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ABSTRACT

In this work we present high-accuracy benchmark-quality calculations of the electron affinity (EA)
of the LiH molecule in a framework that does not assume the Born–Oppenheimer (BO) approxima-
tion. The EA is calculated as a difference between the total energies of LiH− and LiH. The calculations
of the energies are performed using the Rayleigh-Ritz variational method with large basis sets of
all-particle explicitly correlated Gaussian functions (ECGs). Up to 14,000 ECGs are used in the calcula-
tions for each system. The nonlinear parameters of the ECGs are optimised by by theminimisation of
the total non-relativistic energy of the system using an approach that employs the energy gradient
determined with respect the parameters. The LiH− and LiH non-relativistic non-BO wave functions
are subsequently used to calculate the leading relativistic corrections. The calculated EA is well con-
verged in terms of the size of the basis sets and the obtained value falls within the uncertainty of the
best available experimental result.
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1. Introduction

Since its emergence about a century ago, the main

task of quantum chemistry has been the development

of methods for performing high accuracy calculations

of molecules based of the first principles of quantum

mechanics. Widespread adoption of electronic comput-

ers in scientific research in 1960s brought the capabil-

ity of predicting the spectra of atoms and molecules at

the quantum-mechanical level of theory to new heights.

One of the most spectacular successes of computational

quantum chemistry at the time has been a series of
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works by Kołos and Wolniewicz regarding the hydrogen

molecule [1–3].

Regardless of their specifics, first principles calcu-

lations have to involve a certain number of approxi-

mations. One of the most important and commonly

used one in the molecular structure theory is the

Born–Oppenheimer approximation, which makes an

assumption that the electronic and nuclear motions in

molecules can be separated. While it works quite well

(even quantitatively) in most chemical systems, there are

some uncertainties that are associated with it. Indeed, in
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their early works Kołos and Wolniewicz already recog-

nised that some discrepancy between the binding energy

of H2 they had calculated was likely be due to the adia-

batic approximation involved [2].

As the number-crunching power of computers keeps

growing over the years, it becomes possible, at least

for the smallest molecular systems, to reduce the

number of approximations to a minimum. In the

approach adopted in this work we consider few-electron

diatomic systems, LiH and LiH−, without the use of

the Born–Oppenheimer approximation. This means that

all particles, i.e. the nuclei and electrons forming the

molecule, are treated on an equal footing. Such an

approach, if it only concerns the internal bound states of

the system, necessitates that the centre of mass motions

is removed from the Hamiltonian. This separation in the

non-BO method we have developed is done by start-

ing with the total non-relativistic Hamiltonian of the

molecule written in terms of laboratory Cartesian coor-

dinates and then transforming it to a newCartesian coor-

dinate system. The first three coordinates in this new

system are the centre-of-mass laboratory Cartesian coor-

dinates and the remaining 3N−3 coordinates, where N

is the sum of the number of the nuclei and the number

of the electrons in the molecule, are internal coordinates.

In our approach, the internal coordinates ri−1 = Ri − R1

are the Cartesian coordinates of vectors with the origins

at a chosen reference particle located at R1 (usually the

heaviest nucleus in the system, which we can call particle

1) and ending at the positions of particles 2, 3, . . . ,N. A

transformation of the total non-relativistic Hamiltonian

to the new coordinates system results in its rigorous sep-

aration of the lab-frame Hamiltonian into an operator

that represents the kinetic energy of the centre-of-mass

motion and an internal Hamiltonian, as described in the

next section. The centre-of-mass kinetic energy Hamil-

tonian depends only on the centre-of-mass laboratory

coordinates and the internal Hamiltonian depends only

on the internal coordinates [4].

The second approximation, as will be demonstrated in

the results section in this work, we effectively reduce to a

negligible impact is the incompleteness of the basis set

used to expand the total non-BO non-relativistic wave

function of the system. In our approach this is done by

using a large number of all-particle explicitly correlated

Gaussian functions (ECGs) for expanding the system’s

wave function and by performing a thorough variational

optimisation of the nonlinear parameters of the Gaus-

sians. We employ a procedure that involves the use of the

analytical gradient of the total energy of the system deter-

minedwith respect these parameters. The explicit depen-

dence of the Gaussian of the inter-particle distances is

key in achieving high accuracy in the calculations. Even

though the correlated Gaussian do not strictly fulfill the

Kato conditions for the behaviour of the wave function at

the inter-particle coalescent points, and their amplitude

drops too rapidly when the distances approach infinity, if

a large number of ECGs is used in the calculation, these

deficiencies can be effectively remedied, as shown in this

work.

