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Abstract—The user-centric ultra-dense networks (UUDNs) con-
front the challenge of performance degradation because of the
erroneous user equipment (UE), and data base station (DBS)
positions estimated at the central controller (CC). This paper
adopts the database aided approach to quantify the error impact
on system-level key performance indicators (KPIs) under various
configuration and optimization parameters (COPs). Although the
performance fall is consistent with the increase in error radius
of both UEs and DBS positions, its impact can be alleviated
by extrapolating on the erroneous database and adopting to
new COP values. To realize this, time-series (TS) forecasting
is utilized to determine the extent of compensation and COP
variations. Results compared for two TS based schemes show
that a significant portion, more than 50%, of the decreased
performance can be recovered by the suggested adoption in the
COP values.

Index Terms—UUDNs, DBS, Central Controller, Time-Series
Forecasting, COPs, KPIs.

I. INTRODUCTION

Wireless and mobile networks are service-oriented busi-
nesses at the massive scale focused on providing better
connectivity experience to the millions of end users. The
designed network should be user-centric, not only in the mar-
keting connotation, but also in the literal architectural design
paradigm [1]. Despite the drastic increase in the link quality
and network capacity due to the reduced average distances in
UDNs, the rise in interference becomes a crucially limiting
factor especially in the scenarios of larger BS density [2].
The idea of the UDNs was evolved to user-centric UDNs
(UUDNs) by revising the role of traditional BS-centric cells
and their relevance in the CRAN architecture [3]. UUDNs
consider a single or a group of UEs at the center of cell and
a remote radio head within the cell is activated to serve the
respective UE(s). This offers the significant capacity benefits
by eliminating the cell-edge users and allowing the dynamic
cooperative transmission and reception; handled locally, and
reduce the signaling and computational overheads compared to
those in network wide cooperation [3]. While there have been
multiple variants of UUDNs that have demonstrated higher
user quality of experience and spectral, energy efficiencies [4],
[5]; they all rely on assumption on accurate knowledge of user
and base station locations.

With the increasing complexity of the network, and surge
of the artificial intelligence (Al) and machine learning (ML)
based solutions, the data driven modeling is being envisioned
not as a preference but an inevitable characteristic of the future
mobile networks [6], [7]. It might not replace the traditional

analytical/mathematical models-based techniques but will cer-
tainly complement on different levels of the network design to
improve the network performance in future generations. Data
driven modeling is being utilized in different contexts, such as:
to predict the network faults and proactive counteraction, to
model the user mobility for efficient handovers, and to utilize
it for learning the load variations and balancing solutions [8].
Although most of the existing work is carried out in BS-
centric network, some works utilize the AI and ML tech-
niques in the user-centric network settings when data driven
approach is indirectly followed. In [9], authors utilize the K-
way normalized cut clustering algorithm to find the optimum
sparse code multiple access code-book allocation which can
minimize the network interference and maximize the system
throughput subject to the QoS constraints. Similarly, in [10]
the multi-branch deep residual learning for user clustering
and cooperative beamforming is used in user-centric networks.
Finally, ML is utilized to approximate the distribution of the
aggregated interference power for the application of spatial
spectrum sensing in the user-centric networks [11].

There have been several studies in literature focusing on
the characterization the positioning error and quantization
loss [12], [13], [14]. The authors in [12] model the effects
of error in UEs positions on the cell edge reliability and cell
coverage probability for the cases of shadowing and non-
shadowing environments. This work is extended in [13] to,
include the error of BS positions in the analysis and utilize
the minimization of drive test (MDT) data based autonomous
coverage estimation technique. Authors report the sub-optimal
performance of the coverage estimation in the presence of
error in geographical information. The work in [14] employs
the fluid model to characterize the signal to interference ratio
(SIR) in database aided user association with control and data
plane split architecture. Similar to [13] this study is carried out
for the case of path loss only, and path loss-and-shadowing
channels. The inaccuracies in positioning techniques lead to
the flawed association resulting in degraded SIR and area
spectral efficiency (ASE), which becomes severe when the
BS density is increased, a common situation in UDNs. An-
other work considering the geographical inaccuracies on the
coverage estimation is carried out in [15]. In this work error
in user positions due to GPS measurement uncertainties and
quantization loss due to the division of the coverage area
in the bins are considered. Authors investigate the interplay
between the positioning error and quantization loss in coverage
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estimation and show that there exists an optimal bin-width; a
function of positioning error and user density, which gives the
maximum coverage. Although these works are good initial
attempts to quantify the error impact, they are specific for the
BS networks only.

