Kramida and

Martin [14,15].

Even though, ECGs do not strictly satisfy the Kato

cusp conditions concerning the behaviour of the elec-

tronicwave function at the two-electron coalescent point,

if a large number of ECGs are used in expanding the

wave function and their parameters are thoroughly opti-

mised in the calculation, the deficiency associated with

not satisfying theKato conditions can be effectively reme-

diated. Besides the explicit dependence of the correlated

Gaussian on the inter-electron distances which, as men-

tioned, is crucial in describing the inter-electron corre-

lation effects, the other main advantage is that the algo-

rithms for calculating for the Hamiltonian and overlap

matrix elements, as well as the matrix elements of the

energy gradient, with these functions are relatively sim-

ple and can be coded into a computer programme in a

general form for an arbitrary number of electrons [16].

Also, the ECGs for expanding thewave functions of states

with non-zero angular momentum quantum numbers, L,

including the D states with L = 2 and ML = 0 consid-

ered in this work can be easily constructed bymultiplying

the Gaussian exponentials by the appropriate Cartesian

spherical harmonics [16,17].

With the general form of the ECG matrix-elements

algorithms and with efficient parallelisation of the

computer code for use on massively parallel systems, the

main bottleneck limiting the size of the atomic systems

which can be calculated with these types of all-electron

Gaussian functions is the n! dependence of the compu-

tational time on the number of the electron in the atom.

Thus very accurate calculations can, at present, be per-

formed for atoms with no more than five electrons [2–5].

Even though we wrote and implemented codes to per-

form ECG calculations for bound states of atoms with

six and seven electrons, e.g. the carbon and nitrogen

atoms, [18,19], the computational resources available to

us at the present time to carry out high-accuracy atomic

calculations do not permit consideration of atoms with

more than five electrons.

As the internal nonrelativistic Hamiltonian explic-

itly depends on the mass of the nucleus, the present
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calculations are performed for the stable beryllium iso-

tope which is 9Be. Calculations are also done for the

beryllium atom with an infinite mass, ∞Be. The present

calculations include the leading spin-independent rela-

tivistic corrections. The algorithms for calculating these

corrections for D states were recently implemented [17].

The algorithms are expressed in terms of the internal

coordinates and some of them explicitly depend on the

nuclear mass. Also, as the relativistic corrections are cal-

culated as expectation values of the operators represent-

ing the relativistic corrections with nonrelativistic wave

function, which is slightly different for 9Be and ∞Be, an

additional dependency on the nuclear mass appears in

the calculation of the relativistic effects. This dependency

is usually called a recoil effect, i.e. the relativistic effect

associated with the motion of the nucleus around the

centre of mass of the atom.

2. Themethod

In the present calculations, the internal coordinates, ri,

i = 1, . . . , n, where n is the number of electrons, are

Cartesian coordinates of the vectors with the origins at

the nucleus andwith the ends at the different electrons. In

this internal coordinate system, the internal Hamiltonian

is expressed as follows [20]:

Ĥ = −
1

2

⎛

⎜

⎜

⎝

n
∑

i=1

1

µi
∇T
ri

· ∇ri +
1

m0

n
∑

i,j=1
i�=j

∇T
ri

· ∇rj

⎞

⎟

⎟

⎠

+

n
∑
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q0qi
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n
∑
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qiqj

rij
, (1)

where m0 is the mass of the nucleus and q0 is its

charge, qi are the electron charges (qi = −1), and

µi = m0mi/(m0 + mi) is the reduce mass of electron

i (mi, i = 1, . . . , n, are the electron masses). T in (1)

denotes the matrix/vector transposition. As one can see,

the internal Hamiltonian is invariant upon rotations with

respect to the centre of the internal coordinate sys-

tem and represents the motion of n particles, whose

charges are the electron charges and the masses are the

reduced electronmasses, in the central field of the nuclear

charge. These particles we call ‘pseudo-electrons’. The

approach used in separating out the centre-od-mass

motion and in deriving the internal Hamiltonian is

analogical to the standard textbook approach used

to solve the Schrödinger equation for the hydrogen

atom.

