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Abstract—We present a new probabilistic decoding al-
gorithm that can be used to perform fractional decoding
of codes from the Hermitian curve. Fractional decoding
means that the original codeword may be obtained from
a received word using only an a-proportion of symbols
of the received word, provided not too many errors have
occurred. The procedure presented makes use of fractional
decoding of Reed-Solomon codes while allowing for the use
of codes of similar lengths over smaller fields.

I. INTRODUCTION

Tamo, Ye, and Barg [1] considered the error correction
of maximum distance separable (MDS) codes in the
setting in which only part of the received codeword
may be downloaded. They also defined the a-decoding
radius of an (n,k,l) array code over a finite field F,,.
The fractional decoding problem is motivated by the
fact that in distributed systems [2] usually there is a
limitation on the disk operation as well as on the amount
of information transmitted for the purpose of decoding.

In [3], Santos presented a connection between frac-
tional decoding of Reed-Solomon codes and collab-
orative decoding of interleaved Reed Solomon codes
establishing a new fractional decoding procedure. They
establish framework and requirements which allow for
error correction of a received word using a fraction
a < 1 of the symbols typically required for decoding
of such a code.

In this contribution, we employ the approach in [3]
to study the problem of fractional decoding of a family
of algebraic geometry codes beyond the Reed-Solomon
codes. We study codes from the Hermitian curve and
provide a new fractional decoding method for them.
While this work focuses on error correction, it is worth
noting that some tools are similar to those used in
repairing codes, such as those introduced in [4]. In
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general, Hermitian codes are constructed using smaller
alphabets than Reed-Solomon codes of the same lengths;
for instance, a Reed-Solomon code of length q3, where
q is a power of a prime, utilizes an alphabet of size ¢°
whereas a Hermitian code of the same length is defined
using an alphabet of size ¢2. Hence, there is an advantage
to considering algebraic geometry codes from curves of
higher genus.

This work is structured as follows. We close this
section with notation. In Section II, the necessary back-
ground is provided and preliminary notions are con-
sidered. In Section III, we abstract the key ideas from
fractional decoding [1] and the fractional decoding prob-
lem for Reed Solomon codes [3] which are relevant to
our study. Section IV contains our primary contribution
where we present a fractional decoding algorithm for
Hermitian codes. Section V provides a brief summary
and open problems.

Notation: Given n € Z7, let [n] := {1,2,...,n}
and [n] := {0,1,...,n — 1}. The set of polynomials
in indeterminate = with coefficients from a field IF and
degree at most k—1 is denoted by F[x] <. The set of mx
n matrices with entries from F are denoted F™*". Given
A € F™ " Row;(A) denotes the i*" row of A; in this
paper, rows are typically indexed by [m] and columns
by [n].

II. PRELIMINARIES
Let I, denote the finite field with ¢ elements, and

consider its degree | extension F:

Fg

|

F,.
For each a € Iqu, the trace of a with respect to the
extension F: /Iy is

-1

tr(a):a+aq+aq2+---+aq elF,.



Fix a basis B := {{o,..., (-1} of F,/F,. Then each
a € Fu can be expressed as a linear combination of the
[ elements of B using coefficients from [F; that is, each
element of IF; can be expressed using | elements of IF,.
As noted in [5, Definition 2.30] for each a € Fy,

-1
a = Z tr (Cza) v;
=0

where {vp,...,1_1} is the dual basis of B.
Given h(z) = agp+a1x+---+ap_12571 € Foi[z] <k
and ¢ € [I], let

k—1

hi(x) =Y tr (Giaw) 2" € Fyla] <. (1)

u=0

It is immediate that h(x) can be recovered from
{hi(z) : i € [l]} since

Sithwii(e) = Sihw (bt (Ga) o)
- Yo (X

i=0 tT (Ciaw) Vi) T
= Y laua = h(z).

In this paper, we will employ Reed-Solomon codes
in our approach to decoding codes from the Hermitian
curve. Given I' := {y1,...,7%} C Fy and k € Z* so
that k < n, RS(¢',n, k) =

{(f<’71)7f(72)’ .- 7f(7n)) : f € IFql [$]<k} - ]FZL

is a Reed-Solomon code. The code RS(¢!,n, k) is the
image of the evaluation map ev : Py [z] <), — Fy: given
by ev(f) == (F(11), F(32);-- - f(3n)). To emphasize
the evaluation set, codewords are sometimes expressed
as f(T) := ev(f).