While the accurate estimation of the UE’s and BS positions
has been significant in the legacy BS-centric network to
efficiently perform the network automation and self-healing
tasks, it’s importance in the UUDNs cannot be overstated.
The working of these networks requires the accurate location
information of the UEs and DBS at the central controller (CC)
to form the non-overlapping virtual cells termed as service
zones (Szones) and activate the corresponding DBS. It is
generally assumed that the CC is an omniscient entity having
the error free locations of all UEs and DBS. However, every
location estimation approach, such as GPS, has an inherent
inaccuracy associated with it. Hence, the errors in locations of
the UEs and DBS cannot be ignored because they can lead to
the formation of overlapping Szones, and inappropriate DBS
activation, causing the eventual decrease in KPI values. Hence,
the very essence of UUDNs formed by the non-overlapping
and interfering Szones is undermined by the presence of
significant errors in the user and DBS positions. Further the
optimization solution to maximize these KPIs under various
COPs are also affected by the abovementioned errors, leading
to the sub-optimal solutions. Hence, this work is focused on
studying the impact of errors in UEs and DBS positions on
various system-level KPIs in UUDNs by adapting the network
level simulations and data driven approach. To the best of
authors knowledge this is the first work to carry out the
error modeling in the UUDNs following the network level
simulations and data driven solutions. The contribution of the
proposed work is summarized in the following points.

• The first contribution is to simulate the UUDNs module
in 3GPP compliant 5G system-level simulator published
in [12]. The UUDNs is capable for generating the
databases of important KPIs related to different COPs
under the assumption of ideal and erroneous positioning.

• The error in UEs and DBS positions, jointly termed as the
underlying error radius (UER), is considered; to generate
the UER-KPI database and characterize the performance
degradation with respect to error radii.

• Then UUDNs are simulated to generate the COP-KPI
data for both the ideal and non-ideal cases. The perfor-
mance falls previously observed is also validated in the
COP-KPI data generation.

• Finally, TS forecasting is utilized on the non-ideal
database to find the adjustments in the COP values for
mitigating the performance fall. The mitigation solution
by two different TS approaches is analyzed and compared
with the ideal counterpart to determine the accuracy of the
solution and extent to which the compensation is possible.

The rest of paper is organized as follows. In Section II,
system model, motivation for the proposed error modeling
work and details of the framework are discussed. Section III

gives the detailed implementation of the synthetic data gener-
ation mechanism for the UER-KPI and COP-KPI databases,
discussing the usage of these databases for error impact char-
acterization and minimization. The TS mechanism to counter
the error impact in the COP-KPI data is also explained in the
Section III-C. In Section IV, we discuss the simulation setup
and compare the results for the error impact characterization
and TS based solution to reduce the impact. Finally, the
conclusion and future work are given in Section IV.

II. SYSTEM MODEL, MOTIVATION AND PROPOSED
FRAMEWORK

Following the UC-RAN proposed in [13] we consider two
independent stationary Poisson point processes (SPPP) for the
distribution of UEs and DBS in the network area and utilize the
Matern hard core type II (MHC-II) thinning process to model
the scheduled users. The SPPP requires underlying densities
of UEs and DBS; λues, λdbs; to randomly distribute the UEs
and DBSs in the given geographical area. The average number
of the UEs (DBS) in the network is characterized by the
λuesA, where A is the area, The average number of DBS in a
Szone can also be characterized by its respective density and
Lebesgue measure of the circular disc with radius Rsz , i.e.,
λues = π R2

sz . The MHC-II thinning process takes the initial
user distribution and radius of Szone as input and results in
the set of scheduled users, each being on the center of the non-
overlapping Szone, in each TTI. The channel is modeled using
the two-slope path loss model with log-normal shadowing, and
one DBS from each Szone with highest RSRP is activated. For
this work, we assume that all DBS are equipped with a single
omni-directional antenna and transmit with same power which
can can be controlled from the CC. The system is assumed to
be interference limited only as the thermal noise is negligible
for this work. The positioning error analysis is manifested
by the difference in the actual and estimated positions of
UEs and DBS, where actual positions are uniformly located
around their estimated (reported) positions within a circular
disc of error radius. For every setting of the scheduled UEs
and activated DBS in each TTI, we compute the underlying
KPIs and maintain their values in a database.