The ECGs used in the present work to expand the

special part of the wave function for the 3D ML = 0

states of beryllium atom considered in the present work

is expanded in terms of the basis functions being the fol-

lowing products of Gaussian exponentials and Cartesian

angular harmonics:

φ
(L=2)
k =

(

xikxjk + yjkyik − 2zikzjk
)

× exp
[

−r
T (Ak ⊗ I3) r

]

, (2)

where electron labels ik and jk can vary from1 to n (n = 4

for the neutral beryllium atom), with ik ≥ jk and with

ik and jk either equal or not equal to each other. The

ik ≥ jk case can be called a ‘p2 configuration’. and the

ik = jk case can be called an ‘sd configuration’. In (2),

Ak is an n × n symmetric matrix of the real exponen-

tial parameters, which is unique to each ECG, ⊗ denotes

the Kronecker product, I3 is an 3 × 3 identity matrix,

and r is the following 3n vector of the internal Cartesian

coordinates:
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. (3)

(Ak ⊗ I3) is denoted as Ak.

Ak has to be positive definite to Gaussian (2) be

square integrable. To make Ak be positive definite we

represent it in the following Cholesky-factored form:

Ak = (LkL
T
k ) ⊗ I3, where Lk is an n × n lower-triangular

matrix of real numbers. Being in that form, Ak is auto-

matically positive definite for the Lk matrix elements

being any real numbers. It is convenient to use the

Lk matrix elements and not the Ak matrix elements as

the variationally adjusted parameters in the calculation

because they can be optimised in an unrestricted range

of values from −∞ to +∞. If the Ak matrix elements

were chosen as the variational parameters, their optimi-

sation would be constrained by the condition that the Ak

matrix must be positive definite. A constrained optimisa-

tion is usually more cumbersome than an unconstrained

one.

The present calculations concern states with the

triplet multiplicity. In constructing the wave function,

one needs to impose proper permutational symmetry.

In the present work, this is done using the so-called

spin-free formalism [21–23], which involves the con-

struction of an appropriate symmetry projector, P, that

by acting on a basis function makes it comply with

the desired permutational-symmetry properties. In the

present work, P is generated using the appropriate Young

operator which is constructed for the triplet state of the



4 M. STANKE AND L. ADAMOWICZ

four-electron beryllium atom [21–23]. The procedure

for constructing Young operators in ECG calculations

was described in our earlier work [24]. For the presently

considered 3D states the P operator is:

P = (1 + P12)(1 − P14 − P34)(1 − P13), (4)

where Pij permutes the spatial internal coordinates of the

ith and jth pseudo-electrons.

The internal Hamiltonian (1), as well as the opera-

tors representing the leading relativistic corrections (see

the next section), are symmetric with respect to any per-

mutation of the labels of the pseudo-electrons. Thus, in

calculating the Hamiltonian, overlap, and the energy-

gradient matrix elements, as well as the matrix elements

for the operators representing the relativistic corrections,

the symmetry operator, P, can be moved from the bra

side of the integral to the ket side. Thus symmetry oper-

ator P†P appears on the ket side of the integral. That

operator has 4! = 24 terms which makes each matrix

element to be a linear combination of 24 primitive spa-

tial integrals and the whole calculation to scale as 4!.

The algorithms for calculating the Hamiltonian, overlap,

energy-gradient matrix elements, with ECGs (2), were

presented in Ref. [16].

2.1. Relativistic operators

In the present work, we consider the relativistic correc-

tions that do not result in fine/hyperfine splitting of the

energy levels obtained in the non-relativistic variational

calculations. These corrections are of the order of α2,

where α is the fine-structure constant (α = 1
c , where c

is the speed of light in the atomic units). They represent

the mass-velocity (MV), Darwin (D), orbit-orbit (OO)

and spin–spin Fermi contact (SS) relativistic effects. The

spin–orbit interaction, that for 3D states results in split-

ting the energy levels into lines corresponding to J =

1, 2, and 3, are not included in the present calculations.

TheMV,D,OO and SS operators have the following form

in terms of the internal coordinates:mass-velocity term:

ĤMV = −
1

8
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1
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and spin–spin term:

HSS = −
8π

3

4
∑

i,j=1
j>i

qiqj

mimj

(

si · sj
)

δ
(

rij

)

, (8)

where δ(r) is the Dirac delta function, ∇ri is the nabla

operator acting on the coordinates of vector ri, and si

is the spin operator for electron i. For the 3D states

considered in this work,

〈

4
∑

i,j=1
j>i

(

si · sj
)

δ
(

rij

)

〉

= −
3

4

〈

4
∑

i,j=1
j>i

δ
(

rij

)

〉

. (9)

The explicit formulas for calculating the matrix elements

of the above relativistic operators were derived in our

previous paper [17].

