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A B S T R A C T   

A quantum-mechanical model for describing a hydrogen atom confined to a soft-wall cuboidal potential energy 
trap is implemented. Explicitly correlated Gaussian functions are used to expand the hydrogen wave functions 
that are symmetry-adapted with respect to the symmetry elements of the trapping potential. The calculations are 
performed without assuming the Born-Oppenheimer approximation. The electronic and nuclear densities of the 
calculated states are visualized using one-particle density plots. The approach enables to describe the behavior of 
a trapped hydrogen atom and, when extended to multiple hydrogen molecules, has potential for application in 
the theoretical modeling of the hydrogen storage phenomenon.   

1. Introduction 

The hydrogen atom subjected to various confinement potentials, by 
impenetrable or partially penetrable walls of different geometrical 
shapes such as spherical, paraboloidal, or prolate spheroidal walls, has 
been the subject of several studies over the past 80 years [1–5]. The goal 
of all these studies has been to observe how atomic properties evolve as a 
function of the confinment. The studies also led to the interest in 
confined multi-electronic systems such as helium [6–10], Li2 [11], and 
LiH [12]. These model systems have since then been successfully applied 
to study spherically confined atoms and ions embedded in a plasma 
environment [13–15], appearance of critical points in the Shannon en-
tropy sum [16], induced electrical and magnetic properties [17–20], 
second-order phase transitions [21], ionization and excitation proba-
bilities for a bound system suddenly released from a penetrable 
confinement [22], confined quantum systems [23], anharmonic effects 
in solids [24], and nuclear shell models [25]. The studies have also 
proved useful to study different properties such as polarizability 
[26,27], hyperpolarizability [9], dipole moment [28], hyperfine split-
ting [29–32], NMR shielding constants [31], electron (de) localizations 
[33], and chemical reactivity [34]. More examples of systems with 
confined atoms and molecules can be found, for example, in Refs. 
[35–37]. 

The solutions for systems subjected to a confinement potential have 
been achieved by employing a wide variety of analytical and numerical 

methods. Most of these studies use Coulomb potentials in conjunction 
with hard-wall potentials. These latter potentials are characterized by 
values that reach infinity at the confinement boundary. For a spherical 
confinement potential with r0 as the radius of the confinement, a hard- 
wall potential can be written as [26]: 

Vconf

(
r

)
=

{
0 if 0⩽r⩽r0

+∞ if r⩾r0

. (1)  

Looking at the above equation, it is clear that there is a discontinuity at 
r0. Therefore, the eigenfunctions of the Hamiltonian that employ this 
potential must vanish at the boundary, when ri = r0 (for some coordi-
nate i), thus satisfying the Dirichlet boundary conditions, Ψ(r1,…, rn) =

0, at the boundary surface. 
The kind of confinement potentials discussed above is not very well 

suited to study traditional quantum-chemistry phenomena, which uses 
basis functions such as Gaussians that extend to infinity. To address 
these issues, Pasteka et al. suggested a soft-wall confinement potential 
[38]. The spherical confinement used by them to study n-electron sys-
tems in the Ref. [38] was: 

Vconf

(
ri

)
=
∑n

i=1

(
ri

r0

)N

, (2)  

where r0 is the radius of the confining sphere and N ∈ N is the stiffness 
parameter that can control the penetrability of the sphere. Since Vconf (ri)
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does not possess a discontinuity at r0, there is no necessity to apply the 
Dirichlet boundary condition at r = r0, simplifying its use with existing 
numerical algorithms and with standard Gaussian-based electronic- 
structure software packages. Even without the Dirichlet boundary con-
dition applied to these systems, it can be expected that the wave func-
tions will decay quite rapidly for |ri| > r0. The Pasteka potential was 
successfully employed by the authors of Ref. [38] to study the confine-
ment of one electron hydrogen atom, as well as many-electron systems 
like helium, carbon, potassium, and methane. 

In the present work, we develop a quantum mechanical model of a 
hydrogen atom trapped in a cuboidal “box” that is made up of alter-
nating positive and negative point charges. This serves as a soft-wall 
confinement potential where we do not require the wave functions to 
vanish at the boundary. The quantum states of this single hydrogen atom 
interacting with the confinement potential are investigated using the 
effective non-Born-Oppenheimer (non-BO) method introduced by 
Kozlowski and Adamowicz [39]. The main tenet of this approach is 
treating the nuclei and electrons on an equal quantum-mechanical 
footing, whereby the BO approximation is not assumed. This means 
that the wave function for a particular state of the system depends on the 
coordinates of both types of particles comprising the said system. We 
employ explicitly correlated Gaussian (ECGs) functions with shifted 
centers to expand the spatial parts of the ground and excited-state wave 
functions of the trapped hydrogen. The approach facilitates an effective 
way to describe the coupled motion of the electron and the proton 
within the box without the BO approximation. As ECGs explicitly 
depend on all inter-particle distances, they enable to represent the 
correlated proton-electron motion to a high degree of accuracy. Though 
in the proof-of-concept scenario of a single hydrogen atom we do not 
have any nucleus-nucleus and electron-electron correlations, the ability 
to include them for more complex systems such as a hydrogen molecule 
or a cluster of hydrogen molecules is expected to give us more accurate 
results compared to techniques that employ orbital expansions of the 
wave functions of the electrons and the nuclei. 

