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S Rydberg spectrum of the boron atom
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Benchmark variational calculations of the lowest ten Rydberg 2S states of two stable isotopes of the boron
atom (10B and 11B) are reported. The nonrelativistic wave functions of this five-electron system are expanded in
terms of 16 000 all-particle explicitly correlated Gaussians (ECGs). The ECG nonlinear exponential parameters
are extensively optimized using a procedure that employs the analytic gradient of the energy with respect
to these parameters. A finite nuclear mass value is used in the calculations and the motion of the nucleus
is explicitly represented in the nonrelativistic Hamiltonian. The leading relativistic corrections to the energy
levels are computed in the framework of the perturbation theory. The lowest-order quantum electrodynamics
corrections are also estimated. The results obtained for the energy levels enable determination of interstate
transition frequencies with accuracy that approaches the available experimental spectroscopic data.
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I. INTRODUCTION

Expanding an atomic wave function in terms of explicitly
correlated basis functions that depend on the interelectron dis-
tances can yield a highly accurate representation of the atomic
system provided the basis functions are thoroughly optimized.
For example, employing explicitly correlated basis functions,
the nonrelativistic energies of the He atom were determined
with accuracy that exceeds 20 and, in some studies, even 40
digits [1–6]. For the lithium atom, accuracy of up to 15 digits
has been achieved [7–10].

The He and Li calculations were done with the use of
Hylleraas basis functions that properly describe the behavior
of the wave function at the atomic nucleus as well as a finite
distance from the nucleus [10–12]. The application of the
Hylleraas basis functions in calculations of energy levels of
atoms with more electrons has been difficult due to com-
plications with calculating the Hamiltonian matrix elements
with these functions. Thus, only limited cases of four-electron
systems have been considered [13,14].

An alternative to using Hylleraas basis functions in
atomic calculations is to use all-electron explicitly correlated
Gaussian (ECGs) functions [15–23]. The ECGs depend ex-
ponentially on the squares of the interelectron distances and,
thus, they do not strictly satisfy the Kato’s cusp conditions.
This deficiency can be effectively remediated by using a large
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number of basis functions and by performing extensive opti-
mization of their nonlinear exponential parameters [24,25] as
it is done in the present work. Employing ECGs in the calcu-
lations enables accurate description of the electron correlation
effects, which is key in high-precision calculations of atomic
spectra. These effects are related to the electrostatic repulsion
between the electrons and their avoiding each other in their
motion around the nucleus. Effective atomic basis functions
should be capable to accurately describe the decrease of the
probability of two or more electrons being found close to each
other (see the section on the basis functions used in the present
work for more discussion on this matter).

The variational optimization of the ECG exponential pa-
rameters is carried out with the use of analytically calculated
first derivatives of the energy determined with respect to the
parameters. These derivatives form the energy gradient vector,
which is supplied to the subroutine that runs the variational
energy minimization. The use of the gradient significantly
accelerates the energy convergence of the calculation. As
shown in this work on the boron excited 2S spectrum, it also
allows to consider a relatively large set of the Rydberg states
of an atom. The use of the energy gradient in the present
calculations, which is unique to our approach, resembles the
use of the energy gradient in the calculation of an equilibrium
molecular geometry performed using orbital Gaussians with
centers placed at the nuclei of the atoms forming the molecule.
Also there, the analytically calculated energy derivatives de-
termined with respect to the coordinates of the nuclei of the
atoms forming the molecule are used to find the molecular
geometry that corresponds to an energy minimum. As the
Gaussian centers in the calculation coincide with the atomic
centers, the analytical derivatives of the energy expression
with respect to the molecular geometrical parameters are ex-
pressed in terms of the derivatives of the Hamiltonian and
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overlap matrix elements determined with respect to these pa-
rameters. This is similar to the approach used in this work
where the derivatives are also calculated with respect to the
parameters of the Gaussians. However, in the present work
these parameters are not the coordinates of the Gaussian cen-
ters but the exponential parameters [e.g., parameters α1, α2,
and β in Eq. (4)].

With increasing capabilities of present-day computers, the
frontier of very accurate calculations of atomic spectra is
shifting from four-electron systems to systems with five elec-
trons. The boron atom and five-electron atomic ions become
targets of the investigation. In the present work, ten lowest 2S

states of 10B and 11B, as well as of ∞B, are calculated using
extended sets of the ECG basis functions. The calculations
include the leading relativistic and quantum-electrodynamics
(QED) energy corrections. The algorithms for calculating
these corrections include integrals that are more intricate than
the integrals involved in the overlap and Hamiltonian matrix
elements and the matrix elements of the analytical energy
gradient. Also, the relativistic and QED matrix elements are
more sensitive to imperfections of the Gaussian used for
expanding the wave function. These imperfections include
improper asymptotic behavior of the ECGs decaying too fast
at long distances and their inadequate short-range behavior
of not correctly describing the Kato’s cusp conditions. These
drawbacks can, however, be partially overcome by applying
the so-called “regularization” techniques and using large well-
optimized basis sets (see the next section).

One of the motivating factors for carrying out the present
calculations is the realization that a much higher accuracy
can now be achieve in boron calculations with the use of
the gradient-aided optimization of the ECG exponential pa-
rameters. For example, the best previous calculations of the
lowest 2S state of ∞B performed by Puchalski et al. [26]
using 8192 ECGs resulted in the nonrelativistic variational
energy of −24.471393366 hartree. As one will see in the Re-
sults section, the present ∞B energy value of −24.471393641
hartree obtained with 16 000 ECGs is noticeably lower. Also,
our energy is close to the asymptotic estimate of a complete-
basis-set energy value of −24.47139368(32) hartree given by
Puchalski et al. [26].

Finally, it should be mentioned that atomic calculations
performed with all-electron ECGs are very time consuming.
The bottleneck is the very steep dependency of the calculation
time on the number of electrons in the system which, is n!.
This number is equal to the number of operators representing
the electron-label permutations that need to be applied to
each ECG to implement the proper permutational symmetry
of the wave function. n! is also equal to the number of ele-
mental integrals that need to be calculated to determine the
value of a single Hamiltonian matrix element or a matrix
element of any other operator used in the present calcula-
tions, e.g., the operators representing the leading relativistic
effects. So, even though the calculations of the matrix ele-
ments can be very efficiently parallelized in the calculation,
the large number of the integrals calculated in each step of
the basis set optimization makes the calculation very ex-
pensive. At present, very accurate ECG atomic calculations
are practically limited to systems with five or less elec-
trons. The present work is an example of such calculations.

Even though we have written codes to perform ECG calcula-
tions for carbon and nitrogen atoms [27,28], more powerful
computers will be needed to take full advantage of these
codes.

