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A quantum-mechanical model for describing a hydrogen atom confined to a soft-wall cuboidal potential energy
trap is implemented. Explicitly correlated Gaussian functions are used to expand the hydrogen wave functions
that are symmetry-adapted with respect to the symmetry elements of the trapping potential. The calculations are
performed without assuming the Born-Oppenheimer approximation. The electronic and nuclear densities of the

calculated states are visualized using one-particle density plots. The approach enables to describe the behavior of
a trapped hydrogen atom and, when extended to multiple hydrogen molecules, has potential for application in
the theoretical modeling of the hydrogen storage phenomenon.

1. Introduction

The hydrogen atom subjected to various confinement potentials, by
impenetrable or partially penetrable walls of different geometrical
shapes such as spherical, paraboloidal, or prolate spheroidal walls, has
been the subject of several studies over the past 80 years [1-5]. The goal
of all these studies has been to observe how atomic properties evolve as a
function of the confinment. The studies also led to the interest in
confined multi-electronic systems such as helium [6-10], Liy [11], and
LiH [12]. These model systems have since then been successfully applied
to study spherically confined atoms and ions embedded in a plasma
environment [13-15], appearance of critical points in the Shannon en-
tropy sum [16], induced electrical and magnetic properties [17-20],
second-order phase transitions [21], ionization and excitation proba-
bilities for a bound system suddenly released from a penetrable
confinement [22], confined quantum systems [23], anharmonic effects
in solids [24], and nuclear shell models [25]. The studies have also
proved useful to study different properties such as polarizability
[26,27], hyperpolarizability [9], dipole moment [28], hyperfine split-
ting [29-32], NMR shielding constants [31], electron (de) localizations
[33], and chemical reactivity [34]. More examples of systems with
confined atoms and molecules can be found, for example, in Refs.
[35-37].

The solutions for systems subjected to a confinement potential have
been achieved by employing a wide variety of analytical and numerical

methods. Most of these studies use Coulomb potentials in conjunction
with hard-wall potentials. These latter potentials are characterized by
values that reach infinity at the confinement boundary. For a spherical
confinement potential with ry as the radius of the confinement, a hard-
wall potential can be written as [26]:

. _J0 if 0<r<ry
Veons <r> - {Jroo if r2ry @

Looking at the above equation, it is clear that there is a discontinuity at
ro. Therefore, the eigenfunctions of the Hamiltonian that employ this
potential must vanish at the boundary, when r; = ry (for some coordi-
nate i), thus satisfying the Dirichlet boundary conditions, ¥(ry,...,rm) =
0, at the boundary surface.

The kind of confinement potentials discussed above is not very well
suited to study traditional quantum-chemistry phenomena, which uses
basis functions such as Gaussians that extend to infinity. To address
these issues, Pasteka et al. suggested a soft-wall confinement potential
[38]. The spherical confinement used by them to study n-electron sys-
tems in the Ref. [38] was:

n . N
Vconf <ri> = ; (ri(;) 3 (2)

where ry is the radius of the confining sphere and N € N is the stiffness
parameter that can control the penetrability of the sphere. Since Vons(17)
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Fig. 1. A schematic representation of the system (not to scale). The red sphere
represents the hydrogen atom trapped inside a cuboidal PE trap. The sides of
this cuboid are of lengths 5 a.u., 20 a.u., and 10 a.u. along the x,y, and z-di-
rections, respectively. There are 5402 point charges of unit magnitude
distributed at equal density all along the surface of the cuboidal trap.

does not possess a discontinuity at ry, there is no necessity to apply the
Dirichlet boundary condition at r = ry, simplifying its use with existing
numerical algorithms and with standard Gaussian-based electronic-
structure software packages. Even without the Dirichlet boundary con-
dition applied to these systems, it can be expected that the wave func-
tions will decay quite rapidly for |r;| > ro. The Pasteka potential was
successfully employed by the authors of Ref. [38] to study the confine-
ment of one electron hydrogen atom, as well as many-electron systems
like helium, carbon, potassium, and methane.