The third approximation, whose impact on the results

needs to be reduced is the neglect of higher-order rel-

ativistic and quantum electrodynamics effects. In the

present work we only consider the former. The calcula-

tions of the leading relativistic corrections are done in

the framework of the first-order perturbation theory. The

corrections are calculated as the expectation values of the

operators representing the corrections using the non-BO

non-relativistic wave function.

In our previouswork published almost 18 years ago [5]

we presented non-BO calculations of LiH, LiH−, LiD,

and LiD− performed with a much smaller basis of 3600

ECGs. The relativistic effects were not included in those

calculations at all. In the present work, the size of the

basis sets used in the calculations are increased nearly

four-fold. This, as well as the inclusion of leading rela-

tivistic corrections, allows for a significant increase of the

accuracy of the results.

LiH− is the smallest stable diatomic anion of a stable

molecule. Its adiabatic electron detachment (ED) energy

has been investigated both experimentally [6–9] and

theoretically [10–14]. These include our previous work

[5].

The LiH/LiH− system is small enough to be stud-

ied at the highest level of the theoretical sophistica-

tion [10–14]. Thus, it is a good model for assessing the

accuracy and performance of the various computational

approaches including the present approach. Also, the-

oretical calculations can be compared with experimen-

tal measurements of the LiH electron affinity [6–9] of

which the value of 0.342 ± 0.012 eV reported by Sarkas

et al. [9] is currently the most accurate one. This value,

as well as the corresponding value of the electron affin-

ity of the LiD molecule, was reproduced within the

experimental error bars in our previous calculations per-

formed without including the relativistic corrections. In

the present calculations we increase the level of the-

ory by the addition of the relativistic corrections and

reducing the basis runcation uncertainty by means of

increasing the size of the basis set. The calculated LiH

electron affinity obtained in the present work, to the best

of our knowledge, is the most precise value obtained

in direct calculations based of the first principles. We

hope that this work will motivate new measurements

of the LiH electron affinity at a much higher level of

accuracy.
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Table 1. Variational non-Born–Oppenheimer non-relativistic energies (Enr) of the ground states of of LiH and LiH− molecules and the
corresponding total relativistic energies (Erel) obtained by adding the MV, OO, D, and SS relativistic corrections (also shown in the table)
to the Enr energies.

Basis Enr 〈HMV〉 〈HOO〉 〈HD〉 〈HSS〉 Erel

LiH 8,000 −8.06643754 -79.0353 -0.473082 63.9136 3.4608 −8.06708369
10,000 −8.06643877 −79.0459 −0.473069 63.9249 3.4579 −8.06708504
12,000 −8.06643887 −79.0534 −0.473065 63.9332 3.4552 −8.06708525
14,000 −8.06643898 −79.0542 −0.473066 63.9341 3.4550 −8.06708535

∞ −8.06643910(6) −8.06708553(9)
LiH− 8,000 −8.07866211 −78.8561 −0.471358 63.7704 3.4497 −8.07930685

10,000 −8.07866960 −78.8697 −0.471362 63.7845 3.4494 −8.07931433
12,000 −8.07867342 −78.9278 −0.471361 63.8394 3.4488 −8.07931834
14,000 −8.07867612 −78.9306 −0.471360 63.8436 3.4470 −8.07932107

∞ −8.0786771(5) −8.0793223(6)

Notes: Results obtained with basis sets of different size are shown. Note that the generation of the largest set of 14,000 ECGs involved somewhat more extensive
optimisation. The values in parentheses are uncertainties due to the finiteness of basis set used. All energies and expectation values are expressed in atomic
units.

2. Method

When accurate wave functions corresponding to the

solution of the non-relativistic problem are available, the

most practical approach to account for small in magni-

tude relativistic and QED effects in light atoms is to use

the perturbation theory. In this approach, the total energy

can be expanded in powers of the fine structure constant,

α [15,16]:

Etot = Enr + α2E
(2)
rel + α3E

(3)
QED + · · · , (1)

where Enr is the non-relativistic energy of the state being

considered, the second term (α2E
(2)
rel ) represents the lead-

ing relativistic corrections, the third term (α3E
(3)
QED) rep-

resents the leading QED corrections, and so on. Each

of these terms is evaluated as an expectation value of a

certain effective operator.