The focus of this work is decoding certain Hermitian
codes, which we define presently; see [6] for additional
details. Consider the Hermitian curve #, given by y9 +
y = a9 over F . The field of rational functions on
Hq over Fz is denoted F 2 (H,). At times, we may
wish to consider the field of rational functions of H,
over a subfield K of [, denoted K (H,). We will
consider the base field for H, to be F 2 as the curve is
maximal over this field. Hence, we will make use of the
extension

]FqQI
[

Fe

when considering Hermitian codes. Given a € F 2, let

Toi={beFpe:b!+b=a'"}.

It is well known that for all a € Fe, | 'y |= g, and the
affine points of H, over 2 are of the form Py, := (a,b)
with a € Fy2 and b € T'; that is, the set of [F,2-rational
points of H, is He(Fy2) := {Pa:a €Fp2,b €T } U
{P} where P., denotes the unique point at infinity. It
is useful to partition H,(Fg2) \ {Px} as

Hy(F2)\ (P} = Uyer, Pa

where P, := {P,, : be T}
In this paper, we consider Hermitian codes

C(BPx) ={(f(P1), ... f(Pn)): [ € L(BPx)}
where {P1,..., P} = Hq(Fgp2) \ {Px} and
L(BPx) = < > - (@

0<:3,0<j<qg-1,

ig+jlg+1)<p
It is immediate that C'(8P) is the image of the evalu-
ation map ev : L(BPs) — Fz defined by ev(f) =
(f(P1),...,f(P,)). The points Pi,..., P, are called
evaluation points of the code. If q(¢ — 1) < B < ¢°,
then C(D, BPx) is a [¢3 8 + 1 — 4N > ¢ — 4]
code; the exact minimum distance may be found in [7].

Some notions introduced below apply to more general

families of algebraic geometry codes. We note that in
all that follows, it is important that codewords arise
via evaluation of rational functions which are in fact
polynomials in F 2 [z, y].

'yl .

III. FRACTIONAL DECODING OF REED-SOLOMON
CODES

In this section, we consider the a-decoding problem in
which a decoder downloads an « proportion of each of
the codeword’s coordinates. Given an (n, k)-linear code,
notice that we must have o > % Because the codeword
encodes k data symbols, as many symbols are needed
to recover the data even without errors. Setting o = 1
yields the standard decoding problem. Hence, the goal
of fractional decoding is study error correction for « in
the range % <a<l.

It was shown in [1] that the maximum errors that an
(n, k)-linear code C' can correct by downloading a «-
proportion of each of its codeword’s coordinates is upper
bounded by the a-decoding radius of C'

T = {” sl O‘J : 3

moreover, an RS(q', n, k, £) code with £ C F,, achieves
the optimal a-decoding radius (3).

Our procedure for fractional decoding of codes from
Hermitian curves makes use of that for Reed-Solomon



codes, as introduced in [3]. Below, we abstract and
further develop the necessary ideas for this application.

Suppose I' := {71,...,7} € Fq, @ = 7 where
m € Z7 such that m < [ and m | k,

{’yla-~~a’)’k}:AOQ"'0Am_1qu
with | A; |:% for all j € [m]. For j € [m], set
Hm—aGIF (4)
acA;

Then p;(a) = 0 for all a« € A; and degp x) = |4;].
For h(z) = ag + ayx + - + ap_ 1251 € F,i[r]<) and
for j € M, set

L)@ =[S ha(@) (s ()"

(@) (3 ()Y € Byla) <y,

where k; :=| A; | (I — m)(j + 1) + k. Hence,
ev (Tj(h)(z)) € RS(q,n,k;) Consequently, for each
J € [m],

h(T') € RS(¢',n, k) C FY,

— T;(h)(T) € RS(q, Ig)g "

q

Recalling that | A; [= £ for all j € [m], we see that

ko <k < <kpm_q.

In this setting, one may consider the virtual projection
of C = RS(¢',n,k) is the interleaved Reed-Solomon
code

men

CP% = cheFy [] <k

Ty ()(T)

as defined in [3]. With this in mind, we make the
following definition.