In the present work, we develop a quantum mechanical model of a
hydrogen atom trapped in a cuboidal “box™ that is made up of alter-
nating positive and negative point charges. This serves as a soft-wall
confinement potential where we do not require the wave functions to
vanish at the boundary. The quantum states of this single hydrogen atom
interacting with the confinement potential are investigated using the
effective non-Born-Oppenheimer (non-BO) method introduced by
Kozlowski and Adamowicz [39]. The main tenet of this approach is
treating the nuclei and electrons on an equal quantum-mechanical
footing, whereby the BO approximation is not assumed. This means
that the wave function for a particular state of the system depends on the
coordinates of both types of particles comprising the said system. We
employ explicitly correlated Gaussian (ECGs) functions with shifted
centers to expand the spatial parts of the ground and excited-state wave
functions of the trapped hydrogen. The approach facilitates an effective
way to describe the coupled motion of the electron and the proton
within the box without the BO approximation. As ECGs explicitly
depend on all inter-particle distances, they enable to represent the
correlated proton-electron motion to a high degree of accuracy. Though
in the proof-of-concept scenario of a single hydrogen atom we do not
have any nucleus-nucleus and electron-electron correlations, the ability
to include them for more complex systems such as a hydrogen molecule
or a cluster of hydrogen molecules is expected to give us more accurate
results compared to techniques that employ orbital expansions of the
wave functions of the electrons and the nuclei.

Another possible application of the work described in this work
would be to model the hydrogen storage phenomenon for applications in
the hydrogen economy. There are five key elements of the hydrogen
economy infrastructure-production, delivery, storage, conversion, and
application [40]. This concept was first introduced in the mid-1970s and
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research into its viability has been steadily increasing, as the climate-
crisis has quickly become one of the most important problems for the
21st century. The hydrogen economy improves the energy security and
also reduces oil-spills, carbon dioxide and other greenhouse gas emis-
sions, making it a perfect solution for the future [41]. While the five
elements of the infrastructure are all in several stages of development
[42], research on hydrogen storage is in the forefront, since developing
safe, reliable, compact, and cost-effective materials for use in fuel-cell
technology will lead to a greater viability of the hydrogen economy.

Important classes of materials considerd for hydrogen storage
include: (i) carbonaceous materials like fullerenes, carbon nanotubes
(CNTs) and graphene, (ii) metals and alloys (intermetallics), (iii) metal
organic frameworks (MOFs) and covalent organic frameworks (COFs),
(iv) zeolites, and (v) clathrates [43]. Multiple studies have been carried
out to investigate the hydrogen storage characteristics of these materials
to varying degrees of success. There have also been several experimental
and theoretical studies on clathrate hydrates, preliminary explorations
of which have shown that these materials could serve as the next rev-
olutionary on-board hydrogen storage materials [44].

In this work, we consider not a cubic, but a cuboidal potential energy
(PE) “box”, as this provides a better model for trapping of a hydrogen
atom in a cage formed by molecules of a clathrate. The cuboidal trap
used in the present work is shown in Fig. 1. In a cuboidal box, where the
x,y, and z dimensions are different, there are eight different types of
angular symmetry states of a hydrogen atom or molecule placed within
the “box”. The reason for there being eight symmetry types of states
arises from the following: with the center of the box located in the center
of the coordinate system, the wave function can either be symmetric (S)
or antisymmetric (A) with respect to the x plane, symmetric or anti-
symmetric with respect to the y plane, and symmetric or antisymmetric
with respect to the z plane. Also, within each symmetry, there are states
that differ in terms of the number of “radial” nodes in their wave
functions. These “radial” states for each of the eight symmetries are
calculated separately. For the purpose of visualizing all these different
states, we use plots of the electronic and nuclear densities. These plots
show us the relative distributions of the electron and the proton in the
ground the excited states of the hydrogen atom confined to the potential-
energy trap. It is obvious that, in its nascent stage of development, our
model cannot account for all the different facets of hydrogen storage.
However, there are possible ways of extending the model so it can be
ultimately used to study the hydrogen storage phenomenon.

2. The method

We need to expand the total spacial wave functions of the trapped
hydrogen atom in terms of a set of K basis functions as:

TO “S e, () @

where ¥ is the wave function, ¢,’s are the basis functions and the ¢ ’s are
the linear expansion coefficients that determine how the different basis
functions contribute to the overall wave function.

As mentioned, in the present calculations, we employ explicitly
correlated gaussian (ECGs) functions with shifted centers, also known as
floating explicitly correlated Gaussians (FECGs). Each of these ECGs can
be written as the following N-particle Gaussian function:

o)) -Tlool -y Tlewl -]
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In the Eq. 4, the first term represents the N orbital Gaussians and the
second term represents the N(N-1)/2 Gaussian pair functions or gemi-
nals. of is the orbital exponential parameter of Gaussian k for particle i.
Similarly, /ig- is the exponential parameter of the k™ Gaussian pair
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function that is formed by particles i and j. r; is the position vector of
particle i, namely (x;,y;, %), is a vector of length 3N built from the r;
position vectors of the particles, and R¥ is the center of the Gaussian k for
particle i.