Another possible application of the work described in this work 
would be to model the hydrogen storage phenomenon for applications in 
the hydrogen economy. There are five key elements of the hydrogen 
economy infrastructure-production, delivery, storage, conversion, and 
application [40]. This concept was first introduced in the mid-1970s and 

research into its viability has been steadily increasing, as the climate- 
crisis has quickly become one of the most important problems for the 
21st century. The hydrogen economy improves the energy security and 
also reduces oil-spills, carbon dioxide and other greenhouse gas emis-
sions, making it a perfect solution for the future [41]. While the five 
elements of the infrastructure are all in several stages of development 
[42], research on hydrogen storage is in the forefront, since developing 
safe, reliable, compact, and cost-effective materials for use in fuel-cell 
technology will lead to a greater viability of the hydrogen economy. 

Important classes of materials considerd for hydrogen storage 
include: (i) carbonaceous materials like fullerenes, carbon nanotubes 
(CNTs) and graphene, (ii) metals and alloys (intermetallics), (iii) metal 
organic frameworks (MOFs) and covalent organic frameworks (COFs), 
(iv) zeolites, and (v) clathrates [43]. Multiple studies have been carried 
out to investigate the hydrogen storage characteristics of these materials 
to varying degrees of success. There have also been several experimental 
and theoretical studies on clathrate hydrates, preliminary explorations 
of which have shown that these materials could serve as the next rev-
olutionary on-board hydrogen storage materials [44]. 

In this work, we consider not a cubic, but a cuboidal potential energy 
(PE) “box”, as this provides a better model for trapping of a hydrogen 
atom in a cage formed by molecules of a clathrate. The cuboidal trap 
used in the present work is shown in Fig. 1. In a cuboidal box, where the 
x, y, and z dimensions are different, there are eight different types of 
angular symmetry states of a hydrogen atom or molecule placed within 
the “box”. The reason for there being eight symmetry types of states 
arises from the following: with the center of the box located in the center 
of the coordinate system, the wave function can either be symmetric (S) 
or antisymmetric (A) with respect to the x plane, symmetric or anti-
symmetric with respect to the y plane, and symmetric or antisymmetric 
with respect to the z plane. Also, within each symmetry, there are states 
that differ in terms of the number of “radial” nodes in their wave 
functions. These “radial” states for each of the eight symmetries are 
calculated separately. For the purpose of visualizing all these different 
states, we use plots of the electronic and nuclear densities. These plots 
show us the relative distributions of the electron and the proton in the 
ground the excited states of the hydrogen atom confined to the potential- 
energy trap. It is obvious that, in its nascent stage of development, our 
model cannot account for all the different facets of hydrogen storage. 
However, there are possible ways of extending the model so it can be 
ultimately used to study the hydrogen storage phenomenon. 

2. The method 

We need to expand the total spacial wave functions of the trapped 
hydrogen atom in terms of a set of K basis functions as: 

Ψ

(
r

)
=
∑K

k=1

ckϕk

(
r

)
, (3)  

where Ψ is the wave function, ϕk’s are the basis functions and the ck’s are 
the linear expansion coefficients that determine how the different basis 
functions contribute to the overall wave function. 

As mentioned, in the present calculations, we employ explicitly 
correlated gaussian (ECGs) functions with shifted centers, also known as 
floating explicitly correlated Gaussians (FECGs). Each of these ECGs can 
be written as the following N-particle Gaussian function: 

ϕk

(
r

)
=
∏N

i=1

exp
[
− αki

(
ri − Rki

)2
]∏N

j>1

exp
[
− βkij

(
ri − rj

)2
]
. (4)  

In the Eq. 4, the first term represents the N orbital Gaussians and the 
second term represents the N(N-1)/2 Gaussian pair functions or gemi-
nals. αk

i is the orbital exponential parameter of Gaussian k for particle i. 
Similarly, βk

ij is the exponential parameter of the kth Gaussian pair 

Fig. 1. A schematic representation of the system (not to scale). The red sphere 
represents the hydrogen atom trapped inside a cuboidal PE trap. The sides of 
this cuboid are of lengths 5 a.u., 20 a.u., and 10 a.u. along the x, y, and z-di-
rections, respectively. There are 5402 point charges of unit magnitude 
distributed at equal density all along the surface of the cuboidal trap. 
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function that is formed by particles i and j. ri is the position vector of 
particle i, namely (xi, yi, zi), r is a vector of length 3N built from the ri 
position vectors of the particles, and Rk

i is the center of the Gaussian k for 
particle i. 

