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ABSTRACT

Metabolic thermal plasticity is central to the survival of fishes in a changing environment. The
eurythermal threespine stickleback Gasterosteus aculeatus displays thermal plasticity at the
cellular level with an increase in the activity of key metabolic enzymes in response to cold
acclimation. However, it is unknown if these changes are sufficient to completely compensate
for the depressive effects of cold temperature on whole organismal metabolic rate (MO.). We
hypothesized that as a cold tolerant, eurythermal fish, absolute aerobic scope (AAS), the
difference between maximum metabolic rate (MMR) and standard metabolic rate (SMR), would
be maintained in G. aculeatus following acclimation to a range of temperatures that span its
habitat temperatures. To test this hypothesis, G. aculeatus were acclimated to 5, 12, and 20°C for
20 — 32 weeks and SMR, MMR, and aerobic scope (AS) were quantified at each acclimation
temperature. The maximal activity of citrate synthase (CS), a marker enzyme of aerobic
metabolism, was also quantified in heart ventricles to determine if cardiac aerobic capacity is
associated with AS at these temperatures. SMR increased with acclimation temperature and was
significantly different among all three temperature groups. MMR was similar between animals at
5 and 12°C and between animals at 12 and 20°C but was 2.6-fold lower in fish at 5°C compared
with ones at 20°C, resulting in a lower AAS in fish at 5°C compared with ones at 12 and 20°C.
Correlated with a higher AAS in animals acclimated to 12 and 20°C was a larger relative
ventricular mass and higher CS activity per 100 g body mass compared with animals at 5°C.
Together, our results indicate that despite their eurythermal nature, AS is not maintained at low

temperature but is associated with cardiac aerobic metabolic capacity.
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1. INTRODUCTION

Many fish species experience daily and seasonal fluctuations in habitat temperature that impact
all levels of biological organization and physiological processes (Gamperl & Farrell, 2004;
Jensen et al., 2017; Metzger & Schulte, 2018). In response to an acute increase in temperature,
metabolic rate (MO) increases due to the thermodynamic effect of temperature on the catalytic
rate of enzymes, and conversely, as temperature decreases, MOx declines. However, many fish
species can reversibly modify their phenotype in response to a change in environmental
conditions over a period of weeks or months through the process of acclimation. The changes in
gene expression and/or the activities of metabolic enzymes that occur during acclimation may
result in a decrease (in response to warming) or increase (in response to cooling) in MO, so that
thermal performance improves (Guderley, 1990; Johnston & Dunn, 1987). The Q1o temperature
coefficient describes the thermal sensitivity of a biochemical reaction and can be used to assess
the extent of thermal compensation. With an acute increase in temperature, the MO, of fishes
typically increases with a Q10 between two and three but with thermal acclimation, the Q1o
typically decreases (Havird ef al., 2020) and may reach a value of one if there is complete
thermal compensation (Farrell, 2016). A review of standard metabolic rate (SMR) in teleosts
found that in response to temperature acclimation, Qs within a species range between 0.45 and
3.41 with a median value of 2.4 (Clarke & Johnston, 1999). Overall, eurythermal fishes display a
greater degree of thermal plasticity in MO, and aerobic scope (AS) compared with stenothermal

species and are therefore considered more resilient to climate warming (Healy & Schulte, 2012).
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For several fish species, the extent of thermal compensation is greater in SMR than maximum
metabolic rate (MMR), resulting in a decline in absolute aerobic scope (AAS; the difference
between MMR and SMR) at temperatures outside of the temperature optimum (Topt), which may
negatively impact fitness (Ekstrom et al., 2016; Steinhausen et al., 2008). Because the heart
drives convective oxygen delivery, cardiac performance is intrinsically linked to AS, which
declines at temperatures above and below Top (Farrell ef al., 2009; Steinhausen et al., 2008). The
ability to maintain cardiac rhythmicity and AS across a range of temperatures is likely dependent
on the integration of several biochemical and physiological traits, including membrane integrity
(Biederman et al., 2021), ion channel function (Haverinen & Vornanen, 2020), and
mitochondrial function (Iftikar et al., 2014). Heart rate and cardiac output are often used as
metrics of cardiac performance to assess the ability of fishes to maintain AS (Gilbert & Farrell,
2021; Sandblom ef al., 2016, 2014), but because aerobic metabolism is essential for maintaining
ATP levels and fueling the work of the heart, the activity of marker enzymes of aerobic

metabolism such as citrate synthase (CS), may be another useful proxy for cardiac performance

and AS.