A. Motivation for the Error Modeling

As explained in the previous section, two important steps
of the user-centric networks working are the scheduling, and
DBS activation. By scheduling, here we mean the formation
of the non-overlapping Szone carried out by the thinning
process of MHC-II, where each user is tagged with a marker,
a uniform random value between 0 and 1, which inversely
corresponds to its scheduling priority. The user who has the
highest scheduling priority in a neighborhood radius Rsz is
scheduled for receiving data from the activated DBS. The
activation of the best available DBS in the Szone is coupled
with the user scheduling as the selected DBS to serve a
scheduled UE should be within the Rsz distance from that UE.
Both processes are carried out by the CC located on the macro
base station or BBU pool. The location information of the UEs
and DBSs has a vital role to play in both processes. However,
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UPER: User Positioning Error Radius (m)

Figure 1: (a). The increasing fall in RSRP with respect to user positioning error radius (UPER), (b). The framework for error
impact characterization and its minimization using the TS based modeling in UC-RAN.

the CC is not an all-knowing entity and has to rely on some
global (or local) positioning techniques [17], to estimate the
location information of the UEs and DBSs. Although the
required location accuracy is dependent on various factors
such as the environment (indoor, outdoor, urban or rural),
applications etc, every estimation technique has inherent error
associated to it. Hence, the location estimation error in the
UEs and DBSs positions cannot be ruled out especially in the
large geographical area. To further emphasize the proposed
work, we plot the impact of error in user positioning, termed
as UPER, on average RSRP at the schedule UEs as shown
in Fig. 1a, details of the implementation parameters given in
Table I. The RSRP values are averaged over all UEs and then
over all transmission time intervals (TTIs), while the shaded
region shows the range of deviation of these values. The error
radius on the x-axis corresponds to the maximum possible
deviation the UEs can have, where for a certain error radius,
the UEs deviation from the original position is uniformly
distributed but confined within the circular of error radius. For
this result, we assume that the DBS positions are not deviated.
As it can be observed that in the ideal (non-erroneous) case the
RSRP values remains largely unchanged because it is assumed
that CC is omniscient to the exact location information.
However, as the error in UEs positions increases there is a
noticeable decrease in the RSRP. It should be noted that in
non-ideal case the CC takes erroneous values of UEs positions
for the Szone formation, UEs-DBS association and activation,
and resource allocation. However, for the calculation of RSRP
in non ideal case, ideal UEs positions are considered to observe
the impact of errors on them. Hence, the erroneous position
based Szone formation can generally lead to relatively farther
DBS activation, which not only gives the lower RSRP but also
increases the interference for the neighboring Szone leading to
reduction in overall average SIR and negatively effecting the
other relevant KPIs. Fig. 1a only shows the impact of error in
UEs positions on the single KPIs, and there occurs significant
decrease in the RSRP values, this situation would become
worse in the simultaneous presence of both the UEs and DBS
positioning errors. Hence, there is a need for a thorough study
of these errors and their impact on the KPIs. Further, to ensure

that this error impact is not skewed by a particular COP setting,
we proposed to extend this error impact characterization for
various COP-KPI combinations.

B. Proposed Framework: Database-aided Error Modeling

The proposed database aided approach to model the impact
of errors on system-level KPIs in UC-RAN networks is
discussed in this section. The framework is divided in three
different stages, as shown in Fig. 1b. The data generation
phase includes the UUDNs simulator which takes in different
values of the underlying COPs, along with the other simulating
parameters, such as the bin size, network area, simulation time
measured in TTIs etc. It also has the flexibility to include or
exclude the value of the error radii, for both the UEs and
DBS positioning errors. It generates the TTI based traces of
various under study KPIs such as the average RSRP, Coverage
Probability, average SIR, ASE and Network Energy Efficiency
(NEE). For all these KPIs the database for ideal case is used
for benchmarking by comparing it with non-ideal cases in the
second block. Finally, the third block focuses to counter the
impact of errors on the KPIs performance by employing the
TS forecasting and suggesting the variations in COPs.

