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The recently presented general algorithm for calculating an atomic fine structure [Kędziorski et al.,

Chem. Phys. Lett. 751, 137476 (2020)] is employed to study the fine splitting of the lowest eight 3P states of

beryllium, i.e., the 1s2 2s np, n = 2, . . . , 9, 3P states. All-electron explicitly correlated Gaussian functions and a

finite-nuclear-mass variational method are used in the calculations. The energies of the states are augmented with

the leading α2 relativistic and α3 (and approximate α4) QED corrections (α = 1

c
is the fine-structure constant, and

c is the speed of light in atomic units). The calculated results are compared with the available experimental data.
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I. INTRODUCTION

Experimental spectra of small atomic systems are an im-

portant area of comparison between very high resolution

measurements and state-of-the-art quantum-mechanical cal-

culations. There are constant improvements being made to

the databases that list the most current atomic experimental

data concerning atomic interstate transitions [1]. There is also

constant progress being made in high-accuracy calculations

of atomic energy levels. Among those levels, lines resulting

from the splitting of the main atomic lines due to spin-orbit

(SO) magnetic interactions are particularly interesting, as they

provide fingerprint signatures that are characteristic of specific

atomic systems. This splitting that arises from the interaction

of the orbital motion of the electrons with the electronic spins

gives rise to the fine structure of the spectral lines of atoms

with nonzero total orbital angular momenta and nonzero total

spin angular momenta.

The most accurate theoretical calculations of atomic fine

structures have been performed for two- and three-electron

atoms using Hylleraas-type explicitly correlated functions

(see, for example, the calculations for the spectra of the

lithium atom by Wang et al. [2], as well as the calcula-

tions for other two- and three-electron atomic systems [3–7]).

However, extending the use of Hylleraas functions to expand

wave functions of atoms with more than three electrons has

been hampered by technical difficulties with calculating the

Hamiltonian matrix elements [8].

An alternative type of explicitly correlated basis function

that has been gaining popularity in high-accuracy atomic
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calculations, especially for atoms with more than three elec-

trons, is the set of all-electron explicitly correlated Gaussian

functions (ECGs). These functions exponentially depend on

squared distances between electrons of all electronic pairs in

the system. For four- and five-electron atomic systems, the use

of ECGs enabled achieving very high accuracy in calculations

of interstate transitions [9–17]. The popularity of ECGs in

atomic calculations results from the high efficiency of these

functions in describing the correlated motion of the electrons

and from the relative simplicity of the algorithms for calcu-

lating the Hamiltonian matrix elements with these functions.

These algorithms can be analytically derived and coded in a

general form for an arbitrary number of electrons in the atom.

One can also easily derive algorithms for calculating the first

derivatives of the Hamiltonian matrix elements with respect

to the ECG nonlinear parameters and use them to determine

the energy gradient [18,19]. The use of the gradient in the

variational energy minimization considerably accelerates the

minimization process and enables achieving high accuracy in

the calculations. It also allows extending the size of atomic

systems whose spectra can be very accurately calculated using

present-day computer systems. As the computational time in

ECG atomic calculations scales as the factorial of the number

of electrons in the system, the practical present limit of the

number of electrons in the atom that can be calculated with

high accuracy is less than 10. The largest atomic system

considered so far in ECG calculations is carbon and nitrogen

atoms [20–23]. Calculations for larger atoms will need to wait

for a new generation of computer hardware to be performed

at the same accuracy level which is now possible for four- and

five-electron atoms.

The advantage of using ECGs in atomic calculations also

stems from the fact that matrix elements involving operators

representing the leading relativistic and QED corrections can

be analytically evaluated in a compact form. These matrix
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elements can be calculated for an arbitrary number of elec-

trons. Including the relativistic and QED corrections in the

total state energies of the considered atom, as done in the

present work, significantly improves the accuracy of the cal-

culated interstate transition energies.

There are some drawbacks of using ECGs in atomic cal-

culations. They are related to these functions not satisfying

Kato’s cusp conditions and to their decaying too fast at large

distances. However, if a large number of Gaussians is used

in the calculation (e.g., in the present calculations of the

lowest eight beryllium 3P states we use 10 000–11 000 ECGs

for each state) and the Gaussian exponential parameters are

thoroughly variationally optimized, then the above-mentioned

drawbacks can be overcome [9–12]. Such optimization aided

by inputting the energy gradient determined with respect to

these parameters into the procedure that runs the variational

energy minimization is carried out in this work for each of the

eight lowest 3P states of the beryllium atom.

In the approach used in the present calculations, the Hamil-

tonian representing the internal state of the atom is obtained

by separating out the motion of the center of mass from the

laboratory-frame nonrelativistic Hamiltonian. The resulting

internal Hamiltonian explicitly depends on the mass of the nu-

cleus. Thus, the energy calculated, for example, for the ground

state of 9Be is slightly higher than the energy of the beryllium

atom with an infinite nuclear mass, ∞Be. Also, the optimiza-

tion of the exponential ECG parameters is carried out by the

minimization of the 9Be energy and not the ∞Be energy, as

was done in the standard calculations. After the basis sets are

generated for all eight 3P
9Be states and their optimal total

nonrelativistic energies are obtained, they are used to calculate

the corresponding ∞Be energies without reoptimization of the

exponential parameters. Only the linear expansion parameters

are adjusted for the change in the nuclear mass.

