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ABSTRACT

In this work we present high-accuracy benchmark-quality calculations of the electron affinity (EA)
of the LiH molecule in a framework that does not assume the Born—-Oppenheimer (BO) approxima-
tion. The EA is calculated as a difference between the total energies of LiH™ and LiH. The calculations
of the energies are performed using the Rayleigh-Ritz variational method with large basis sets of
all-particle explicitly correlated Gaussian functions (ECGs). Up to 14,000 ECGs are used in the calcula-
tions for each system. The nonlinear parameters of the ECGs are optimised by by the minimisation of
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the total non-relativistic energy of the system using an approach that employs the energy gradient
determined with respect the parameters. The LiH™ and LiH non-relativistic non-BO wave functions
are subsequently used to calculate the leading relativistic corrections. The calculated EA is well con-
verged in terms of the size of the basis sets and the obtained value falls within the uncertainty of the

best available experimental result.

1. Introduction

Since its emergence about a century ago, the main
task of quantum chemistry has been the development
of methods for performing high accuracy calculations
of molecules based of the first principles of quantum
mechanics. Widespread adoption of electronic comput-
ers in scientific research in 1960s brought the capabil-
ity of predicting the spectra of atoms and molecules at
the quantum-mechanical level of theory to new heights.
One of the most spectacular successes of computational
quantum chemistry at the time has been a series of

works by Kotos and Wolniewicz regarding the hydrogen
molecule [1-3].

Regardless of their specifics, first principles calcu-
lations have to involve a certain number of approxi-
mations. One of the most important and commonly
used one in the molecular structure theory is the
Born-Oppenheimer approximation, which makes an
assumption that the electronic and nuclear motions in
molecules can be separated. While it works quite well
(even quantitatively) in most chemical systems, there are
some uncertainties that are associated with it. Indeed, in

CONTACT Sergiy Bubin @ sergiy.bubin@nu.edu.kz @ Department of Physics, Nazarbayev University, Nur-Sultan010000, Kazakhstan

© 2022 Informa UK Limited, trading as Taylor & Francis Group



2 (& S.NASIRIETAL

their early works Kolos and Wolniewicz already recog-
nised that some discrepancy between the binding energy
of Hy they had calculated was likely be due to the adia-
batic approximation involved [2].

As the number-crunching power of computers keeps
growing over the years, it becomes possible, at least
for the smallest molecular systems, to reduce the
number of approximations to a minimum. In the
approach adopted in this work we consider few-electron
diatomic systems, LiH and LiH™, without the use of
the Born-Oppenheimer approximation. This means that
all particles, ie. the nuclei and electrons forming the
molecule, are treated on an equal footing. Such an
approach, if it only concerns the internal bound states of
the system, necessitates that the centre of mass motions
is removed from the Hamiltonian. This separation in the
non-BO method we have developed is done by start-
ing with the total non-relativistic Hamiltonian of the
molecule written in terms of laboratory Cartesian coor-
dinates and then transforming it to a new Cartesian coor-
dinate system. The first three coordinates in this new
system are the centre-of-mass laboratory Cartesian coor-
dinates and the remaining 3N—3 coordinates, where N
is the sum of the number of the nuclei and the number
of the electrons in the molecule, are internal coordinates.
In our approach, the internal coordinatesr;_; = R; — R;
are the Cartesian coordinates of vectors with the origins
at a chosen reference particle located at R; (usually the
heaviest nucleus in the system, which we can call particle
1) and ending at the positions of particles 2,3,...,N. A
transformation of the total non-relativistic Hamiltonian
to the new coordinates system results in its rigorous sep-
aration of the lab-frame Hamiltonian into an operator
that represents the kinetic energy of the centre-of-mass
motion and an internal Hamiltonian, as described in the
next section. The centre-of-mass kinetic energy Hamil-
tonian depends only on the centre-of-mass laboratory
coordinates and the internal Hamiltonian depends only
on the internal coordinates [4].