II. THE METHOD

A. Nonrelativistic nuclear-mass-dependent Hamiltonian

Very accurate atomic calculations have to account for the
effects associated with the finite mass of a nucleus. This can
be done using the perturbation-theory approach (most com-
mon way) or more explicitly by including these effects in
the Hamiltonian that represents the nonrelativistic energy of
the system. In the present work, the latter approach is used.
The finite-nuclear-mass (FNM) effects are revealed when the
internal motion of the atom is considered as a coupled motion
of the nucleus and the electrons around the center of mass
of the system. Thus, to calculate the energies and the corre-
sponding wave functions of bound states associated with this
motion, an internal atomic nonrelativistic Hamiltonian has to
be derived. In the approach used here, the starting point in
the derivation of such a Hamiltonian is the standard nonrel-
ativistic laboratory-frame Hamiltonian comprising operators
representing the kinetic and potential energies of the nu-
cleus and the electrons. The laboratory-frame Hamiltonian is
expressed in terms of the Cartesian laboratory-frame coordi-
nates. Next, a new coordinate system is introduced consisting
of the three coordinates, XCM , YCM , and ZCM , that represent
the position of the center of mass of the atom in the laboratory
frame and 3N − 3 = 3n internal coordinates, where N is the
total number of particles in the atom, i.e., the number of
electrons, n, plus one. There are a number of ways the internal
coordinates can be chosen. In the present approach we use a
generalization of the textbook approach employed in solving
the Schrödinger equation for the hydrogen atom, where the
internal coordinates are the coordinates of the vector with the
origin at the proton and the end at the electron. Thus, in the
generalized approach used here, the internal coordinates are
the coordinates of the vectors ri, i = 1, . . . , n, originating
at the nucleus and ending at the individual electrons. Now,
when the laboratory-frame Hamiltonian is expressed in terms
of the new coordinates, it rigorously splits into an operator
representing the kinetic energy of the motion of the center of
mass and an operator dependent only on the internal coordi-
nates that represents the internal state of the system [29]. The
internal Hamiltonian has the following form:

H int
nr = −

1

2

(

n
∑

i=1

1

μi

∇2
ri

+

n
∑

i=1

n
∑

j �=i

1

m0
∇

′
ri
∇r j

)

+

n
∑

i=1

q0qi

ri

+

n
∑

i=1

n
∑

j<i

qiq j

ri j

, (1)

where q0 is the charge of the nucleus, qi = −1 (i = 1, . . . , n)
are the electron charges, m0 is the nuclear mass, μi =

m0mi/(m0 + mi ) is the reduced mass of electron i (mi =me =

1), and ri j = |r j − ri| is the distance between electrons i

and j. In this work we adopted the following values of the
nuclear masses: m0(10B) = 18247.46879me and m0(11B) =

20063.73729me, where me is the mass of the electron.
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These nuclear masses can be obtained from the experi-
mentally derived atomic masses, 10.012936862(16) u and
11.009305167(13) u, respectively [30], by subtracting the
masses of five bound electrons and adding the total electron
binding energy. The infinite-nuclear-mass (INM) Hamiltonian
is obtained by setting m0 to ∞ in H int

nr . Such a Hamiltonian is
used in standard atomic nonrelativistic calculations based on
the Born-Oppenheimer approximation. We used both FNM
and INM Hamiltonians in the present calculations to obtain
the energies of 10B and 11B, as well as of ∞B. If the FNM
Hamiltonian is used, the energy and the corresponding wave
function depend on the mass of the nucleus. Thus the results
are specific to a particular isotope.

Hamiltonian (1) can also be written in a compact matrix
form [17] as

H int
nr = −∇

′
rM∇r +

n
∑

i=1

q0qi

ri

+

n
∑

i=1

n
∑

j<i

qiq j

ri j

, (2)

where

∇r =

⎛

⎜

⎜

⎝

∇r1

∇r2
...

∇rn

⎞

⎟

⎟

⎠

is a 3n-component gradient vector and M = M ⊗ I3 is the
Kronecker product of an n × n matrix M and 3 × 3 iden-
tity matrix I3. The diagonal elements of matrix M are
1/(2μ1), 1/(2μ2), . . . , 1/(2μn) and all off-diagonal elements
are equal to 1/(2m0).

B. Basis functions

All-electron explicitly correlated Gaussian basis functions
are used to expand the spatial part of the wave function for
each of the considered 2S states of boron. The ECGs have the
following form [this form is equivalent to Eq. (4)]:

φk = exp [−r′(Ak ⊗ I3)r], (3)

where r is a 3n vector of the internal electron coordinates,

r =

⎛

⎜

⎜

⎝

r1

r2
...

rn

⎞

⎟

⎟

⎠

,

Ak is an n × n real symmetric matrix, ⊗ is the Kronecker
product, and I3 is a 3 × 3 identity matrix. The prime symbol
denotes the matrix or vector transpose. The square integra-
bility of functions (3) is required, as they are used expand
wave functions of bound stationary states. It means Ak has
to be positive definite. To achieve this, Ak is represented in
a Cholesky-factored form as Ak = LkL′

k , where Lk is a lower
triangular matrix with all matrix elements being real numbers
that can be varied in the range from −∞ to ∞. Thus, there
is no need to impose any constraints on the lower-triangle
Lk matrix elements to make Ak positive definite. The matrix
elements of Lk’s are the variational parameters that are opti-
mized in the variational energy minimizations performed in
this work.

As stated in the Introduction, effective atomic explicitly
correlated basis functions should be capable of describing
the decrease of the probability of any two electrons being
found close to each other. To analyze whether ECGs have this
property, let us consider, for example, the ground state of the
helium atom. An ECG for this case can be written as

ψ (1, 2) = exp
(

− α1r2
1 − α2r2

2 − βr2
12

)

, (4)

where α1, α2, and β are parameters, r1 and r2 are the distances
of electron 1 and electron 2 from the nucleus, respectively,
and r12 is the distance between the electrons. One notices that
the Gaussian has a maximum at r12 = 0, but the wave function
should have a minimum at this distance. One way of achieving
that is by multiplying Eq. (4) by an r12-dependent function
that makes ψ (1, 2) go to zero when r12 → 0. A possible
multiplier can be r2

12. We considered such a multiplier in one
of our previous works [31]. One way of introducing such a
multiplier to function (4) is by differentiating ψ (1, 2) with re-
spect to −β. As it was indeed shown in Ref. [31] by including
functions (4) in the basis set used in the calculation of the
ground state of the He atom along with functions r2

12ψ (1, 2)
one can accelerate the energy convergence in terms of the
number of basis functions. If ECGs with the r2

12 preexponen-
tial multiplier are not included in the basis set, as it is done in
the present calculations, there is a tendency of the variational
optimization to make some basis functions linearly dependent.
This happens because an approximate way to generate basis
functions with the r2

12 preexponential multipliers is by the
following ‘numerical” differentiation, which the variational
optimization exploits to lower the energy of the system:

r2
12ψ (1, 2) ≈ lim

δ→0

(

exp
(

− α1r2
1 − α2r2

2 − (β + δ)r2
12

)

− exp
(

− α1r2
1 − α2r2

2 − βr2
12

))

/(−δ). (5)

Note that, at δ → 0, the two functions in Eq. (5) become
linearly dependent.