III. SYNTHETIC DATA GENERATION MECHANISM

In this section, we detail out the mechanism followed to
generate the databases for different COP-KPI settings under
the assumption of erroneous and non-erroneous conditions.
These databases can be utilized by the CC to schedule the
sZone UEs and manage the activation of DBS. Further, the
implementation of data driven solution for modeling and
optimization of the network at the CC also requires the
data collection and database formation. To realize these in
UUDNs, the synthetic data generation approach using the
SyntheticNET [16]: a 3GPP compliant system-level simulator
to enable the AI based techniques for 5G and beyond networks,
is followed. The user-centricity is added into the SyntheticNET
as a module where instead of conventional BS-centric cell
formation, the non-overlapping UE-centric Szones are formed
using MHC-II process. The initial deployment of UEs and
DBS is carried out by the Poisson distribution base stochastic
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modeling for the given densities. Then in each TTI, MHC-
II process is utilized to determine the set of scheduled users
and form an Szone of given radius Rsz around each schedule
user. The DBS activation is based on the highest RSRP and
only those scheduled UEs are served which have at least
one DBS in the Szone. To note the effect of the UPER and
DPER, their actual (estimated) positions are used in all steps
of network formation: Szone formation, DBS activation and
KPI calculations for ideal (erroneous) databases.

In terms of the execution, the simulator is composed of two
components, one termed as the front end (FE) and the other as
back end (BE). The parameter setting which involves deciding
the values and ranges of the underlying constant and varying
parameters for the respective database generation are carried
out in the FE. The BE is called, in serial or parallel depending
on the available computing resources, for each parameter com-
bination, where it performs the network deployment according
to the set parameters, runs the simulations over the set TTI
horizon and returns the intended KPIs results.
A. UER-KPI and COP-KPI Databases

As mentioned earlier, the simulator is flexible to generate
two different kinds of databases, named as the UER-KPI and
COP-KPI. The UER-KPI database is used for the error impact
characterization as the effect of UPER and DPER on the KPIs
is measured and stored for both the ideal and non-ideal cases.
Specifically, in the UER-KPI database, the combinations of
UPER and DPER are executed and KPI values are measured
over the TTI horizon, while the COPs and non-optimization
parameters (NOPs) are treated same as all have fixed values.
The results of this error impact characterization is shown
in Fig. 3, where the error in respective KPIs are depicted
with respect to UPER and DPER. In the COP-KPI database
UPER and DPER are fixed along with other NOPs, but the
COP values are varied to observe their impact on KPIs. The
COPs which can be modeled in our simulator include the UEs
density, DBS density, Szone radius, transmit power, RSRP
threshold (used for coverage probability) and SIR threshold
(used for spectral efficiency). The simulator can generate the
various KPIs, such as the RSRP, Success Probability, SIR
which are averaged over all UEs (hence termed as UE level
KPIs) and stored for each TTI, whereas the network level KPIs
include the coverage probability, ASE, and NEE, averaged
over the TTIs only. For the COP-KPI database in this work,
we resort to three COPs i.e., DBS density, Szone radius and
transmit power and generate the ideal and non-ideal databases,
with UPER and DPER of 15, for three KPIs, i.e., RSRP;
from the UE level KPIs and ASE and NEE from the system-
level KPIs for the proposed error analysis. More details of the
parameter values for generating the UER-KPI and COP-KPI
databases are given in the Table I.

B. Countering the Error Impact in COP-KPI Database

In this section, we focus on the approach of adopting
the counter measures to dilute the error impact and recover
some percentage of the performance loss. One approach to
resolve the positioning error problem is to utilize the better

location estimation techniques, which might require expensive
equipment and so on. However, this work is focused to analyze
the network capability to counteract the KPI’s fall by adjusting
it COPs values. To further explain this process and challenges
associated with this, we first discuss the RSRP databases
generated for the ideal and non-ideal case as depicted in Fig. 2.
In this result, three important COPs, having 10 values for
each and given in the order of co=[Transmit Power, Szone
Radius, and DBS Density] vary from the [15, 10, 0.0005]
to [30 dBm, 50 m, 0.00125 km−2], generating the overall
databases size of 103 = 1000 instances. With UPER and
DPER of 15 m, a significant fall in the RSRP can be noted
which can adversely affect not only on the system performance
but also on the data driven optimization solutions aimed to
maximize the network performance for this KPI. Hence, there
is significant need for the countermeasures to mitigate the
effect of the positioning errors. The careful observation of the
COP-KPI data suggests that along with the seasonal rise and
fall, there occurs a trend of linear rise in the KPI values with
respect to COPs in both the ideal and non-ideal cases. This
suggests that a further increase in COP values for non-ideal
case can bring its values closer to the ideal situation. However,
unlike most of the ML based solutions which are focused on
the interpolation, this trend requires to extrapolate, predict out-
of-bound values, on the COP-KPI relations. To undertake this
challenge, one of the basic extrapolating ML technique, TS
forecasting is utilized to learn the KPIs trend and predict the
next possible maximum values. There are various TS regressor
solutions available, however, we resort to the seasonal auto
regressive integrated moving average (SARIMA) and multi-
layer perceptron (MLP) models, as SARIMA model is suitable
for the TS forecasting where the available data involves the
seasonal patterns.