The second approximation, as will be demonstrated in
the results section in this work, we effectively reduce to a
negligible impact is the incompleteness of the basis set
used to expand the total non-BO non-relativistic wave
function of the system. In our approach this is done by
using a large number of all-particle explicitly correlated
Gaussian functions (ECGs) for expanding the system’s
wave function and by performing a thorough variational
optimisation of the nonlinear parameters of the Gaus-
sians. We employ a procedure that involves the use of the
analytical gradient of the total energy of the system deter-
mined with respect these parameters. The explicit depen-
dence of the Gaussian of the inter-particle distances is
key in achieving high accuracy in the calculations. Even

though the correlated Gaussian do not strictly fulfill the
Kato conditions for the behaviour of the wave function at
the inter-particle coalescent points, and their amplitude
drops too rapidly when the distances approach infinity, if
a large number of ECGs is used in the calculation, these
deficiencies can be effectively remedied, as shown in this
work.

The third approximation, whose impact on the results
needs to be reduced is the neglect of higher-order rel-
ativistic and quantum electrodynamics effects. In the
present work we only consider the former. The calcula-
tions of the leading relativistic corrections are done in
the framework of the first-order perturbation theory. The
corrections are calculated as the expectation values of the
operators representing the corrections using the non-BO
non-relativistic wave function.

In our previous work published almost 18 years ago [5]
we presented non-BO calculations of LiH, LiH™, LiD,
and LiD™ performed with a much smaller basis of 3600
ECGs. The relativistic effects were not included in those
calculations at all. In the present work, the size of the
basis sets used in the calculations are increased nearly
four-fold. This, as well as the inclusion of leading rela-
tivistic corrections, allows for a significant increase of the
accuracy of the results.

LiH™ is the smallest stable diatomic anion of a stable
molecule. Its adiabatic electron detachment (ED) energy
has been investigated both experimentally [6-9] and
theoretically [10-14]. These include our previous work
(5].

The LiH/LiH™ system is small enough to be stud-
ied at the highest level of the theoretical sophistica-
tion [10-14]. Thus, it is a good model for assessing the
accuracy and performance of the various computational
approaches including the present approach. Also, the-
oretical calculations can be compared with experimen-
tal measurements of the LiH electron affinity [6-9] of
which the value of 0.342 4= 0.012 eV reported by Sarkas
et al. [9] is currently the most accurate one. This value,
as well as the corresponding value of the electron affin-
ity of the LiD molecule, was reproduced within the
experimental error bars in our previous calculations per-
formed without including the relativistic corrections. In
the present calculations we increase the level of the-
ory by the addition of the relativistic corrections and
reducing the basis runcation uncertainty by means of
increasing the size of the basis set. The calculated LiH
electron affinity obtained in the present work, to the best
of our knowledge, is the most precise value obtained
in direct calculations based of the first principles. We
hope that this work will motivate new measurements
of the LiH electron affinity at a much higher level of
accuracy.



MOLECULAR PHYSICS e 3

Table 1. Variational non-Born-Oppenheimer non-relativistic energies (En) of the ground states of of LiH and LiH™ molecules and the
corresponding total relativistic energies () obtained by adding the MV, OO, D, and SS relativistic corrections (also shown in the table)

to the Ey, energies.

Basis Enr (Hmv) (Hoo) (Hp) (Hss) Erel
LiH 8,000 —8.06643754 -79.0353 -0.473082 63.9136 3.4608 —8.06708369
10,000 —8.06643877 —79.0459 —0.473069 63.9249 3.4579 —8.06708504
12,000 —8.06643887 —79.0534 —0.473065 63.9332 3.4552 —8.06708525
14,000 —8.06643898 —79.0542 —0.473066 63.9341 3.4550 —8.06708535
00 —8.06643910(6) —8.06708553(9)
LiH™ 8,000 —8.07866211 —78.8561 —0.471358 63.7704 3.4497 —8.07930685
10,000 —8.07866960 —78.8697 —0.471362 63.7845 3.4494 —8.07931433
12,000 —8.07867342 —78.9278 —0.471361 63.8394 3.4488 —8.07931834
14,000 —8.07867612 —78.9306 —0.471360 63.8436 3.4470 —8.07932107
o0 —8.0786771(5) —8.0793223(6)

Notes: Results obtained with basis sets of different size are shown. Note that the generation of the largest set of 14,000 ECGs involved somewhat more extensive
optimisation. The values in parentheses are uncertainties due to the finiteness of basis set used. All energies and expectation values are expressed in atomic

units.