In this work we use the spin-free formalism to imple-
ment the appropriate permutational symmetry of the wave
function and to properly evaluate all necessary matrix ele-
ments. In this formalism, the desired symmetry properties
of the wave function are implemented by applying an ap-
propriate symmetry projector to each ECG basis function.
The projector is constructed using the standard procedure
employing Young operators (see Ref. [32]). In the calculation
of 2S states of the boron atom, the projector can be chosen
as P = (1 − P13)(1 − P15 − P35)(1 − P24)(1 + P12)(1 + P34),
where Pi j permutes the spatial coordinates of electrons i and
j. In the calculation of an expectation value of an operator,
which is fully symmetric with respect to permuting electron
labels (all operators used in the present work are like that), the
P operator can be moved from the bra side of the integral to
the ket side. Thus, the symmetry projection appears only on
the ket side in the form of P†P. As this projection contains
5! = 120 terms, each matrix element calculated in this work
consists of 120 different elemental spatial integrals.

In the present work, we also estimate the nonrelativistic
and total energies at a complete basis size. An analysis of
the procedure used to grow and optimize the basis sets in
the present calculations shows that the differences between
the consecutive nonrelativistic energies obtained with the
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TABLE I. The extrapolated 11B nonrelativistic energy to infinite
basis set size of the 2s23s state. The numbers in parentheses represent
the uncertainty in the extrapolated energy.

n Basis size Enr �En,n−1 q

1 10000 −24.470143631
2 12000 −24.470143683 –5.13 ×10−8

3 14000 −24.470143716 –3.39 ×10−8 0.66
4 16000 −24.470143748 –2.39 ×10−8 0.70

∞ −24.470143779(16)

incrementally increased number of the basis functions be-
haves approximately as a geometric series. Based on this
observation, the following formula is used to estimate the
energy value at an infinite number of the basis functions:

E∞ = E4 + �E4,3
q4

1 − q4
, (6)

where

qn =
�En,n−1

�En−1,n−2
,

�En,n−1 = En − En−1.

Equation (6) shows how the extrapolated energy value, E∞, is
obtained from energies E4, E3, and E2, where E4 is the energy
obtained with the largest basis set generated for a given state,
E3 is the energy obtained with the next largest basis set (for
example, the basis set with the number of the basis functions
by two thousands smaller than the largest basis set), and E2 is
the energy obtained with next largest basis set (i.e., the basis
set by four thousands smaller than the largest). Table I shows
an example of the application of the extrapolation procedure
to estimate E∞ for the lowest 2S state (2s23s) of the 11B
isotope.

C. The leading relativistic and QED energy corrections

Calculations performed at the nonrelativistic level of the
theory, even if they are very accurate, are insufficient to de-
termine the total energies and the interstate transition energies
with an accuracy comparable with the present-day spectro-
scopic results. To achieve spectroscopic accuracy, at least
the leading relativistic and QED energy corrections need to
be included in the calculations. An approach to account for
these corrections that is practical and most frequently used in
calculating bound states of light atoms is based on expanding
the total energy of the atom in terms of powers of the fine-
structure constant, α [33,34]:

Etot = Enr + α2E
(2)
rel + α3E

(3)
QED + α4E

(4)
HQED + · · · , (7)

where Enr is the nonrelativistic energy of the considered state,
α2E

(2)
rel represents the leading relativistic corrections, α3E

(3)
QED

represents the leading QED corrections, and α4E
(4)
HQED rep-

resents higher-order QED corrections. The relativistic and
QED corrections are obtained as expectation values of some
effective operators representing them. In particular, E

(2)
rel is

calculated as the expectation value of the Dirac-Breit Hamil-
tonian in the Pauli approximation, Hrel [35,36]. In the present

study of the 2S states of boron, Hrel contains the following
terms:

Hrel = HMV + HD + HOO + HSS, (8)

where HMV, HD, HOO, and HSS are operators representing
the mass-velocity, Darwin, orbit-orbit, and spin-spin effects,
respectively. In the internal Cartesian coordinate system, the
operators have the form given in our previous works [37,38].
Due to the use of the finite-nuclear-mass approach is the
present work, nuclear-mass dependency appears in the above
operators. The nonrelativistic wave functions used in calculat-
ing the expectation values are also nuclear-mass dependent.
Thus, the values of the relativistic corrections are specific to
a particular isotope (10B or 11B); i.e., as mentioned, the so-
called recoil effects are directly included in these corrections.

The leading QED correction, E
(3)
QED in Eq. (7), represents

the two-photon exchange, vacuum polarization, and electron
self-energy effects. The corresponding operator is expressed
as a combination of two sums:

HQED =

n
∑

i, j = 1
j > i

[(

164

15
+

14

3
ln α

)

δ(ri j ) −
7

6π
P

(

1

r3
i j

)]

+

n
∑

i=1

(

19

30
− 2 ln α − ln k0

)

4q0

3
δ(ri ). (9)

The first sum is the so-called Araki-Sucher term [39–43],
where the principal value P (1/r3

i j ) is defined as
〈

P

(

1

r3
i j

)〉

= lim
a→0

〈

1

r3
i j

	(ri j − a) + 4π (γ + ln a)δ(ri j )

〉

.

(10)

In the last expression 	(· · · ) is the Heaviside step function
and γ = 0.577215 . . . is the Euler-Mascheroni constant.

The dominant part of the self-energy term includes the
so-called Bethe logarithm, ln k0. This logarithm is notoriously
difficult to calculate for a multielectron atomic system. The
main contribution to ln k0 comes from the inner-shell elec-
trons. The ln k0 values used in the present calculations are
taken from our previous work on the lowest four 2S states of
boron [44]. For the fifth and higher states, the value of ln k0 for
the fourth excited state is used. This is because ln k0 changes
little for higher excited states. The second term in Eq. (9) is
calculated directly from the formula.

In the calculation of the E
(4)
HQED term in expansion (7), the

following approximate operator derived by Pachucki et al.

[45,46] is used:

HHQED = πq2
0

(

427

96
− 2 ln 2

) 3
∑

i=1

δ(ri ), (11)

where HHQED represents the dominating electron-nucleus
one-loop radiative correction. The two-loop radiative,
electron-electron radiative, and the higher-order relativis-
tic corrections are neglected. The approximate operator of
Pachucki et al. only provides a rough estimate of E

(4)
HQED =

〈ψ |HHQED|ψ〉.
It seems that the importance of the neglected terms signif-

icantly increases with the increasing size of the system. For
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TABLE II. Nonrelativistic and total energies computed with the largest basis sets of 16 000 ECGs along with their extrapolated values. All
energies are in atomic units.