Eq. 4 can be alternatively written in the following simpler form 
which makes it easier to manipulate and optimize the non-linear 
parameters: 
ϕk(r) = exp[ − (r − sk)

′(Ak ⊗ I3)(r − sk)]. (5)  

Here r is the same vector as explained previously. The prime symbol (′) is 
used to denote the vector and matrix transposition operation. In the case 
of the hydrogen atom, we have two particles, the proton and the elec-
tron, and N = 2. For the hydrogen molecule, N = 4, as we have 2 elec-
trons and 2 protons in this case. In Eq. 5, sk is a 3N-dimensional vector 
that contains the Gaussian shifts, Ak is an N × N dimensional symmetric 
matrix of the Gaussian exponential parameters, and I3 is the 3 × 3 
identity matrix. The Kronecker product of Ak with this identity matrix I3 
gives us a 3N × 3N dimensional symmetric matrix. 

Our previous work has shown that the ECG basis functions are 
spherically asymmetric, and can be made square integrable and form a 
complete set [45]. The reason why they are not spherically symmetric 
stems from the fact that the centers of these Gaussians are shifted away 
from the origin, making these shifts directional in nature. This property 
makes these basis sets ideal to be used when we want to study, for 
example, systems that are under the influence of external electric fields, 
or confined to a non-spehrical trap such as the one considered in this 
work. The method that is used to ensure the square integrability of the 
basis functions is discussed shortly. 

In the non-BO approach, where the electrons and nuclei are treated 
equivalently in the calculations, the ECGs can effectively describe the 
electron-electron, electron-nucleus, and nucleus-nucleus correlation ef-
fects by including explicit dependence on the inter-particle distances, 
(ri −rj), in Eq. 4. The latter two correlation effects are quite significant 
because the electrons, particularly the core electrons, have the tendency 
to follow the nuclei very closely and the nuclei tend to stay away from 
each other leading to a small overlap of their wave functions. Therefore, 
these two correlations are qualitatively different from those of the 
electrons, which, because of their lighter masses, typically create a 
significantly larger overlap of their wave functions. 

In order to describe bound states of the system, auch as the types of 
states studied in the present work, Gaussians (Eq. 5) that are used to 
expand the corresponding wave functions need to be square integrable. 
This can only be achieved when Ak is positive definite. We get around 
this problem by constructing Ak from a lower-triangular N × N matrix, 
Lk, using the following Cholesky factorization method: 
Ak = Lk

′Lk, (6)  

where 

Lk =

⎛
⎜⎜⎜⎜⎝

Lk(1, 1) 0 0 … 0

Lk(1, 2) Lk(2, 2) 0 … 0

Lk(1, 3) Lk(2, 3) Lk(3, 3) … 0

… … … … …

Lk(1,N) Lk(2,N) Lk(3,N) … Lk(N,N)

⎞
⎟⎟⎟⎟⎠
. (7)  

The elements of this Lk matrix can vary in the range [ −∞,+∞] thus 
ensuring that, when we perform a variational optimization of the 
Gaussians, we can do so without putting any constraints on the Lk matrix 
elements. The variational adjustment of the Lk parameters (as well as the 
sk coordinates), make the ECG functions flexible enough to represent the 
bound states of the trapped hydrogen systems under study in the present 
work. 

We next present the non-BO Hamiltonian operator used in the cal-
culations. In general, for q nuclei and n electrons (q + n = N). The 
Hamiltonian is: 

Ĥ = T̂ + V̂ = −∇
′

rM∇r +
∑N

i=1

∑N

j=i+1

qiqj

rij
+
∑N

i=1

∑M

j=1

qipj

sij
, (8)  

where 

∇r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ

δx1

δ

δy1

δ

δz1

δ

δx2

.

.

δ

δzN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)  

and 

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2mp1

0 0 0 … 0

0 .. 0 0 … 0

0 0
1

2mpq

0 … 0

0 0 0
1

2me1

… 0

… … … … … …

0 0 0 0 …
1

2men

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)  

Here, T̂ and V̂ are the kinetic and potential energy operators respec-
tively and ∇r is the gradient operator. The kinetic energy operator, T̂ , 
includes an N × N diagonal mass matrix M. This matrix contains the 
masses of the q nuclei, mp1,mp2,⋯,mpq, in the first q diagonal elements 
and the masses of the n electrons, me1,me2,⋯,men, in the next n diagonal 
elements. The total numbers of the q nuclei and the n electrons add up to 
N. The potential energy operator, V̂ , is made up of two terms. The first 
term represents the interaction between the N particles and the second 
term corresponds to the interaction between the N particles in the sys-
tem and the M point charges located on the surface of the cuboidal PE 
trap. qi is the charge of particle i, rij is the distance between the particles i 
and j,pj, j = 1,…,M, are the point charges uniformly distributed on the 
surface of the cuboid trap, and sij is the distance between particle i and 
point charge j. Thus, term ∑N