2.2. The calculations

The computer double precision is used in the present

calculations. The code performing the nonrelativistic cal-

culation for a particular state and the optimisation of the

exponential non-linear parameters of the Gaussians in

written in Fortran 90 and involves MPI (message pass-

ing interface) parallelisation. For each considered state

the ECG basis functions are independently optimised.

In the first step of the calculations, the nonrelativistic

energies and the corresponding wave functions are deter-

mined for the lowest four 1D states of 9Be. For each state,

the basis set is grown to the size of 15,300 functions. The

growing procedure involves multiple steps with each of

them consisting of adding a certain number of functions

one by one and optimising them using a procedure that

employs the analytically derived energy-gradient vector.

To generate the initial parameters of a newly addedGaus-

sian, the parameters of the Gaussians already include in

the basis set are perturbed using a procedure that employs

a randomnumber generator. The perturbed function that
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lowers to the energy the most is used as the initial guess

in the optimisation. However, before the optimisation is

performed, the ik and jk pseudo-electron indices of the

optimised ECG (see (2)) are optimised. More details of

the procedure used in growing the ECG basis set can be

found in our previous paper [17].

The use of the one-function-at-a-time approach in

growing the basis set and in optimising the added

functions allows to monitor and eliminate any linear-

dependency between the ECGs that may appear in the

calculation. An appearance of linear dependency among

the basis functions is undesirable because it may cause

numerical instabilities and loss of accuracy in the calcu-

lation. To determine the linear expansion coefficients of

the ECGs in the wave function, the standard procedure

for solve the secular equation problem is employed.

After the 15,300-ECGs basis sets are generated for

the four lowest 3D states of 9Be, they are used to calcu-

lated the energies and the corresponding wave functions

of ∞Be. No reoptimisation of the Gaussian non-linear

parameters is performed. Only the linear expansion coef-

ficients are reoptimised by solving the secular problem

with the Hamiltonian matrix calculated with the inter-

nal Hamiltonian where the 9Be nuclear mass is replaced

with an infinite mass. Such an approach usually works

quite well for lower Rydberg atomic states [16]. The reop-

timisation of the expansion coefficient usually suffices

to account for the change of the wave function and the

energy due to the change of the nuclear mass [17].

In the final step, the nonrelativistic wave functions

obtained for the lowest four 3D states of 9Be and ∞Be are

used to calculate the relativistic corrections. Then these

corrections are added to the nonrelativistic energies to

calculate the total energies. The total energies are then

used to calculate the transition energies with respect to

the beryllium 1S ground state.

3. Results

The results of the variational calculations concerning

growing of the ECGbasis sets for the four lowest 1s22snd,

n = 3, 4, 5, and 6, states of 9Be are presented in Table 1.

The energy values corresponding the basis set of 12,600,

13,500, 14,400 and 15,300 are shown in the table to assess

the convergence of the basis growing process. As one

can see, for all considered states, the ninth significant

figure after the decimal point in each energy value is vir-

tually converged. As expected, the convergence level is

marginally lower for the fourth state than for the lower

states. There seems to be no need to increase the basis set

size any further.

The largest basis set of 15,300 ECGs for each state is

used to calculate the total nonrelativistic energy for ∞Be.

Table 1. Convergence of the nonrelativistic energies, Enrel, of the
four lowest 3D states of 9Be with the number of the ECG basis
functions.

State Basis Enrel

1s22s3d 12600 −14.383731176
13500 −14.383731178
14400 −14.383731180
15300 −14.383731181

1s22s4d 12600 −14.356902134
13500 −14.356902137
14400 −14.356902140
15300 −14.356902142

1s22s5d 12600 −14.344772363
13500 −14.344772368
14400 −14.344772372
15300 −14.344772376

1s22s6d 12600 −14.338275846
13500 −14.338275856
14400 −14.338275864
15300 −14.338275872

Note: The energies are given in hartrees.

Table 2. Nonrelativistic energies of the four lowest 3D states of
9Be and ∞Be calculated with 15,300 ECG base functions.