The key challenge in this approach is that unlike the conven-
tional 1-D independent variable where increase and decrease
can be directly visualized on an axis, the COP combination
is a three-dimensional pattern in which only one parameter is
changed between two successive instances. Hence, the increase
in COPs combination is not straightforward to observe in the
database. Therefore the corresponding COP values cannot be
directly extracted from the forecasted KPIs unless we already
have a database for those COP values, which can be used
for this purpose and performance evaluation of the TS based
solutions. To tackle this challenge, we assume the already
generated 10 values per COP based databases (referred as
DB-10) as baselines and indexed out two databases from it
named as DB-08, and DB-09. The DB-08 is taken by assuming
that each COP has the first 8 of the original 10 values, hence
the COPs corresponding to only those values in DB-10 are
extracted for this case. The TS regressor solutions are trained
on all 83 = 512 values of DB-08 to learn the KPIs trend and
forecast the 93−83 = 217 extra values of the second database
(DB-09), whose generation is similar to DB-09. The DB-09
KPI values can be utilized to validate the forecasted results
and measure the forecasting accuracy and percentage recovery.
Specifically, the maximum forecasted values are compared to
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the pre-generated values of DB-09 database, and the closest
possible KPI value from DB-09 is taken as solution and its
COP combination is given as the suggested solution.
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Figure 2: The COP-KPI database trends with the ideal and
non ideal cases.

Illustration: An example for the case of RSRP is detailed
out here, for other KPIs similar approach is followed. The
maximum RSRP in DB-08 for the ideal case is −80.53 dBm
for the COPs combination of ci = [26.66, 36.66, 0.001081]
which falls to −91.27 dBm due to UPER and DPER of
15 m. Now, taking the maximum RSRP of non ideal case
in DB-09, i.e., vt = −87.45 dB, corresponding to ct =
[28.33, 45.55, 0.001164] as the achievable improvement, the
abovementioned TS models are trained on the DB-08 and
predict the values of forecast horizon. For the RSRP case,
the maximum values predicted by the SARIMA and MLP
Regressor (MLP-REG) are −87.82 and −87.52 dBm, respec-
tively. The minute difference from the predetermined target,
vt is used as the forecasting error and ct has the suggested
new values of the COPs to somewhat mitigate the effect of
positioning errors. Hence, by changing the COPs to this ct
combination, the RSRP can be improved.
Table I: Simulation parameters for generating the UER-KPI
and COP-KPI databases. EMP: Error modeling parameters

Parameter
Name

Parameter
Type

UER-KPI
Scenario

COP-KPI
Scenario

User Density NOP 0.0005 0.0005
DBS Density COP 0.0005 0.0005-0.0125

Transmit Power COP 20 dBm 15-30 dBm
Szone Radius COP 25 m 10-50 m

UPER EMP 0 – 25 m 15 m
DPER EMP 0 – 25 m 15 m

Shadowing NOP 4 4
Network Area NOP 1km sq 1km sq

Bin Size NOP 10 10
Simulation Time NOP 100 100

IV. SIMULATION RESULTS

This section discussed the results of proposed data-base
aided error impact characterization and the solutions. While
the detailed implementation of simulator for generating the
databases is briefly discussed in Section III, the specifics
of 3GPP compliant 5G system-level simulations carried out
to model the network parameters in a geographical area of
interest are given in Table I. For the UER-KPI database,

Table II: The parameters of SARIMA and MLP-REG models
used for the TS forecasting for different KPIs under study.