Eq. 4 can be alternatively written in the following simpler form
which makes it easier to manipulate and optimize the non-linear
parameters:

i (r) = exp[ — (r — s1) (Ax @ ) (r — s3)]. 5)

Here r is the same vector as explained previously. The prime symbol () is
used to denote the vector and matrix transposition operation. In the case
of the hydrogen atom, we have two particles, the proton and the elec-
tron, and N = 2. For the hydrogen molecule, N = 4, as we have 2 elec-
trons and 2 protons in this case. In Eq. 5, s; is a 3N-dimensional vector
that contains the Gaussian shifts, Ax is an N x N dimensional symmetric
matrix of the Gaussian exponential parameters, and I3 is the 3 x 3
identity matrix. The Kronecker product of Ay with this identity matrix Is
gives us a 3N x 3N dimensional symmetric matrix.

Our previous work has shown that the ECG basis functions are
spherically asymmetric, and can be made square integrable and form a
complete set [45]. The reason why they are not spherically symmetric
stems from the fact that the centers of these Gaussians are shifted away
from the origin, making these shifts directional in nature. This property
makes these basis sets ideal to be used when we want to study, for
example, systems that are under the influence of external electric fields,
or confined to a non-spehrical trap such as the one considered in this
work. The method that is used to ensure the square integrability of the
basis functions is discussed shortly.

In the non-BO approach, where the electrons and nuclei are treated
equivalently in the calculations, the ECGs can effectively describe the
electron-electron, electron-nucleus, and nucleus-nucleus correlation ef-
fects by including explicit dependence on the inter-particle distances,
(ri—r;), in Eq. 4. The latter two correlation effects are quite significant
because the electrons, particularly the core electrons, have the tendency
to follow the nuclei very closely and the nuclei tend to stay away from
each other leading to a small overlap of their wave functions. Therefore,
these two correlations are qualitatively different from those of the
electrons, which, because of their lighter masses, typically create a
significantly larger overlap of their wave functions.

In order to describe bound states of the system, auch as the types of
states studied in the present work, Gaussians (Eq. 5) that are used to
expand the corresponding wave functions need to be square integrable.
This can only be achieved when Ay is positive definite. We get around
this problem by constructing Ay from a lower-triangular N x N matrix,
Ly, using the following Cholesky factorization method:

A = L/Ly, (6)
where

Li(1,1) 0 0 0

Li(1,2)  Li(2,2) 0 0

Ly(1,N) L(2,N) L(3,N) Li(N,N)
The elements of this L; matrix can vary in the range [ —oo, +oo] thus
ensuring that, when we perform a variational optimization of the
Gaussians, we can do so without putting any constraints on the Ly matrix
elements. The variational adjustment of the L, parameters (as well as the
sk coordinates), make the ECG functions flexible enough to represent the
bound states of the trapped hydrogen systems under study in the present
work.

We next present the non-BO Hamiltonian operator used in the cal-
culations. In general, for g nuclei and n electrons (g + n = N). The
Hamiltonian is:
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A=TiT= vy, + 3 Y 0, Yy ®

Sij
where

(3x1
S
oy1
v, = ©)

ox;

o2y

and

2my,

M= 2y ‘ 10)

Here, T and V are the kinetic and potential energy operators respec-

tively and V, is the gradient operator. The kinetic energy operator, T ,
includes an N x N diagonal mass matrix M. This matrix contains the
masses of the g nuclei, my;,myz, -+, My, in the first g diagonal elements
and the masses of the n electrons, me; , M2, -+,Men, in the next n diagonal
elements. The total numbers of the g nuclei and the n electrons add up to

N. The potential energy operator, V , is made up of two terms. The first
term represents the interaction between the N particles and the second
term corresponds to the interaction between the N particles in the sys-
tem and the M point charges located on the surface of the cuboidal PE
trap. q; is the charge of particle i, r is the distance between the particles i
and j,p;,j = 1,...,M, are the point charges uniformly distributed on the
surface of the cuboid trap, and s; is the distance between particle i and
point charge j. Thus, term Y , Zjl‘i 1q;_? in (8) represents the trapping
potential in the present calculations.