i=1
∑M

j=1
qipj
sij in (8) represents the trapping 

potential in the present calculations. 
In the present calculations, we use the standard variational method 

to obtain the energies of the states and their corresponding wave func-
tions. This is done by minimizing the energy with respect to the linear 
expansion coefficients of the wave function in terms of the basis func-
tions, ck’s, the Lk matrix elements and the coordinates of the shift vector 
sk. For a system formed by N particles, each N-particle Gaussian basis 
function has a total of 3N sk parameters and N(N+1)/2 Lk parameters, as 
well as one ck parameter. For the hydrogen atom, we thus have three Lk 
matrix elements, six sk coordinates, and one ck parameter for each ECG 
basis function in the wave function of each state. These parameters are 
optimized for each basis function by variational minimization of the 
total energy: 

E

[
Ψ

]
= min

Lk ,sk ,ck

〈Ψ|Ĥ |Ψ〉

〈Ψ|Ψ〉
. (11) 

In the energy minimization, the energy gradient determined with 
respect to all Lk and sk parameters is employed [45]. The use of the 
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gradients significantly accelerates the minimization process. 
As mentioned, the probability densities of the electron and the pro-

ton in the ground and excited states of the system are calculated and 
analyzed. In general, the one-particle density of particle one can be 
calculated by the method outlined in the previous work from our lab 
[45]. This standard procedure to calculate the particle-one density in-
volves squaring the wave function, Ψ*Ψ, and then integrating over the 
coordinates of all the particles (2,3,⋯,N) other than particle one: 

P

(
r1, r

′

1

)
=

∫
Ψ

(
r1, r2,…, rN

)
Ψ

(
r
′

1, r2,…, rN

)
dr2,…, drN . (12) 

In order to calculate the density of any particle other than the first 
particle, i.e. particle i, we simply interchange the position of that particle 
with the first particle in the wave function. This is easily done by 
exchanging the appropriate rows and columns of the Ak matrix (and the 
corresponding coordinates of the sk vector) so that particle i becomes 
particle one and particle one becomes particle i. After the densities are 
calculated in this manner, they are plotted using the 3D-xy contour plot 
feature embedded in Mathematica. 

3. Illustrative calculations 

The hydrogen atom is placed in a cuboidal potential energy trap (the 
potential energy “box”) that has the dimensions of 5 atomic units (a.u.) 
along the x-direction, 20 a.u. along the y-direction, and 10 a.u. along the 
z-direction, with the center of the cuboid located at the origin (0,0,0) of 
the coordinate system. A schematic picture of this box is presented in 
Fig. 1. Point charges of unit magnitude having alternate signs are placed 
all along the faces of this cuboidal box. There are a total of 5402 charges 
of alternating sign distributed at equal intervals along the whole surface 
area of the cuboidal potential energy trap. The lengths of the three sides, 
the charge magnitude, and the charge density are all tunable parameters 
in our calculations. 

As mentioned, the reason for choosing a cuboidal box is to ensure 
that the model depicts a real system of a trapped hydrogen atom better 
than a cubic box would. In reality, a hydrogen atom is entrapped in a 
cavity formed by a molecular network. To a first degree of approxima-
tion, we simulate the presence of the molecules forming the cavity with 
the “point charges”. For most situations, these molecules will not be 
creating an uniform “cubic box” but would rather more closely resemble 
a cuboidal trap. Therefore, using an PE trap that has unequal lengths 
along the three axes seems to be a better first-order approximation. This 
cuboidal box also causes the system to have a lesser degree of de-
generacy of the energy states. Due to this, we are able to access a 
particular individual energy level for closer inspection more easily than 
would be possible if multiple states had the same energy. 

The calculations starts with a basis set of three ECGs describing a 
hydrogen atom located in the first quadrant of the box, i.e. the quadrant 
with x > 0, y > 0, and z > 0. These “generator” ECGs have all their 
centers shifted slightly away from the origin (0,0,0). We then use each of 
these generator functions to create 8 symmetry-reflected Gaussian 
functions according to the procedure described below. 