The thermal plasticity of cardiac metabolism varies among different fish species. An increase in
relative ventricular mass (RVM), mitochondrial density, and the maximal activity of aerobically
poised enzymes are typical acclimatory responses to cold temperature that increase cardiac
performance in the cold, yet there are several exceptions likely attributable to differences in
winter activity level (Guderley, 1990). For example, in the cold active striped bass Morone
saxatilis (Walbaum 1792), RVM is higher in 5°C cold-acclimated fish compared with ones at

25°C, but cardiac mitochondrial density and citrate synthase (CS) activity do not change in
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response to cold acclimation (Rodnick & Sidell, 1997). The Atlantic killifish Fundulus
heteroclitus (Linneaus 1766) displays a remarkable tolerance for extreme environmental
conditions but is inactive in the winter. In this species, RVM and CS activity remain unchanged
with thermal acclimation and mitochondrial function is lower in hearts of 5°C acclimated fish
compared with fish at 15°C (Chung et al., 2017). In contrast, hearts of rainbow trout
Oncorhynchus mykiss (Walbaum 1792) display a canonical cold acclimatory response with
increases in RVM and cardiac CS activity (Patey & Driedzic, 1997). Assessing the thermal
plasticity of cardiac aerobic metabolism may provide insight to cardiac performance, AS, and

organismal thermal tolerance.

The threespine stickleback Gasterosteus aculeatus (Linnaeus 1758), is a convenient model
organism for studying thermal plasticity in AS and cardiac metabolism, as this small teleost is
widely distributed across the Northern Hemisphere in thermally variable marine, brackish, and
freshwater environments (Wootton, 1984). Several studies have characterized increases in the
maximal rate of metabolic enzymes in response to temperature acclimation in several tissues of
G. aculeatus, including liver, oxidative, and glycolytic muscles (Guderley et al., 2001;
Orczewska et al., 2010; Vézina & Guderley, 1991), suggesting there is likely thermal plasticity
in MO> as well, although this has not been investigated, nor has the thermal plasticity of cardiac
metabolism in G. aculeatus, which is central to thermal tolerance (Ekstrom et al., 2017; Farrell et
al., 2009). In the nine-spined stickleback, Pungitius pungitius (Linnaeus 1758), the degree of
thermal compensation in AS varies among freshwater and marine populations with the greatest
degree of thermal compensation in AS occurring in fishes inhabiting cold, freshwater (Bruneaux

et al.,2014). We sought to determine if AS is maintained in G. aculeatus following acclimation
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to temperatures that span the temperature range of their natural habitat (5, 12, and 20°C) and
whether cardiac CS activity is associated with AS. Since G. aculeatus is a highly eurythermal
species that displays robust thermal plasticity at the cellular level, we hypothesized that AS
would display a high degree of thermal compensation in an Alaskan freshwater population of G.

aculeatus and that the activity of cardiac CS per g fish would be associated with AS.

2. METHODS

2.1 Gasterosteus aculeatus capture and acclimation

Gasterosteus aculeatus were collected in September 2019 from Kashwitna Lake, Alaska
(61.835°N, 150.079°W) using minnow traps. The water temperature was 17°C at the time of
collection. Although the annual temperature range for Kashwitna Lake is unknown, the
temperature of other nearby lakes in central Alaska ranges between 4°C and 21°C (Alaska
Department of Environmental Conservation, 2004). Animals (n=184) were transported to the
University of Alaska Fairbanks (UAF) where 18 to 22 animals were maintained in each of 20- or
29- gal recirculating tanks, respectively (9 tanks total). Tanks were filled with deionized water
supplemented with 0.35 ppt Instant Ocean at 12°C for 22 weeks. Animals in a subset of tanks (6)
were then acclimated to 5 or 20°C by changing the temperature at a rate of 3 — 4°C per day. For
acclimation to 20°C, the water was heated with submersible heaters and then tanks were moved
into a 20°C room to maintain tank temperature. For acclimation to 5 °C, animals from 3 tanks
were transferred into a single 60-gal insulated tank equipped with an inline chiller (Aqua Logic
Delta Star, San Diego, CA) and water temperature was decreased as described above. All

animals were held on a 10 h light, 14 h dark cycle and fed blood worms twice daily.
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Respirometry trials were conducted after animals were acclimated for 20 — 25 weeks (42 — 47
weeks after capture) for 5°C animals and 21 — 32 weeks (43 — 54 weeks after capture) for 20°C
animals. Respirometry trials began 44 — 60 weeks after capture for the 12°C animals. Animals
were euthanized for enzyme assays after 12 weeks of acclimation to 5 and 20°C and after 34
weeks at 12°C by immersion in liquid nitrogen and then stored at -80°C until use. All procedures

were approved by the UAF Institutional Animal Care Committee (1253621-22).

Fulton’s condition factor was calculated as:
K = bm/Lg* x 100
where bm = wet body mass of the fish (to the nearest 0.1 g) and Ls = standard length (to the

nearest 0.1 cm).

Relative ventricular mass (RVM) was calculated for the animals used in the CS assays as:
RVM = hm/bm X 100

where hm = heart mass (to the nearest 0.1 mg).