In the present calculations, we use the standard variational method
to obtain the energies of the states and their corresponding wave func-
tions. This is done by minimizing the energy with respect to the linear
expansion coefficients of the wave function in terms of the basis func-
tions, c’s, the L; matrix elements and the coordinates of the shift vector
sx. For a system formed by N particles, each N-particle Gaussian basis
function has a total of 3N s, parameters and N(N +1)/2 Ly parameters, as
well as one ¢, parameter. For the hydrogen atom, we thus have three Ly
matrix elements, six s; coordinates, and one ¢, parameter for each ECG
basis function in the wave function of each state. These parameters are
optimized for each basis function by variational minimization of the
total energy:

. (V|H|P)
E M TN (W) an

In the energy minimization, the energy gradient determined with
respect to all Ly and s, parameters is employed [45]. The use of the
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gradients significantly accelerates the minimization process.

As mentioned, the probability densities of the electron and the pro-
ton in the ground and excited states of the system are calculated and
analyzed. In general, the one-particle density of particle one can be
calculated by the method outlined in the previous work from our lab
[45]. This standard procedure to calculate the particle-one density in-
volves squaring the wave function, ¥*W, and then integrating over the
coordinates of all the particles (2,3, ---,N) other than particle one:

P<r1,r,]> = /‘I‘(rl,rz,...,rN)‘I’(r/],rz,...,rN)drz,...,drN. 12)

In order to calculate the density of any particle other than the first
particle, i.e. particle i, we simply interchange the position of that particle
with the first particle in the wave function. This is easily done by
exchanging the appropriate rows and columns of the Ay matrix (and the
corresponding coordinates of the s, vector) so that particle i becomes
particle one and particle one becomes particle i. After the densities are
calculated in this manner, they are plotted using the 3D-xy contour plot
feature embedded in Mathematica.

3. Illustrative calculations

The hydrogen atom is placed in a cuboidal potential energy trap (the
potential energy “box”) that has the dimensions of 5 atomic units (a.u.)
along the x-direction, 20 a.u. along the y-direction, and 10 a.u. along the
z-direction, with the center of the cuboid located at the origin (0,0,0) of
the coordinate system. A schematic picture of this box is presented in
Fig. 1. Point charges of unit magnitude having alternate signs are placed
all along the faces of this cuboidal box. There are a total of 5402 charges
of alternating sign distributed at equal intervals along the whole surface
area of the cuboidal potential energy trap. The lengths of the three sides,
the charge magnitude, and the charge density are all tunable parameters
in our calculations.

As mentioned, the reason for choosing a cuboidal box is to ensure
that the model depicts a real system of a trapped hydrogen atom better
than a cubic box would. In reality, a hydrogen atom is entrapped in a
cavity formed by a molecular network. To a first degree of approxima-
tion, we simulate the presence of the molecules forming the cavity with
the “point charges”. For most situations, these molecules will not be
creating an uniform “cubic box” but would rather more closely resemble
a cuboidal trap. Therefore, using an PE trap that has unequal lengths
along the three axes seems to be a better first-order approximation. This
cuboidal box also causes the system to have a lesser degree of de-
generacy of the energy states. Due to this, we are able to access a
particular individual energy level for closer inspection more easily than
would be possible if multiple states had the same energy.

The calculations starts with a basis set of three ECGs describing a
hydrogen atom located in the first quadrant of the box, i.e. the quadrant
with x>0,y >0, and z > 0. These “generator” ECGs have all their
centers shifted slightly away from the origin (0,0,0). We then use each of
these generator functions to create 8 symmetry-reflected Gaussian
functions according to the procedure described below.

In the current problem, there are three symmetry planes (x,y, and 2)
from which we can create eight different reflection combinations. A non-
BO wave function describing a state of the hydrogen atom in the box that
is symmetric along all the three planes is labeled as SSS. Wave functions
can also have one plane along which the reflection is antisymmetric. If
the wave function is antisymmetric with respect to the x-plane, we label
it ASS. Similarly, if the wave function is antisymmetric with respect to
the y- and z-planes, we label it SAS and SSA, respectively. A wave
functions can also have two antisymmetry planes. If the antisymmetry
planes are the x and y planes, we label it AAS. Analogically, a ASA wave
function has antisymmetry along x and z planes and a SAA wave func-
tion only has one symmetric plane, namely the x-plane. The eighth and
final combination is the case where the wave function is simultaneously
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Table 1

The minimized energies of the lowest states of the hydrogen atom for eight
angular symmetries. The minimized energies of the lowest states of the eight
angular symmetries calculated using the variational method.

Angular Symmetry State Minimized Energy (in Hartree)

SSS —0.496562
SAS —0.496507
SSA —0.496445
ASS —0.496446
ASA —0.496442
AAS —0.496376
SAA —0.496401
AAA —0.496327

antisymmetric along all the three planes and we label it as AAA.