Isotope Basis State Enr Etot State Enr Etot

10B 16000 2s23s −24.470019349 −24.475613348 2s27s −24.3602021 −24.3657287
∞ −24.470019371(12) −24.475613371(12) −24.3602055(12) −24.3657321(12)

11B 16000 −24.470143748 −24.475737735 −24.3603253 −24.3658518
∞ −24.470143771(12) −24.475737758(12) −24.3603286(12) −24.3658551(12)

∞B 16000 −24.471393641 −24.476987496 −24.3615625 −24.3670880
∞ −24.471393664(12) −24.476987519(12) −24.3615658(12) −24.3670914(12)

10B 16000 2s24s −24.401819489 −24.407402733 2s28s −24.3572446 −24.3628173
∞ −24.401819720(35) −24.407402962(35) −24.3572555(20) −24.3628284(20)

11B 16000 −24.401943485 −24.407526717 −24.3573682 −24.3629409
∞ −24.401943716(35) −24.407526946(35) −24.3573792(20) −24.3629520(20)

∞B 16000 −24.403189329 −24.408772432 −24.3586104 −24.3641829
∞ −24.403189560(35) −24.408772661(35) −24.3586214(20) −24.3641940(20)

10B 16000 2s25s −24.37842403 −24.38400019 2s29s −24.3550304 −24.3606108
∞ −24.37842476(15) −24.38400088(15) −24.3550646(53) −24.3606452(53)

11B 16000 −24.37854784 −24.38412400 −24.3551541 −24.3607345
∞ −24.37854858(15) −24.38412469(15) −24.3551883(53) −24.3607689(53)

∞B 16000 −24.37979190 −24.38536794 −24.3563971 −24.3619773
∞ −24.37979263(15) −24.38536864(15) −24.3564313(53) −24.3620117(53)

10B 16000 2s26s −24.36780237 −24.37335494 2s210s −24.353414 −24.358997
∞ −24.36780393(35) −24.37335642(35) −24.353489(11) −24.359072(11)

11B 16000 −24.36792589 −24.37347848 −24.353538 −24.359121
∞ −24.36792746(35) −24.37347996(35) −24.353613(11) −24.359196(11)

∞B 16000 −24.36916705 −24.37471972 −24.354781 −24.360364
∞ −24.36916862(35) −24.37472121(35) −24.354856(11) −24.360439(11)

10B 16000 2s2p2 −24.36297694 −24.36843959 2s211s −24.352204 −24.357787
∞ −24.36297943(70) −24.36844211(70) −24.352266(23) −24.357849(23)

11B 16000 −24.36309947 −24.36856212 −24.352327 −24.357911
∞ −24.36310196(70) −24.36856464(70) −24.352390(23) −24.357973(23)

∞B 16000 −24.36433059 −24.36979319 −24.353571 −24.359154
∞ −24.36433309(70) −24.36979580(70) −24.353633(23) −24.359216(23)

instance, 10% and 20% errors were estimated in the calcu-
lated values for the Li [47] and Be [48] atoms, respectively.
Unfortunately, there is no reliable way to estimate the error of
the computed HQED corrections for such multielectron atoms
as beryllium and boron. However, a prudent analysis allows to
determine that the overall error is likely be less than 50%.

The formalism for calculating the expectation values of
the HQED and HHQED Hamiltonians was developed under the
assumption of a clamped nucleus [45,46]. Thus, in the present
work, the infinite-nuclear-mass wave functions are used to
calculate these terms. It means that the relativistic corrections
calculated in this work include the recoil effects; these effects
are absent in the QED corrections.

Some of the relativistic and QED operators include
singular terms. ∇4

ri
, δ(ri ), and δ(ri j ) [note that δ(ri ) ≡

δ(xi )δ(yi )δ(zi )] are such terms. The expectation values of
singular operators usually converge much slower with the
number of the basis functions used to expand the wave func-
tion than the expectation values of nonsingular operators. The
slow convergence is mainly due to the local character of the
singular operators, i.e., their expectation values depend on the
accuracy of small fragments of the wave function rather than
on the overall accuracy of the wave function. For approxi-
mate wave functions, local errors may be considerably more

significant than the global error. Thus, in the calculations of
the expectation values of local and singular operators with
such wave functions, the error can be larger than the error
of the expectation values calculated for such global operators
as, for example, the Hamiltonian. This behavior, in general,
may occur regardless of the basis set employed in the cal-
culation. To reduce the accuracy loss in the calculations of
the expectation values of local and singular operators, it was
proposed to replace these operators by equivalent operators
but less singular and less local [49–54]. Drachman proposed
the so-called regularization approach, to construct such re-
placement operators [54] based on the work of Trivedi [53]
that made use of an expectation value identity. In the limit
of the exact wave function, the original operators and the
replacement operators give the same expectation values, while
for approximate wave functions the expectation values of the
replacement operators are usually much closer to the exact
values than expectation values of the original operators. The
regularization approach of Drachman is particularly useful
and effective in calculating expectation values of the operators
representing the leading relativistic and QED corrections with
wave functions expanded in terms of ECGs [21,38], as well
as other types of explicitly correlated basis functions [55,56].
For ECGs, the application of the regularization method is
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TABLE III. Some key expectation values (all in atomic units) for the ten lowest 2S states of 10B, 11B, and ∞B isotopes computed with the
largest basis sets of 16 000 ECG functions used in this work. The tilde sign indicates that the regularization technique was used to compute the
expectation value. The numbers in parentheses are estimated uncertainties due to the basis truncation.

State Isotope 〈H̃MV〉 〈δ̃(ri)〉 〈δ̃(rij)〉 〈HOO〉
〈

P
(

1/r3
ij

)〉

2s23s 10B −700.20717(1) 14.50655656(4) 0.358158660(6) −1.5600823(2)
11B −700.22129(1) 14.50677540(4) 0.358163425(6) −1.5544572(2)
∞B −700.36320(1) 14.50897429(4) 0.358211305(6) −1.4979332(2) −2.94366(3)

2s24s 10B −699.5466(1) 14.4955059(3) 0.357662320(14) −1.5575239(16)
11B −699.5607(1) 14.4957250(3) 0.357667096(14) −1.5519057(16)
∞B −699.7028(1) 14.4979274(3) 0.357715092(14) −1.4954514(16) −2.9498(3)

2s25s 10B −699.0559(5) 14.4865338(27) 0.357319393(63) −1.5427622(90)
11B −699.0702(5) 14.4867559(27) 0.357324270(63) −1.5371553(90)
∞B −699.2137(5) 14.4889867(27) 0.357373266(63) −1.4808133(90) −2.9565(16)