2.2 Respirometry

MO» was measured using a 170 mL glass Loligo swim tunnel respirometer (Loligo Systems,
Viborg, Denmark) with toxic-free polyvinyl chloride tubing (chamber volume = 184 mL, tube
volume = 1.24 mL). The ratio of body mass to total respirometer volume (chamber volume +
tube volume) was an average of 1:103 with only one animal smaller than the recommended 1:50
to 1:150 range for swimming respirometers (Svendsen et al., 2016). The respirometer was

shrouded in black plastic to minimize disturbance and placed in an environmental chamber held
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at the acclimation temperature of the fish. Water temperature, measured once per second, was
maintained at the acclimation temperature by circulating water through a stainless-steel chilling
coil submerged in a cooler filled with ice water. Dissolved oxygen level (DO) was measured
once per second with a dipping probe mini oxygen sensor connected to Witrox 1 oxygen meter
(Loligo Systems, Viborg, Denmark) that was placed within the inner chamber of the
respirometer. For each fish, the oxygen sensor was calibrated at the acclimation temperature to
100% air saturation using vigorously aerated water in the respirometer and to 0% air saturation
using 2% sodium sulfite. The respirometer was drained and rinsed with deionized water at the
conclusion of each experiment and sanitized with a dilute bleach solution after every fourth trial

to minimize background microbial respiration rates.

A pilot study determined that SMR was equivalent between G. aculeatus fasted for 36 or 60 h
regardless of acclimation temperature (not reported), so animals were fasted for 36 h. Standard
length (cm) and body mass (g) were measured and then animals were placed into the
respirometer and allowed to recover from the stress of handling for 1 h. Water velocity was
increased up to a maximum of 50 cm s™! to habituate the fish to swimming in the tunnel and to
estimate maximum swimming velocity (Vmax). The velocity was then reduced to 0.6 + 0.1 cm s™!
(mean =+ sd for all trials) for the remainder of the trial to circulate water while allowing the fish to
maintain its position without swimming. After at least 6 h, DO was measured overnight for 10 h
to quantify SMR using intermittent flow respirometry with the following settings: flush for 7

min, wait for 1 min, and measure for 28, 15, or 12 min at 5, 12, and 20°C, respectively.



179  The following day, MMR was measured by increasing velocity by 10% of the fish’s Viax every
180 2 min until 40% Vmax was attained. Thereafter, MO, was measured using intermittent

181  respirometry with the following settings: flush for 2 min, wait for 1 min, and measure for 5 or 7
182  min. If the fish was not swimming at the onset of the wait or measurement period, it was induced
183  to swim by decreasing the velocity to 0 cm s™! and then immediately increasing it to the target
184  velocity for that cycle. Oxygen consumption was measured at each velocity for two cycles before
185 increasing the velocity by 10% Vmax until the fish could no longer right itself or was repeatedly
186  unable or unwilling to burst swim. If the fish completed two cycles at Vmax and was still not

187  fatigued, the fish was induced to swim every time it stopped swimming until it was fatigued for
188  one additional cycle. If the fish became fatigued during a measurement period, the velocity was
189  decreased to 0.6 + 0.1 cm s (mean =+ sd for all trials) for the remainder of the period plus one
190  additional cycle following fatigue. MMR trials lasted for 143 = 50 min (mean + sd) for each

191  animal. DO was maintained above 71% saturation for all trials (only 0.3% of cycles dropped

192 below 80% saturation) and always returned to 100% saturation during the flush period.

193

194  Background microbial respiration rates were measured once or twice before and after each trial
195  with the following settings: flush for 5 min, wait for 1 min, and measure for 30 min. Replicates
196  (when available) were averaged and background respiration rates interpolated using a linear

197  correction (package: FishResp, function: correct.meas, method = “linear”). Regions of the data
198  (or an entire measurement period if necessary) for which DO levels increased were removed

199  prior to calculating background respiration rates. For some trials, DO levels always increased
200  and for these trials, background rates of respiration were set to zero. Background respiration rates

201  were always less than 7% of the SMR estimate.
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The slope of a linear model fit to the background corrected DO values for each measurement
period (package: FishResp, function: extract.slope, method = ““all”’) was used to estimate
metabolic rate (package: FishResp, function: calculate. MR). All SMR and MMR estimates
accounted for the body mass, density, and volume of the fish, as well as total volume of the
respirometer using the following equation:

massMO, = [(A[0,]/At) x (V —D x bm)] x bm™!
where A[0,]/At = slope (mg O> L' h'!), V = total volume of respirometer (L), D = density of
animal (1 kg L™! used for all animals), and bm = body mass (kg) (Morozov et al., 2019).
Absolute aerobic scope (AAS) was calculated as MMR - SMR. Factorial aerobic scope (FAS)

was calculated as MMR SMR™.

Between 16 and 30 estimates of SMR were obtained for each animal. To prevent
underestimating SMR by erroneously removing cycles with low 12 values, raw DO values were
first smoothed to improve 2, as suggested in (Chabot et al., 2021). Briefly, raw DO values were
subdivided into bins that were 5% the length of the measurement cycle (i.e., 36, 45, or 84 s for 5,
12, or 20°C, respectively), producing 20 bins per cycle. The median value was retained for each
bin and a linear model was fit to the 20 median DO values and used to estimate SMR for each
cycle. Cycles were omitted if r? < 0.95. Smoothing the data significantly increased the minimum
and mean r? values (P < 0.001) and reduced the percent of cycles removed overall from 18.6% to

1.8%.

