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ABSTRACT

High-accuracy calculations are performed for the four lowest 3D states of the beryllium atom. All-
electron explicitly correlated Gaussian (ECG) functions are employed to expand the functions and the
non-relativistic internal Hamiltonian used in the calculations, which is obtained by rigorously sepa-
rating out the centre-of-mass motion from the laboratory-frame Hamiltonian, explicitly depends on
the finite nuclear mass of °Be. The nonrelativistic wave functions of the considered states of °Be are
generated variationally with the nonlinear parameters of the Gaussians optimised using a procedure
that employs the energy gradient determined with respect to these parameters. The nonrelativistic
wave functions are used to calculate the leading relativistic corrections employing the perturbation
theory at the first-order level. Only corrections that do not produce fine/hyperfine splitting of the
energy levels are considered. The corrections are added to the nonrelativistic energies and the results
are used to calculate the so-called ‘centre of gravity’ transition energies with respect to the °Be 'S
ground state. A comparison with high-quality experimental results shows agreement to within about
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1. Introduction

In this work, we continue our studies of the spectrum
of the beryllium atom. The states which are considered
are the lowest *D Rydberg states. As precision spec-
troscopy of the light elements is quickly advancing, the
need to refine the high-accuracy quantum-mechanical

calculations has been an important direction of the the-
oretical research. The spectrum of the beryllium atom
has been expensively studied using the state-of-the-art
high resolution spectroscopy methods and has been fre-
quently used to validate the new theoretical models used
in atomic calculations [1]. As the neutral four-electron
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beryllium atom is a relatively simple system, it is usu-
ally possible to achieve in the calculations an adequate
level of convergence of the results in terms of the num-
ber of basis functions provided that the type of functions
used in the calculations are capable of very accurately
describing the electron correlation effects and have suf-
ficient flexibility to be adjusted to describe individual
states. Such flexibility is usually due to the basis func-
tions containing adjustable linear and non-linear param-
eters that can be variationally optimised in the calcula-
tion. In our atomic calculations, we have employed all-
electron explicitly correlated Gaussian functions (ECGs).
The variational optimisation of the Gaussian exponential
parameters performed by the minimisation of the non-
relativistic energy of the considered state of the atom has
been key to achieving high accuracy in our atomic ECG
calculations (see, e.g., Ref. [1]). The optimisation has
involved the use of the analytically determined energy
gradient calculated with respect to the Gaussian param-
eters. Due to the use of the gradient, the basis sets used
in our calculations could have been extended to include
a large number of ECGs [2-5].

High accuracy atomic calculations also require an
accurate account of the leading relativistic and quantum
electrodynamics (QED) corrections, as well as the cor-
rections due to the finite mass of the nucleus [6-9]. In
our calculations, the account for the effects of the finite
nuclear mass is not done is the standard way by employ-
ing the perturbation-theory approach, but involves the
use in the nonrelativistic variational calculations of a
total nonrelativistic Hamiltonian representing the inter-
nal state of the system that explicitly depends of the
nuclear mass. That Hamiltonian is obtained by separat-
ing out the centre-of-mass motion from the laboratory-
frame Hamiltonian. The procedure involves transform-
ing the lab-frame Hamiltonian expressed in terms of
Cartesian coordinates to a new coordinate system whose
first three coordinates are the lab-frame coordinates of
the centre of mass and the remaining 3n-3 coordinates
are internal coordinates. Some more details about the
approach used in our atomic calculations are described
in the next section.

We have studied the Rydberg D states of the beryl-
lium atom before using ECGs. First we reported results
of nonrelativistic calculations carried out for some
lowest !D states [10]. As those calculations did not
include the relativistic corrections, the results disagree
with the experimental values by more than the uncer-
tainties of the experimental results. In recent calcula-
tions [11], we considered the lowest nine ' D states and
the inclusion of the leading spin-independent relativistic
energy corrections significantly improved the agreement
with the experimental results. In the present work, the

calculations involving the relativistic spin-independent
corrections are extended to four lowest *D states of
beryllium.

Measurements of the interstate transitions energies of
the beryllium atom have been performed in several works
over the last half century. Bozman et al. [12] and Johans-
son [13] measured an array of the beryllium transitions
with 0.01-0.02 cm™! precision. The measurements per-
formed by Johansson included a transition involving the
lowest !D state, i.e. the 2s2p 'P — 2s3d 'D transition.
Measurements of the transitions involving the lowest
ID beryllium states were also reported by Kramida and
Martin [14,15].