2s26s 10B −697.3229(24) 14.45369(2) 0.3561490(6) −1.47043(7)
11B −697.3384(24) 14.45393(2) 0.3561548(6) −1.46489(7)
∞B −697.4946(24) 14.45641(2) 0.3562123(6) −1.40928(7) −2.9313(33)

2s2p2 10B −690.658(9) 14.32680(17) 0.3516566(61) −1.18373(36)
11B −690.673(9) 14.32703(17) 0.3516617(61) −1.17823(36)
∞B −690.819(9) 14.32932(17) 0.3517127(61) −1.12291(36) −2.8384(14)

2s27s 10B −695.398(8) 14.41711(17) 0.3548454(64) −1.38832(28)
11B −695.407(8) 14.41722(17) 0.3548463(64) −1.38249(28)
∞B −695.491(8) 14.41832(17) 0.3548554(64) −1.32397(28) −2.9145(44)

2s28s 10B −698.831(7) 14.48252(13) 0.3571581(81) −1.53700(9)
11B −698.844(7) 14.48272(13) 0.3571621(81) −1.53133(9)
∞B −698.975(7) 14.48471(13) 0.3572027(81) −1.47445(9) −2.9698(82)

2s29s 10B −699.389(15) 14.49308(38) 0.3575290(174) −1.56135(6)
11B −699.403(15) 14.49329(38) 0.3575335(174) −1.55571(6)
∞B −699.541(15) 14.49543(38) 0.3575790(174) −1.49906(6) −3.0022(172)

2s210s 10B −699.538(38) 14.49581(76) 0.3576238(319) −1.56808(10)
11B −699.552(38) 14.49602(76) 0.3576284(319) −1.56244(10)
∞B −699.692(38) 14.49819(76) 0.3576749(319) −1.50582(10) −3.0416(204)

2s211s 10B −699.590(68) 14.49684(98) 0.3576609(269) −1.57089(53)
11B −699.604(68) 14.49706(98) 0.3576655(269) −1.56526(53)
∞B −699.745(68) 14.49923(98) 0.3577126(269) −1.50865(53) −3.0524(82)

particularly important, as these functions to not satisfy the
Kato’s cusp conditions. The regularization method is used in
the present calculations.

III. RESULTS

The present calculations have been performed on several
multiprocessor computers and have lasted multiple months.
Most of the computer time is used to grow the basis set and to
optimize the nonlinear parameters of the basis functions. The
basis set is independently and separately grown and optimized
for each of the ten considered 2S states of boron to the size of
16 000 functions. The approach used in the optimization was
described in our previous works (see, for example, Ref. [44]).
The calculations are done using the extended computer pre-
cision of 10 bytes per real number (an extension from the
double precision of 8 bytes per number). The increase of
the precision accelerates the convergence of the calculation.
This is likely due to more precise evaluation of the energy
gradient. The optimization of the basis sets is carried out
for the 11B isotope of boron. This basis set is then used to

perform calculations for the 10B isotope and for ∞B, i.e., for
the boron atom with an infinite nuclear mass. In our previous
paper [44] we presented calculations for the lowest four 2S

states of boron. The largest basis-set size used there was
15 000. Increasing the basis-set size to 16 000, employing the
extended precision in the calculations, and performing several
additional optimization cycles for the 16 000-ECG basis set
for each state resulted in a noticeable decrease of the varia-
tional nonrelativistic energies of the four states (see the results
presented in Table II). For the lowest 2s23s state, the 11B en-
ergy decreased from −24.470143729 to −24.470143748 a.u.,
for the 2s24s state the energy decreased from −24.401943437
to −24.401943485 a.u., for the 2s25s state the energy de-
creased from −24.378547683 to −24.37854784 a.u., and for
the 2s26s state the energy decreased from −24.367925311 to
−24.36792589 a.u. Also, in the present calculations, the range
of the calculated 2S states is extended to include the next six
higher states, i.e., the 2s2p2 states and the 2s2ns states with
n = 7, . . . , 11.

The nonrelativistic energies, Enr , for all ten states of 10B,
11B, and ∞B are shown in Table II. As one can see, the
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TABLE IV. Transition energies, �E (in cm−1), for adjacent 2S states of the 10B and 11B isotopes of boron computed using infinite-nuclear-
mass (i) nonrelativistic energies (nr) and then gradually increasing the accuracy of the calculations by including the finite-nuclear-mass (f),
relativistic (rel), and QED effects. As the QED and HQED operators used in the present work are only valid for the infinite-nuclear-mass
(INM) model, the corresponding energy corrections are computed using the wave functions obtained in the INM calculations. The estimated
uncertainties shown for the extrapolated transition energies are due to the basis truncation.

Isotope Contributions included in �E Basis size 2s23s←2s24s 2s24s←2s25s 2s25s←2s26s 2s26s←2s2p2 2s2p2 ←2s27s

10B nr(i) 16000 14969.116 5135.143 2331.883 1061.481 607.528
nr(f) 16000 14968.139 5134.711 2331.185 1059.058 609.005
nr(f) + rel(f) 16000 14970.635 5136.375 2336.779 1080.418 593.830
nr(f) + rel(f) + QED(i) 16000 14970.508 5136.272 2336.387 1078.889 594.904
nr(f) + rel(f) + QED(i) + HQED(i) 16000 14970.500 5136.265 2336.362 1078.794 594.971
nr(f) + rel(f) + QED(i) + HQED(i) ∞ 14970.454(10) 5136.163(42) 2336.19(11) 1078.57(23) 594.8(4)
Experiment [57] 14970.47(9) 5136.16(10) 2335.74(15) 1078.47(21) 595.38(21)

2s27s←2s28s 2s28s←2s29s 2s29s←2s210s 2s210s←2s211s

nr(i) 16000 647.902 485.772 354.599 265.753
nr(f) 16000 649.108 485.961 354.645 265.766
nr(f) + rel(f) 16000 638.122 484.141 354.107 265.613
nr(f) + rel(f) + QED(i) 16000 638.923 484.278 354.152 265.628
nr(f) + rel(f) + QED(i) + HQED(i) 16000 638.973 484.286 354.154 265.629
nr(f) + rel(f) + QED(i) + HQED(i) ∞ 637.3(7) 479.2(16) 345(4) 268(8)

Isotope Contributions included in �E Basis size 2s23s←2s24s 2s24s←2s25s 2s25s←2s26s 2s26s←2s2p2 2s2p2 ←2s27s

11B nr(i) 16000 14969.116 5135.143 2331.883 1061.481 607.528
nr(f) 16000 14968.228 5134.750 2331.248 1059.277 608.871
nr(f) + rel(f) 16000 14970.724 5136.413 2336.838 1080.640 593.715
nr(f) + rel(f) + QED(i) 16000 14970.596 5136.310 2336.446 1079.111 594.789
nr(f) + rel(f) + QED(i) + HQED(i) 16000 14970.588 5136.303 2336.422 1079.016 594.856
nr(f) + rel(f) + QED(i) + HQED(i) ∞ 14970.543(10) 5136.202(42) 2336.25(11) 1078.78(23) 594.7(4)
Experiment [57] 14970.561(24) 5136.186(29) 2335.76(14) 1078.47(20) 595.38(21)

