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AbstractÐIn wireless heterogeneous networks (HetNets), com-

plexity is an intrinsic property. This paper presents agent-based

modeling (ABM) as a tool to optimize complex HetNets. We

introduce and analyze a HetNet ABM model that employs parallel

algorithms for interference management, resource allocation,

and load balancing at both micro and macro levels. Two

reinforcement learning (RL) algorithms jointly work together

in the model to resolve co-tier and cross-tier interferences. The

first RL algorithm controls the transmission power of the small

cells, whereas the second assigns the users to the sub-bands

with less interference levels. Concurrently, the user association is

decided by the users based on their preferences and the resources

available at the cells. The model is analyzed in three different

operation modes, by switching processes on and off. Results

show that individual processes contribute to overall system

performance, while jointly maximizing the network’s aggregate

signal-to-interference-and-noise ratio (SINR) and minimizing

load-induced latency by efficient load balancing.

I. INTRODUCTION

Heterogeneous networks (HetNets) and small cell densifi-

cation are the key components of 5G and Beyond wireless

networks. The goal of cell densification is to improve network

parameters including capacity, coverage, latency, and load

distribution. However, a number of technological challenges

constrain the deployment of small cell networks. The two

most critical challenges discussed in the literature include in-

terference management and self-organization [1], [2]. The self-

organization, self-configuration, and self-analysis capabilities

are important as they significantly contribute toward the overall

network performance.

While optimizing a HetNet, there is a certain criteria to

consider and several trade-offs to resolve [3]. The goal is

to jointly optimize different HetNet parameters for better

interference management [4], user quality of experience [5],

resource allocation [6], latency [7], user association [8], cell

load balancing [9], energy efficiency [10], [11], mobility and

handovers [12], costs of deployment [13], optimal efficiency

trade-offs [14], and coexistence with other radio access tech-

nologies [15]. Therefore, a suitable modeling framework is

needed to formalize the multi-dimensional optimization prob-

lem completely and then solve it to yield optimal operating

parameters.

In the literature, many simulation paradigms have been

presented for such dynamic cases [16]. The game-theoretic

system is one of the major modeling paradigms [17] that study

strategies and interactions among players who behave ratio-

nally in order to maximize their benefits [18]. The assumption

of purely rational agents, on the other hand, is not necessarily

represented in practical networks.

Multi-agent Reinforcement Learning (RL) is a common

machine learning-based paradigm for HetNets. This paradigm

depends on players making decisions in their environment

to maximize their utility function [19]. A multi-agent RL

framework faces several challenges [20], [21]. For the 5G

and beyond HetNets, high-dimensional state and action space

adds non-practical computational complexity and long learning

time. Another difficulty is choosing the reward functions,

particularly when we have several types of agents.

In this paper, we exploit agent-based modeling (ABM) to

address the aforementioned optimization problem. ABM is a

tool that studies a complex system’s emergent activity on a

macro level by modeling micro-scale interactions within a

population of agents [22]. ABMs are studied in simulation

environments, with players/agents following laws that do not

necessarily relate to utility functions [23]. Unlike game theory,

ABMs allow the designer to model different interacting games

within the same model without creating an analytical frame-

work. It also allows testing of various player heuristics without

assuming cognitive abilities. Therefore, it can implement real

industry scenarios and evaluate them across all the network

parameters.

The main contributions of this work can be summarized as

follows:

• We propose a modeling paradigm that considers the

intrinsic complexity of HetNets. It has the capability to

incorporate a diversity of game-theoretic, machine learn-

ing, and rule-based algorithms within the same model.

Which was not possible before with analytical models.

• We then develop a novel agent-based modeling (ABM)

approach to examine and analyze the complex interac-

tions of HetNet nodes. The network nodes in this model

are running in parallel as independent entities and the

learning algorithms are running concurrently.
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Fig. 1: Two tier network architecture, representing the main

(desired) link as a solid line and interferers with dotted lines.

• We simulate the model using a stochastic geometry based

environment. Our results show that the proposed approach

using two concurrent reinforcement learning based algo-

rithms offers efficient resource allocation and maximizes

the network’s aggregate signal-to-interference-and-noise

ratio (SINR).

The rest of the paper’s organization is as follows. In Section

II, the HetNet system model is presented. The proposed agent-

based model is discussed in Section III, whereas Section IV

is dedicated to simulations and results. Finally, we conclude

the paper in Section V.