Even though, ECGs do not strictly satisfy the Kato
cusp conditions concerning the behaviour of the elec-
tronic wave function at the two-electron coalescent point,
if a large number of ECGs are used in expanding the
wave function and their parameters are thoroughly opti-
mised in the calculation, the deficiency associated with
not satisfying the Kato conditions can be effectively reme-
diated. Besides the explicit dependence of the correlated
Gaussian on the inter-electron distances which, as men-
tioned, is crucial in describing the inter-electron corre-
lation effects, the other main advantage is that the algo-
rithms for calculating for the Hamiltonian and overlap
matrix elements, as well as the matrix elements of the
energy gradient, with these functions are relatively sim-
ple and can be coded into a computer programme in a
general form for an arbitrary number of electrons [16].
Also, the ECGs for expanding the wave functions of states
with non-zero angular momentum quantum numbers, L,
including the D states with L = 2 and M[ = 0 consid-
ered in this work can be easily constructed by multiplying
the Gaussian exponentials by the appropriate Cartesian
spherical harmonics [16,17].

With the general form of the ECG matrix-elements
algorithms and with eflicient parallelisation of the
computer code for use on massively parallel systems, the
main bottleneck limiting the size of the atomic systems
which can be calculated with these types of all-electron
Gaussian functions is the n! dependence of the compu-
tational time on the number of the electron in the atom.
Thus very accurate calculations can, at present, be per-
formed for atoms with no more than five electrons [2-5].
Even though we wrote and implemented codes to per-
form ECG calculations for bound states of atoms with
six and seven electrons, e.g. the carbon and nitrogen
atoms, [18,19], the computational resources available to
us at the present time to carry out high-accuracy atomic
calculations do not permit consideration of atoms with
more than five electrons.

As the internal nonrelativistic Hamiltonian explic-
itly depends on the mass of the nucleus, the present



calculations are performed for the stable beryllium iso-
tope which is °Be. Calculations are also done for the
beryllium atom with an infinite mass, ®Be. The present
calculations include the leading spin-independent rela-
tivistic corrections. The algorithms for calculating these
corrections for D states were recently implemented [17].
The algorithms are expressed in terms of the internal
coordinates and some of them explicitly depend on the
nuclear mass. Also, as the relativistic corrections are cal-
culated as expectation values of the operators represent-
ing the relativistic corrections with nonrelativistic wave
function, which is slightly different for 9Be and ®°Be, an
additional dependency on the nuclear mass appears in
the calculation of the relativistic effects. This dependency
is usually called a recoil effect, i.e. the relativistic effect
associated with the motion of the nucleus around the
centre of mass of the atom.

2. The method

In the present calculations, the internal coordinates, r;,
i=1,...,n, where n is the number of electrons, are
Cartesian coordinates of the vectors with the origins at
the nucleus and with the ends at the different electrons. In
this internal coordinate system, the internal Hamiltonian
is expressed as follows [20]:

R 1< 1 1 <&
A= —— —vli.v,+ =Y vl.v,
2 ;Mi noon mO,; nel

i#

+ Xn: Lk Xn: 9, (1)
o T = T

where mg is the mass of the nucleus and qg is its
charge, g; are the electron charges (g; = —1), and
wi = mom;/(mg + m;) is the reduce mass of electron
i (m;, i=1,...,n, are the electron masses). T in (1)
denotes the matrix/vector transposition. As one can see,
the internal Hamiltonian is invariant upon rotations with
respect to the centre of the internal coordinate sys-
tem and represents the motion of n particles, whose
charges are the electron charges and the masses are the
reduced electron masses, in the central field of the nuclear
charge. These particles we call ‘pseudo-electrons’. The
approach used in separating out the centre-od-mass
motion and in deriving the internal Hamiltonian is
analogical to the standard textbook approach used
to solve the Schrddinger equation for the hydrogen
atom.