2. Method

When accurate wave functions corresponding to the
solution of the non-relativistic problem are available, the
most practical approach to account for small in magni-
tude relativistic and QED effects in light atoms is to use
the perturbation theory. In this approach, the total energy
can be expanded in powers of the fine structure constant,
a [15,16]:

rel

Eiot = Enr + azE(Z) + a3E81)3D RaRR (1)

where Ey, is the non-relativistic energy of the state being
considered, the second term (azEﬁl) ) represents the lead-
ing relativistic corrections, the third term (a3Eg%D) rep-
resents the leading QED corrections, and so on. Each
of these terms is evaluated as an expectation value of a
certain effective operator.

As mentioned, the non-relativistic calculations in the
present work are carried out using a Hamiltonian that
represents the internal state of the molecule and excludes
the motion of the centre of mass, i.e. excludes the trans-
lational motion of the system as a whole. The internal
Hamiltonian expressed in terms of the internal Cartesian
coordinates, r;, i = 1,...,n, where n = N—1 and N is
the number of particles (electrons and nuclei) forming
the molecule, as follows [4,17]:

1< 1 1 <
A== V.V +— Y V.V,
2 Z:ZI wi T mg Z.jg T

i#j
~qodi |\~ 94
04i iqj
+), —+ —, (2)
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= J_

where myg is the mass of the reference nucleus (in the
present calculations, the lithium nucleus) and gy is its
charge, g; are the charges of the other particles, u; =

mom;/(mg + m;) is the reduced mass of particle i (m;,
i=1,...,n, are the particle masses), r;, i=1,...,n is
the distance from particle i+ 1 to the reference parti-
cle, i.e. particle 1, and rjj is the distance between particle
j+ 1and particle i + 1. The prime symbol in (2) denotes
the matrix/vector transposition. One can notice that the
internal Hamiltonian represents the motion of n parti-
cles, whose charges are the original particle charges, but
the masses are the reduced masses (because of that, one
can use the term ‘pseudoparticles’ to denote the particles
described by the internal Hamiltonian (2)), in the cen-
tral field of the charge of the reference nucleus. Thus, the
internal Hamiltonian is invariant upon all rotations about
the centre of the internal coordinate system and one can
think of it as an ‘atom-like’ Hamiltonian. The eigenfunc-
tions of this Hamiltonian can be classified using the same
symmetries as the wave functions of atoms. In particular,
the ground-state solution is spherically symmetric, i.e. it
is invariant under rotations in 3D. This rotational sym-
metry takes place for the ground state of both LiH and
LiH™.

The approach used to obtain the internal Hamilto-
nian (2) and to separate out the centre-of-mass motion
from the laboratory frame Hamiltonian is a generalisa-
tion of the standard textbook approach used to reduce
a two-body problem to a one-body problem in quan-
tum mechanics, e.g. in the case of an electron and pro-
ton forming the hydrogen atom. In the present work,
the non-relativistic energies, Ey, and the corresponding
wave functions of LiHH and LiH™ are calculated using this
internal Hamiltonian.

The following all-particle spherically-symmetric
explicitly correlated Gaussian functions are used in the
present calculations:

dr = 1, * exp[—1'(Ax ® I3)r], 3)

where r is the distance between the nuclei (particle 1 is
the lithium nucleus while particle 2 is the proton), my is
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an even integer from an extented range (in this work we
adopted the range from 0-200) that can be viewed as an
integer variational parameter, Ay is an n x n real sym-
metric matrix of the continuous exponential variational
parameters, ® denotes the Kronecker product, and I is
an 3 x 3 identity matrix. Note that both Ay and my are
unique and independently tunable for each basis func-
tion, which is indicated by the presence of index k. Vector
rin (3) is a 3n-component vector formed by stacking the
internal Cartesian coordinates r;:

X1
I '
r “1
2
r=1| . |=1]":] (4)
: X,
Iy
Yn
Zn

Let us denote Ay ® I3 as Ag. This matrix Ax and, by
extension, Ak, have to be positive definite is order for
Gaussian (3) to be square integrable. To ensure posi-
tive definiteness of Ay we adopt the following Cholesky-
factored form of it: Ay, = (LkL;c) ® I3, where Lyisan x n
lower-triangular matrix of real numbers. In this form, Ay
is automatically positive definite for the Ly matrix ele-
ments being any real numbers. The L; matrix elements
are parameters that are variationally optimised in the
present calculations. The optimisation employs the ana-
lytical energy gradient determined with respect to the Ly
matrix elements. These elements can be varied without
any restrictions in the range of values from —oo to 4-00.
In addition to the optimisation of the Lj matrix elements,
the my powers of r; that appear in (3) are also partially
optimised.