In a recent paper, Puchalski et al. [24] calculated the fine

and hyperfine structures of the 2s3p 3P and 2p2 3Pe states of

beryllium. The calculations were performed using ECG basis

functions. It is interesting to compare the present variational

nonrelativistic energy of the lowest 2s3p 3P state of ∞Be with

their best energy for that state, as well as with their energy

extrapolated to an infinite number of the basis functions.

We expect the comparison to show the advantage of using

the gradient-based variational minimization that is employed

in the present work. The ∞Be energy and the extrapolated

energy reported by Puchalski et al. are −14.56724421584

and −14.567244232(8) a.u., respectively. The former energy

was obtained using 6144 ECGs. The best variational energy

obtained in this work (see Sec. VI) using 10 000 ECGs is

−14.567244231 a.u. Clearly, the use of the gradient not only

resulted in a noticeably lower energy of the state but also

allowed us to generate a significantly larger basis set.

The main goal of this work is to calculate the fine struc-

ture of the eight lowest 2snp, n = 2, . . . , 9, 3P levels of the

beryllium atom. The splitting is calculated using the first

order of the perturbation theory. Like the nonrelativistic in-

ternal Hamiltonian, the operators representing the leading

α2 relativistic corrections, including the spin-orbit magnetic-

interaction correction, explicitly depend on the nuclear mass.

The operators are obtained by first expressing them in terms

of the laboratory coordinates and then transforming them to

a new coordinate system in which the first three coordinates

are the laboratory coordinates of the center of mass and the

remaining coordinates are the so-called internal coordinates

(see the next section). Thus, in the present calculations, the

use of the finite-nuclear-mass (FNM) approach makes both

the nonrelativistic total energy and the relativistic corrections

explicitly dependent on the mass of the nucleus; that is, the

so-called recoil effects are accounted for.

The procedure to calculate the atomic fine structure was

implemented in our previous work [25]. In that work, as an

illustrative example, we showed preliminary calculations for

the lowest two 3P states of beryllium. In the present work, the

basis sets for the two states were increased to 10 000 ECGs.

Also, the number of considered 3P states was increased to

eight. For the seventh and eighth states, basis sets of 11 000

ECGs are generated. Such large basis sets ensure that very

high accuracy is achieved in the calculations.

There have been previous calculations of the fine structure

of the beryllium 3P states. They include the works of Fischer

and Tachiev [26], Chung and Zhu [27], and Chen [28], as

well as the above-mentioned recent work of Puchalski et al.

[24]. In the latter work, only the lowest 3P state of beryllium

was considered. Due to the use of large ECG basis sets in

the present work and the consideration of the eight lowest

beryllium 3P states, the present calculations represent, in our

view, significant progress over the previous works. This view

is enforced by the favorable comparison of the present results

with the available experimental data [1].

II. THE NONRELATIVISTIC CALCULATIONS

The procedure used in the present work to calculate the

total energies, transitions energies, and fine-structure splitting

was presented in our recent paper [25]. Here, only a short

summary of the approach is presented.

In the first step of the procedure, the nonrelativistic ener-

gies and the corresponding wave functions of the considered

states are calculated. The calculations are performed with-

out assuming the Born-Oppenheimer (BO) approximation

and involve an internal Hamiltonian that, as mentioned, is

obtained from the laboratory-frame full Hamiltonian by sepa-

rating out the center-of-mass motion. In general, for an atom

with n electrons, the separation is done by expressing the

laboratory-frame 3(n + 1)-dimensional Hamiltonian in terms

of new coordinates, of which the first three are Cartesian

laboratory-frame coordinates of the center of mass and the

remaining 3n coordinates are the internal (Cartesian) coor-

dinates. These coordinates are the coordinates of the vectors

ri (i = 1, . . . , n), with the origin at the nucleus and the end

at electrons (i = 1, . . . , n). The laboratory-frame Hamiltonian

transformed to the new coordinates rigorously separates into

the operator representing the kinetic energy of the center-of-

mass motion and the internal operator that has the following

form (in atomic units):

Ĥint = −
1

2

⎛

⎜

⎝

n
∑

i=1

1

μi

∇
T
ri

· ∇ri
+

1

m0

n
∑

i, j=1

i �= j

∇
T
ri

· ∇r j

⎞

⎟

⎠

+
n

∑

i=1

q0qi

ri

+
n

∑

i> j=1

qiq j

ri j

, (1)
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where m0 is the mass of the nucleus and q0 is its charge, qi =
−1 (i = 1, . . . , n) are electron charges, and μi = m0mi/(m0 +
mi ) are their reduced masses (mi = 1, i = 1, . . . , n, are the

electron masses). One can notice that Hamiltonian (1) de-

scribes the motion of n so-called pseudoelectrons that have the

same charges as the original electrons, but with their masses

replaced by the reduced masses, in the central field of the

charge of the nucleus. The motions of the pseudoelectrons

are coupled through the Coulombic interactions,
∑n

i=1
q0qi

ri
+

∑n
i> j=1

qiq j

ri j
, where ri j = |r j − ri|, and through the so-

called mass polarization term, − 1
2

∑n
i, j=1

i �= j

(1/m0)∇T
ri

· ∇r j
.

The internal Hamiltonian (1) is used in the present varia-

tional calculations of the nonrelativistic total energies and the

corresponding ground- and excited-state wave functions of

the beryllium atom (9Be and ∞Be; obviously, the mass po-

larization terms vanishes for ∞Be). The nonrelativistic wave

functions are also used in the first-order perturbation-theory

calculations of the relativistic and QED corrections to the total

energies of the considered states.