In the current problem, there are three symmetry planes (x,y, and z) 
from which we can create eight different reflection combinations. A non- 
BO wave function describing a state of the hydrogen atom in the box that 
is symmetric along all the three planes is labeled as SSS. Wave functions 
can also have one plane along which the reflection is antisymmetric. If 
the wave function is antisymmetric with respect to the x-plane, we label 
it ASS. Similarly, if the wave function is antisymmetric with respect to 
the y- and z-planes, we label it SAS and SSA, respectively. A wave 
functions can also have two antisymmetry planes. If the antisymmetry 
planes are the x and y planes, we label it AAS. Analogically, a ASA wave 
function has antisymmetry along x and z planes and a SAA wave func-
tion only has one symmetric plane, namely the x-plane. The eighth and 
final combination is the case where the wave function is simultaneously 

antisymmetric along all the three planes and we label it as AAA. 
Each “generator” Gaussian function is reflected along the three 

symmetry planes to create the eight functions. Next, the eight functions 
are used to form linear combinations with appropriate linear expansion 
coefficients corresponding to the particular symmetry. In this way a 
symmetry-adapted basis set is constructed. Therefore, if we start with 
three generator ECGs, we, in effect, have 3 × 8  = 24 symmetry-adapted 
Gaussian functions in the basis set. Each of the generator Gaussian 
functions have 2(2 + 1)/2  = 3 Lk parameters and 3 × 2  = 6 sk pa-
rameters. The three generator Gaussians also have three ck coefficients. 
Therefore, we have a total of 10 adjustable linear (ck) and non-linear (Lk 
and sk) parameters per ECG function. In this way we create the basis set 
for the calculation. 

Once we have a basis set, we use our in-house code to carry out a 
variational minimization of the energy of the lowest-energy state for 
each of the eight symmetries with respect to the parameters Lk,sk, and ck. 
The minimization employs an algorithm that utilizes the analytical en-
ergy gradient determined with respect to all these non-linear parame-
ters. The energies of the lowest states of the eight different angular 
symmetries calculated in this way are presented in the Table 1. 

If all these states are optimized to the same level of convergence, as is 
done in our calculations, we would expect the lowest energy state to be 
the one that is symmetric with respect to all three planes, i.e., the SSS 
state, while the highest energy state among the lowest energy states of 
the eight symmetries would be the AAA state. Also, most states with one 
symmetry plane (ASS, SAS and SSA) are expected to have lower energies 
than ones with two antisymmetry planes (AAS, ASA and SAA). This is 
exactly what we get from the calculations as evidenced from the Table 1. 

At this point, it is worthwhile to note that working with atoms and 
molecules in confinement potentials can lead to linear dependencies 
between the basis functions, since all these basis functions are con-
strained within a small spatial area [46–49]. Linear dependencies arise 
when the overlap between two basis functions, i and j, i.e., Sij, is too close 
to one. As this may lead to numerical instabilities and inaccuracies in the 
calculations, it is imperative that we remove such linear dependencies. 
The way we deal with this in our calculations is by having a threshold 
value specified for the overlap, Sij = 0.99 and by using a cyclic optimi-
zation procedure [50]. In this cyclic optimization procedure, basis 
functions are optimized one function at a time, meaning that the Lk and 
sk values of that function are the only parameters that are optimized in 
the calculations and all other Lk and sk values are frozen. The optimi-
zation is carried out over several cycles. In this work, the number of 
cycles chosen is 20 for each basis function. At the end of each optimi-
zation cycle of the function, if the calculation finds that it has an overlap 
equal to or greater than 0.99 with any other function(s), it marks it as 
being linearly dependent and when that happens, the program resets the 
value of the parameters of this basis function back to its original pre- 
optimization values. This back-tracking is not problematic because, by 
the time the next cycle arrives, the entire energy hypersurface will have 
changed due to the optimization of the other functions. In this new cycle, 
that basis function may no longer be linearly dependent on the other 
function(s) and its optimization may proceed without any issues. A 

Table 1 
The minimized energies of the lowest states of the hydrogen atom for eight 
angular symmetries. The minimized energies of the lowest states of the eight 
angular symmetries calculated using the variational method.  

Angular Symmetry State Minimized Energy (in Hartree) 
SSS −0.496562 
SAS −0.496507 
SSA −0.496445 
ASS −0.496446 
ASA −0.496442 
AAS −0.496376 
SAA −0.496401 
AAA −0.496327  
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pairwise linear dependency can also manifest itself by two different 
basis functions having very similar and large values of the linear coef-
ficient, but with opposite signs. This kind of pairwise linear de-
pendencies can also be located and efficiently removed by making use of 
the Schmidt orthogonalization routine outlined in detail in [50]. Thus 
we can see that if we begin our calculations with basis functions that are 
sufficiently different from each other, the calculation can ensure that 
linear dependencies can be taken care of, while maintaining the integ-
rity of the basis set. 