11
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The final SMR estimate for each animal was calculated using the mean of the lowest normal
distribution (MLND) and the 20% quantile methods described in Chabot ef al. (2016b) and
Reemeyer and Rees (2019). Both methods estimate SMR based on the slope of the best fit line
for the background-corrected data, but the MLND method is recommended when the coefficient
of variation of MLND (CVminp) > 5.4, whereas the 20% quantile (in which SMR is placed
above the lowest 20% of values) is used when CVminp < 5.4 (Chabot ef al., 2016b; Reemeyer &

Rees, 2019).

Traditionally, MMR is estimated from the slope of a line fit to all measured DO values (Rummer
et al.,2016). However, slope may actually vary throughout the measurement period as the fish
becomes fatigued and/or as a result of inconsistent swimming effort during the measurement
period (Zhang et al., 2019). Zhang et al., (2019) proposed using an iterative algorithm to account
for changes in MO, during the measurement period, which we attempted to use; however, the
CV and sd were high and equivalent for the 17 sampling windows examined between 0.5 and 5
min. Therefore, we calculated MMR by fitting DO to a linear model to estimate the slope of the
line and the entire (5 or 7 min) measurement period yielding the highest estimate was designated
as MMR (hereafter referred to as “traditional MMR” Norin & Clark, 2016; Rummer ef al.,
2016). We also employed a second approach (hereafter referred to as “truncated MMR”), in
which each measurement period was edited to retain only the steepest declines in DO as long as
there was a minimum of 100 s (33% of length of the shortest measurement period) of data
remaining (range = 100 — 420 s, mean + sd = 261 + 106 s) and processed as described above and

as described by Rummer et al. (2016) for measuring MMR chase and MMRcircle.

12



247

248 2.3 Enzymology

249  Tissues were homogenized on ice (10% w/v) in 40 mM HEPES, 1 mM EDTA, and 2 mM

250  MgClh, pH of 7.8 at 5°C with a Tenbroek ground glass homogenizer. The maximal activity of
251  citrate synthase (CS; EC 2.3.3.1) was measured at 20 + 0.5°C using a modified protocol

252 described by Srere et al. (1963). The final reaction mixture contained 0.25 mmol 17! 5,5'-

253  dithiobis-2-nitrobenzoic acid (DTNB), 0.40 mmol 1! acetyl coenzyme A (CoA), 0.5 mmol

254 1! oxaloacetate, 75 mmol I"! Tris-HCI, pH 8.2. Background activity was measured for 5 min in
255  the absence of the initiating substrate oxaloacetate. The progress of the reaction was monitored
256 by following the reduction of DTNB at 412 nm for 5 min following the addition of oxaloacetate
257  using a SpectraMax Plus384 plate reader (Molecular Devices, Sunnyvale, CA) at 20°C. All
258  measurements (n = 5) were made in triplicate and activity was expressed as

259  umol product min!' g"! wet mass. Homogenates from hearts of the 5 and 12°C temperature
260  groups were then each pooled to obtain a sufficient amount of material and CS activity was

261  measured at the acclimation temperature using a Perkin Elmer Lambda 40 spectrophotometer
262  (Perkin-Elmer, Waltham, MA, USA) equipped with a refrigerated, circulating water bath. The
263  Qio was calculated for CS activity between 20 and 12°C (for the 12°C animals) and between 20
264  and 5°C (for the 5°C animals) using the average activity of CS measured at 20°C and CS activity
265  of the pooled sample measured at the acclimation temperature. The Q1o was then applied to CS
266  activity measurements made at 20°C in 5 and 12°C acclimated individuals to calculate CS

267  activity for each individual at their acclimation temperature for animals held at 12 and 5°C.

268

269 2.4 Statistical analyses
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Respirometry data were collected using AutoResp version 2.3.0 (Loligo Systems, Viborg,
Denmark) and processed using RStudio version 1.3.1093 (R Studio Team, 2016) operating with
R version 4.0.3 (R Core Team, 2018). Code was modified from the “FishResp” package version
1.0.3 (Morozov et al., 2019) to import respirometry data into R and correct raw data for
background MO:. Statistical analyses were conducted using Prism v.8 (Graphpad Software Inc.,
San Diego, CA) and R version 4.0.3 (R Core Team, 2018). Graphs were produced using Prism

v.8.

All datasets were analyzed for outliers using the Robust Regression and Outlier Removal method
(ROUT), for normality with the Shapiro-Wilk test, and for equal variances with the Brown-
Forsythe test. One SMR estimate was identified as an outlier and was removed from all analyses
(along with the associated AAS and FAS estimates for that fish). Final sample sizes for analyses
of SMR (including potential correlations between SMR and acclimation time), AAS, and FAS
were n = 6, 6, and 5 for 5, 12, and 20°C, respectively, whereas n = 6 was used for all temperature
groups for measurements of physical characteristics and MMR. No outliers were identified for
the animals used for the CS assays, so n =5 for all temperature groups for analyses regarding

physical characteristics, CS activity, and RVM.