The spatial parts of the wave functions of the considered
3P states of beryllium are expanded in terms of the following

ECG (L = 1, ML = 0) basis functions:

φ
(L=1)
k

= zik exp[−rT (Ak ⊗ I3)r], (2)

respectively, where electron label ik varies from 1 to n. Ak in

(2) is an n × n symmetric matrix of the exponential parame-

ters of the Gaussian which is specific to each ECG, ⊗ is the

Kronecker product, and I3 is a 3 × 3 identity matrix. In (2), r is

a 3n vector of the internal coordinates of the n pseudoelectrons

which has the following form:

r =

⎛

⎜

⎜

⎝

r1

r2
...

rn

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

x1

y1

z1
...

xn

yn

zn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3)

(Ak ⊗ I3) is denoted as Ak .

To ensure that basis functions (2) are square integrable,

which they should be since they are used to expand bound

states of the beryllium atom, the Ak matrix has to be made

positive definite. In order for this to happen, Ak is represented

in the Cholesky-factored form as Ak = (LkLT
k ) ⊗ I3, with Lk

being a real n × n lower triangular matrix. Such a represen-

tation makes Ak positive definite for any values of the Lk

matrix elements in the (−∞, +∞) range. As the Lk matrix

elements are the variational parameters that are optimized in

the present calculations by the minimization of the energy

of the particular state, this optimization can be performed

without any constraints. This is always a desirable feature of

any optimization.

The spatial part of the wave functions of the consid-

ered 3P states is a linear combination of basis functions (2)

with the linear expansion coefficients obtained by solving

the corresponding secular equation problem. The solution in-

volves constructing the Hamiltonian and overlap matrices and

their simultaneous diagonalization. In the calculation of the

Hamiltonian and overlap matrix elements, the proper per-

mutational symmetry has to be implemented for each basis

function. We use the spin-free formalism in this implemen-

tation. In this formalism, an appropriate symmetry projector

is constructed and applied to each basis function to impose

the desired symmetry properties of the total wave function.

The projector is constructed using the standard procedure

involving Young’s operators Ŷ [29–31]. As the projector

commutes with the Hamiltonian, the projector from the bra

side of the matrix element can be moved to the ket side

〈Ŷ �L|Ĥint|Ŷ �L〉 = 〈�L|Ĥint|Ŷ †Ŷ �L〉, and thus, the projector

on the ket side becomes equal to Ŷ †Ŷ . The procedure used

here to generate the permutational symmetry projector was

described in our previous work [19].

For the considered 3P states of the beryllium atom the

symmetry projector (Young’s operators) can be chosen as

Ŷ3P = (1̂ − P̂13)(1̂ − P̂14 − P̂34)(1̂ + P̂12), (4)

where P̂i j interchanges the spatial coordinates of the ith and

jth electrons. In the beryllium calculation, Ŷ †Ŷ contains 4! =
24 terms. Thus, each matrix element is a sum of 24 different

terms (as four of these terms vanish for the 3P states, the

number of terms reduces to 20).

In the calculation of the matrix elements of the operators

representing the spin-independent leading relativistic correc-

tions, i.e., the mass-velocity, Darwin, orbit-orbit, and contact

spin-spin interaction operators, ĤMV, ĤD, ĤOO, and ĤSSF,

the spin-free approach is also used. However, in calculating

first-order corrections to the energy of 3P states due to the

(noncontact) spin-spin and spin-orbit interactions, the corre-

sponding operators explicitly depend on the electron spins.

Thus, the complete wave function that explicitly includes the

electron spin and spatial components, i.e. [32],

�SMSLML
(σ, r) = Â[�SMS

(σ ) �LML
(r)], (5)

has to be used. In (5), antisymmetrizer Â acts on both spa-

tial r and spin σ = (σ1, . . . , σn) electron variables. �SMS
(σ )

is an eigenfunction of the total electron spin operators,

Ŝ2 and Ŝz. No permutational properties are imposed on

the spatial function �LML
(r) and the permutation projec-

tion of the spin-free approach Y3P now transforms the spin

eigenfunction �SMS
(σ ) [25]. This eigenfunction has the fol-

lowing form for the 3P (S = MS = 1) states of beryllium:

�11(σ ) = 1√
2
[α(σ1)β(σ2) − β(σ1)α(σ2)]α(σ3)α(σ4). For a

practical reason, the calculations of the matrix elements of

the spin-dependent operators are performed using the spa-

tial �(r)L=ML=1 wave functions and not �(r)L=ML=0 wave

functions. This requires replacing zik in Eq. (2) by −(xik +
iyik )/

√
2, where i2 = −1. The first-order corrections to the

energy are given for the |(SL)JMJ〉 eigenstates, where J =
S + L is the total angular momentum of the electrons.