The ECGs used in the present work to expand the
special part of the wave function for the 3D M; =0
states of beryllium atom considered in the present work
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is expanded in terms of the basis functions being the fol-
lowing products of Gaussian exponentials and Cartesian
angular harmonics:

(L=2)

Pr

= (xi X, + Vi — 22175,

X exp [—rT (A ® I3) r] , )

where electron labels iy and ji can vary from 1 ton (n = 4
for the neutral beryllium atom), with i, > jx and with
i and ji either equal or not equal to each other. The
i > jx case can be called a ‘p? configuration’. and the
i = jk case can be called an ‘sd configuration’. In (2),
A is an n x n symmetric matrix of the real exponen-
tial parameters, which is unique to each ECG, ® denotes
the Kronecker product, I3 is an 3 x 3 identity matrix,
and r is the following 3n vector of the internal Cartesian
coordinates:

X1
I '
T 21
2
r=1| . =1 : . (3)
: X,
Iy
Yn
Zn

(Ax ® I3) is denoted as Ay.

A has to be positive definite to Gaussian (2) be
square integrable. To make Ay be positive definite we
represent it in the following Cholesky-factored form:
A = (LkL,f) ® I3, where Ly is an n x n lower-triangular
matrix of real numbers. Being in that form, Ay is auto-
matically positive definite for the Ly matrix elements
being any real numbers. It is convenient to use the
Ly matrix elements and not the Ay matrix elements as
the variationally adjusted parameters in the calculation
because they can be optimised in an unrestricted range
of values from —oo to 400. If the Ax matrix elements
were chosen as the variational parameters, their optimi-
sation would be constrained by the condition that the Ay
matrix must be positive definite. A constrained optimisa-
tion is usually more cumbersome than an unconstrained
one.

The present calculations concern states with the
triplet multiplicity. In constructing the wave function,
one needs to impose proper permutational symmetry.
In the present work, this is done using the so-called
spin-free formalism [21-23], which involves the con-
struction of an appropriate symmetry projector, P, that
by acting on a basis function makes it comply with
the desired permutational-symmetry properties. In the
present work, P is generated using the appropriate Young
operator which is constructed for the triplet state of the
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four-electron beryllium atom [21-23]. The procedure
for constructing Young operators in ECG calculations
was described in our earlier work [24]. For the presently
considered *D states the P operator is:

P = (14 P12)(1 — P14 — P34)(1 — P13), (4)

where P;; permutes the spatial internal coordinates of the
ith and jth pseudo-electrons.

The internal Hamiltonian (1), as well as the opera-
tors representing the leading relativistic corrections (see
the next section), are symmetric with respect to any per-
mutation of the labels of the pseudo-electrons. Thus, in
calculating the Hamiltonian, overlap, and the energy-
gradient matrix elements, as well as the matrix elements
for the operators representing the relativistic corrections,
the symmetry operator, P, can be moved from the bra
side of the integral to the ket side. Thus symmetry oper-
ator P'P appears on the ket side of the integral. That
operator has 4! = 24 terms which makes each matrix
element to be a linear combination of 24 primitive spa-
tial integrals and the whole calculation to scale as 4!.
The algorithms for calculating the Hamiltonian, overlap,
energy-gradient matrix elements, with ECGs (2), were
presented in Ref. [16].

2.1. Relativistic operators

In the present work, we consider the relativistic correc-
tions that do not result in fine/hyperfine splitting of the
energy levels obtained in the non-relativistic variational
calculations. These corrections are of the order of 2,
where « is the fine-structure constant (¢ = %, where ¢
is the speed of light in the atomic units). They represent
the mass-velocity (MV), Darwin (D), orbit-orbit (OO)
and spin-spin Fermi contact (SS) relativistic effects. The
spin—orbit interaction, that for 3D states results in split-
ting the energy levels into lines corresponding to J =
1,2, and 3, are not included in the present calculations.
The MV, D, OO and SS operators have the following form
in terms of the internal coordinates: mass-velocity term:

1] 1 (<& o
=3 | (0] 2w | @
81 my \'im5 i1 M
Darwin term:

N T (41 1 5
HDZEZ gm—i-? qoqi 8° (ri)
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+5 DD 98wy (6)
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orbit-orbit term:

N qo4j
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J i

1 2 qidj
+ = —
22 L,
i=1 j>i
1 or 1 7 T
x ;Vr,- ) vrj + 1’_3rij : (rij : vri)vrj (7)
i ij

and spin-spin term:

4
8 o]
Hgs = —— qlq]' (si - ) & (ri) » (8)

where §(r) is the Dirac delta function, V, is the nabla
operator acting on the coordinates of vector r;, and s;
is the spin operator for electron i. For the 3D states
considered in this work,

4 4
3
ij=1 ij=1

j>i j>i
The explicit formulas for calculating the matrix elements
of the above relativistic operators were derived in our
previous paper [17].