Definition 1. The virtual projection of y € IFZ; is

R O
a d ... d y
)= . : Fgr
ap=t dyt !

where for each i € [n] and j € [m],

tr (Crema i) (pj () 7™
+ X0 () (0 () Y € By

& =

Notice that the virtual projection of a codeword ¢ :=
ev(h) € RS(¢!,n, k) is

To(h)(T')
Ty (h)(T)

m(c) = Frxn

which may be viewed as a codeword of an interleaved
Reed-Solomon code.

We now review the fractional decoding procedure
for Reed-Solomon codes introduced in [3] employing
collaborative decoding as in [8].

Suppose y € IF;", is received and y = ¢ + e where
c € RS(¢',n, k), and wt(e) < t,

m—1
-m
t < — A 1)
ST m |4 1 (G+1)
7=0
For j € [m] and s € [n — k], let
Sjsizdir‘_s.

Notice that the values Sjo,Sj1,...,Sjn—k;—1 are pre-
cisely the last n — k; entries of row j of the matrix
m(y) (where the rows are enumerated using elements of
[m]). Consequently, the desired syndromes may be read
off directly from a block upper-triangular submatrix of
m(y): the last n— kg entries of Rowgn(y), the last n—k;
entries of Row;7(y), and so on until the last n — k,,_1
entries of Row,,_17(y). Associate with each j € [m],
SU) .=

Sjo Sit—1
Sjl . Sjt
n—kj—t t
: : € F§ )
Sjn—k_7—t—1 Sjn—kJ—Q
and
— St
) —St41
o ’I’L*k}j*t 1
U@ .— i c Fg )x1
*Sjn—k'j—l
Setting
S(0)
1
S . s . IE‘Z =k —t)xt
5(77; )



and
U
(1) o
U := v c qu_jgol(n*kj*t)xl
U(w.t—l)

allows for the formation of the linear system

SA=U
of Zm o(n — kj — t) equations in ¢ unknowns
A4, ..., A, where
Ay
Ay
A= .
Ay

As described in [8], this gives rise to the error locator
polynomial E(z) = 1+ 22:1 A2 which if separable
over F, allows for correction of the up to ¢ incorrect
values and otherwise leads to a decoding failure.

The procedure for fractional decoding of a Reed-
Solomon code can be summarized as follows. Given a
received word y € Fy::

1) Download the mn entries of the virtual projection
m(y) € F "

2) Determine the associated matrices S and U.

3) Solve the system SA = U to determine the error
locator polynomial E(x).

4) If E(x) is separable over F,[z], determine c. Oth-
erwise, declare failure.

Errors in the interleaved Reed-Solomon code obtained in
this procedure are independent random vectors uniformly
distributed over F;"\{0}. This is due to the fact that
each symbol in an erroneous column ¢ of C'p is given by
T;j(e)(T;), j € [m], and each T; do not depend on each
other. So, [3, Theorem 13], proven that this procedure
corrects t < 7, errors with failure probability Py, where
— _ k(m+1
Ta = m+1 (m’fl+k'< ) ( 2 )) and

«

t
qm _ 1
Pfa < < m_ i
q
provided % < W Notice that aln symbols of

IF, are used in this error correction procedure which is
strictly less than In symbols typically used.

q—(’m"rl)(Ta _t)

q—1

IV. HERMITIAN CODES AND FRACTIONAL DECODING

In this section, we consider fractional decoding of
certain Hermitian codes.

First, consider the situation in which f € £(SPx) C

21 (Hq). Suppose there exist a;; € F2 such that

1 L J(q+1)J
Z Z aijz'y? € Flz,y]  (5)
for some 7 < q. For a € Fye, let

af = f(avy) S IFq” [y}<r

It is convenient to enumerate the elements of I
ai,...,aq and fix this ordering in the discussion that
follows. In particular, we assume that the evaluation
points of C'(8Ps,) are ordered so that

2

(P P) = ((Pashyer, ) ©

which allows the codeword ev( f) to be viewed (by slight
abuse of notation) as

() = (0fTa) 0af(Caz) + apf(Ta)).
Notice that for each i € [¢?],
a:f(Ta,) € RS(qvauT)'

Inspired by Section III, for each i € [¢?], define subsets
Aij - Fq’z so that
o m—1

T, C szo Ay CFp. (7)
For i € [¢°] and j € [m], set

pij(y) == H (y—0)

beA;
and T; ;(f)(y) € Fg2 [yl <k, by
T (D) = aifiomei(v) (i ()7
l-m—1
+ Z o Fu(W) (i ())“VTD®)
where for u € [ ]s a; fu is defined as in (1) and
kij == Agj | {=m)(G+ 1)+,

for all i € [¢°] and j € [m]. Then T;;(f)(Tq,) is a
codeword of an Reed-Solomon code RS(q?,q, kij).