III. RELATIVISTIC OPERATORS

The operators representing the spin-independent compo-

nents of the leading relativistic corrections of the order of

α2(∝ c−2) that include the mass-velocity (MV), Darwin (D),

and orbit-orbit (OO) terms expressed in terms of the internal
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coordinates are

ĤMV = −
1

8
α2

[

1

m3
0

(

n
∑

i=1

∇ri

)4

+
n

∑

i=1

1

m3
i

∇
4
ri

]

, (6)

ĤD = −
π

2
α2

n
∑

i=1

[

4

3

(g − 1)(I + ξ )

m2
0

+
1

m2
i

]

q0qi δ3(ri ) −
π

2
α2

n
∑

i=1

n
∑

j �=i

1

m2
i

qiq j δ3(ri j ), (7)

ĤOO = −
1

2
α2

n
∑

i=1

n
∑

j=1

q0q j

m0m j

[

1

r j

∇ri

T · ∇r j
+

1

r3
j

rT
j ·

(

rT
j · ∇ri

)

∇r j

]

+
1

2
α2

n
∑

i=1

n
∑

j>i

qiq j

mim j

[

1

ri j

∇
T
ri

· ∇r j
+

1

r3
i j

rT
i j ·

(

rT
i j · ∇ri

)

∇r j

]

. (8)

In the above, δ(r) is the Dirac delta function, and I and g are

the nuclear spin and nuclear g factor, respectively; ξ = 1/4 for

half-integer I , and ξ = 0 otherwise. The above energy correc-

tions uniformly shift all of the 2S+1LJ energy levels of a given

atomic 2S+1L term. The leading relativistic corrections also

include the spin-spin Fermi contact term (SSF) represented

by the following operator:

ĤSSF = −
8π

3
α2

n
∑

i, j=1
j>i

qiq j

mim j

(si · s j )δ(ri j ). (9)

Even though this operator explicitly involves electronic spins

si, it provides the SSF first-order correction to the energy that

does not split the atomic 2S+1L terms.

In the calculations of the spin-dependent relativistic cor-

rections of the order of α2 the corresponding operators

representing the SO and spin-spin (SS) interactions are used.

Before they are used in the calculations, the operators, origi-

nally expressed in terms of the laboratory coordinates [33], are

transformed to the internal coordinate system. Retaining only

terms dependent on the internal ri coordinates, the following

SS operator is obtained:

Ĥ ′
SS = α2

n
∑

j=1

n
∑

i> j

qiq j

mim j

{

(si · ∇ri
)(s j · ∇r j

)
1

ri j

}

, (10)

where ∇ri
and ∇r j

operate on only 1/ri j . The above operator

includes part of the Fermi-contact operator (9). To separate

out this overlapping part, tensor operator techniques [34] are

applied. The procedure is explained in our previous paper

[25].

The electron spin-orbit interaction ĤSO has the following

form:

ĤSO = −α2

n
∑

k=1

sk ·
{

q0qk

2mk

(

1

mk

+
2

m0

)

1

r3
k

(rk × pk )

}

+α2

n
∑

k=1

sk ·
n

∑

l=1
l �=k

{

−
q0qk

m0mk

1

r3
k

(rk × pl )

+
qkql

2mk

1

r3
kl

[

rlk ×
(

1

mk

pk −
2

ml

pl

)]}

≡ ĤSO1 + ĤSO2. (11)

The operator can be split into the one-electron operator ĤSO1

and the two-electron operator ĤSO2. Both operators have a

scalar-product structure involving a spin-vector operator and

a spatial-vector operator. Thus, also in this case, the tensor

operator techniques [34] are applied [25]. By setting the nu-

clear mass m0 to infinity, the ĤSO1 and ĤSO2 terms in Eq. (11)

become equal to the standard spin-orbit and spin-other-orbit

interaction operators [27,35,36].

IV. VARIATIONAL CALCULATIONS

The variational nonrelativistic non-BO calculations of

the eight considered 3P states of beryllium, i.e., the 2s np,

n = 2, . . . , 9, 3P states (the states are denoted as n 3P,

n = 2, . . . , 9), are performed separately and independently

for each state. In these calculations, the ECG basis set

is grown for each state from a small set of functions to

the final set. The procedure involves a series of additions

of subsets of new functions (usually each subset contains

100 ECGs) and optimizing the exponential coefficients

(i.e., the Lk matrix elements) separately for each function

using the gradient-based variational optimization procedure.

The optimization of the wave-function linear expansion

coefficients is carried out by solving the secular equation.

More details about the optimization procedure can be found

in our previous work [25]. The growing of the basis set is

performed using the FNM approach for the 9Be isotope.

Then, as mentioned, the basis sets are reused to perform

infinite-nuclear-mass (INM) ∞Be calculations.

The calculation of the SO and SS spatial matrix elements

needed to calculate the SO and SS energy corrections were

implemented in our previous work [25]. A detailed description

of the algorithms can be found in that paper.

V. TOTAL ENERGY

After the nonrelativistic energies of the considered states

are calculated, the spin-dependent relativistic effects are de-

termined using the first-order perturbation theory, with the

zero-order wave function being the nonrelativistic wave func-

tion of the particular state. The addition of the first-order

relativistic corrections to the nonrelativistic energy uniformly

shifts the 3PJ=0,1,2 energy levels by

E shift
rel = EMV + ED + EOO + ESSF. (12)
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TABLE I. The convergence of the spin-free relativistic corrections of the order of α2 and QED corrections of the orders of α3 and α4

(approximately) with the size of the basis set for the lowest eight 3P states of beryllium (9Be). The results for ∞Be calculated with the largest

basis sets are also shown. All values are in hartrees.