Each “generator” Gaussian function is reflected along the three
symmetry planes to create the eight functions. Next, the eight functions
are used to form linear combinations with appropriate linear expansion
coefficients corresponding to the particular symmetry. In this way a
symmetry-adapted basis set is constructed. Therefore, if we start with
three generator ECGs, we, in effect, have 3 x 8 = 24 symmetry-adapted
Gaussian functions in the basis set. Each of the generator Gaussian
functions have 2(2 + 1)/2 = 3 Ly parameters and 3 X 2 = 6 s pa-
rameters. The three generator Gaussians also have three ¢ coefficients.
Therefore, we have a total of 10 adjustable linear (¢, ) and non-linear (L
and s;) parameters per ECG function. In this way we create the basis set
for the calculation.

Once we have a basis set, we use our in-house code to carry out a
variational minimization of the energy of the lowest-energy state for
each of the eight symmetries with respect to the parameters L,sx, and ck.
The minimization employs an algorithm that utilizes the analytical en-
ergy gradient determined with respect to all these non-linear parame-
ters. The energies of the lowest states of the eight different angular
symmetries calculated in this way are presented in the Table 1.

If all these states are optimized to the same level of convergence, as is
done in our calculations, we would expect the lowest energy state to be
the one that is symmetric with respect to all three planes, i.e., the SSS
state, while the highest energy state among the lowest energy states of
the eight symmetries would be the AAA state. Also, most states with one
symmetry plane (ASS, SAS and SSA) are expected to have lower energies
than ones with two antisymmetry planes (AAS, ASA and SAA). This is
exactly what we get from the calculations as evidenced from the Table 1.

At this point, it is worthwhile to note that working with atoms and
molecules in confinement potentials can lead to linear dependencies
between the basis functions, since all these basis functions are con-
strained within a small spatial area [46-49]. Linear dependencies arise
when the overlap between two basis functions, i and j, i.e., Sy, is too close
to one. As this may lead to numerical instabilities and inaccuracies in the
calculations, it is imperative that we remove such linear dependencies.
The way we deal with this in our calculations is by having a threshold
value specified for the overlap, S; = 0.99 and by using a cyclic optimi-
zation procedure [50]. In this cyclic optimization procedure, basis
functions are optimized one function at a time, meaning that the L; and
sk values of that function are the only parameters that are optimized in
the calculations and all other Ly and s values are frozen. The optimi-
zation is carried out over several cycles. In this work, the number of
cycles chosen is 20 for each basis function. At the end of each optimi-
zation cycle of the function, if the calculation finds that it has an overlap
equal to or greater than 0.99 with any other function(s), it marks it as
being linearly dependent and when that happens, the program resets the
value of the parameters of this basis function back to its original pre-
optimization values. This back-tracking is not problematic because, by
the time the next cycle arrives, the entire energy hypersurface will have
changed due to the optimization of the other functions. In this new cycle,
that basis function may no longer be linearly dependent on the other
function(s) and its optimization may proceed without any issues. A
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Fig. 2. Contour plots of (a) proton density and (b) electron density for the lowest SSS state; Contour plots of (c) proton density and (d) electron density for the lowest

SAS state. The contour value used in plots (a)-(c) is 0.0003.

pairwise linear dependency can also manifest itself by two different
basis functions having very similar and large values of the linear coef-
ficient, but with opposite signs. This kind of pairwise linear de-
pendencies can also be located and efficiently removed by making use of
the Schmidt orthogonalization routine outlined in detail in [50]. Thus
we can see that if we begin our calculations with basis functions that are
sufficiently different from each other, the calculation can ensure that
linear dependencies can be taken care of, while maintaining the integ-
rity of the basis set.

In the Fig. 2-5, we present the 3-dimensional plots of the electron
and proton densities of the eight angular symmetry states. The density
calculations are performed in a cubic box whose length coincides with
the longest side of the cuboid trapping potential. Due to the limitations
of the plotting software used in this work, we plot the densities using a
cubic box rather than a cuboidal box. The use of the cubic box with
larger parameters than those of the cuboidal box representing the trap
allows us to check whether there is any appreciable amount of the
electronic or nuclear density that tunnels out of the box. Upon exam-
ining the plots, no tunneling of the densities out of the cuboidal trap is

found.