As mentioned, the non-relativistic calculations in the

present work are carried out using a Hamiltonian that

represents the internal state of the molecule and excludes

the motion of the centre of mass, i.e. excludes the trans-

lational motion of the system as a whole. The internal

Hamiltonian expressed in terms of the internal Cartesian

coordinates, ri, i = 1, . . . , n, where n = N−1 and N is

the number of particles (electrons and nuclei) forming

the molecule, as follows [4,17]:

Ĥ = −
1

2

⎛

⎜

⎜

⎝

n
∑

i=1

1

µi
∇ ′
ri
∇ri +

1

m0

n
∑

i,j=1
i�=j

∇ ′
ri
∇rj

⎞

⎟

⎟

⎠

+

n
∑

i=1

q0qi

ri
+

n
∑

i>j=1

qiqj

rij
, (2)

where m0 is the mass of the reference nucleus (in the

present calculations, the lithium nucleus) and q0 is its

charge, qi are the charges of the other particles, µi =

m0mi/(m0 + mi) is the reduced mass of particle i (mi,

i = 1, . . . , n, are the particle masses), ri, i = 1, . . . , n is

the distance from particle i+ 1 to the reference parti-

cle, i.e. particle 1, and rij is the distance between particle

j+ 1 and particle i+ 1. The prime symbol in (2) denotes

the matrix/vector transposition. One can notice that the

internal Hamiltonian represents the motion of n parti-

cles, whose charges are the original particle charges, but

the masses are the reduced masses (because of that, one

can use the term ‘pseudoparticles’ to denote the particles

described by the internal Hamiltonian (2)), in the cen-

tral field of the charge of the reference nucleus. Thus, the

internalHamiltonian is invariant upon all rotations about

the centre of the internal coordinate system and one can

think of it as an ‘atom-like’ Hamiltonian. The eigenfunc-

tions of this Hamiltonian can be classified using the same

symmetries as the wave functions of atoms. In particular,

the ground-state solution is spherically symmetric, i.e. it

is invariant under rotations in 3D. This rotational sym-

metry takes place for the ground state of both LiH and

LiH−.

The approach used to obtain the internal Hamilto-

nian (2) and to separate out the centre-of-mass motion

from the laboratory frame Hamiltonian is a generalisa-

tion of the standard textbook approach used to reduce

a two-body problem to a one-body problem in quan-

tum mechanics, e.g. in the case of an electron and pro-

ton forming the hydrogen atom. In the present work,

the non-relativistic energies, Enr, and the corresponding

wave functions of LiH and LiH− are calculated using this

internal Hamiltonian.

The following all-particle spherically-symmetric

explicitly correlated Gaussian functions are used in the

present calculations:

φk = r
mk
1 exp[−r

′(Ak ⊗ I3)r], (3)

where r1 is the distance between the nuclei (particle 1 is

the lithium nucleus while particle 2 is the proton), mk is
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an even integer from an extented range (in this work we

adopted the range from 0–200) that can be viewed as an

integer variational parameter, Ak is an n × n real sym-

metric matrix of the continuous exponential variational

parameters, ⊗ denotes the Kronecker product, and I3 is

an 3 × 3 identity matrix. Note that both Ak and mk are

unique and independently tunable for each basis func-

tion, which is indicated by the presence of index k. Vector

r in (3) is a 3n-component vector formed by stacking the

internal Cartesian coordinates ri:

r =

⎛

⎜

⎜

⎜

⎝

r1

r2
...

rn

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1
y1
z1
...

xn
yn
zn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4)

Let us denote Ak ⊗ I3 as Ak. This matrix Ak and, by

extension, Ak, have to be positive definite is order for

Gaussian (3) to be square integrable. To ensure posi-

tive definiteness of Ak we adopt the following Cholesky-

factored form of it:Ak = (LkL
′
k) ⊗ I3, where Lk is a n × n

lower-triangular matrix of real numbers. In this form,Ak

is automatically positive definite for the Lk matrix ele-

ments being any real numbers. The Lk matrix elements

are parameters that are variationally optimised in the

present calculations. The optimisation employs the ana-

lytical energy gradient determined with respect to the Lk
matrix elements. These elements can be varied without

any restrictions in the range of values from −∞ to +∞.

In addition to the optimisation of the Lk matrix elements,

the mk powers of r1 that appear in (3) are also partially

optimised.