Isotope Basis Enrel
a 102α2 MV 102α2 Darwin 105α2 OO 103α 2Erel

shift
104α 3EQED 105α 4EHQED

2 3P
9Be 7000 −14.566341469 −1.41872 1.14030 −4.02327 −2.300225 3.34841 1.5215
9Be 8000 −14.566341478 −1.41872 1.14030 −4.02327 −2.300226 3.34841 1.5215
9Be 9000 −14.566341480 −1.41871 1.14030 −4.02327 −2.300163 3.34841 1.5215
∞Be 9000 −14.567244230 −1.41906 1.14052 −3.88411 −2.300079 3.34903 1.5217

3 3P
9Be 7000 −14.398065853 −1.42716 1.14682 −4.84363 −2.323588 3.36818 1.5302
9Be 8000 −14.398065860 −1.42716 1.14682 −4.84363 −2.323581 3.36818 1.5302
9Be 9000 −14.398065863 −1.42716 1.14683 −4.84363 −2.323577 3.36819 1.5302
∞Be 9000 −14.398968692 −1.42751 1.14704 −4.70328 −2.323491 3.36881 1.5305

4 3P
9Be 7000 −14.362049933 −1.42797 1.14748 −4.93329 −2.325521 3.37022 1.5311
9Be 8000 −14.362049940 −1.42797 1.14748 −4.93329 −2.325530 3.37021 1.5311
9Be 9000 −14.362049944 −1.42797 1.14749 −4.93329 −2.325556 3.37021 1.5311
∞Be 9000 −14.362951448 −1.42832 1.14770 −4.79281 −2.325469 3.37084 1.5314

5 3P
9Be 8000 −14.347224126 −1.42819 1.14767 −4.96059 −2.326171 3.37076 1.5314
9Be 9000 −14.347224128 −1.42820 1.14768 −4.96059 −2.326128 3.37079 1.5314
9Be 10 000 −14.347224130 −1.42820 1.14768 −4.96059 −2.326092 3.37079 1.5314
∞Be 10 000 −14.348124994 −1.42855 1.14789 −4.82006 −2.326004 3.37141 1.5317

6 3P
9Be 8000 −14.339637420 −1.42826 1.14772 −4.97180 −2.326301 3.37095 1.5314
9Be 9000 −14.339637430 −1.42827 1.14772 −4.97180 −2.326310 3.37097 1.5314
9Be 10 000 −14.339637441 −1.42827 1.14773 −4.97180 −2.326295 3.37096 1.5315
∞Be 10 000 −14.340537949 −1.42862 1.14794 −4.83126 −2.326208 3.37158 1.5317

7 3P
9Be 8000 −14.335230926 −1.42817 1.14761 −4.97725 −2.326500 3.37065 1.5313
9Be 9000 −14.335230932 −1.42831 1.14774 −4.97725 −2.326673 3.37100 1.5315
9Be 10 000 −14.335230949 −1.42831 1.14774 −4.97725 −2.326669 3.37101 1.5315
∞Be 10 000 −14.336131240 −1.42867 1.14795 −4.83670 −2.326582 3.37164 1.5318

8 3P
9Be 8000 −14.332444066 −1.42803 1.14741 −4.98022 −2.327015 3.37009 1.5310
9Be 9000 −14.332444174 −1.42818 1.14757 −4.98022 −2.326982 3.37056 1.5313
9Be 10 000 −14.332444254 −1.42820 1.14759 −4.98022 −2.326965 3.37062 1.5313
∞Be 10 000 −14.333344405 −1.42856 1.14780 −4.83967 −2.326878 3.37124 1.5316

9 3P
9Be 8000 −14.330568921 −1.42800 1.14730 −4.98198 −2.327637 3.36983 1.5309
9Be 9000 −14.330569470 −1.42801 1.14734 −4.98198 −2.327409 3.36992 1.5310
9Be 10 000 −14.330569664 −1.42816 1.14748 −4.98198 −2.327576 3.37031 1.5311
∞Be 10 000 −14.331469717 −1.42851 1.14769 −4.84142 −2.327489 3.37094 1.5314

aIncreasing the basis functions of states 2 3P, 3 3P, and 4 3P states to 10 000 ECGs gives nonrelativistic energies of 9Be of −14.566341481,

−14.398065864, and −14.362049945 a.u., respectively, and nonrelativistic energies of ∞Be of −14.567244231, −14.398968693, and

−14.362951450 a.u., respectively. Increasing the basis functions of states 8 3P and 9 3P states to 11 000 ECGs gives nonrelativistic energies

of 9Be of −14.332444310 and −14.330569811 a.u., respectively, and nonrelativistic energies of ∞Be of −14.333344460 and −14.331469863

a.u., respectively.

The sum of the α3 QED corrections also uniformly shifts the

energy levels by [13,37]

EQED =
4

3
Z

[

ln(α−2) +
19

30
− ln k0

] n
∑

i=1

〈δ(ri )〉

+
(

164

15
+

14

3
ln α

) n
∑

i> j=1

〈δ(ri j )〉

−
14

3

1

4π

n
∑

i> j=1

〈P
(

1

r3
i j

)

〉 (13)

and by the value of the approximately calculated α4 QED

correction [13]:

EHQED = πZ2

(

427

96
− 2 ln 2

) n
∑

i=1

〈δ(ri )〉. (14)

Although the above two formulas were originally derived

within the INM approach, they are calculated here using the

FNM nonrelativistic wave functions. Thus, the recoil α3 QED

energy corrections is partially included in the calculation [38].
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The total energies that include the spin-orbit and spin-spin

energy corrections for the considered 3PJ=0,1,2 states of the

beryllium atom are calculated as

EJ = Enrel + α2
[

E shift
rel + CSO

J (ESO1 + ESO2) + CSS
J ESS

]

+α3(EQED + Eκ ) + α4EHQED, (15)

where the CS•
J coupling coefficients have the following values:

CSO
J=0,1,2 = −2,−1, 1 and CSS

J=0,1,2 = 10,−5, 1. ESO1, ESO2,

and ESS are the expectation values of the respective operators

as described in Ref. [25]. These expectation values are cal-

culated using the wave functions representing the considered

|n 3P MS = 1, ML = 1〉 states, where n = 2, 3, . . . , 9 for the

beryllium atom. The algorithm for calculating the α3 correc-

tion due to the anomalous magnetic moment of the electron

κ (≈ α
2π

) was also shown in Ref. [25].