2s27s←2s28s 2s28s←2s29s 2s29s←2s210s 2s210s←2s211s

nr(i) 16000 647.902 485.772 354.599 265.753
nr(f) 16000 648.999 485.944 354.640 265.765
nr(f) + rel(f) 16000 637.999 484.121 354.102 265.611
nr(f) + rel(f) + QED(i) 16000 638.800 484.258 354.147 265.627
nr(f) + rel(f) + QED(i) + HQED(i) 16000 638.849 484.266 354.149 265.628
nr(f) + rel(f) + QED(i) + HQED(i) ∞ 637.2(7) 479.1(16) 345(4) 268(8)

Isotope Contributions included in �E Basis size 2s23s←2s24s 2s24s←2s25s 2s25s←2s26s 2s26s←2s2p2 2s2p2 ←2s27s

Natural nr(f) + rel(f) + QED(i) + HQED(i) ∞ 14970.525(15) 5136.194(59) 2336.24(61) 1078.74(33) 594.69(58)
mixture Experiment [57] 14970.5431(33) 5136.180(10) 2335.75(14) 1078.47(20) 595.38(21)

2s27s←2s28s 2s28s←2s29s 2s29s←2s210s 2s210s←2s211s

nr(f) + rel(f) + QED(i) + HQED(i) ∞ 637.19(98) 479.1(23) 345(5) 268(10)
Experiment [57] 636.07(21) 478.10(21) 339.19(21)

number of the significant figures shown in the energy values
for each state decreases with the level of excitation. This
reflects the slowing of the energy convergence rate with the
number of basis functions as more radial nodes appear in the
wave function. For each state of each isotope, the energy value
extrapolated to an infinite number of the basis functions is also
shown in the table along with the corresponding estimated
uncertainty. In the table, we also show the total energies of
the states calculated as the sum of the nonrelativistic energy
and the relativistic and QED corrections. The values of the
quantities that are used to calculate these corrections are
shown in Table III. These quantities, which are calculated with
the largest basis set of 16 000 ECG, include the expectation
value of the mass-velocity operator, the expectation values

of the one- and two-electron Dirac delta functions, 〈δ̃(ri)〉
and 〈δ̃(rij)〉, the expectation value of the orbit-orbit magnetic
interaction operator, 〈HOO〉, and the expectation value of the
distribution used to calculate the first term of the leading
QED correction, 〈P (1/r3

ij )〉. In the table, the expectation val-
ues are shown for all ten 2S states considered for 10B, 11B,
and ∞B. For each expectation value, an estimated uncertainty
is given in parentheses. Here again, due to the decreasing
accuracy with increasing level of electronic excitation, the
number of the significant figures in the expectation value
decreases from eight for the 2s23s state to six for the 2s211s

state.
The next set of results concerns transition energies corre-

sponding to all pairs of the adjacent states. The energies are
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TABLE V. Transition energies, �E (in cm−1), for the 2s23s and higher 2S states of the 10B and 11B isotopes of boron computed using
infinite-nuclear-mass (i) nonrelativistic energies (nr), and then gradually increasing the accuracy of the calculations by including the finite
nuclear mass (f), relativistic (rel), and QED effects. As the QED and HQED operators used in the present work are only valid for the infinite-
nuclear-mass (INM) model, the corresponding energy corrections are computed using the wave functions obtained in the INM calculations.
The estimated uncertainties shown for the extrapolated transition energies are due to the basis truncation.

Isotope Contributions included in �E Basis size 2s23s←2s24s 2s23s←2s25s 2s23s←2s26s 2s23s←2s2p2 2s23s←2s27s

10B nr(i) 16000 14969.116 20104.259 22436.142 23497.624 24105.151

nr(f) 16000 14968.139 20102.850 22434.035 23493.093 24102.098

nr(f) + rel(f) 16000 14970.635 20107.010 22443.789 23524.207 24118.037
nr(f) + rel(f) + QED(i) 16000 14970.508 20106.779 22443.166 23522.055 24116.959
nr(f) + rel(f) + QED(i) + HQED(i) 16000 14970.500 20106.764 22443.127 23521.921 24116.891
nr(f) + rel(f) + QED(i) + HQED(i) ∞ 14970.454(10) 20106.618(36) 22442.807(80) 23521.37(15) 24116.15(26)
Experiment, [57] 14970.47(9) 20106.63(5) 22442.37(14) 23520.84(15) 24116.22(15)

2s23s←2s28s 2s23s←2s29s 2s23s←2s210s 2s23s←2s211s

nr(i) 16000 24753.053 25238.825 25593.425 25859.177
nr(f) 16000 24751.206 25237.168 25591.812 25857.579
nr(f) + rel(f) 16000 24756.159 25240.299 25594.406 25860.019
nr(f) + rel(f) + QED(i) 16000 24755.882 25240.160 25594.311 25859.940
nr(f) + rel(f) + QED(i) + HQED(i) 16000 24755.864 25240.150 25594.303 25859.933
nr(f) + rel(f) + QED(i) + HQED(i) ∞ 24753.44(44) 25232.6(12) 25577.8(25) 25846.2(50)

Isotope Contributions included in �E Basis size 2s23s←2s24s 2s23s←2s25s 2s23s←2s26s 2s23s←2s2p2 2s23s←2s27s

11B nr(i) 16000 14969.116 20104.259 22436.142 23497.624 24105.151
nr(f) 16000 14968.228 20102.977 22434.226 23493.503 24102.374
nr(f) + rel(f) 16000 14970.724 20107.137 22443.975 23524.615 24118.330
nr(f) + rel(f) + QED(i) 16000 14970.596 20106.906 22443.353 23522.463 24117.253
nr(f) + rel(f) + QED(i) + HQED(i) 16000 14970.588 20106.891 22443.313 23522.329 24117.185
nr(f) + rel(f) + QED(i) + HQED(i) ∞ 14970.543(10) 20106.745(36) 22442.993(80) 23521.78(16) 24116.45(26)
Experiment, [57] 14970.561(24) 20106.747(17) 22442.50(14) 23520.97(14) 24116.35(15)

2s23s←2s28s 2s23s←2s29s 2s23s←2s210s 2s23s←2s211s

nr(i) 16000 24753.053 25238.825 25593.425 25859.177
nr(f) 16000 24751.373 25237.318 25591.958 25857.723
nr(f) + rel(f) 16000 24756.329 25240.450 25594.553 25860.164
nr(f) + rel(f) + QED(i) 16000 24756.053 25240.311 25594.458 25860.085
nr(f) + rel(f) + QED(i) + HQED(i) 16000 24756.034 25240.301 25594.450 25860.078
nr(f) + rel(f) + QED(i) + HQED(i) ∞ 24753.61(44) 25232.8(12) 25578.0(25) 25846.4(50)