2.2. The calculations

The computer double precision is used in the present
calculations. The code performing the nonrelativistic cal-
culation for a particular state and the optimisation of the
exponential non-linear parameters of the Gaussians in
written in Fortran 90 and involves MPI (message pass-
ing interface) parallelisation. For each considered state
the ECG basis functions are independently optimised.
In the first step of the calculations, the nonrelativistic
energies and the corresponding wave functions are deter-
mined for the lowest four ! D states of °Be. For each state,
the basis set is grown to the size of 15,300 functions. The
growing procedure involves multiple steps with each of
them consisting of adding a certain number of functions
one by one and optimising them using a procedure that
employs the analytically derived energy-gradient vector.
To generate the initial parameters of a newly added Gaus-
sian, the parameters of the Gaussians already include in
the basis set are perturbed using a procedure that employs
arandom number generator. The perturbed function that



lowers to the energy the most is used as the initial guess
in the optimisation. However, before the optimisation is
performed, the ix and jx pseudo-electron indices of the
optimised ECG (see (2)) are optimised. More details of
the procedure used in growing the ECG basis set can be
found in our previous paper [17].

The use of the one-function-at-a-time approach in
growing the basis set and in optimising the added
functions allows to monitor and eliminate any linear-
dependency between the ECGs that may appear in the
calculation. An appearance of linear dependency among
the basis functions is undesirable because it may cause
numerical instabilities and loss of accuracy in the calcu-
lation. To determine the linear expansion coeflicients of
the ECGs in the wave function, the standard procedure
for solve the secular equation problem is employed.

After the 15,300-ECGs basis sets are generated for
the four lowest 3D states of °Be, they are used to calcu-
lated the energies and the corresponding wave functions
of ®Be. No reoptimisation of the Gaussian non-linear
parameters is performed. Only the linear expansion coef-
ficients are reoptimised by solving the secular problem
with the Hamiltonian matrix calculated with the inter-
nal Hamiltonian where the Be nuclear mass is replaced
with an infinite mass. Such an approach usually works
quite well for lower Rydberg atomic states [16]. The reop-
timisation of the expansion coeflicient usually suffices
to account for the change of the wave function and the
energy due to the change of the nuclear mass [17].

In the final step, the nonrelativistic wave functions
obtained for the lowest four 3D states of “Be and “Be are
used to calculate the relativistic corrections. Then these
corrections are added to the nonrelativistic energies to
calculate the total energies. The total energies are then
used to calculate the transition energies with respect to
the beryllium 'S ground state.

3. Results

The results of the variational calculations concerning
growing of the ECG basis sets for the four lowest 1s22snd,
n = 3,4,5, and 6, states of *Be are presented in Table 1.
The energy values corresponding the basis set of 12,600,
13,500, 14,400 and 15,300 are shown in the table to assess
the convergence of the basis growing process. As one
can see, for all considered states, the ninth significant
figure after the decimal point in each energy value is vir-
tually converged. As expected, the convergence level is
marginally lower for the fourth state than for the lower
states. There seems to be no need to increase the basis set
size any further.

The largest basis set of 15,300 ECGs for each state is
used to calculate the total nonrelativistic energy for *Be.
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Table 1. Convergence of the nonrelativistic energies, Ey i, of the
four lowest 3D states of Be with the number of the ECG basis
functions.

State Basis Enrel
1522s3d 12600 —14.383731176
13500 —14.383731178
14400 —14.383731180
15300 —14.383731181
1522s4d 12600 —14.356902134
13500 —14.356902137
14400 —14.356902140
15300 —14.356902142
1522s5d 12600 —14.344772363
13500 —14.344772368
14400 —14.344772372
15300 —14.344772376
1522s6d 12600 —14.338275846
13500 —14.338275856
14400 —14.338275864
15300 —14.338275872

Note: The energies are given in hartrees.