The cubic box used in the density calculations has dimensions 20 x
20 x 20 atomic units (a.u.) and a grid with a step size of 0.5 a.u along all
the axes is used in the plotting. The center of the coordinate system
coincides with the center of the box, so each of the edges in our calcu-
lation starts at —10 a.u and ends at + 10.u. The total number of points in
such a cubic box where the density is calculated is thus 41° = 68921.
Once the calculation of the density is completed, it is numerically in-
tegrated over the whole cubic box to check what part of the wave
function is located within the box. For the ground-state calculations, a
desirable result of this integration should be a number close to one. Our
test shows that this is indeed what happens. We present the numerical-
integration values for all the eight symmetry states in the tables below.
Table 2 lists the values of the integrated densities of the proton while
Table 3 lists those of the electron.

A test calculation of the densities using a grid size of 0.25 a.u. along
the longest axis (i.e., the y-axis) was also done to check the convergence
of the results with grid size. This calculation, understandably, took more
computational time, but it did not change the integrated value of the
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(d)

Fig. 3. Contour plots of (a) proton density and (b) electron density for the lowest ASA state; Contour plots of (c) proton density and (d) electron density for the lowest

AAS state. The contour value used in plots (a)-(c) is 0.0003.

density to any appreciable extent. Therefore, it can be safely concluded
that a grid size of 0.5 a.u. along all the different axes is a good one.
Hence, we used this particular grid size in all our calculations for both
the ground and excited states that will be presented next.

One of the important features in the density plots is the appearance
of radial nodes. For the SSS case, since the wave function is symmetric
with respect to reflection along all three planes, we do not expect to find
a nodal plane, so both the electronic and nuclear densities look like an
ellipsoid that is slightly elongated along the longest axial direction (the
y-axis in our case). For the cases with one nodal plane, namely, the ASS,
SAS, and SSA cases, we would expect to find one nodal plane along the

plane where the wave function is antisymmetric with respect to reflec-
tion. In the ASS case, this nodal plane is the x-plane. Similarly, the SAS
case exhibits a nodal plane along the y-plane and for the SSA case, the
nodal plane is the z-plane. Along a similar vein, one would expect two
nodal planes in the AAS, ASA, and SAA cases, since all these angular
symmetry cases have two different antisymmetric planes with respect to
reflection. The AAS case has the x and y-planes as its nodal planes, the
ASA case has nodal planes in the x and z planes and for the SAA case, the
nodal planes appear in the y and z planes simultaneously. Finally, the
AAA case calculations show three mutually perpendicular nodal planes,
namely all the axial planes.
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Fig. 4. Contour plots of (a) proton density and (b) electron density for the lowest SAA state; Contour plots of (¢) proton density and (d) electron density for the lowest

AAA state. The contour value used in plots (a)-(c) is 0.0003.

Another feature of importance in our density diagrams is the dif-
ference in volume (diffusion) and sharpness of the boundaries of the
nodal planes for the nuclear and electronic densities. This is in accor-
dance with what can be expected. Since the electron is much lighter than
the proton it gives rise to a more diffused particle density than the
proton.

The next part of this work focuses on discussing the calculations done
to describe “radial” spreading of the hydrogen-atom wave functions
throughout the cuboid box (we will call the corresponding states the
translational states). It should be realized that, if a sufficiently complete
basis set is used in the calculation, the spreading should happen as a
result of the variational minimization of the hydrogen-atom total en-
ergy. This would happen because the spreading lowers the kinetic en-
ergy of the center-of-mass motion of the hydrogen atom as a whole.
However, if a small basis set is used (as is done in the present calcula-
tions), the main energy gain in the minimization comes from improving
the internal energy and the corresponding wave function of the
hydrogen atom rather than from spreading the non-BO wave function of
the atom throughout the box.

To study the translational states of the hydrogen atom in the box, we
start with three optimized generator Gaussian functions obtained from
the calculations of the lowest energy state for each of the eight sym-
metries, i.e. SSS, ASS, SAS, SSA, ..., etc. Then, for each symmetry, we
make 23 copies of each of these generator Gaussians. In these copies, the
L; values of the wave functions remain the same, but we shift the
generator Gaussians s, vector by adding a spreading factor a. The
diffusion of the generator Gaussians along the three axes is done in such
a way that we have the most function copies along the longest axis (y-
axis) and the least copies along the shortest axis (x-axis). In our calcu-
lations, we chose to have only one copy along the x-axis (a), three copies
along the y-axis (a, 2a, and 3a) and two copies along the z-axis (a and
2a). If the coordinates of the s, vector of a generator Gaussian function
are (x1,y1,21,x2,y2,22), the above-mentioned procedure will yield the
following 23 copies (or 24 copies when the generator copy is included):

(x1+a,yl,z1,x24a,y2,22)

(x1,y1 +a,z1,x2,y2 +a,z2)
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(b)

Fig. 5. Contour plots of the proton density of the translational states for the SSS symmetry. (a) shows the lowest energy state, (b) shows state 5, and (c) shows

state 24.