Isotope Contributions included in �E Basis size 2s23s←2s24s 2s24s←2s25s 2s25s←2s26s 2s26s←2s2p2 2s2p2 ←2s27s

Natural nr(f) + rel(f) + QED(i) + HQED(i) ∞ 14970.525(15) 20106.72(52) 22442.96(11) 23521.70(22) 24116.39(36)
mixture Experiment [57] 14970.5431(33) 20106.723(10) 22442.48(14) 23520.95(14) 24116.33(15)

2s23s←2s28s 2s23s←2s29s 2s23s←2s210s 2s23s←2s211s

nr(f) + rel(f) + QED(i) + HQED(i) ∞ 24753.58(62) 25232.7(16) 25577.9(35) 25846.3(71)
Experiment [57] 24752.40(15) 25230.50(15) 25569.69(15)

shown in Table IV. Each transition energy is calculated at an
increasingly more accurate level of theory as the difference
between the total energies of the two states involved in the
excitation. At the lowest level, the energies are the nonrel-
ativistic variational energies obtained assuming an infinite
nuclear mass [nr(i)]. At the next level, the finite-nuclear-mass
nonrelativistic energies are used [nr(f)]. At the following level,
the energies that are sums of the FNM nonrelativistic energies
and the leading relativistic corrections [nr(f) + rel(f)] are
used. At the last two levels, we use the energies from the
previous step first augmented with the leading QED correc-
tions [nr(f) + rel(f) + QED(f)] and then with the higher-order
QED corrections [nr(f) + rel(f) + QED(f) + HQED(i)].
Finally each transition-energy value is extrapolated to an
infinite number of the basis functions. The transition ener-

gies obtained at all above-mentioned levels of theory for all
pairs of the adjacent states within the set of the ten lowest
2S states considered in the present calculations are shown
in Table IV along with the experimental values taken from
Ref. [57].

Let us first examine the results for the lowest 2s23s ←

2s24s transition for 11B. As one can see, including the
finite-nuclear-mass effects lowers the transition energy by
about a wave number, but the addition of the relativistic
corrections raises the result by about 2.5 cm−1. The ad-
dition of the QED corrections lowers the result by about
0.13 cm−1. The final results for the 2s23s ← 2s24s transi-
tion energy of 14970.588 cm−1 (before extrapolation) and
of 14970.543(10) cm−1 (after extrapolation) agree with the
experimental value of 14970.561(24) cm−1 well within the
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TABLE VI. Expectation values of powers of the interparticle distances, 〈r
p

i 〉 and 〈r
p

i j〉 (p = −2, −1, 1, 2), computed with the largest basis
sets of 16 000 ECG functions used in this work. All values are in atomic units.

State Isotope
〈

r−2
i

〉 〈

r−2
i j

〉 〈

r−1
i

〉 〈

r−1
i j

〉

〈ri〉 〈ri j〉

〈

r2
i

〉 〈

r2
i j

〉

2s23s 10B 18.8049330(1) 1.67158086(3) 2.22598196(2) 0.67095104(2) 2.1038338(4) 3.6606569(8) 10.673722(8) 21.77194(2)
11B 18.8051227(1) 1.67159538(3) 2.22599313(2) 0.67095408(2) 2.1038230(4) 3.6606384(8) 10.673610(8) 21.77172(2)
∞B 18.8070285(1) 1.67174126(3) 2.22610533(2) 0.67098461(2) 2.1037148(4) 3.6604532(8) 10.672478(8) 21.76948(2)

2s24s 10B 18.7854587(3) 1.65806550(7) 2.20623543(9) 0.6352247(2) 3.598584(7) 6.611332(14) 44.8388(2) 89.9932(4)
11B 18.7856486(3) 1.65807979(7) 2.20624642(9) 0.6352274(2) 3.598570(7) 6.611306(14) 44.8384(2) 89.9925(4)
∞B 18.7875571(3) 1.65822345(7) 2.20635682(9) 0.6352542(2) 3.598424(7) 6.611045(14) 44.8345(2) 89.9848(4)

2s25s 10B 18.7748907(22) 1.65553014(11) 2.19953835(53) 0.6231611(12) 5.58004(9) 10.56238(19) 130.655(5) 261.575(9)
11B 18.7750832(22) 1.65554396(11) 2.19954888(53) 0.6231627(12) 5.58006(9) 10.56242(19) 130.656(5) 261.576(9)
∞B 18.7770176(22) 1.65568283(11) 2.19965475(53) 0.6231786(12) 5.58027(9) 10.56287(19) 130.660(5) 261.585(9)

2s26s 10B 18.74406(2) 1.658983(2) 2.200445(4) 0.627553(10) 7.465(1) 14.336(2) 273.34(6) 546.93(11)
11B 18.74427(2) 1.658994(2) 2.200452(4) 0.627546(10) 7.466(1) 14.337(2) 273.37(6) 546.98(11)
∞B 18.74643(2) 1.659096(2) 2.200523(4) 0.627475(10) 7.471(1) 14.347(2) 273.62(6) 547.49(11)

2s2p2 10B 18.62762(16) 1.677503(28) 2.217449(24) 0.671027(61) 6.318(4) 12.077(8) 283.17(20) 566.65(40)
11B 18.62781(16) 1.677515(28) 2.217458(24) 0.671026(61) 6.319(4) 12.078(8) 283.19(20) 566.69(40)
∞B 18.62981(16) 1.677640(28) 2.217553(24) 0.671012(61) 6.321(4) 12.083(8) 283.38(20) 567.09(40)

2s27s 10B 18.70974(7) 1.664058(16) 2.203869(8) 0.637631(21) 10.066(4) 19.548(7) 601.27(58) 1203(1)
11B 18.70983(7) 1.664089(16) 2.203896(8) 0.637675(21) 10.063(4) 19.541(7) 601.02(58) 1202(1)
∞B 18.71073(7) 1.664396(16) 2.204171(8) 0.638111(21) 10.027(4) 19.469(7) 598.52(58) 1197(1)

2s28s 10B 18.76946(6) 1.653958(21) 2.193048(2) 0.611170(3) 15.538(21) 30.471(42) 1264(4) 2529(8)
11B 18.76963(6) 1.653976(21) 2.193062(2) 0.611180(3) 15.537(21) 30.469(42) 1264(4) 2529(8)
∞B 18.77135(6) 1.654151(21) 2.193204(2) 0.611287(3) 15.527(21) 30.449(42) 1263(4) 2527(8)