The need to include the r
mk
1 factor in Gaussian (3) can

be explained by analysing the internal Hamiltonian (3).

One notices that pseudoparticle 1 in the internal Hamil-

tonian (2) is a proton. Because of the strong Coulombic

repulsion between this proton and the reference particle,

located at the centre of the internal coordinate system,

the density of pseudoparticle 1 must be virtually zero at

this centre. At the same time for a diatomic molecule it

sharply peaks at a sphere with the radius approximately

equal to the equilibrium distance of the molecule. As an

origin-centred Gaussian function has a maximum at the

centre of the coordinate system, it needs to bemodified to

move its maximum away from the centre and to reach a

maximumvalue on thementioned sphere. This is accom-

plished by multiplying the Gaussians by the r
mk
1 factors.

Such factors, in addition to describing the shifting of the

Gaussian maximum away from the coordinate system,

are needed to describe the radial oscillations of the wave

functions corresponding to excited states. If the Gaus-

sians used in the calculation are spherically symmetric,

as are basis functions (3), then all excited states they can

describe are purely ‘vibrational’ states, i.e. states with the

zero total angular momentum. Term ‘vibrational’ is put

is quotes because in a non-BO calculations vibrational

and electronic motions couple and strictly speaking the

vibrational quantum number is not a good quantum

number.

The present calculations concern the ground states of

LiH and LiH− with the singlet and doublet multiplici-

ties, respectively. In constructing the wave functions, the

proper permutational symmetry of the electrons has to be

imposed. In the present work this is done using the spin-

free formalism [18–20] that involves the construction

of an appropriate symmetry projector, Y. The action of

this projector on the spatial basis functions yields matrix

elements that otherwise be generated by using the full

(spatial plus spin) basis functions and integrating over

spin coordinates. Projector Y implements the desired

permutational symmetry properties. In the present work,

we choose Y in the following form for LiH and LiH−,

respectively:

Y = (1 + P23)(1 + P45)(1 − P24)(1 − P35) (5)

and

Y = (1 + P23)(1 + P45)(1 − P24 − P26)(1 − P35). (6)

Here Pij denotes the permutation of spatial coordinates

of the ith and jth particles. Note that the above choice of

operator Y is not unique.

In expansion (1), quantity E
(2)
rel corresponds to the

expectation value of the Dirac–Breit Hamiltonian in the

Pauli approximation, Hrel [21,22]. To be used in the

present work, Hrel is first transformed from the labora-

tory coordinates, Ri, to the internal coordinates, ri. Hrel

includes the following terms: the mass–velocity term,

HMV, the Darwin term, HD, the orbit–orbit interaction

term, HOO, and the spin–spin Fermi interaction term,

HSS:

Hrel = HMV + HD + HOO + HSS. (7)

The explicit forms of the corresponding effective opera-

tors in the internal coordinates are [17]:

HMV = −
1

8

⎡

⎣

1

m3
0

(

n
∑

i=1

∇ri

)4

+

n
∑

i=1

1

m3
i

∇4
ri

⎤

⎦ , (8)

HD = −
π

2

⎛

⎜

⎜

⎝

n
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q0qi
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δ
(
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)

⎞

⎟

⎟

⎠

, (9)
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ĤOO = −
1
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×
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and

HSS = −
8π

3

n
∑

i,j=1
j>i

qiqj

mimj

(

s
′
isj

)

δ
(

rij

)

. (11)

In the last expression si denotes the spin operator of the

ith pseudoparticle. The relativistic corrections are cal-

culated as the expectation values of the above operators

using the non-relativistic wave function.

3. Results

The first set of results, which is presented in Table 1, con-

cerns the calculations of the total non-Born–

Oppenheimer non-relativistic energies and leading rel-

ativistic corrections for the ground states of LiH and

LiH−. The results shown in the table are obtained with

the basis sets of size that increases from 8,000 Gaussians

to 14,000 Gaussians. The relativistic (or total) energies

obtained by adding the relativistic corrections to the non-

relativistic non-BO energies are also shown. Both ener-

gies are extrapolated to an infinite basis set size and the

extrapolated values are shown in the table along with

the estimated uncertainties. As one can see, both non-

relativistic and relativistic energies are well converged

but, as expected, the convergence is better for LiH that for

LiH−. This is mainly due to the fact that the former sys-

tem contains one electron less than the latter. It is usually

the case that for a systemwith fewer particles one needs a

smaller number of the basis functions to converge the cal-

culations to the same accuracy level as for a system with

more particles.