II. SYSTEM MODEL

In this section, a distributed system model is proposed to

study a complex practical HetNet. The two-tier system is com-

posed of three types of agents: macrocells (MCs), small cells

(SCs), and user equipments (UEs). The spectrum is shared

between macrocells and small cells, and is reused several times

within the same macrocell to increase the network spectral

efficiency.

A. Network Model

The modeled HetNet is a 2-tier network with macrocells

forming the main network and small cells used as the sec-

ond tier cells, as shown in Fig. 1. A macrocell’s assigned

spectrum is reused at the lower teir. The system is based on

the long-term evolution (LTE) time-frequency resource block

numerology. The full network spectrum is used orthogonally

between macrocells.

B. Cell Association

UEs have different preferences regarding SINR, latency,

and the number of requested resource blocks (RBs). Affected

by what the cells are offering, the UEs decide the cell

association. The cells have the responsibility of coordinating

and distributing the spectrum between each other. Also, they

manage the network load balancing and interference levels at

the UEs.

C. Channel Model

The large scale path loss PL used in our model is the

simplified free space model: PL(dB) = κ + 10ζ log10(d) ,

where d is the distance between the UE and the serving cell, ζ

is the path loss exponent, and κ is a unitless factor that depends

on the average channel attenuation, frequency of operation,

and antenna characteristics.

In the presented downlink scheme, the interferences induced

by spectrum reuse are cross-tier interference and co-tier inter-

ference. For cross-tier interference, at small cell si user from

macrocell m is given as Isi,m. The interference from a small

cell to a macrocell user is given as Im,si . In comparison, the

co-tier interference from a small cell to a user of another small

cell is given as Isi,sj . The main (desired) link is represented

as a solid line in Fig. 1, while the interference links are

represented with dotted lines. The SINRs γn,m, and γn,s at

the nth user served by macrocell m and the small cell s, on

the rth resource block, are formalized respectively as:

γ(r)
n,m =

|h
(r)
n,m|2p

(r)
m

N
(r)
n,m +

∑

s∈S |h
(r)
n,s|2p

(r)
s

, (1)

γ(r)
n,s =

|h
(r)
n,s|2p

(r)
s

N
(r)
n,s +

∑

m∈M |h
(r)
n,m|2p

(r)
m +

∑

j∈S,j ̸=s |h
(r)
n,s|2p

(r)
s

,

(2)

where S is the set of small cells and M is the set of macrocells,

N
(r)
n is the noise variance, and hi,m, and hi,s are the channel

coefficients from the macrocell and small cells, respectively,

to user n. p
(r)
s are the transmit powers of the macrocell and

small cells over resource block r, respectively.

D. User Requests

The user n creates u requests per unit time t, with rate λr.

This random variable u follows a Poisson process. For each

user, the number of requested resource blocks x is a truncated

normal distribution over the interval 0 < x < ∞, with mean

µ
(n)
x and standard deviation σ

(n)
x .

III. PROPOSED AGENT BASED ARCHITECTURE

The proposed system architecture is described with several

processes performed by each agent (UE, MC, or SC), and

a set of interactions between those agents. Each process is

formalized with a flowchart. Hence, agent’s behavior can be

summed by several processes running asynchronously and in

parallel.

A. User Terminals ABM Process

Fig. 2: User equipment flowchart: Service request and usage.
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A UE is assumed to be exchanging information with several

nearby cells (macrocells or small cells) over the control

channel, but it receives the service only from one of them.

The flow chart in Fig. 2 describes a resource block request

and utilization cycle. The UE is initially at the ‘Idle’ state.

Then it moves to the ‘Make Request RBs’ state when a

countdown timer reaches zero. The timer value is a random

variable τ that corresponds to the interval time between two

requests. It is assigned a new value after the timer expires,

following the exponential distribution: f(τ) = λ
(n)
r e−λ(n)

r τ ,

where λ
(n)
r is the request rate for user n. This ensures a

Poisson distribution for the number of requests per unit time.

The cells then send offers that depend on their transmit

power levels, as we will observe in the following sections. The

offer is composed of the number of offered resource blocks

RBs, the start and end in the frequency domain given by f1
and fend respectively, the start and end in the time domain

given by t1 and tend respectively, and the cell transmit power

Ptx. The UE then collects all the offers at the ‘Receive offers’

state, chooses the best offer, and sends an accept response to

the corresponding cell. The UE chooses the best offer based

on the following mathematical utility function:

U(c) = arg max
c

(

RBsc × wr log2(1 + 10(γc/10))

1 + wd(tend − t)

)

, (3)

where the subscript c corresponds to cells. This function sets

the UE service preferences by assigning the weights: wr for

the expected throughput at the receiver, and wd for latency. The

wr and wd values are proportional to the importance of each

corresponding factor to the UE. Note that the value (tend− t)
represents how long it takes for the RBs to reach the UE.