Respirometry trials were completed over a span of 17 weeks. A simple linear regression was
used to determine if SMR or MMR varied over the time span of the experiments. Significant
differences among animals acclimated to different temperatures were determined using an

ANOVA followed by a Tukey’s Honest Significant Difference test when data were normally

distributed. For data that were not normally distributed, a Kruskal-Wallis test followed by a

14
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Dunn’s multiple comparisons test was used. An unpaired t-test or a Mann-Whitney test (for data
that were normally or not normally distributed, respectively) was conducted to determine if there
were differences in physical characteristics between animals used for respirometry trials versus
those used for the CS assays within each temperature group. A paired t-test test was used to
determine if MMR estimates differed when calculated using the traditional or truncated method
(sin-transformed data were used for the 5°C acclimation group to satisfy normality
requirements). An analysis of covariance (ANCOVA) followed by a Tukey’s Honest Significant
Difference test was used to identify significant differences in CS activity among the acclimation

groups with body mass as a covariate. Significance was accepted when P < 0.05.

Q1o was calculated as:

Qo = (Ro/Ry)'*/(T2-1)
where R and R» are the mean measurements from all animals at temperature T or T»,

respectively.

3. RESULTS

3.1 Physical characteristics of G. aculeatus

Regardless of acclimation temperature, G. aculeatus used for measuring AS were similar in
length (ANOVA: F=0.24; df=2, 15; P=0.79) and mass (ANOVA: F=2.51;df=2,15; P=
0.11) among all temperature groups, but the condition factor was 1.2-fold higher in animals at

5°C compared with ones at 20°C (Kruskal-Wallis: H=9.24, df=3, 18, P <0.01; Table 1).
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Among temperature groups, G. aculeatus used for measuring the maximal activity of CS were
similar in length (ANOVA: FF=0.92; df=2, 12; P = 0.42), but not body mass (ANOVA: F =
7.00; df =2, 12; P <0.05) (Table 1). Body mass of the 5°C animals was 1.4-fold larger than
animals at 12 and 20°C (Table 1). Furthermore, RVM was 1.7- or 1.8-fold larger in animals at 12
and 20°C, respectively, compared with animals at 5°C (ANOVA: F=11.05;df=2,12; P<0.01;

Table 1).

Although G. aculeatus used for measuring AS and CS activity were maintained in the same
tanks, the condition factor was 1.3- to 1.4-fold higher for animals used to measure CS at 5°C
(unpaired t-test: £ = 5.50; df =9; P <0.001), 12°C (Mann-Whitney: U = 3; P <0.05), and 20°C
(unpaired t-test: £ =3.90; df =9; P <0.01), and body mass was 1.5-fold higher in the 12°C
animals used to measure CS compared with ones used to measure AS (unpaired t-test: = 4.94;

df=9; P<0.05) (Table 1).

3.2 Effect of temperature acclimation on aerobic scope

SMR differed among G. aculeatus in all temperature groups (ANOVA: F=79.64; df=2, 14; P
< 0.001) and was highest in animals at 20°C and lowest in animals at 5°C (Figure 1a). Compared
with the 5°C animals, SMR was 1.7- and 2.4-fold higher for animals at 12 and 20°C,

respectively.

The MMR estimates for G. aculeatus were similar for both the traditional and truncated methods

for the 5°C (paired t-test: £ = 0.01; df = 5; P =0.99), 12°C (paired t-test: t =2.07; df =5; P =

0.09), and 20°C animals (paired t-test: t =2.01; df = 5; P = 0.10), but increased with acclimation
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temperature (Supplemental Figure 1). MMR estimates differed among all three temperature
groups when calculated using the truncated method (ANOVA: F=1.00; df=2, 15; P <0.001;
Supplemental Figure 2a). When using the traditional method, MMR was 2.6-fold higher for
animals at 20°C compared with animals at 5°C but similar between 5 and 12°C animals and
between 12 and 20°C animals (Kruskal-Wallis: H=12.57; df =3, 18; P <0.001; Figure 1b).
Since only 8 of the 18 fish used in our study required the DO data to be truncated, we only
describe results of AS obtained using the traditional method below, whereas estimates obtained

with the truncated method are shown in Supplemental Figure 2b—c.

AAS was 2.0-fold higher in G. aculeatus at 12°C compared with fish at 5°C, 2.5-fold higher in
animals at 20°C compared with fish at 5°C, and equivalent between animals at 12 and 20°C

(Kruskal-Wallis: H=11.14; df=3,17; P <0.001; Figure 2a). FAS was similar among fish in all

temperature groups (ANOVA: F=0.55; df =2,14; P =0.59; Figure 2b).

Over the duration of the experiments, there was no variation in SMR for the 5°C (linear
regression: F=0.18; df=1,4; P=10.69; * = 0.04), 12°C (linear regression: F = 6.32; df =1, 4;
P =0.06; 7 =0.61), or 20°C animals (linear regression: F =4.18; df=1,3; P=0.13; 7* = 0.58)
(Supplemental Figure 3). There was also no variation in MMR for the 5°C (linear regression: F' =
0.10; df=1,4; P=0.76; r = 0.02), 12°C (linear regression: F=3.75;df=1,4; P=0.12; 1 =
0.48), or 20°C animals (linear regression: F = 0.36; df =1, 4; P =0.58; 7> = 0.08) over the

duration of the experiment (Supplemental Figure 3).