State 9Be ∞Be

1s22s3d −14.383731181 −14.384634628
1s22s4d −14.356902142 −14.357803959
1s22s5d −14.344772376 −14.345673406
1s22s6d −14.338275872 −14.339176478

Note: The energies are given in hartrees.

The results are shown in Table 2. As expected, making

the nuclear mass heavier lowers the total energy. The

lowering is about 0.001 hartree and decreases slightly as

the level of excitation decreases. This effect is due to an

increase of the reduced mass of the electron caused by

the increase of the nuclear mass. As a result, the elec-

trons are slightly closer to the nucleus in ∞Be than in
9Be. This makes the total energy of∞Be being lower than

the energy of 9Be. However, the lowering of the ener-

gies of the four electrons due to the increasing nuclear

mass is somewhat uneven. Particularly, the energy of

the Rydberg d electron is lowered more for the lowest

state, where it is located closer to the nucleus, than for

the fourth state. The total energies calculated for 9Be

and ∞Be and shown in Table 2 may provide a refer-

ence for future nonrelativistic calculations performed by

other researchers for an infinite nuclear mass (i.e. with

assuming the Born–Oppenheimer approximation).

The ∞Be nonrelativistic energy for the lowest 3D

state obtained in this work can be compared with

the energy recently calculated by Puchalski et al. [25]

They also used ECGs in their calculations and their

largest basis set generated for the lowest 3D state

consisted of 8192 functions. For that basis set their
∞Be energy was−14.38463460377 hartree (their extrap-

olated their energies to an infinite basis set and
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Table 3. The non-relativistic energies, Enrel, and α2 mass–velocity (MV), Darwin (D), orbit–orbit (OO) and spin–spin (SS) α2 relativistic
energy corrections for the 1s22snd, n = 3, 4, 5, and 6, 3D states of 9Be and ∞Be.

Isotope Basis Enrel EMV × 102 ED × 102 EOO × 10−1
ESS α2�Erel × 10−3

State 1s22s3d
9Be 6000 −14.383731105 −2.680289 2.154023 −9.318846 9.888997 −2.325461

6900 −14.383731131 −2.680367 2.154098 −9.318842 9.888939 −2.325475
7800 −14.383731147 −2.680370 2.154102 −9.318843 9.888604 −2.325487

∞Be 7800 −14.384634593 −2.681031 2.154500 −9.055109 9.890245 −2.325400
State 1s22s4d

9Be 6000 −14.356902021 −2.681450 2.154782 −9.348216 9.915980 −2.326320
6900 −14.356902066 −2.681465 2.154819 −9.348217 9.915953 −2.326201
7800 −14.356902090 −2.681644 2.154966 −9.348218 9.915850 −2.326377

∞Be 7800 −14.357803907 −2.682306 2.155364 −9.084342 9.917496 −2.326290
State 1s22s5d

9Be 6000 −14.344772185 −2.681576 2.154824 −9.356135 9.924896 −2.326335
6900 −14.344772254 −2.681749 2.154987 −9.356137 9.924827 −2.326392
7800 −14.344772291 −2.681866 2.155000 −9.356138 9.924732 −2.326419

∞Be 7800 −14.345673321 −2.682528 2.155497 −9.092218 9.926380 −2.326332
State 1s22s6d

9Be 6000 −14.338275518 −2.681527 2.154713 −9.359207 9.928281 −2.326498
6900 −14.338275636 −2.681824 2.154986 −9.359210 9.927988 −2.326644
7800 −14.338275705 −2.681946 2.155094 −9.359215 9.927960 −2.326718

∞Be 7800 −14.339176310 −2.682608 2.155492 −9.095274 9.929609 −2.326630

Note: The convergence of the results in terms of the number of ECGs for 9Be is shown. All values are given in hartrees.

Table 4. Transition energies calculated for the four lowest 3D
1s22snd, n = 3, 4, 5, and 6 states of 9Be and ∞Be with respect
to the ground 1s22s2 1S state.