In the Fig. 2–5, we present the 3-dimensional plots of the electron 
and proton densities of the eight angular symmetry states. The density 
calculations are performed in a cubic box whose length coincides with 
the longest side of the cuboid trapping potential. Due to the limitations 
of the plotting software used in this work, we plot the densities using a 
cubic box rather than a cuboidal box. The use of the cubic box with 
larger parameters than those of the cuboidal box representing the trap 
allows us to check whether there is any appreciable amount of the 
electronic or nuclear density that tunnels out of the box. Upon exam-
ining the plots, no tunneling of the densities out of the cuboidal trap is 

found. 
The cubic box used in the density calculations has dimensions 20 ×

20 × 20 atomic units (a.u.) and a grid with a step size of 0.5 a.u along all 
the axes is used in the plotting. The center of the coordinate system 
coincides with the center of the box, so each of the edges in our calcu-
lation starts at −10 a.u and ends at  + 10.u. The total number of points in 
such a cubic box where the density is calculated is thus 413 = 68921. 
Once the calculation of the density is completed, it is numerically in-
tegrated over the whole cubic box to check what part of the wave 
function is located within the box. For the ground-state calculations, a 
desirable result of this integration should be a number close to one. Our 
test shows that this is indeed what happens. We present the numerical- 
integration values for all the eight symmetry states in the tables below. 
Table 2 lists the values of the integrated densities of the proton while 
Table 3 lists those of the electron. 

A test calculation of the densities using a grid size of 0.25 a.u. along 
the longest axis (i.e., the y-axis) was also done to check the convergence 
of the results with grid size. This calculation, understandably, took more 
computational time, but it did not change the integrated value of the 

Fig. 2. Contour plots of (a) proton density and (b) electron density for the lowest SSS state; Contour plots of (c) proton density and (d) electron density for the lowest 
SAS state. The contour value used in plots (a)-(c) is 0.0003. 
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density to any appreciable extent. Therefore, it can be safely concluded 
that a grid size of 0.5 a.u. along all the different axes is a good one. 
Hence, we used this particular grid size in all our calculations for both 
the ground and excited states that will be presented next. 

One of the important features in the density plots is the appearance 
of radial nodes. For the SSS case, since the wave function is symmetric 
with respect to reflection along all three planes, we do not expect to find 
a nodal plane, so both the electronic and nuclear densities look like an 
ellipsoid that is slightly elongated along the longest axial direction (the 
y-axis in our case). For the cases with one nodal plane, namely, the ASS, 
SAS, and SSA cases, we would expect to find one nodal plane along the 

plane where the wave function is antisymmetric with respect to reflec-
tion. In the ASS case, this nodal plane is the x-plane. Similarly, the SAS 
case exhibits a nodal plane along the y-plane and for the SSA case, the 
nodal plane is the z-plane. Along a similar vein, one would expect two 
nodal planes in the AAS, ASA, and SAA cases, since all these angular 
symmetry cases have two different antisymmetric planes with respect to 
reflection. The AAS case has the x and y-planes as its nodal planes, the 
ASA case has nodal planes in the x and z planes and for the SAA case, the 
nodal planes appear in the y and z planes simultaneously. Finally, the 
AAA case calculations show three mutually perpendicular nodal planes, 
namely all the axial planes. 

Fig. 3. Contour plots of (a) proton density and (b) electron density for the lowest ASA state; Contour plots of (c) proton density and (d) electron density for the lowest 
AAS state. The contour value used in plots (a)-(c) is 0.0003. 
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Another feature of importance in our density diagrams is the dif-
ference in volume (diffusion) and sharpness of the boundaries of the 
nodal planes for the nuclear and electronic densities. This is in accor-
dance with what can be expected. Since the electron is much lighter than 
the proton it gives rise to a more diffused particle density than the 
proton. 

The next part of this work focuses on discussing the calculations done 
to describe “radial” spreading of the hydrogen-atom wave functions 
throughout the cuboid box (we will call the corresponding states the 
translational states). It should be realized that, if a sufficiently complete 
basis set is used in the calculation, the spreading should happen as a 
result of the variational minimization of the hydrogen-atom total en-
ergy. This would happen because the spreading lowers the kinetic en-
ergy of the center-of-mass motion of the hydrogen atom as a whole. 
However, if a small basis set is used (as is done in the present calcula-
tions), the main energy gain in the minimization comes from improving 
the internal energy and the corresponding wave function of the 
hydrogen atom rather than from spreading the non-BO wave function of 
the atom throughout the box. 

To study the translational states of the hydrogen atom in the box, we 
start with three optimized generator Gaussian functions obtained from 
the calculations of the lowest energy state for each of the eight sym-
metries, i.e. SSS, ASS, SAS, SSA, …, etc. Then, for each symmetry, we 
make 23 copies of each of these generator Gaussians. In these copies, the 
Lk values of the wave functions remain the same, but we shift the 
generator Gaussians sk vector by adding a spreading factor a. The 
diffusion of the generator Gaussians along the three axes is done in such 
a way that we have the most function copies along the longest axis (y- 
axis) and the least copies along the shortest axis (x-axis). In our calcu-
lations, we chose to have only one copy along the x-axis (a), three copies 
along the y-axis (a, 2a, and 3a) and two copies along the z-axis (a and 
2a). If the coordinates of the sk vector of a generator Gaussian function 
are (x1,y1,z1,x2,y2,z2), the above-mentioned procedure will yield the 
following 23 copies (or 24 copies when the generator copy is included): 
(x1+ a, y1, z1, x2+ a, y2, z2)