The results shown in Table 1 are obtained in the basis

set growing process that involves starting from a small set

ofGaussianswith nonlinear parameters chosen by a com-

bination of a random and physically-motivated choices.

After that the growing process involves a set of steps,

where in each step the basis set is enlarged by addition

of a subset of new Gaussians and variationally optimis-

ing them with the a procedure that employs the analyt-

ical energy gradient. The enlargement and subsequent

optimisation are done using a one-function-at-a-time

approach. The initial guess of a new function is generated

stochastically based on the values of nonlinear param-

eters of the Gaussian already included in the basis set.

Several hundred of such stochastically generated candi-

dates are tried and the best one is retained. Then the

newly added function is variationally optimised and, if

it is not linearly dependent with all other functions in the

set, it is included in the basis set. The Lk matrix elements

and themk power in the r1 preexponential factor are sub-

ject to the optimisation. As mentioned, the mk powers

are optimised in the 0–200 range and are restricted to be

even integers. After a certain number of Gaussians are

added, the nonlinear parameters of all function in the

basis set generated so far are reoptimised, again using a

one-function-at-a-time approach. In this reoptimisation,

however, only the Lk matrix elements are varied, while

themk values kept unchanged.

We find it interesting to compare the distributions

of powers, mk, that result from the optimisations of the

basis sets performed for the ground-state wave functions

of LiH and LiH−. They are shown in Figure 1. Upon

examining the histograms, one can make the following

observations. The power distributions are very similar

for both systems. The most frequently occuring powers

have values in the range from 10 to 50. After that, the

probability of the appearance of a certain value of the

power decreases with the increasing value of the power.

However, even as the powers approach the limiting value

of 200, there is a non-zero probability of finding such

powers in the basis sets of the two systems. One can

notice a small maximum of the distribution of the pow-

ers near 200. This maximum indicates that, if the power

range were extended, the variational optimisation might

have yielded a few functions with powers larger than 200.

However, the range of 0–200 we used in our calculations

of the ground states of LiH and LiH− is fairly adequate.

In the next step the non-relativistic and relativistic

energies of LiH and LiH− given in Table 1 are used to

calculate the the electron affinity of LiH. The results are

shown in Table 2. The energy of LiH− converges slower

with the number of ECGs than the LiH energy. Since the

LiH− energy lies lower than the energy of LiH, the elec-

tron affinity calculated as the difference of the LiH− and

LiH energies effectively provides an lower bound to the

exact electron affinity value. The EAs calculated in the

present work are compared in Table 2 with the exper-

imental value and with some theoretical calculations

reported in the literature. As one can see, the EA results

obtained at both the non-relativistic and relativistic levels

of the theory agree with the experimental result of Sarkas

et al. [9] to within the experimental uncertainty. Among

the previously calculated EAs of LiH, the MRCISD+Q
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Figure 1. A comparison of the the distributions of themk powers
of r1-prefactors in the Gaussians obtained in the optimisation of
the basis sets for LiH and LiH−.

Table 2. Convergence of the electron affinities (EA) of LiH (in eV)
in terms of the number of the basis functions.

Basis(LiH) Basis (LiH−) EAnr EArel

8,000 8,000 0.332648 0.332609
10,000 10,000 0.332818 0.332776
12,000 12,000 0.332919 0.332879
14,000 14,000 0.332990 0.332951
∞ ∞ 0.333012(11) 0.332979(31)
CCSDT [13] 0.327
MRCISD+Q [14] 0.332
FN-DMC [23] 0.340(4)
CCSD(T) [24] 0.334 ± 0.001
Exp. [9] 0.342 ± 0.012

Note: The numbers in the first two columns show the number of ECG functions
employed in the calculations.

value [14] best agrees with our non-relativistic result of

0.332990 a.u. (extrapolated to 0.333012(11) a.u.).

The non-Born–Oppenheimer non-relativistic wave

functions obtained for LiH and LiH− with the largest

basis set generated for the two systems in this work are

used to calculate some expectation values of interparticle

Table 3. Expectation values of the interparticle distances, 〈rij〉,

and the most probable distance between Li and H nuclei, r
mp
Li−H,

calculated with the LiH and LiH− non-Born–Oppenheimer wave
functions obtained with the largest basis sets generated in this
work.