The need to include the r'lﬂ" factor in Gaussian (3) can
be explained by analysing the internal Hamiltonian (3).
One notices that pseudoparticle 1 in the internal Hamil-
tonian (2) is a proton. Because of the strong Coulombic
repulsion between this proton and the reference particle,
located at the centre of the internal coordinate system,
the density of pseudoparticle 1 must be virtually zero at
this centre. At the same time for a diatomic molecule it
sharply peaks at a sphere with the radius approximately
equal to the equilibrium distance of the molecule. As an
origin-centred Gaussian function has a maximum at the
centre of the coordinate system, it needs to be modified to
move its maximum away from the centre and to reach a
maximum value on the mentioned sphere. This is accom-
plished by multiplying the Gaussians by the r;"* factors.
Such factors, in addition to describing the shifting of the
Gaussian maximum away from the coordinate system,
are needed to describe the radial oscillations of the wave

functions corresponding to excited states. If the Gaus-
sians used in the calculation are spherically symmetric,
as are basis functions (3), then all excited states they can
describe are purely ‘vibrational’ states, i.e. states with the
zero total angular momentum. Term ‘vibrational’ is put
is quotes because in a non-BO calculations vibrational
and electronic motions couple and strictly speaking the
vibrational quantum number is not a good quantum
number.

The present calculations concern the ground states of
LiH and LiH™ with the singlet and doublet multiplici-
ties, respectively. In constructing the wave functions, the
proper permutational symmetry of the electrons has to be
imposed. In the present work this is done using the spin-
free formalism [18-20] that involves the construction
of an appropriate symmetry projector, Y. The action of
this projector on the spatial basis functions yields matrix
elements that otherwise be generated by using the full
(spatial plus spin) basis functions and integrating over
spin coordinates. Projector Y implements the desired
permutational symmetry properties. In the present work,
we choose Y in the following form for LiH and LiH™,
respectively:

Y = (14 Pp3)(1 +Pys)(1 — Pry)(1 — P35)  (5)
and
Y = (14 P23)(1 + P45)(1 — Pag — Prg)(1 — P35). (6)

Here P;; denotes the permutation of spatial coordinates
of the ith and jth particles. Note that the above choice of
operator Y is not unique.

In expansion (1), quantity Egl) corresponds to the
expectation value of the Dirac-Breit Hamiltonian in the
Pauli approximation, Hye [21,22]. To be used in the
present work, Hy is first transformed from the labora-
tory coordinates, R;, to the internal coordinates, r;. Hy
includes the following terms: the mass—velocity term,
Hmy, the Darwin term, Hp, the orbit—orbit interaction
term, Hoo, and the spin-spin Fermi interaction term,
Hss:

Hyel = Huv + Hp + Hoo + Hss. (7)

The explicit forms of the corresponding effective opera-
tors in the internal coordinates are [17]:

1] 1 (& R
Hyy = — ;(Zvrz) +Y Vi ®
0 i=1

3
i—1 mi

n n
. . .
Hp = -2 [ 285 0y + 3 s ) [, 9)
-1 M ij=1 m;
j#i
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2 mim;
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T'ij rij
and
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In the last expression s; denotes the spin operator of the
ith pseudoparticle. The relativistic corrections are cal-
culated as the expectation values of the above operators
using the non-relativistic wave function.

3. Results

The first set of results, which is presented in Table 1, con-
cerns the calculations of the total non-Born-
Oppenheimer non-relativistic energies and leading rel-
ativistic corrections for the ground states of LiH and
LiH™. The results shown in the table are obtained with
the basis sets of size that increases from 8,000 Gaussians
to 14,000 Gaussians. The relativistic (or total) energies
obtained by adding the relativistic corrections to the non-
relativistic non-BO energies are also shown. Both ener-
gies are extrapolated to an infinite basis set size and the
extrapolated values are shown in the table along with
the estimated uncertainties. As one can see, both non-
relativistic and relativistic energies are well converged
but, as expected, the convergence is better for LiH that for
LiH™. This is mainly due to the fact that the former sys-
tem contains one electron less than the latter. It is usually
the case that for a system with fewer particles one needs a
smaller number of the basis functions to converge the cal-
culations to the same accuracy level as for a system with
more particles.