Table 2

The integrated proton densities corresponding to the eight different angular

symmetries of the wave function of the confined hydrogen atom.

Table 3
The integrated electron densities corresponding to the eight different angular
symmetries of the wave function of the confined hydrogen atom.

Angular Symmetry State Integrated Density (Proton) Angular Symmetry State Integrated Density (Electron)
SSS 0.999999999999981 SSS 0.999999994
SAS 0.999999999999971 SAS 0.999999926
SSA 0.999999999999978 SSA 0.999999983
ASS 0.999999999999963 ASS 0.999999986
ASA 0.999999999998882 ASA 0.999999239
AAS 0.999999999999967 AAS 0.999999928
SAA 0.999999999999978 SAA 0.999999818
AAA 0.999999999999884 AAA 0.999999555

(x1,y1 4+ 2a,z1,x2,y2 +2a,z2)
(x1,y1 4+ 3a,z1,x2,y2 + 3a,z2)

(x1,yl,zl +a,x2,y2,22 +a)

(x1,y1,z1 4+ 2a,x2,y2,22 + 2a)
(x1+a,yl +a,z1,x2+a,y2+a,zl)

(x14+a,yl +2a,z1,x2 4+ a,y2 +2a,z1)
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Table 4
Optimum values of the spreading factor a for the eight angular symmetry
cases for hydrogen atom.

(x1,yl+a,z1 +a,x2,y2+a,z1 +a)

(x1,y1+2a,z1 +a,x2,y2+2a,z1 +a)

Angular Symmetry State Optimum a value (in a.u.)

SsS 2.8 (x1,y1+3a,z1 +a,x2,y2+3a,z1 +a)
SAS 2.6

SSA 2.7 (x1,yl +a,z1 +2a,x2,y2 4+ a,z1 +2a)
ASS 2.7

ASA 2.5 (x1,y1 +2a,z1 +2a,x2,y2 + 2a,z1 4 2a)
AAS 2.4

AA 2.

1S\AA 2_2 (x1,y1 4+ 3a,z1 +2a,x2,y2 + 3a,z1 4 2a)

(x1+a,yl+a,z1+a,x2+a,y2+a,z1 +a)

(1 +a,y1+3a,21,x2+4a,y2+ 3a,21) (x1+a,yl +2a,z14+a,x2+a,y2+2a,z1 +a)

(l+ayl,2l+a,22+a,y2,21+a) (x1+a,yl +3a,z14+a,x2+a,y2+3a,z1 +a)

(x1+a,yl,z1 +2a,x2+a,y2,z1 +2a) (el +a, vl +a,z1 +2a,22 +a,y2 +a, 21 +2a)

(a) (b)

()

Fig. 6. Contour plots of the proton density of the translational states for the SAS symmetry. (a) shows the lowest energy state, (b) shows state 5, and (c) shows
state 24.
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()

Fig. 7. Contour plots of the proton density of the translational states for the SAA symmetry. (a) shows the lowest energy state, (b) shows state 5, and (c) shows

state 24.

(x1+a,yl +2a,z142a,x2+ a,y2 + 2a,z1 +2a)

(x1+a,yl +3a,z1 4+ 2a,x2+ a,y2 + 3a, z1 +2a)

As one notices, in the first set of 6 functions, the spreading factor is
added to one axial direction at a time. In the next set of 11 functions, the
expansion is simultaneously carried out in two axial directions, and in
the last set of 6 functions, we expand along all three axial directions at
the same time. When we apply this method to the three starting
generator functions, we get 3 x 24 = 72 Gaussian copies. It should also
be noted here that the 72 Gaussians are symmetry adapted for each of
the eight angular symmetries to give us a total of 72 x 8 = 576
Gaussians that fill up all the space inside the “box”.

This method of spreading the three generator Gaussians throughout
the box can simulate the translational motion (i.e. translational bound
states) of the H-atom system within the box, as if the H-atom is “moving”
from point-to-point within the confines of the box. Thus, we can
approximately describe the translational ground and excited states of
the system by using this method.

Our next task is to find an optimum value of this spreading factor a
for all the eight angular symmetry cases. For this purpose, we choose
values of a between 0.5 and 3.0 a.u. in increments of 0.1 a.u. and
calculate the sum of the energies of the 24 lowest states of the system.
The value of a that gives us the least energy sum is chosen as the opti-
mum value for that particular angular symmetry case. We choose to
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optimize the energy sum of 24 states since there are 24 copies of a single
generator Gaussian and the spacing between the energy levels of these
24 lowest energy states is too low for us to be able to access them
individually in the minimization process.