Isotope �Enrel �Erel NIST

State 1s22s3d
9Be 62 046.4320 62 054.0711 62 053.740 ± 0.06
∞Be 62 050.2806 62 057.9509

State 1s22s4d
9Be 67 934.7254 67 942.1691 67 941.65 ± 0.08
∞Be 67 938.9316 67 946.4065

State 1s22s5d
9Be 70 596.9014 70 604.3358 70 603.74 ± 0.06
∞Be 70 601.2803 70 608.7461

State 1s22s6d
9Be 72 022.7192 72 030.0882 72 029.50 ± 0.08
∞Be 72 027.1913 72 034.5916

Note: The non-relativistic transition energies,�Enrel, are calculated for the
3D

states using 15,300 ECGs. In calculating the transition energies that account
for the relativistic corrections, �Erel, these corrections for the

3
D states are

calculated using 7800 ECGs while the nonrelativistic energies are calcu-
lated using 15,300 ECGs. All values are given in cm−1 . In calculating the
transitions energies, the following ground-state energies of 9Be and ∞Be
obtained with 16,000 ECG basis functions are used: Enrel = −14.666435526
(9Be) and Erel = −14.668795820 hartree (9Be), and Enrel = −14.667356508
(∞Be) and Erel = −14.669716857 hartree (∞Be) [1]. The transition energies
are compared with the experimental results [15]. Each experimental value is
obtained as the gravity centre of the corresponding fine-structuremultiplet.

obtained −14.3846346167 hartree), while our present

result obtained with 15,300 ECGs is

−14.384634628 hartree, which is even lower than their

extrapolated value.

The leading MV, D, OO and SS relativistic corrections

are calculated for both 9Be and ∞Be. The present version

of our computer code for calculating these corrections

does not allow for use of large basis sets. Thus the present

calculations are performed with basis sets of 6000, 6900

and 7800 ECGs for 9Be and with the basis sets of 7800

ECGs for ∞Be. The results are shown in Table 3. Upon

examining the results one cannotice that the convergence

of the total relativistic correction for each of the four state

of 9Be is similar to the convergence of the total non-

relativistic energy particularly for the lowest states. It is

interesting that the recoil effect, which can be calculated

for each state as a difference between the total relativistic

corrections corresponding to 9Be and ∞Be is remarkably

similar for all four states. It raises the value of the rel-

ativistic correction by 0.000087×10−3 hartree for states

1s22snd, n = 3, 4, and 5, and by 0.0000088×10−3 hartree

for the 1s22s6d state.

Finally, the total nonrelativistic energies of 9Be and
∞Be calculated with 15,300 ECGs and the corresponding

total energies obtained by adding the relativistic correc-

tions calculated with 7800 ECGs to the nonrelativistic

energies calculated with 15,300 ECGs are used to calcu-

late the interstate transition energies with respect to the
1S ground state of beryllium. The 1S ground-state ener-

gies of 9Be and ∞Be are taken from our recent paper [1]

where theywere calculated using 16,000 ECGs. The inter-

state transition energies calculated for 9Be and ∞Be with

and without the relativistic corrections are presented

in Table 4 where they are compared with the experi-

mental results taken from Ref. [14,15]. Upon examin-

ing the results in Table 4 one can make the following

observations. The contribution from the relativistic cor-

rections to the transition energy of each of the four states

is about +8 cm−1 and the contribution from the finite-

mass effect is about –4 cm−1. The differences between the

transition energies calculated for 9Be using the energies

that include the relativistic corrections with the exper-

imental results is smaller than about 0.6 cm−1 (0.331,

0.519, 0.596, and 0.60 cm−1 for states 1s22snd,n = 3, 4, 5,
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and 6, respectively). For the experimental values used for

the comparison in Table 4 we use the ‘gravity centre’ of

the fine-structure multiplet for each energy level.

4. Summary

In summary, transition energies between the four lowest
3D Rydberg states and the 1S ground state of the beryl-

lium atom are calculated using the finite-nuclear-mass

approach that includes the leading spin-independent

relativistic corrections. Large basis sets of all-electron

explicitly correlated Gaussian functions are used in the

calculations of the 3D states. The transition energies agree

with the experimental values to within about 0.6 cm−1.

Including the leading quantum electrodynamics (QED)

effects would likely improve the agreement between the

calculated values and the experiment. This was recently

demonstrated in the calculations performed by Puchal-

ski et al. [25] where the lowest beryllium 3D state was

considered. Also, it would be interesting to calculate the

fine and hyperfine structure of the 3D levels. Algorithms

for calculating the spin–orbit interactions contributing to

the fine splitting of 3D levels of atoms are currently being

developed in our lab.
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