3.3. Aerobic metabolic capacity of heart ventricles
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There was a significant effect of acclimation temperature on CS activity after controlling for the
effect of the covariate, body mass (ANCOVA: FF=6.45;df=2, 11; P <0.05). CS activity was
1.4-fold higher in animals acclimated to 5°C compared with fish at 12°C, 2.0-fold higher in
animals at 5°C compared with animals at 20°C, and equivalent between fish at 12 and 20°C
when measured at a common temperature of 20°C (Figure 3a). When measured at the
acclimation temperature, CS activity also differed among the acclimation groups after accounting
for the effect of the covariate, body mass (ANCOVA: F=31.21,df=2,11; P<0.001). CS
activity was lowest in hearts of animals acclimated to 5°C, highest in animals at 20°C, and
intermediate in animals at 12°C (Figure 3b). The RVM of G. aculeatus was impacted by
acclimation temperature and was significantly higher in animals acclimated to 12°C and 20°C
compared with ones at 5°C (Table 1). When accounting for these differences in RVM, the
maximal activity of CS activity per 100 g body was 5.1- or 1.6-fold higher for fish at 20°C
compared with fish at 5 or 12°C, respectively (ANOVA: F=11.05; df =2, 12; P <0.01; Figure

3c).

4. DISCUSSION

The ability of temperate teleost fishes to compensate for seasonal changes in temperature varies
among physiological processes, tissues, and species (Biederman et al., 2021; Fangue et al., 2008;
Guderley, 1990; Rodnick & Sidell, 1997). Although previous studies in G. aculeatus have shown
that the maximal activity of metabolic enzymes increases in oxidative and glycolytic muscles
and liver in response to cold acclimation (Guderley et al., 2001; Orczewska et al., 2010; Vézina

& Guderley, 1991), our results indicate that SMR and AAS are lower in G. aculeatus at 5°C
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compared with fish at 12 and 20°C. Studies have shown that AAS is linked to cardiac
performance in fishes (Farrell, 2016; Farrell et al., 2009), and consistent with this, we find that in
general, the activity of CS in heart ventricle tissue per 100 g fish, indicative of cardiac aerobic

metabolic capacity, increases with acclimation temperature along with MMR.

4.1 Metabolic rate is not maintained across habitat temperatures with acclimation
Standard metabolic rate represents the minimum energy required to support circulation,
respiration, excretion, and muscle tone in an animal at rest in a post-absorptive state and is
influenced by rates of protein turnover and ion leakage (Chabot et al., 2016a; Clarke, 2016).
SMR increased with acclimation temperature in G. aculeatus, although the thermal sensitivity
was low (Qi0=1.6 — 2.1; Table 2), suggesting an active acclimatory response, although we
acknowledge that our study design precludes the ability to differentiate between passive and
active acclimatory processes (Havird et al., 2020). There is, however, ample evidence that active
acclimation occurs in metabolism at the cellular level in G. aculeatus. A previous study using the
same population of G. aculeatus found that mitochondrial density is 1.9-fold higher and CS
activity is 1.7-fold higher in the oxidative muscle of G. aculeatus at 8°C compared with fish at
20°C, and in liver, CS activity is 2.0-fold higher in G. aculeatus at 8°C compared with fish at
20°C (Orczewska et al., 2010). Similarly, CS activity increases in glycolytic muscle of
anadromous G. aculeatus in response to cold acclimation (Guderley ef al., 2001). An increase in
mitochondrial density, in addition to increasing ATP production, also enhances lipid metabolism
and/or oxygen diffusion rates at cold temperature (Guderley, 1990). Standard metabolic rate,
however, is likely set by rates of mitochondrial proton leak, ion leakage across membranes and

protein turnover (Clarke, 2016) with mitochondrial density and aerobic metabolic capacity
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reflecting the energetic demands of these processes. Indeed, SMR is closely associated with
proton leak in liver mitochondria in the brown trout Salmo trutta (Linnnaeus,1758) (Salin et al.,
2016). Thus, changes in the quality, in addition to the quantity, of mitochondria contribute to
thermal adjustments of SMR. Additionally, temperature-induced changes in SMR are influenced
by seasonal changes in reproduction, growth and food availability (Clarke, 2016). Nevertheless,
it remains unclear what limits the extent of metabolic remodeling in SMR, especially in species
such as G. aculeatus that regulate gene expression in response to temperature (Metzger &
Schulte, 2018; Orczewska et al., 2010) unlike some stenothermal fish species, which have
diminished molecular responses to temperature as a result of genetic lesions arising during
evolution in a stable environment (Bilyk et al., 2018). Previous studies have shown that
acclimation may be impaired by a low condition factor (Vézina & Guderley, 1991), but this was
not the case in our study, as the 5°C acclimated G. aculeatus displayed the highest condition
factor. Overall, the temperature specificity of metabolic regulation is intriguing and discovering
the molecular mechanisms underlying the fine tuning of metabolism warrants further

investigation.