During the ‘Use resources’ state, the UE measures the quality

of service affected by the interference levels. Then it is shared

with the serving cell in the ‘Feedback’ state. The UE reports

its feedback to the serving cell before returning to ‘idle’. The

feedback holds information about the interference levels, the

SINR, and the delay.

B. Sub-band Management at the Macro- and Small Cells

In our design, the cells are responsible for two main

tasks: interference management and cell load balancing. In a

spectrally efficient system, the small cells share the spectrum

with the upper-tier (macrocells). In the downlink scheme,

the macrocells’ bands are divided into sub-bands SB higher

in granularity than a resource block. The sub-bands are

reused for several times. For a single reuse case, the small

cells and the macrocells coordinate to minimize the cross-

tier interference by adjusting the small cells’ transmit power

levels. The macrocell users’ feedback on the interference levels

is used to adjust the small cells’ transmission powers. The

decisions for power level allocations are taken at the MCs

level. For a second reuse case, the sub-band will be used

twice at two different small cells. More reuse levels increases

the interference levels between the network cells, and enlarges

the optimization space. Therefore, the twice reuse case is the

one evaluated in the simulations section.

C. Reinforcement Learning Processes

Reinforcement learning (RL) is used for two processes; first,

to adjust the power levels in the reuse schemes; second, to

assign the users to the sub-bands with highest performance

level. We represent those RL processes in the following two

subsections.
1) Small Cell Transmit Power Management : This process

is running under the macrocell agents. Initial power levels are

assigned for the small cells. Then it enters a loop of collecting

rewards and updating the small cell power values. Due to

the nature of the problem, the multi-armed bandit method is

used as our model-free reinforcement learning method [24].

A multi-armed bandit algorithm has a number of actions to

choose from, hence the term ‘arm’. Learning is done over

rounds; in each round, depending on the exploration factor ϵ,

an arm is chosen, and the corresponding reward Ri is collected

during the round duration.

The macrocell’s multi-armed bandit algorithm list of actions

is Ai = {a
(p)
i }p∈{P1,P2,...,Pk}, where a

(p)
i represents the power

transmit level for the reused ith sub-band SBi, from a set of

transmit power levels, and k is the number of the power levels.

The value function Q holds an evaluation for the expected

reward for each action.

The value function is updated via the recursive equation:

Qt+1(Ai) = (1− α)Qt(Ai) + α(Ri) , (4)

where α is a learning-discount factor.

The reward function used for the proposed model is the

aggregate SINR for all RBs in sub-band SBi, over the last

learning episode Te: Ri =
∑

t1>t−Te

∑

RB∈SBi
γRB,t1 .

The power management RL algorithm is shown below in

Algorithm 1. Deploying this algorithm determines the proper

reuse power levels to achieve the maximum reward over each

sub-band.

Algorithm 1 Small Cell Sub-band Power Management

Initialization Q(Ai) = 0 ∀ i

Initialize the reuse power levels P (SB)
For each Sub-band SB define power levels list Ai

while True do

for i ∈ Sub-bands do

if rand(.)< ϵ then
Explore: choose action from Ai randomly

else
Exploit: choose action Ai(t+1) = arg max

ai

Qt+1

end

Receive rewards Ri(t+ 1), and update Q table
end

end

In the second reuse case, two small cells trans-

mit different power values for each sub-band. There-

fore, the action space is two dimensional: ai,j ∈
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Algorithm 2 User sub-band choice learning algorithm.

initialization Q(An) = 0 ∀ n

define list of sub-bands at this cell

while True do

if rand(.)< ϵ then
Explore: Chose action from An randomly

else
Exploit: Choose action An(t+ 1) = arg max

an

Qt+1

end

Receive rewards Rn(t+ 1), and update Q table
end

[(PSi1
, PSj1

), (PSi1
, PSj2

) ... (PSiK
, PSjK

)] , where i and j

are the notation of the same sub-band for two different small

cells, Si and Sj .

2) User to Sub-band Association: UEs can have different

performance levels for different sub-bands at the same cell.

This is affected by the distribution of the set of users served by

the cell and their distances from the interfering cell. Therefore,

this method is proposed to allocate each UE on the sub-band

that suits its position with respect to the other agents (cells

and UEs) in the network.