The results shown in Table 1 are obtained in the basis
set growing process that involves starting from a small set
of Gaussians with nonlinear parameters chosen by a com-
bination of a random and physically-motivated choices.
After that the growing process involves a set of steps,
where in each step the basis set is enlarged by addition
of a subset of new Gaussians and variationally optimis-
ing them with the a procedure that employs the analyt-
ical energy gradient. The enlargement and subsequent
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optimisation are done using a one-function-at-a-time
approach. The initial guess of a new function is generated
stochastically based on the values of nonlinear param-
eters of the Gaussian already included in the basis set.
Several hundred of such stochastically generated candi-
dates are tried and the best one is retained. Then the
newly added function is variationally optimised and, if
it is not linearly dependent with all other functions in the
set, it is included in the basis set. The Ly matrix elements
and the my, power in the r; preexponential factor are sub-
ject to the optimisation. As mentioned, the my powers
are optimised in the 0-200 range and are restricted to be
even integers. After a certain number of Gaussians are
added, the nonlinear parameters of all function in the
basis set generated so far are reoptimised, again using a
one-function-at-a-time approach. In this reoptimisation,
however, only the L; matrix elements are varied, while
the my, values kept unchanged.

We find it interesting to compare the distributions
of powers, my, that result from the optimisations of the
basis sets performed for the ground-state wave functions
of LiH and LiH™. They are shown in Figure 1. Upon
examining the histograms, one can make the following
observations. The power distributions are very similar
for both systems. The most frequently occuring powers
have values in the range from 10 to 50. After that, the
probability of the appearance of a certain value of the
power decreases with the increasing value of the power.
However, even as the powers approach the limiting value
of 200, there is a non-zero probability of finding such
powers in the basis sets of the two systems. One can
notice a small maximum of the distribution of the pow-
ers near 200. This maximum indicates that, if the power
range were extended, the variational optimisation might
have yielded a few functions with powers larger than 200.
However, the range of 0-200 we used in our calculations
of the ground states of LiH and LiH™ is fairly adequate.

In the next step the non-relativistic and relativistic
energies of LiH and LiH™ given in Table 1 are used to
calculate the the electron affinity of LiH. The results are
shown in Table 2. The energy of LiH™ converges slower
with the number of ECGs than the LiH energy. Since the
LiH™ energy lies lower than the energy of LiH, the elec-
tron affinity calculated as the difference of the LiH™ and
LiH energies effectively provides an lower bound to the
exact electron affinity value. The EAs calculated in the
present work are compared in Table 2 with the exper-
imental value and with some theoretical calculations
reported in the literature. As one can see, the EA results
obtained at both the non-relativistic and relativistic levels
of the theory agree with the experimental result of Sarkas
et al. [9] to within the experimental uncertainty. Among
the previously calculated EAs of LiH, the MRCISD+Q
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Figure 1. A comparison of the the distributions of the my powers
of ry-prefactors in the Gaussians obtained in the optimisation of
the basis sets for LiH and LiH ™.

Table 2. Convergence of the electron affinities (EA) of LiH (in eV)
in terms of the number of the basis functions.

Basis(LiH) Basis (LiH™) EAnr EArel
8,000 8,000 0.332648 0.332609
10,000 10,000 0332818 0332776
12,000 12,000 0332919 0.332879
14,000 14,000 0.332990 0.332951
00 00 0.333012(11) 0.332979(31)
CCSDT [13] 0327

MRCISD+Q [14] 0332

FN-DMC [23] 0.340(4)

CCSD(T) [24] 0.334 2 0.001

Exp. [9] 0.342 £ 0.012

Note: The numbers in the first two columns show the number of ECG functions
employed in the calculations.

value [14] best agrees with our non-relativistic result of
0.332990 a.u. (extrapolated to 0.333012(11) a.u.).

The non-Born-Oppenheimer non-relativistic wave
functions obtained for LiH and LiH™ with the largest
basis set generated for the two systems in this work are
used to calculate some expectation values of interparticle

Table 3. Expectation values of the interparticle distances, (ry),
and the most probable distance between Li and H nuclei, r;",,
calculated with the LiH and LiH™ non-Born—Oppenheimer wave
functions obtained with the largest basis sets generated in this
work.