SARIMA Model Parameters MLP-REG Parameters
Trend

Elements
(p, d, q)

Seasonal
Elements

(P, D, Q, m)

Model
Specs
(l, n)

Solver and
Activation
Functions

RSRP (1, 1, 1) (1, 1, 1, 64) (5, 20) (lbfgs, relu)
ASE (1, 1, 1) (1, 0, 1, 64) (10, 50) (adam, relu)
NEE (1, 1, 1) (1, 0, 0, 64) (10, 50) (lbfgs, tanh)

simulator takes various combination of the error radius and
generates the corresponding values of the KPIs. Each KPI
has the ideal and erroneous variant, which are compared to
characterize the error in terms of performance fall.

A. Error Characterization Results

The results of the error impact characterization on KPIs
understudy are discussed here. The fall in RSRP, ASE and
NEE with respect to the UPER and DPER is shown in Fig. 3.
For this analysis we assume the fixed Szone radius of 50 m,
transmit power of 20 dBm and UEs and DBS densities of
0.0005 Km−2. The UPER and DPER vary from a minimum
value of 0, referring to the ideal condition, to the maximum
value of 25 m (half of the sZone radius). Figure contains the
error in the RSRP, ASE and NEE values, which is computed
by differing from the ideal values, with respect to UPER and
DPER. The general trend in all these results suggests that as
UPER and DPER increase, the fall in each KPI performance
increases. However, the specific fluctuations are idiosyncratic
to the respective KPI inherent nature and to the fact that these
trends are averaged over all UEs and TTIs. An important
observation to note is that the effect of error in one parameter
is more pronounced while the error in the other one is lower.
Specifically, the RSRP results show that both the UPER and
DPER affect adversely on RSRP. However, the impact of
UPER on the error in RSRP is significant when the DBS
error is low, this is because the uncertainty in DBS position in
this situation can lead to some cases when even the erroneous
DBSs are located closer to the UEs which contributes towards
the RSRP improvement.

B. Time Series Forecasting Based Error Alleviation Results

As discussed in Section III-B, for all the KPIs, we employ
MLP-REG and SARIMA models for the TS forecasting with
relevant parameters, selected after extensive search are listed
in Table II and results for models’ errors and performance
is shown in Fig.4. The percentage of each KPI performance
fall and recovery by the comparing models are depicted in 4a.
Although the fall in RSRP was visualized in Fig. 2, the left
three bars show the fall in all KPIs, average over TTIs. To
show the impact of compensation, the KPIs percentage fall
after recovery by the respective TS schemes is plotted. These
results depict that, in the given network settings although a sig-
nificant of the KPI fall can be recovered by adopting the COP
values, the non erroneous case cannot be achieved because of
sufficiently high error radius. Comparing the SARIMA and
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(a) The trend of the error in RSRP with
respect to UPER and DPER.

(b) The trend of the error in ASE with respect
to UPER and DPER.

(c) The trend of the error in NEE with respect
to UPER and DPER

Figure 3: The impact of the error in the User and DBS positioning error radii (UPER and DPER) on various KPIs.

MLP-REG progress, it is evident that former models are able
to outperform the later one for all KPIs because of its natural
tendency to learn the seasonal patterns in the database. It
is corroborated by the training and forecasting errors of all
KPIs where SARIMA model achieves better performance in
all comparisons except the NEE forecasting. The training and
forecasting errors are independently normalized between two
comparing schemes to better visualize their performance.

(a) Percentage decrease and re-
trieval of underlying KPIs

(b) Training and forecasting errors
for comparing models.

Figure 4: Comparing the MLP-REG and SARIMA Models.

V. CONCLUSION

The error in UEs and DBS positions cause significant
problems in the Szone creation, DBS activation and resource
allocation stages of the UUDNs. To quantify the impact of
these errors in UUDNs, this paper employs to the synthetic
database aided approach to show continuous fall in KPIs as
the UPER and DPER increase. To dilute the error impact, this
work applies the TS forecasting on the erroneous database
and determine the enhanced COPs’ combinations to make up
for the decreased KPIs. The comparative analysis of MLP-
REG with the SARIMA model shows that the later has higher
prediction accuracy and compensation efficiency. In future, we
aim to extend this work by observing the analysis for more
COP-KPI databases, and analyze the potential of TS based
error impact alleviation on different training and prediction
window sizes, which might further improve the compensation
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