A multi-armed bandit process starts by assigning the served

users to the available sub-bands randomly. Then it keeps

collecting the service feedback from the UEs.

The rewarding functions are formulated from the collected

feedback. Each UE has its own Q-table that gets updated

from the reward functions. The Q-table holds the values

reflecting the learned performance per sub-band. The learn-

ing algorithm components for the nth user include actions

An = {a
(s)
n }s∈{1,...,NS} , where a

(s)
n represents the action

of switching to one of the cell sub-bands, rewards Rn, value

function Q, and explorer factor ϵ.

The proposed reward value for this algorithm is: Rn =
γn

1 + wdn
tdn

, where γ is the SINR, and td represents the

delay experienced by the UE during the last served RBs. The

factor (1 + wdtd) normalizes the SINR level by the latency

level to ensure that the users associate to the sub-bands, not

only based on the SINR but also the sub-band load induced

latency. The learning algorithm is described in Algorithm 2.

Receive user
requests  

Make offer

Fig. 3: RB assignment flow chart.

MC

d1

d2

d3

d4

SC2

SC4

SC1

SC3

Fig. 4: Simulation environment.

D. Resource Blocks Allocation ABM Process

We close the system model with the small cell RB assign-

ment process illustrated in Fig. 3, which basically elaborated

on the mechanism of the SC response to UE requests. The SC

process keeps listening to the UE requests. Once it receives

a request, it finds the sub-band which is suitable for this UE.

The suitable sub-band is already determined in the RL process

described in Section III-C2.

Now based on the SC current load, an offer is formulated.

Ideally, if the SC is not congested, the offered RBs will be

the same number as the requested RBs. However, if the SC

is congested ( cell load > specific value Lh), a discounted

number ((1−Dfactor)×RBs) is offered.

Finally, after the UE has finished using the RBs, the SC

receives the users’ feedback.

IV. RESULTS AND DISCUSSION

Parameters Values

Users positions uniformly distributed in the area

[x=[0, 10] km, y=[0, 10] km]

Number of users 500 users

Macrocell tx power 30 dBm

Small cell tx power range [15, 25] dBm

Pathloss model 25 log10(d) + 40
Number of RBs per sub-band 10 RBs

Request rate for UEs λr = 0.012 request per T

T RB duration

Requested RBs statistics Avg. RBs per request= 4 ,

Std. dev. RBs per request= 2

RL1 Learning episode length 200 T

RL1 explore factor (ϵ) decreasing from 1 to 0 over [0 7000 T]

RL2 Learning episode length 1 UE-request cycle

RL2 explore factor (ϵ) fixed 0.3

RL1 and RL2 α factors α1 = α2 = 0.3

TABLE I: Simulation parameters.

In this section, we developed the proposed ABM architec-

ture shown in Fig. 4 and simulated it with the parameters in

Table 1. We have a MC in the middle and four SCs with

distances d1 = 2.6 km, d2 = 2.7 km, d3 = 2.8 km, and

d4 = 2.9 km. An environment module is responsible for

instantiating the agent instances and managing the order of

calling those objects. Parallelism is emulated by discretizing

the time into units, and the environment loops over all the

agent instances in each time unit (also called tick). The
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network has three sub-bands that are reused twice between

the macrocell and the small cells.

The system is evaluated under two different modes of

operation. In the first mode, the first learning algorithm (RL1),

responsible for power management, is enabled, and the second

algorithm (RL2), responsible for user sub-band association, is

disabled. In the second mode, both the algorithms RL1 and

RL2 are enabled.

MC user SC1 user SC2 user

SC3 user SC4 user
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(f) SB3, RL1 On/ RL2 On.

Fig. 5: Users distribution for three sub-bands.

The resultant user distribution between the three sub-bands

is shown in Fig. 5, where a comparison between the two

modes is demonstrated side-by-side in geographical space.