VI. RESULTS

In the present work, the following values were

used: α = 7.2973525698(24) × 10−3 and 1 hartree =
2.194746313708(11) × 105 cm−1 [39]. The calculations were

carried out with a computer program written in FORTRAN90

that employs the message-passing interface (MPI) protocol

for parallel processing. The most time-consuming part of the

calculations is growing and optimizing the ECG basis set for

each of the considered eight 3P states of 9Be.

In Table I we present the results of the nonrelativistic

energies and the leading J-independent relativistic and QED

corrections for the eight lowest 3P states of 9Be. We should

note that in the calculations of the QED corrections for

the states we use the value of the Bethe logarithm (ln k0 =
5.75232 a.u.) calculated for state 2 1P of ∞Be taken from

Ref. [16]. As pointed out in Ref. [25], the QED correction

that includes the Bethe logarithm is rather insensitive to small

changes in the value of ln k0, so its approximate constant value

used in this work for all considered states should little affect

the accuracy of the calculations. The spin-dependent energy

terms, ESO1, ESO2, and ESS, are shown in Table II. These terms

are the expectation values of the corresponding relativistic

operators calculated for states |n 3P, MS = 1, ML = 1〉, where

n = 2, . . . , 9. In both Tables I and II, the convergence in

the terms with the number of basis functions calculated for
9Be is shown. As one can see, all quantities are, in general,

very well converged. Also, as one notices, the three quantities

contributing to the fine line splitting quickly decrease with the

increasing electronic-excitation level.

In the sixth column of Table I, the α2 orbit-orbit relativistic

correction is shown. We should point out that there was an er-

ror in the calculations for the orbit-orbit relativistic correction

in our previous work [25], where the two lowest 3P states of

beryllium were considered. This error has been now corrected,

and the values of the spin-independent relativistic correction

shown in Table I include the corrected orbit-orbit term.

Before the results are analyzed, let us first compare the gen-

eral splitting schemes of the 3P atomic terms of the 9Be atom

presented in Fig. 1. As one can see, the splitting pattern is

almost identical for all eight states, but energy scales are very

TABLE II. J-dependent relativistic corrections of the order of α2

to the energy of the n = 2, 3, . . . , 9 3P states of the beryllium atom

(9Be and ∞Be). All values are in a.u.

Isotope Basis α 2ESO1 (×105) α 2ESO2 (×105) α 2ESS (×107)

2 3P
9Be 7000 1.61224 −1.11247 1.364
9Be 8000 1.61224 −1.11247 1.364
9Be 9000 1.61224 −1.11247 1.364
∞Be 9000 1.61208 −1.11225 1.365

3 3P
9Be 7000 0.22948 −0.15453 0.210
9Be 8000 0.22948 −0.15453 0.210
9Be 9000 0.22948 −0.15453 0.210
∞Be 9000 0.22944 −0.15449 0.210

4 3P
9Be 7000 0.08428 −0.05629 0.072
9Be 8000 0.08428 −0.05629 0.072
9Be 9000 0.08428 −0.05628 0.072
∞Be 9000 0.08426 −0.05627 0.072

5 3P
9Be 8000 0.04036 −0.02686 0.034
9Be 9000 0.04036 −0.02686 0.034
9Be 10000 0.04036 −0.02686 0.034
∞Be 10000 0.04035 −0.02685 0.034

6 3P
9Be 8000 0.02242 −0.01489 0.018
9Be 9000 0.02242 −0.01489 0.018
9Be 10000 0.02242 −0.01489 0.018
∞Be 10000 0.02241 −0.01489 0.018

7 3P
9Be 8000 0.01372 −0.00911 0.011
9Be 9000 0.01372 −0.00911 0.011
9Be 10000 0.01372 −0.00911 0.011
∞Be 10000 0.01372 −0.00911 0.011

8 3P
9Be 8000 0.00901 −0.00597 0.007
9Be 9000 0.00901 −0.00597 0.007
9Be 10000 0.00901 −0.00597 0.007
∞Be 10000 0.00900 −0.00597 0.007

9 3P
9Be 8000 0.00623 −0.00413 0.005
9Be 9000 0.00623 −0.00413 0.005
9Be 10000 0.00623 −0.00413 0.005
∞Be 10000 0.00622 −0.00412 0.005

different. The SO interaction in the 3PJ=0,1,2 energy levels

results in the splitting pattern that follows the so-called Landé

interval rule, which predicts the (E2 − E1)/(E1 − E0) = 2

splitting ratio. The SS interaction may affect this ratio, but in

the case of 9Be, the SS interaction is relatively small, and the

Landé interval rule still applies. As in the present calculation

we do not include the mixing of the triplet 3P1 states with

the closely lying 1P1 singlet states, the slight downshifting

of the 3P1 states resulting from the triplet-singlet coupling is

not described. We also do not include the higher-order QED

corrections [38,40] that may slightly affect the fine structure

of the beryllium 3P states.