2s29s 10B 18.77903(18) 1.652200(40) 2.190590(5) 0.605465(6) 20.5(1) 40.4(2) 2196(30) 4392(60)
11B 18.77922(18) 1.652215(40) 2.190602(5) 0.605471(6) 20.5(1) 40.4(2) 2196(30) 4392(60)
∞B 18.78106(18) 1.652369(40) 2.190722(5) 0.605522(6) 20.5(1) 40.4(2) 2195(30) 4391(60)

2s210s 10B 18.78144(36) 1.651736(87) 2.189553(10) 0.603186(6) 26.2(5) 52(1) 3649(154) 7298(307)
11B 18.78163(36) 1.651751(87) 2.189565(10) 0.603190(6) 26.2(5) 52(1) 3649(154) 7298(307)
∞B 18.78350(36) 1.651900(87) 2.189680(10) 0.603229(6) 26.2(5) 52(1) 3648(154) 7297(307)

2s211s 10B 18.78231(50) 1.651529(80) 2.188913(74) 0.6018(1) 33.4(17) 66(3) 5996(663) 11993(1325)
11B 18.78250(50) 1.651543(80) 2.188924(74) 0.6018(1) 33.4(17) 66(3) 5996(663) 11993(1325)
∞B 18.78439(50) 1.651690(80) 2.189037(74) 0.6019(1) 33.4(17) 66(3) 5996(663) 11993(1325)

experimental uncertainty. The corresponding 2s24s ← 2s25s

transition energies also agree very well with the experimen-
tal value. The agreement is also very good for the first two
transitions of 10B. The agreement for the 2s25s ← 2s26s,
2s26s ← 2s2p2, and 2s2p2 ← 2s27s transitions is somewhat
worse, but still the calculated values are within 0.5 cm−1 from
the experimental results. Note that the experimental uncer-
tainty progressively increases with the level of the electronic
excitation, as does the uncertainty of the calculated values.
There are no experimental values to make a comparison for
the next four transitions.

The total state energies obtained at the various levels of
the theory are also used to calculate the transition energies
for the second (2s24s) and higher states with respect to the
lowest 2s23s state. The results are shown in Table V. Unlike
for the transitions between the adjacent states, the values of
the transition energies are now increasing with the level of
the excitation. However, as one can see, the agreement with
experiment is still very good and the discrepancies do not
exceed 0.5 cm−1 for either 10B or 11B.

Most of the experimental transition energies of the boron
atom have been reported for the natural mixture [10B (20%)
and 11B (80%)]. Thus, in the present work, we calculate the

weighted averages of the transition energies for the naturally
occurring mixture of the isotopes. The averages are shown
in the bottom parts of Tables IV and V. The experimental
and calculated values are compared in the tables. Except for
the last transition, all of the calculated values are in a good
agreement with the experimental ones and the differences are
less than a wave number.

The nonrelativistic wave functions for the ten considered
2S states of 10B, 11B, and ∞B are used to calculate some
expectation values of positive and negative powers (ranging
from −2 to +2) of the nucleus-electron and electron-electron
distances. The results are shown in Table VI. Let us focus
on the 〈ri〉 and 〈ri j〉 expectation values, i.e., the average
nucleus-electron and electron-electron distance, respectively.
As expected, both distances increase with the increasing ex-
citation level and the increase accelerates as one moves to
higher states. An interesting effect is revealed by comparing
the results obtained for the 〈ri〉 and 〈ri j〉 expectation values
of the two boron isotopes. It appears that both 〈ri〉 and 〈ri j〉

slightly shrink when the nuclear mass increases (i.e., in going
from 10B to 11B). This effect results from the fact that internal
motion of the atom is the coupled motion of the electrons and
the nucleus around the center of mass of the atom. As the
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FIG. 1. The density of the electrons (top row) and nucleus (bottom row) in the center-of-mass coordinate frame for the 2s23s, 2s2p2, and
2s211s states of the boron atom.

nuclear mass increases, the radius of the motion of the nucleus
about the center of mass decreases. When this happens, the av-
erage radius of the motion of the electrons about the center of
mass also decreases. This results in the atom slightly shrinking
and, thus, the nucleus-electron and the electron-electron radii
slightly decrease.

An interesting illustration of the coupled nucleus-electron
motion in the boron atom is provided by plots of the electronic
and nuclear densities. The density of a particle i in the center-
of-mass (c.m.) coordinate frame is defined as ρi(r) = 〈δ(Ri −

Rc.m. − r)〉, where i = 1, . . . , N and Rc.m. is the position vec-
tor of the center of mass in the laboratory coordinate frame.
In this work, the c.m.-frame density plots are generated for
both the nucleus and the electrons. When the atom is excited
to increasingly higher Rydberg state, the average radius of the
electronic density increases, as manifested by the increasing
value of the nucleus-electron average distance and by increas-
ing diffuseness of the c.m.-frame electron density. Also, at
the same time, the electronic density becomes more oscilla-
tory. The oscillations of the electronic density are mirrored
by the oscillations of the c.m.-frame density of the nucleus.
The matching number of the maxima in the electronic and
nuclear densities for a given state occurs, because only then
the center of mass of the atom can remain immobile during
the coupled motion of the nucleus and the electrons around
the center of mass of the atom. However, due to much larger
mass of the nucleus in comparison with the electron mass,
the average radius of the nuclear motion around the center of

mass is orders of magnitude smaller than the average radius of
the motion of the electrons. A pictorial comparison of the two
motions using the electronic and nuclear c.m.-frame densities
is presented in Fig. 1. The density values are shown for a
cross-section plane that includes the center of mass located
in the center of the coordinate system used in the plotting.
The features to notice in the plots are a visual similarity of the
nuclear and electronic densities for each of the three plotted
states and the difference in the scales of the two cross-section
Cartesian coordinates (X and Z) used in plotting the electronic
and nuclear densities.

IV. SUMMARY

Very accurate calculations of the lowest ten 2S states of
two boron stable isotopes, 10B and 11B, are carried out and
the interstate transition energies are determined. The results
agree well with the high-precision-spectroscopy experimental
values. Several months of continuous multiprocessor calcu-
lations have been involved in the project. With confidence
we can say that the results represent the state of the art of
atomic quantum mechanics. The results are the most accu-
rate ever obtained for a spectrum of a five-electron atomic
system. The high accuracy of the calculated results is ac-
complished due to the use of large well-optimized basis sets
of all-electron explicitly correlated Gaussian functions. The
key feature of the optimization of the Gaussians is the use of
the analytical gradient of the energy determined with respect
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to the Gaussian nonlinear parameters in the variational en-
ergy minimization for the considered state. Augmentation of
the nonrelativistic state energies with the leading relativistic
and QED corrections calculated using the perturbation-
theory approach and not assuming the Born-Oppenheimer
approximation in the calculations (i.e., explicitly includ-
ing the finite-nuclear-mass effects in the nonrelativistic

Hamiltonian) are key in achieving the high accuracy of the
results.
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