LiH LiH−

〈rLi−H〉 3.0610383(13) 3.214425(10)
〈rLi−e〉 1.9719334(5) 3.13005(22)
〈rH−e〉 2.5651045(9) 4.03936(20)
〈re−e〉 2.9559396(8) 5.27574(41)
r
mp
Li−H 3.013130(5) 3.157615(3)

r
mp
Li−H BO ECGa 3.04482(5)

r
mp
Li−H CCSD(T)b 3.0275(4) 3.1740(4)

r0 MRCISD+Q [14]c 3.019015695 3.184011222
〈r2Li−H〉 9.419705(8) 10.39224(5)

〈r2Li−e〉 6.585742(4) 20.062(7)

〈r2H−e〉 7.745214(7) 28.419(7)

〈r2e−e〉 10.966067(7) 43.792(14)

〈δ(re)〉 3.451766(17) 2.7579(8)
〈δ(rH−e)〉 0.095073(15) 0.074684(11)
〈δ(re−e)〉 0.091647(30) 0.054860(8)

Notes: The results are compared with the values obtained in the
Born–Oppenheimer ECG [26] and MRCISD+Q [14] calculations. All
values are expressed in atomic units.aBorn–Oppenheimer calculations with
2,400 ECG basis functions [26].bCoupled-cluster singles and doubles and
non-iterative triple excitations. The aug-cc-pV5Z [27] basis set has been
used. The calculations were carried out using the Gaussian 16 software
package [28].cThe internally contracted configuration interaction in the
single and double space (MRCISD) level with four electrons distributed
among the five orbitals (MRCISD+Q) arising from the 1s, 2s, and 2p atomic
orbitals in the multiconfigurational self-consistent-field (MCSCF) part of the
calculations has been used.

distances and their squares, as well as the most proba-

ble Li-H internuclear distance. The expectation values

of the interparticle Dirac delta functions are also calcu-

lated. The results are shown in Table 3. The attachment

of an excess electron in LiH increases the average inter-

nuclear distance from 3.0610383(13) to 3.214425(10) a.u.

Also, the average proton–electron distance increases

from 2.5651045(9) to 4.03936(20) a.u. This increase can

be explained as follows. The neutral LiH molecule is an

ionic Li(+δ) − H(−δ) species in the ground state due to

a higher electron affinity of the hydrogen atom than the

lithium atom. Thus, in the formation of LiH−, the excess

electron mostly localises near the lithium atom resulting

in an increase of the average proton-electron distance.

Also, as the neutral LiH has a rather large dipole moment

(5.882 ± 0.003; Wharton et al. [25]), a significant part

of the electron attachment to LiH is due to the dipole-

electron interaction that results in the excess electron

occupying a dipole-bound state that extends away from

the lithium atom outside the molecule. This results in

an additional increase of the proton–electron distance, as

well as the distance between the lithium nucleus and the

electron. Also, the electron attachment makes the elec-

tron density in the molecule to become more diffused

resulting in the 〈δ(rH−e)〉 expectation value to decrease

from 0.095073(15) to 0.074684(11) a.u. (see Table 3).
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Figure 2. The nucleus–nucleus pair correlation functions for the
ground states of LiH and LiH− molecules calculated at different
levels of theory.

Lastly, in Figure 2, the nucleus–nucleus pair correla-

tion functions calculated for the ground states of LiH

and LiH− using the respective non-Born–Oppenheimer

wave functions in the largest basis sets of 14,000

ECGs generated in this work are compared with the

square of the corresponding vibrational wave func-

tions obtained using different approaches based on the

Born–Oppenheimer approximation. As one can see, the

density of the proton for the two systems is localised

around the respective average distance and it is slightly

less sharply peaked and broader for LiH− than for LiH.

The pictures obtained from both the present non-BO

approach and from the BO calculations are very simi-

lar both in terms of the heights, the broadness, and the

relative shift of the LiH and LiH− peaks.

4. Summary

In this work we present the most accurate non-

Born–Oppenheimer calculations ever performed for a

molecule with five electrons. As a result of severalmonths

of continuous optimisations, basis sets containing 14,000

explicitly correlated all-particle Gaussian basis functions

are generated for the LiH and LiH− molecules. Then the

leading relativistic energy corrections are calculated and

added to the non-BO non-relativistic energies. These are

used to calculated the LiH electron affinity. The obtained

value is likely the most accurate EA result ever calculate.
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