For the first mode (Fig. 5a, 5c, and 5e ), the macro cell

UEs geographical distribution is more uniform than in the

second mode. In the second mode (Fig. 5b, 5d, and 5f ),

due to the second RL algorithm, the macrocell UEs avoid

the small cell interference, and they move to sub-bands with

less interference. Which allows the small cells to transmit

with higher power levels resulting in more coverage, hence

more users. Next, we plot the complementary cumulative

distribution function (CCDF) for the latency experienced by

the UEs in Fig. 6. Latency is induced by request queuing at the

high-loaded cells. We see that in the case of the second mode,

UEs experience less latency due to better load balancing. Then

0 2 4 6 8 10 12

Latency (T duration)

0

0.2

0.4

0.6

0.8

1

C
C

D
F

(T
)

RL1 on

RL1 on- RL2 on

RL1 and R2 on - Dfactor=0.3

Fig. 6: Latency CCDF.

as an attempt to have better load balancing, we increase the

discount factor to 0.3 for a load above Lh = 50% for all the

cells. The resultant latency CCDF is shown in Fig. 6, whereas

the corresponding aggregate SINR, average latency, and tier

loads are listed in the summarizing Table II. We observe that

this operation mode has lower latency and the highest SINR

and load balancing, on the expense of discounted number of

RBs served by the whole network.

TABLE II: Results Summary

RL1 RL2 D-factor Aggregate SCs load MC load Average

SINR (dB) latency

ON OFF 0 57 dB 16 % 90 % 3.3 T

ON ON 0 62 dB 23 % 74% 2.8 T

ON ON 0.3 66 dB 21% 67% 0.6 T

Below, we compare with similar systems proposed in the

literature. These frameworks have been adapted in our archi-

tecture to be comparable with our proposed RL algorithms.

For the first study [25], the utility function of Algorithm 1 is

replaced with their proposed utility function:

U1 = arg max
pi∈P

∑

t1>t−Te

∑

k∈K

log2(1 + γ
(RB)
k )1

{γ
(RB)
m >Γth}

,

(5)

Algorithm 2 is deactivated as it has no relevance to this

study. The second framework performs inter-cell interference

coordination ICIC, [26], [27]. Like our study, it is composed

of two parts: sub-channel allocation and power assignment

algorithms. The utility function used for Algorithm 1 and 2

are as follows:

V1 = arg min
pi∈P

∑

t1>t−Te

∑

RB∈SBi

IRB,t1 + (wdICIC
td) , (6)

V2 = arg min
sn∈S

(IRB + (wdICIC
td)) . (7)

A delay factor ωdICIC
was added to manage the latency

induced by unbalanced load distribution.
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Fig. 7: Comparison with existing literature: Per-user through-

put CDF.
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Fig. 8: Comparison with existing literature: latency CCDF.

The results of the comparisons are shown in Fig. 7 and

Fig. 8, for the per-user throughput CDF, and per-user latency

CCDF. The average throughput is found to be higher for the

maximum aggregate SINR utility function case. On the other

hand, the ICIC framework has a slightly lower number of

low throughput users. This is due to the focus of the ICIC

algorithm on minimizing the interference. The work in [25] has

a higher number of low throughput users due to not deploying

a sub-band or a sub-channel algorithm, as in Algorithm 2.

The per-user latency CCDF is a measure of the efficiency of

load distribution between the macrocell and small cells; and

amongst small cells. The two aggregate SINR based methods

achieved lower latency values than the minimum interference-

based method. The usage of Algorithm 2 added latency due to

the users of preferring to utilize sub-bands that are not reused

more than the reused sub-bands. This results non-uniformity

in sub-band utilization, hence the slight increase in latency. In

the case of the ICIC algorithm this imbalance can be managed

by modifying the utility function in Algorithm 2 to take sub-

band association decisions based on the delay. Hence, we can

also observe the effect of wd on the latency results.

V. CONCLUSION

This paper sheds light on the complex nature of HetNets

and proposes an ABM framework through which a complex

dynamic network can be formalized. Agent-based modeling

is a computational method that can create extensive models

with various levels of rationality at the agents. It incorporates

rule-based behaviors and learning algorithms within the same

model. We also proposed a client-driven system model, in

which cells control power and spectrum based on user requests

and feedback. The proposed ABM uses two concurrent rein-

forcement learning based algorithms offering efficient resource

allocation, interference management, and load balancing. The

first RL algorithm on a multi-armed bandit problem was

used to manage the transmit powers of small cells in order

to maximize the network’s aggregate throughput. The other

RL algorithm was used to drive user sub-band association

in order to maximize SINR while minimizing user latency.

In the simulations section, the emergent behavior was shown

in the users’ distribution within sub-bands and geographical

space. Also, The coordination gain between the two learning

algorithms was shown. Further, we show that the discounted

offer rule’s adds to the network aggregate SINR, and enhances

load balancing, and load induced latency performance. Finally,

a comparison with similar work in the literature was performed

for more insight on the enhancements of our work.
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