Table 2. Nonrelativistic energies of the four lowest 3D states of
9Be and *°Be calculated with 15,300 ECG base functions.

State 9Be Be

1522s3d —14.383731181 —14.384634628
1522s4d —14.356902142 —14.357803959
1522s5d —14.344772376 —14.345673406
1522s6d —14.338275872 —14.339176478

Note: The energies are given in hartrees.

The results are shown in Table 2. As expected, making
the nuclear mass heavier lowers the total energy. The
lowering is about 0.001 hartree and decreases slightly as
the level of excitation decreases. This effect is due to an
increase of the reduced mass of the electron caused by
the increase of the nuclear mass. As a result, the elec-
trons are slightly closer to the nucleus in °°Be than in
9Be. This makes the total energy of ®Be being lower than
the energy of °Be. However, the lowering of the ener-
gies of the four electrons due to the increasing nuclear
mass is somewhat uneven. Particularly, the energy of
the Rydberg d electron is lowered more for the lowest
state, where it is located closer to the nucleus, than for
the fourth state. The total energies calculated for Be
and *°Be and shown in Table 2 may provide a refer-
ence for future nonrelativistic calculations performed by
other researchers for an infinite nuclear mass (i.e. with
assuming the Born-Oppenheimer approximation).

The *°Be nonrelativistic energy for the lowest >D
state obtained in this work can be compared with
the energy recently calculated by Puchalski et al. [25]
They also used ECGs in their calculations and their
largest basis set generated for the lowest >D state
consisted of 8192 functions. For that basis set their
% Be energy was —14.38463460377 hartree (their extrap-
olated their energies to an infinite basis set and
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Table 3. The non-relativistic energies, Eprel, and a2 mass—velocity (MV), Darwin (D), orbit-orbit (00) and spin—spin (SS) o relativistic
energy corrections for the 1s°2snd, n = 3,4, 5, and 6, >D states of °Be and *Be.

Isotope Basis Enrel Emy x 102 Ep x 10? Eoo x 1077 Ess o? AF x 1073
State 1522s3d
Be 6000 —14.383731105 —2.680289 2.154023 —9.318846 9.888997 —2.325461
6900 —14.383731131 —2.680367 2.154098 —9.318842 9.888939 —2.325475
7800 —14.383731147 —2.680370 2.154102 —9.318843 9.888604 —2.325487
*°Be 7800 —14.384634593 —2.681031 2.154500 —9.055109 9.890245 —2.325400
State 1522s4d
9Be 6000 —14.356902021 —2.681450 2.154782 —9.348216 9.915980 —2.326320
6900 —14.356902066 —2.681465 2.154819 —9.348217 9.915953 —2.326201
7800 —14.356902090 —2.681644 2.154966 —9.348218 9.915850 —2.326377
Be 7800 —14.357803907 —2.682306 2.155364 —9.084342 9.917496 —2.326290
State 1522s5d
9Be 6000 —14.344772185 —2.681576 2.154824 —9.356135 9.924896 —2.326335
6900 —14.344772254 —2.681749 2.154987 —9.356137 9.924827 —2.326392
7800 —14.344772291 —2.681866 2.155000 —9.356138 9.924732 —2.326419
Be 7800 —14.345673321 —2.682528 2.155497 —9.092218 9.926380 —2.326332
State 1522s6d
Be 6000 —14.338275518 —2.681527 2.154713 —9.359207 9.928281 —2.326498
6900 —14.338275636 —2.681824 2.154986 —9.359210 9.927988 —2.326644
7800 —14.338275705 —2.681946 2.155094 —9.359215 9.927960 —2.326718
*°Be 7800 —14.339176310 —2.682608 2.155492 —9.095274 9.929609 —2.326630

Note: The convergence of the results in terms of the number of ECGs for °Be is shown. All values are given in hartrees.

Table 4. Transition energies calculated for the four lowest 3D
1s22snd, n = 3, 4, 5, and 6 states of °Be and *°Be with respect
to the ground 152252 'S state.