Values of a less than 0.5 a.u were too small to spread the functions
effectively and by creating linear dependencies caused our optimization
routine to fail. Values of a higher than 3 a.u. on the other hand, moved
the centers of the expanded Gaussians outside the “box™ giving unreal-
istic energy values. In the Table 4, we have tabulated the optimum
values of the spreading factor a for all eight angular symmetry cases.

Once the optimum value of a is determined, we calculate the den-
sities using the wave functions of the translational ground and excited
states of the system. These densities show how the electron and proton
clouds are distributed in the box in each of the 24 lowest energy states
for the eight angular symmetries. The Fig. 5-8 show the proton densities
of some of the energy levels of the translational excited states for a few of
the angular symmetry cases. The proton densities are much sharper and
less diffused than the electron densities as shown previously and this is
why we chose to plot the proton densities in the excited state calcula-
tions. Although we have prepared these proton density diagrams for all
the eight states, we present only a few representative cases here for
illustrative purposes. Fig. 5(a) - (c) represents the translational fully
symmetric SSS states 1, 5, and 24. The SAS case is randomly chosen as a
“test-case” of a state with one antisymmetry plane. Fig. 6(a) - (c) show
the energy levels 1, 5, and 24 for this particular SAS case. To illustrate
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Fig. 8. Contour plots of the proton density of the translational states for the AAA symmetry. (a) shows the lowest energy state, (b) shows state 5, and (c) shows

state 24.

what happens when we have 2 antisymmetry planes in the angular
symmetry, we choose the “test-case” of the SAA state and in Fig. 7(a) -
(c), the density plots for the energy levels 1, 5 and 24 of the said SAA
case are presented. Finally, we show the energy levels for the transla-
tionally excited AAA case, which has three antisymmetry planes. In
Fig. 8(a) - (c), the density plots corresponding to energy levels 1, 5 and
24 with the AAA symmetry are shown.

There are a couple of important takeaways from Fig. 5(a) - 8(c). First
is the fact that the wave functions in energy levels 1, 5 and 24 are visibly
very different. The difference results from mutual orthogonality of the
wave functions of the states within the same angular symmetry. The
second important feature that is apparent in the plots is that, as the
energy of the level increases, the wave function becomes more localized
within the box. Therefore, state 1 which has the lowest energy is the
most delocalized and exhibits the most tunneling whereby the wave
function seeps outside the box. State 24 on the other hand, which has the
highest energy, also has the most localized wave function. As the result
of the strong localization of this state, its integrated proton and electron
densities are closer to one than for the other states. The stronger local-
ization of the higher excited states than of the lower laying states results
from a larger center-of-mass kinetic energy that is a part of the total
energy of each state.
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4. Conclusions

A computational model to study bound states of a hydrogen atom
placed in a cuboidal potential energy trap is proposed, implemented,
and tested. The wave functions for the ground and excited states of the
system are expanded using all-particle explicitly correlated Gaussian
functions with shifted centers. The variational method is used to opti-
mize the non-linear parameters of the Gaussians. The explicitly corre-
lated Gaussian functions allow us to more accurately represent the
electron-electron, electron-nucleus, and nucleus-nucleus correlation ef-
fects much better than obtained with an approach that employs elec-
tronic and nuclear orbitals. Naturally, for the hydrogen atom, only the
first of the three correlations is present.

Eight possible angular symmetries of the wave function in the trap-
ping potential of a cuboidal box formed by alternating point charges are
examined. For each symmetry, both ground and excited states are
calculated. The excited states, which are called translational states,
correspond to the different ways the hydrogen atom delocalizes within
the PE trap. One-particle density plots are used to visualize the results.
They show the physical nature of the states.

The non-Born-Oppenheimer approach that treats both the nuclei and
electrons on a equal footing presented in this “proof-of-concept™ study
for the test case of a trapped hydrogen atom will be applied to study
various other systems under the same trapping potential. Work is
currently underway to extend the approach to a trapped hydrogen



A. Coomar et al.

molecule and to a system of multiple hydrogen molecules trapped within
the cuboidal box. At a later stage, we would also like to expand our
studies to simulate a more realistic PE trap comprises real molecules
rather than point charges, as presented in this work. Various applica-
tions of the present method will continue to be an important focus of our
upcoming future research.
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