(x1, y1+ a, z1, x2, y2+ a, z2)

Fig. 4. Contour plots of (a) proton density and (b) electron density for the lowest SAA state; Contour plots of (c) proton density and (d) electron density for the lowest 
AAA state. The contour value used in plots (a)-(c) is 0.0003. 
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(x1, y1+ 2a, z1, x2, y2+ 2a, z2)

(x1, y1+ 3a, z1, x2, y2+ 3a, z2)

(x1, y1, z1+ a, x2, y2, z2+ a)

(x1, y1, z1+ 2a, x2, y2, z2+ 2a)

(x1+ a, y1+ a, z1, x2+ a, y2+ a, z1)

(x1+ a, y1+ 2a, z1, x2+ a, y2+ 2a, z1)

Fig. 5. Contour plots of the proton density of the translational states for the SSS symmetry. (a) shows the lowest energy state, (b) shows state 5, and (c) shows 
state 24. 

Table 2 
The integrated proton densities corresponding to the eight different angular 
symmetries of the wave function of the confined hydrogen atom.  

Angular Symmetry State Integrated Density (Proton) 
SSS 0.999999999999981 
SAS 0.999999999999971 
SSA 0.999999999999978 
ASS 0.999999999999963 
ASA 0.999999999998882 
AAS 0.999999999999967 
SAA 0.999999999999978 
AAA 0.999999999999884  

Table 3 
The integrated electron densities corresponding to the eight different angular 
symmetries of the wave function of the confined hydrogen atom.  

Angular Symmetry State Integrated Density (Electron) 
SSS 0.999999994 
SAS 0.999999926 
SSA 0.999999983 
ASS 0.999999986 
ASA 0.999999239 
AAS 0.999999928 
SAA 0.999999818 
AAA 0.999999555  
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(x1+ a, y1+ 3a, z1, x2+ a, y2+ 3a, z1)

(x1+ a, y1, z1+ a, x2+ a, y2, z1+ a)

(x1+ a, y1, z1+ 2a, x2+ a, y2, z1+ 2a)

(x1, y1+ a, z1+ a, x2, y2+ a, z1+ a)

(x1, y1+ 2a, z1+ a, x2, y2+ 2a, z1+ a)

(x1, y1+ 3a, z1+ a, x2, y2+ 3a, z1+ a)

(x1, y1+ a, z1+ 2a, x2, y2+ a, z1+ 2a)

(x1, y1+ 2a, z1+ 2a, x2, y2+ 2a, z1+ 2a)

(x1, y1+ 3a, z1+ 2a, x2, y2+ 3a, z1+ 2a)

(x1+ a, y1+ a, z1+ a, x2+ a, y2+ a, z1+ a)

(x1+ a, y1+ 2a, z1+ a, x2+ a, y2+ 2a, z1+ a)

(x1+ a, y1+ 3a, z1+ a, x2+ a, y2+ 3a, z1+ a)

(x1+ a, y1+ a, z1+ 2a, x2+ a, y2+ a, z1+ 2a)

Table 4 
Optimum values of the spreading factor a for the eight angular symmetry 
cases for hydrogen atom.  

Angular Symmetry State Optimum a value (in a.u.) 
SSS 2.8 
SAS 2.6 
SSA 2.7 
ASS 2.7 
ASA 2.5 
AAS 2.4 
SAA 2.5 
AAA 2.5  

Fig. 6. Contour plots of the proton density of the translational states for the SAS symmetry. (a) shows the lowest energy state, (b) shows state 5, and (c) shows 
state 24. 
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(x1+ a, y1+ 2a, z1+ 2a, x2+ a, y2+ 2a, z1+ 2a)

(x1+ a, y1+ 3a, z1+ 2a, x2+ a, y2+ 3a, z1+ 2a)

As one notices, in the first set of 6 functions, the spreading factor is 
added to one axial direction at a time. In the next set of 11 functions, the 
expansion is simultaneously carried out in two axial directions, and in 
the last set of 6 functions, we expand along all three axial directions at 
the same time. When we apply this method to the three starting 
generator functions, we get 3 × 24  = 72 Gaussian copies. It should also 
be noted here that the 72 Gaussians are symmetry adapted for each of 
the eight angular symmetries to give us a total of 72 × 8  = 576 
Gaussians that fill up all the space inside the “box”. 

This method of spreading the three generator Gaussians throughout 
the box can simulate the translational motion (i.e. translational bound 
states) of the H-atom system within the box, as if the H-atom is “moving” 

from point-to-point within the confines of the box. Thus, we can 
approximately describe the translational ground and excited states of 
the system by using this method. 