Isotope AErel AEg NIST

State 1522s3d
9Be 62 046.4320 62 054.0711 62 053.740 + 0.06
©Be 62 050.2806 62 057.9509

State 1s22s4d
9Be 67 934.7254 67 942.1691 67 941.65 £ 0.08
©Be 67 938.9316 67 946.4065

State 1522s5d
9Be 70 596.9014 70 604.3358 70 603.74 4+ 0.06
©Be 70 601.2803 70 608.7461

State 1522s6d
9Be 72 022.7192 72 030.0882 72 029.50 +0.08
©Be 72 027.1913 72 034.5916

Note: The non-relativistic transition energies, Ay, are calculated for the 3D
states using 15,300 ECGs. In calculating the transition energies that account
for the relativistic corrections, AE, these corrections for the 3D states are
calculated using 7800 ECGs while the nonrelativistic energies are calcu-
lated using 15,300 ECGs. All values are given in cm~". In calculating the
transitions energies, the following ground-state energies of °Be and *°Be
obtained with 16,000 ECG basis functions are used: Enre) = —14.666435526
(°Be) and £,) = —14.668795820 hartree (°Be), and Epre| = —14.667356508
(*°Be) and £, = —14.669716857 hartree (*°Be) [11. The transition energies
are compared with the experimental results [15]. Each experimental value is
obtained as the gravity centre of the corresponding fine-structure multiplet.

obtained —14.3846346167 hartree), while our present

result obtained with 15,300 ECGs is
—14.384634628 hartree, which is even lower than their
extrapolated value.

The leading MV, D, OO and SS relativistic corrections
are calculated for both °Be and *°Be. The present version
of our computer code for calculating these corrections
does not allow for use of large basis sets. Thus the present
calculations are performed with basis sets of 6000, 6900
and 7800 ECGs for °Be and with the basis sets of 7800
ECGs for ®Be. The results are shown in Table 3. Upon

examining the results one can notice that the convergence
of the total relativistic correction for each of the four state
of °Be is similar to the convergence of the total non-
relativistic energy particularly for the lowest states. It is
interesting that the recoil effect, which can be calculated
for each state as a difference between the total relativistic
corrections corresponding to °Be and *°Be is remarkably
similar for all four states. It raises the value of the rel-
ativistic correction by 0.000087 x 10~2 hartree for states
1s>2snd, n = 3,4,and 5, and by 0.0000088 x 10~ hartree
for the 1s22s6d state.

Finally, the total nonrelativistic energies of *Be and
*°Be calculated with 15,300 ECGs and the corresponding
total energies obtained by adding the relativistic correc-
tions calculated with 7800 ECGs to the nonrelativistic
energies calculated with 15,300 ECGs are used to calcu-
late the interstate transition energies with respect to the
1S ground state of beryllium. The 'S ground-state ener-
gies of °Be and *°Be are taken from our recent paper [1]
where they were calculated using 16,000 ECGs. The inter-
state transition energies calculated for *Be and ®Be with
and without the relativistic corrections are presented
in Table 4 where they are compared with the experi-
mental results taken from Ref. [14,15]. Upon examin-
ing the results in Table 4 one can make the following
observations. The contribution from the relativistic cor-
rections to the transition energy of each of the four states
is about +8 cm™! and the contribution from the finite-
mass effect is about -4 cm 1. The differences between the
transition energies calculated for °Be using the energies
that include the relativistic corrections with the exper-
imental results is smaller than about 0.6cm™! (0.331,
0.519,0.596,and 0.60 cm ! for states 1s*2snd, n = 3,4, 5,



and 6, respectively). For the experimental values used for
the comparison in Table 4 we use the ‘gravity centre’ of
the fine-structure multiplet for each energy level.

4. Summary

In summary, transition energies between the four lowest
3D Rydberg states and the 'S ground state of the beryl-
lium atom are calculated using the finite-nuclear-mass
approach that includes the leading spin-independent
relativistic corrections. Large basis sets of all-electron
explicitly correlated Gaussian functions are used in the
calculations of the 3 D states. The transition energies agree
with the experimental values to within about 0.6 cm™1.
Including the leading quantum electrodynamics (QED)
effects would likely improve the agreement between the
calculated values and the experiment. This was recently
demonstrated in the calculations performed by Puchal-
ski et al. [25] where the lowest beryllium 3D state was
considered. Also, it would be interesting to calculate the
fine and hyperfine structure of the 3D levels. Algorithms
for calculating the spin-orbit interactions contributing to
the fine splitting of D levels of atoms are currently being
developed in our lab.
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