MMR was significantly lower in animals at 5°C compared with ones at 20°C and when analyzed
using the truncated method, MMR was significantly different among all acclimation groups and
increased with acclimation temperature (Supplementary Figure 2a). MMR is influenced by
multiple components of the oxygen cascade including gill ventilation, oxygen transport by
hemoglobin, and cardiac performance (Farrell et al., 2009), any one (or more) of which may
limit thermal compensation in MMR. Our data suggest that cardiac aerobic metabolic capacity

may contribute the limits of thermal plasticity in MMR.
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The heart is considered a central mediator of MMR and AS because of its essential role in
oxygen delivery (Farrell ef al., 2009; Gamperl & Farrell, 2004). Previous studies have shown
that temperature acclimation results in remodeling of cardiac mitochondria, as well as changes in
the activity of aerobic metabolic enzymes, including CS, which enhance cardiac performance in
some fish species (Pichaud ef al., 2017). For example, the activity of cardiac CS is positively
correlated with heart rate scope in O. mykiss and the European perch Perca fluviatilis (Linnaeus
1758) in response to an increase in temperature, although the time course for remodeling differs,
with changes in metabolism occurring more quickly than cardiac function (Ekstrom ef al., 2016;
Pichaud et al., 2017; Sandblom et al., 2016). In our study, aerobic metabolic capacity, as
assessed by measurements of maximal activities of CS per g tissue, increases in response to
warm acclimation along with RVM so that CS activity per 100 g fish is significantly higher in G.
aculeatus at 20°C compared with fish at 12 and 5°C, and higher in fish at 12 than at 5°C. The
increase in cardiac aerobic metabolic capacity with thermal acclimation parallels that of MMR,
suggesting that cardiac CS activity may be a good indicator of MMR, although our results would
be strengthened by measuring CS activity in the same individuals as those used to measure
MMR. We also acknowledge that cardiac CS activity parallels changes in SMR in response to
acclimation, but aerobic metabolic activity of the liver, and especially mitochondrial leak, seem
to be more important in defining SMR in fishes than aerobic metabolic activity of the heart

(Norin & Malte, 2012; Salin ef al., 2016).

AAS estimates for G. aculeatus increased with acclimation temperature and were equivalent for

animals acclimated to 12 and 20°C, but for animals acclimated to 5°C, AAS was 2.0- and 2.5-
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fold lower than at 12 and 20°C, respectively. Similar to our study, Bruneaux et al. (2014) found
that SMR and MMR declined with a decrease in acclimation temperature in P. pungitius
acclimated to 6 or 11°C with the exception of a cold pond population that experienced little
seasonal temperature variation, with temperatures ranging between 2.4 to 13.7°C. We anticipated
that the cold freshwater population of G. aculeatus we used would also maintain AS at low
temperature. However, maintaining AAS at 5°C may be unnecessary for the G. aculeatus used in
this study, which overwinter under the ice and in near complete darkness. Although several fish
species become less active and suppress their metabolic rate during winter (Shuter et al., 2012),
AAS was reduced in the 5°C acclimated G. aculeatus in this study without any of the cues that

might elicit metabolic suppression in the wild, such as short daylength, winter hypoxia, or

reduced food availability (Shuter et al., 2012).

4.2 A modified method for measuring MMR

Methods to elicit fatigue and measure MMR in fishes vary greatly among studies (Killen et al.,
2017; Norin & Clark, 2016; Zhang et al., 2020). One common approach is to manually chase the
fish in a bucket or circular “track” until it is unresponsive to touch (Norin & Malte, 2012;
Rummer et al., 2016); however, this “chase” protocol failed to consistently induce swimming in
the G. aculeatus used in this study, and the fish often did not respond to touch at all (personal
observations). Another approach for eliciting MMR is to calculate the critical swimming speed
(Ucrit), begin swimming the fish at a fraction of Ucrit, and then continue ramping the water
velocity until the fish is exhausted (Rummer et al., 2016; Zhang et al., 2020), but not all fish
swim well in a swim tunnel (Peake & Farrell, 2006). In our experience, some animals actively