LiH LiH™
(rLiw) 3.0610383(13 3.214425(10)
(fLie) 1.9719334(5) 3.13005(22)
(fHe) 2.5651045(9) 4.03936(20)
(re—e) 2.9559396(8) 5.27574(41)
ey 3.013130(5) 3.157615(3)
I BO ECG? 3.04482(5)
mw Ccsp(T)P 3.0275(4) 3.1740(4)
ro MRCISD+Q [14]° 3.019015695 3184011222
() 9.419705(8) 10.39224(5)
() 6.585742(4) 20.062(7)
() 7.745214(7) 28.419(7)
(r2_e 10.966067(7) 43.792(14)
(8(re)) 3.451766(17) 2.7579(8)
(8(TH=e)) 0.095073(15) 0.074684(11)
(8(Te—e)) 0.091647(30) 0.054860(8)

Notes: The results are compared with the values obtained in the
Born-Oppenheimer ECG [26] and MRCISD+Q [14] calculations. All
values are expressed in atomic units.?Born—Oppenheimer calculations with
2,400 ECG basis functions [26].bCoupIed—cIuster singles and doubles and
non-iterative triple excitations. The aug-cc-pV5Z [27] basis set has been
used. The calculations were carried out using the Gaussian 16 software
package [28].°The internally contracted configuration interaction in the
single and double space (MRCISD) level with four electrons distributed
among the five orbitals (MRCISD+-Q) arising from the 1s, 2s, and 2p atomic
orbitals in the multiconfigurational self-consistent-field (MCSCF) part of the
calculations has been used.

distances and their squares, as well as the most proba-
ble Li-H internuclear distance. The expectation values
of the interparticle Dirac delta functions are also calcu-
lated. The results are shown in Table 3. The attachment
of an excess electron in LiH increases the average inter-
nuclear distance from 3.0610383(13) to 3.214425(10) a.u.
Also, the average proton-electron distance increases
from 2.5651045(9) to 4.03936(20) a.u. This increase can
be explained as follows. The neutral LiH molecule is an
ionic Li(+8) — H(—4) species in the ground state due to
a higher electron affinity of the hydrogen atom than the
lithium atom. Thus, in the formation of LiH ™, the excess
electron mostly localises near the lithium atom resulting
in an increase of the average proton-electron distance.
Also, as the neutral LiH has a rather large dipole moment
(5.882 4 0.003; Wharton et al. [25]), a significant part
of the electron attachment to LiH is due to the dipole-
electron interaction that results in the excess electron
occupying a dipole-bound state that extends away from
the lithium atom outside the molecule. This results in
an additional increase of the proton-electron distance, as
well as the distance between the lithium nucleus and the
electron. Also, the electron attachment makes the elec-
tron density in the molecule to become more diffused
resulting in the (8(rg_.)) expectation value to decrease
from 0.095073(15) to 0.074684(11) a.u. (see Table 3).
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Figure 2. The nucleus—nucleus pair correlation functions for the
ground states of LiH and LiH™ molecules calculated at different
levels of theory.

Lastly, in Figure 2, the nucleus-nucleus pair correla-
tion functions calculated for the ground states of LiH
and LiH™ using the respective non-Born-Oppenheimer
wave functions in the largest basis sets of 14,000
ECGs generated in this work are compared with the
square of the corresponding vibrational wave func-
tions obtained using different approaches based on the
Born-Oppenheimer approximation. As one can see, the
density of the proton for the two systems is localised
around the respective average distance and it is slightly
less sharply peaked and broader for LiH™ than for LiH.
The pictures obtained from both the present non-BO
approach and from the BO calculations are very simi-
lar both in terms of the heights, the broadness, and the
relative shift of the LiH and LiH™ peaks.

4. Summary

In this work we present the most accurate non-
Born-Oppenheimer calculations ever performed for a
molecule with five electrons. As a result of several months
of continuous optimisations, basis sets containing 14,000
explicitly correlated all-particle Gaussian basis functions
are generated for the LiH and LiH™ molecules. Then the
leading relativistic energy corrections are calculated and
added to the non-BO non-relativistic energies. These are
used to calculated the LiH electron affinity. The obtained
value is likely the most accurate EA result ever calculate.
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