Definition 2. Suppose f € L(BP) as in (5). The
virtual projection of f is the matrix p(f) € IFZ;X” given

T1,0(f)(Tay)

1 Ty20(f)(Ta,)
11 (f)(Ta)

Ty s (F)(Ta'a)

T2

T1 1 (F)(Ta) a1 ()(Tas)



Note that the virtual projection of f is expressed using
mn = oaln elements of F,2 whereas ev(f) itself is
described using In elements of Fg2. Even so, we will
see that f (and hence ev(f)) can be recovered from p( f)
with high probability.

Next, note that for each i € [¢?], 4, f can be recovered
from p(f); in fact, recovery of ,,f only depends on
knowledge of

Ty 1 (F)(Ta,)

an m x q submatrix of p(f). Indeed, p(f) Ir,,
virtual projection of the codeword

ev(a, f) =a;, f(Ta,;) € RS(qzla q,7)-

Then [3, Lemma 10] applies to determine ,,f for all
i € [¢%]. It remains to determine f.
Notice that the number of terms of f is at most

is the

B—3j(a+1)

e 11
Z;=0 Zszo ! Jl < atgq-— q;— Yo
= at+q-L <a<g’

From o, f(y), i € [¢%], ¢° interpolation points can be
determined since 4, f(y) = f(a;,y) and

f(aiv b) =a; f(b) S ]quz

for all b € T'y,. As a result, f can be recovered with
high probability from ,, f(y), i € [¢%].
Next, we define the virtual projection of a vector y €

Frzi. For i € [¢°], write
Fai = {bila .
For all i € [¢%], j € [m], and s € [q], set

&l = tr (GQom+jys) (pij(bis))(lim)(j+1)

l—m—1

+ 3t (Cuwn) (i (0i)) T € Fpe.(10)

u=0

s biq} - ]Fq2.

Definition 3. The virtual projection of y € Fy is

m(y) = [Dl | Dy |- | qu] S IF;’;X”
where
&ody
dzll d%Q d}q
D, = . € IE‘;ZXC’

m—1 m—1 m—1
dil di2 diq

for all i € [¢?].

Note that the virtual projection of y consists of mn
entries of F2, whereas y is typically described using
mnl entries of this field. It can be verified that the virtual

projection of a codeword ¢ := ev(f) € C(Px ) satisfies

p(f) = m(ev(f)).

Moreover, for each i € [¢*], D; = p(f) Ir,,
).

Finally, we are ready to describe the decoding proce-
dure.

as given in

Algorithm 1: Virtual Projection of Hermitian
codes IRS Decoder

Input: Received word y = ev(f) + e where
f € L(BPx) as in (5) and o = m/1.

For: i € [¢%], and j € [m] do

Download the entries of the virtual projetion
m(y) € ]F;’;X".

For each submatrix D; of 7(y) apply the
algorithm summarized in Section III to recover
wf.

if o, f is successfully recovered for all i € [¢?]
then

for each s € [q] do
Calculate the points

(@isa; f(bis))-

Use the pairs of the field elements obtained in
the previous step to determine f € L£(8Px).
else
| decoding failure

output: f € L(5P) or decoding failure

Notice that the above decoding algorithm operates
using aln elements of 2 rather than the In symbols of
IF,2 typically used in error correction for this Hermitian
codes. With this algorithm we can correct ¢ errors, where

min{Taw"'aTaqz}§t§7a1+"'+7'qu2

where 7,, is the decoding radius associated with the
submatrix D; and the exact value of ¢ will depend on
the error locations.

V. CONCLUSION

In this paper, we considered fractional decoding of
codes from Hermitian curves. This is a first step in
fractional decoding of algebraic geometry codes beyond
Reed-Solomon codes. It would be interesting to explore
the a-decoding radius for these codes. It also remains
to determine the full error correcting capability of the
fractional decoding procedure considered here.
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