012813-6



FINE STRUCTURE OF THE BERYLLIUM 3P STATES … PHYSICAL REVIEW A 105, 012813 (2022)

FIG. 1. Fine splitting of the n 3P, n = 2, . . . , 9, atomic term into J = 0, 1, 2 energy levels of the 9Be atom due to spin-dependent α2

relativistic interactions and due to the α3 correction representing the effect of the anomalous magnetic moment of the electron (AMM).

Eshift = Enrel + α2E shift
rel + α3EQED + α4EHQED, EJ is defined in Eq. (15), and the SS2 term is obtained by subtracting from the expectation value

of operator (10) a part of the spin-spin contact term (9), as described in the statement below Eq. (10). The splitting patterns are almost identical

for all states, but as one can see in the plots, the energy scales are different. (a) State 2, (b) state 3, (c) state 4, (d) state 5, (e) state 6, (f) state 7,

(g) state 8, and (h) state 9.

Table I shows the nonrelativistic energies are converged

to a relative precision of 10−8–10−9. Thus, by taking into

account the level of convergence of the relativistic and QED

corrections and by accounting for the inaccuracy related to

using an approximate value for the Bethe logarithm ln k0, we

can estimate the absolute error of the total energies of the con-

sidered 3P states to be not larger than roughly 2 × 10−6 a.u. <

0.5 cm−1. As can be seen in Table III, the α 3EQED correc-

tions are two orders of magnitude larger than this error upper

bound, and even more important, these corrections differ by

roughly 2 × 10−6 a.u. for the 2 3P and 3 3P states. This

shows the importance of the QED corrections in the present

calculations. The higher-order QED corrections in terms of α,

e.g., the approximate α4 QED terms taken into account in the

present calculations, are expected to be of the order of about

1 cm−1. Their impact on the transition energies is expected

to be smaller than 0.1 cm−1 [13,15]; that is, it is below the

estimated accuracy of the present calculations. The values of

the α 4EHQED corrections are collected in Table I.

There are some experimental data that concern the total

energies of the 3PJ energy levels of beryllium determined with

respect to the ground electronic 1S state [1]. The available

experimental energy values are compared with the values

calculated in this work in Table III. As one can see, most

of the total energies calculated in this work fall within the

uncertainty brackets of the experimental values.
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TABLE III. Total energies EJ of the n 3PJ , n = 2, . . . , 9, of 9Be (in a.u.) and the corresponding excitation energies (in cm−1) determined

with respect to the 9Be ground-state energy of −14.668440600(18) a.u. obtained with 16 000 ECG basis functions (the energy is taken from

[41] and it includes the QED correction with the value of the Bethe logarithm taken from Ref. [16]). The excitation energies are compared

with the experimental values [1]. The total EJ energies calculated for ∞Be are also included. The calculations for the 2 3P0, 2 3P1, 2 3P2, 3 3P0,

3 3P1, 3 3P2, 4 3P0, 4 3P1, and 4 3P2 states are done with 9000 ECGs, and the calculations for the 5 3P0, 5 3P1, 5 3P2, 6 3P0, 6 3P1, 6 3P2, 7 3P0, 7
3P1, 7 3P2, 8 3P0, 8 3P1, 8 3P2, 9 3P0, 9 3P1, and 9 3P2 states are done with 10 000 ECGs. The EJ energies of the 3PJ states of Be are calculated

using Eq. (15). The calculated results are compared with the experimental values take from Ref. [1].

State Isotope EJ Eexp. 
EJ
a

(a.u.) (cm−1)b (cm−1) (cm−1)

2 3P0
9Be −14.56830025(4) 21 978.266 ± 0.009 21 978.310 ± 0.080 −0.044
∞Be −14.56920285

2 3P1
9Be −14.56829729(4) 21 978.916 ± 0.009 21 978.310 ± 0.080 −0.009
∞Be −14.56919989

2 3P2
9Be −14.56828644(4) 21 981.297 ± 0.009 21 981.260 ± 0.070 0.037
∞Be −14.56918904

3 3P0
9Be −14.400038611(1) 58 907.427 ± 0.000 58 907.472 ± 0.060 −0.045
∞Be −14.400941289

3 3P1
9Be −14.400038176(1) 58 907.522 ± 0.000 58 907.472 ± 0.060 0.050
∞Be −14.400940854

3 3P2
9Be −14.400036546(1) 58 907.880 ± 0.000 58 907.839 ± 0.060 0.041
∞Be −14.400939223

4 3P0
9Be −14.36402366(2) 66 811.796 ± 0.004 66 811.890 ± 0.140 −0.094
∞Be −14.36492501

4 3P1
9Be −14.36402348(2) 66 811.834 ± 0.004 66 811.890 ± 0.090 −0.056
∞Be −14.36492484

4 3P2
9Be −14.36402288(2) 66 811.967 ± 0.004 66 811.890 ± 0.080 0.077
∞Be −14.36492423

5 3P0
9Be −14.34919807(4) 70 065.637 ± 0.004 70 065.400 ± 0.100 0.237
∞Be −14.35009878

5 3P1
9Be −14.34919798(4) 70 065.655 ± 0.004 70 065.400 ± 0.140 0.255
∞Be −14.35009869

5 3P2
9Be −14.34919769(4) 70 065.719 ± 0.004 70 065.400 ± 0.140 0.319
∞Be −14.35009840