Our next task is to find an optimum value of this spreading factor a 
for all the eight angular symmetry cases. For this purpose, we choose 
values of a between 0.5 and 3.0 a.u. in increments of 0.1 a.u. and 
calculate the sum of the energies of the 24 lowest states of the system. 
The value of a that gives us the least energy sum is chosen as the opti-
mum value for that particular angular symmetry case. We choose to 

optimize the energy sum of 24 states since there are 24 copies of a single 
generator Gaussian and the spacing between the energy levels of these 
24 lowest energy states is too low for us to be able to access them 
individually in the minimization process. 

Values of a less than 0.5 a.u were too small to spread the functions 
effectively and by creating linear dependencies caused our optimization 
routine to fail. Values of a higher than 3 a.u. on the other hand, moved 
the centers of the expanded Gaussians outside the “box” giving unreal-
istic energy values. In the Table 4, we have tabulated the optimum 
values of the spreading factor a for all eight angular symmetry cases. 

Once the optimum value of a is determined, we calculate the den-
sities using the wave functions of the translational ground and excited 
states of the system. These densities show how the electron and proton 
clouds are distributed in the box in each of the 24 lowest energy states 
for the eight angular symmetries. The Fig. 5–8 show the proton densities 
of some of the energy levels of the translational excited states for a few of 
the angular symmetry cases. The proton densities are much sharper and 
less diffused than the electron densities as shown previously and this is 
why we chose to plot the proton densities in the excited state calcula-
tions. Although we have prepared these proton density diagrams for all 
the eight states, we present only a few representative cases here for 
illustrative purposes. Fig. 5(a) - (c) represents the translational fully 
symmetric SSS states 1, 5, and 24. The SAS case is randomly chosen as a 
“test-case” of a state with one antisymmetry plane. Fig. 6(a) - (c) show 
the energy levels 1, 5, and 24 for this particular SAS case. To illustrate 

Fig. 7. Contour plots of the proton density of the translational states for the SAA symmetry. (a) shows the lowest energy state, (b) shows state 5, and (c) shows 
state 24. 
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what happens when we have 2 antisymmetry planes in the angular 
symmetry, we choose the “test-case” of the SAA state and in Fig. 7(a) - 
(c), the density plots for the energy levels 1, 5 and 24 of the said SAA 
case are presented. Finally, we show the energy levels for the transla-
tionally excited AAA case, which has three antisymmetry planes. In 
Fig. 8(a) - (c), the density plots corresponding to energy levels 1, 5 and 
24 with the AAA symmetry are shown. 

There are a couple of important takeaways from Fig. 5(a) - 8(c). First 
is the fact that the wave functions in energy levels 1, 5 and 24 are visibly 
very different. The difference results from mutual orthogonality of the 
wave functions of the states within the same angular symmetry. The 
second important feature that is apparent in the plots is that, as the 
energy of the level increases, the wave function becomes more localized 
within the box. Therefore, state 1 which has the lowest energy is the 
most delocalized and exhibits the most tunneling whereby the wave 
function seeps outside the box. State 24 on the other hand, which has the 
highest energy, also has the most localized wave function. As the result 
of the strong localization of this state, its integrated proton and electron 
densities are closer to one than for the other states. The stronger local-
ization of the higher excited states than of the lower laying states results 
from a larger center-of-mass kinetic energy that is a part of the total 
energy of each state. 

4. Conclusions 

A computational model to study bound states of a hydrogen atom 
placed in a cuboidal potential energy trap is proposed, implemented, 
and tested. The wave functions for the ground and excited states of the 
system are expanded using all-particle explicitly correlated Gaussian 
functions with shifted centers. The variational method is used to opti-
mize the non-linear parameters of the Gaussians. The explicitly corre-
lated Gaussian functions allow us to more accurately represent the 
electron-electron, electron-nucleus, and nucleus-nucleus correlation ef-
fects much better than obtained with an approach that employs elec-
tronic and nuclear orbitals. Naturally, for the hydrogen atom, only the 
first of the three correlations is present. 

Eight possible angular symmetries of the wave function in the trap-
ping potential of a cuboidal box formed by alternating point charges are 
examined. For each symmetry, both ground and excited states are 
calculated. The excited states, which are called translational states, 
correspond to the different ways the hydrogen atom delocalizes within 
the PE trap. One-particle density plots are used to visualize the results. 
They show the physical nature of the states. 

The non-Born-Oppenheimer approach that treats both the nuclei and 
electrons on a equal footing presented in this “proof-of-concept” study 
for the test case of a trapped hydrogen atom will be applied to study 
various other systems under the same trapping potential. Work is 
currently underway to extend the approach to a trapped hydrogen 

Fig. 8. Contour plots of the proton density of the translational states for the AAA symmetry. (a) shows the lowest energy state, (b) shows state 5, and (c) shows 
state 24. 
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molecule and to a system of multiple hydrogen molecules trapped within 
the cuboidal box. At a later stage, we would also like to expand our 
studies to simulate a more realistic PE trap comprises real molecules 
rather than point charges, as presented in this work. Various applica-
tions of the present method will continue to be an important focus of our 
upcoming future research. 
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