6 3P0
9Be −14.34161146(1) 71 730.705 ± 0.002 71 730.640 ± 0.080 0.065
∞Be −14.34251181

6 3P1
9Be −14.34161141(1) 71 730.715 ± 0.002 71 730.660 ± 0.060 0.055
∞Be −14.34251177

6 3P2
9Be −14.34161125(1) 71 730.751 ± 0.002 71 730.660 ± 0.060 0.091
∞Be −14.34251160

7 3P0
9Be −14.33720528(8) 72 697.748 ± 0.018 72 697.330 ± 0.080 0.418
∞Be −14.33810542

7 3P1
9Be −14.33720525(8) 72 697.755 ± 0.018 72 697.340 ± 0.070 0.415
∞Be −14.33810539

7 3P2
9Be −14.33720515(8) 72 697.777 ± 0.018 72 697.340 ± 0.060 0.437
∞Be −14.33810529

8 3P0
9Be −14.33441898(4) 73 309.289 ± 0.009 73 309.170 ± 0.090 0.119
∞Be −14.33531890

8 3P1
9Be −14.33441887(4) 73 309.293 ± 0.009 73 309.160 ± 0.070 0.133
∞Be −14.33531888

8 3P2
9Be −14.33441881(4) 73 309.308 ± 0.009 73 309.150 ± 0.060 0.158
∞Be −14.33531881

9 3P0
9Be −14.3325449(3) 73 720.577 ± 0.066
∞Be −14.3334448

9 3P1
9Be −14.3325449(3) 73 720.580 ± 0.066
∞Be −14.3334448

9 3P2
9Be −14.3325449(3) 73 720.589 ± 0.066
∞Be −14.3334448

a
EJ = EJ − E
exp

J , where experimental E
exp

J energies of Be taken from NIST [1].
bGround state energy of 9Be Eg = Enrel + α 2E shift

rel +α 3EQED +α 4EHQED obtained for 16000 basis; QED terms ln k0 taken from Ref. [16].
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TABLE IV. Fine EJ -EJ ′ splitting (in cm−1) of the lowest eight 3PJ

states of 9Be. The calculated energy differences are compared with

the experiment [1].

Basis E1 − E0 E2 − E1

2 3PJ

7000 0.650 2.381

8000 0.650 2.381

9000 0.650 2.381

Expt. 0.615 ± 0.090 2.335 ± 0.080

3 3PJ

7000 0.096 0.358

8000 0.096 0.358

9000 0.096 0.358

Expt. 0.0 ± 0.120 0.367 ± 0.120

4 3PJ

7000 0.038 0.133

8000 0.038 0.133

9000 0.038 0.133

Expt. 0.0 ± 0.230 0.0 ± 0.170

5 3PJ

8000 0.019 0.064

9000 0.019 0.064

10 000 0.019 0.064

Expt. 0.0 ± 0.240 0.0 ± 0.280

6 3PJ

8000 0.011 0.036

9000 0.011 0.036

10 000 0.011 0.036

Expt. 0.020 ± 0.140 0.0 ± 0.120

7 3PJ

8000 0.007 0.022

9000 0.007 0.022

10 000 0.007 0.022

Expt. 0.010 ± 0.150 0.0 ± 0.130

8 3PJ

8000 0.004 0.014

9000 0.004 0.014

10 000 0.004 0.014

Expt. −0.010 ± 0.160 −0.010 ± 0.130

9 3PJ

9000 0.003 0.010

10 000 0.003 0.010

In our previous work [25] we estimated the error arising

from not including the effect of the coupling between the

n 3P states and the most closely lying n 1P states due to

the spin-orbit interactions. Considering the very good conver-

gence of the quantities used in the present work to calculate

the SO interactions and based on the error analysis presented

in our previous work [25], we estimate the uncertainties in the

calculated splitting to be about 10−3 cm−1. The experimental

uncertainties are much higher [1].

Finally, in Table IV, the differences between the energies

of the n 3P1 and n 3P0 states and the n 3P2 and n 3P1 states for

n = 2, . . . , 9, calculated in this work are presented. The cal-

culated values are compared with the available experimental

data [1]. As one can see, apart from perhaps the two lowest

levels, the experiment is rather incomplete and imprecise.

The differences calculated for the two lowest levels are well

within the experimental uncertainties. One can also see that

the calculated energy differences are very well converged with

the number of ECGs.

VII. SUMMARY

This work presented high-accuracy calculations of the

eight lowest 3P energy levels of beryllium. Large explicitly

correlated all-electron Gaussian basis functions were used to

expand the spatial parts of the wave functions of the stud-

ied states. The nonlinear parameters of the Gaussians were

variationally optimized for each state by the minimization of

the total nonrelativistic energy of the state. The optimization

employed the energy gradient determined with respect to the

parameters. The nonrelativistic energies were augmented with

the leading relativistic and QED corrections. The main focus

of the work was the calculations of the splitting of the 3P en-

ergy levels arising from the spin-orbit magnetic interactions,

i.e., the fine structure of the energy levels. For the few avail-

able experimental values of the splitting, the calculated results

fall well within the experimental error brackets. For the levels

for which the splitting has not been measured or has been

measured imprecisely, the present results may provide useful

information to future experiment remeasurement attempts.

In future work, the approach used in this work will be ap-

plied to states of larger atomic systems with a wider range of

the L and S quantum numbers. Future work will also be done

on extending the capability of the present approach to include

algorithms to calculate the off-diagonal SO interactions, as

well as the hyperfine interactions.
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