swam against the water current as the velocity was incrementally increased, while others did not
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attempt to swim, even at low velocities when the animal was capable of swimming against the
current. To induce O. mykiss to swim, Zhang et al. (2020) modified a static respirometer to
include a chasing device (i.e., a soft brush that the researcher could move to startle the fish). To
achieve a similar effect, we used a rapid change in velocity to provoke swimming, which, to our
knowledge, is a technique that has not previously been used. Although it is difficult to assess
whether MMR is truly being measured using any method (Norin & Clark, 2016), our estimates
for MMR are similar to those generated for stickleback in other studies (Bruneaux et al., 2014;
Dalziel et al., 2012). For example, Dalziel et al. (2012) used the Ucrit method to measure MMR
in two resident stream populations of G. aculeatus at 15°C and obtained values of 15 and 19
umol Oz g'! h'!, which were similar to our values for 12°C acclimated G. aculeatus where MMR
was 19 pmol Oz g h'! when calculated using the traditional method or 21 pmol O> g! h'! when
calculated using the truncated method. Also, our values for MMR in 5 and 20°C acclimated G.
aculeatus (10 and 27 pmol O> g h'!, respectively using the traditional method and 12 and 28
umol O, g’ h'!, respectively using the truncated method) were similar to MMR measured in P.
pungitius using the chase protocol, which ranged from 15 to ~ 30 umol O g!' h'! in animals
acclimated to 6 and 19°C, respectively (Bruneaux et al., 2014). Although these are not perfect
comparisons given the differences among studies in species and locale, the data suggest that
using quick changes in velocity may elicit MMR and be a useful approach for encouraging

otherwise unwilling fishes to swim in a respirometer.

In summary, our study shows that despite long-term acclimation, AS is not maintained over a
range of habitat temperatures in G. aculeatus. Factors limiting AS at the molecular level,

especially in a eurythermal species such as G. aculeatus, remain to be elucidated. We find,
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however, similar to other studies in temperate fishes, that cardiac aerobic capacity is associated
with AS. Measuring the maximal activity of CS in cardiac muscle may be a useful proxy for
cardiac performance that can be used in addition to, or in place of, measuring heart rate to assess
thermal performance in fishes. Further, the alternative approach we suggest for inducing
swimming in a swim tunnel respirometer using rapid changes in water velocity may be a useful

tool for researchers studying other species of reluctant swimmers.
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FIGURE LEGENDS

FIGURE 1. Metabolic rate of threespine stickleback (Gasterosteus aculeatus) acclimated to
three temperatures. Standard metabolic rate (SMR; n= 6, 6, and 5 for 5, 12, and 20°C
respectively) (a) and maximum metabolic rate (MMR; n = 6 for each temperature group) (b).
Boxes designate quartiles, line designates median, whiskers designate minimum and maximum
values, and dots represent individual measurements. Letters denote significant differences among
temperature groups as determined by an ANOVA followed by a Tukey’s Honest Significant
Difference test or a Kruskal-Wallis test followed by a Dunn’s multiple comparison test (P <

0.001).

FIGURE 2: Aerobic scope of threespine stickleback (Gasterosteus aculeatus) acclimated to
three temperatures. Absolute aerobic scope (AAS) (a) and factorial aerobic scope (FAS) (b).
Boxes designate quartiles, line designates median, whiskers designate minimum and maximum
values, and dots represent individual measurements (n = 6, 6, and 5 for 5, 12, and 20°C
respectively). Letters denote significant differences among temperature groups as determined by
an ANOVA followed by a Tukey’s Honest Significant Difference test or a Kruskal-Wallis test

followed by a Dunn’s multiple comparison test (P < 0.05).

FIGURE 3. Maximal activity of citrate synthase in hearts of threespine stickleback
(Gasterosteus aculeatus) acclimated to three temperatures. Maximal activity of citrate
synthase (CS) at a common temperature of 20°C (a) and at the acclimation temperature (b).
Relative ventricular mass differed in response to acclimation, so CS activity was also calculated

per 100 g body mass at the acclimation temperature (c). Dots represent individual measurements
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(n=5 for each temperature group). Error bars indicate s.e.m. Letters denote significant differences
among temperature groups as determined by an ANCOVA followed by a Tukey’s Honest

Significant Difference test (P < 0.05).
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695
696 TABLE 1: Physical characteristics of threespine stickleback (Gasterosteus aculeatus)
697  acclimated to three temperatures. Data are mean + sd. Different groups of animals were used
698  for respirometry and citrate synthase (CS) assays. The superscript letters A and B indicate
699  significant differences among acclimation groups for animals used in respirometry experiments,
700  whereas superscript letters X and Y indicate significant differences among acclimation groups
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701  for animals used to measure cardiac CS activity as identified by a one-way ANOVA or Kruskal-
702  Wallis test followed by a Tukey’s Honest Significant Difference test or a Dunn’s multiple

703  comparison test, respectively (P < 0.05). Asterisks indicates significant differences between

704  animals used for the respirometry versus CS assays within each temperature group as determined
705 by an unpaired t-test or Mann-Whitney test (P < 0.05). n = sample size, Ls = standard length,

706 RVM = relative ventricular mass.

707
Grou Body mass  Heart mass Condition
Method n Ls(cm) RVM
p (2) (mg) Factor
respirome 555+
5°C 6 2.17+0.58 NA NA  1.24+0.08
try 0.40
538+ 2.76 + 0.19 +
CS 5 534+£1.11% 1.78 +£0.23%
0.29 0.29% 0.04%
respirome 548 +
12°C 6 1.90 £ 0.28" NA NA 1.15+£0.13™8
try 0.25
5.64 + 2.80 032+
CS 5 9.06 +1.53Y 1.59 +0.34%Y
0.26 0.33% 0.05Y
respirome 542+
20°C 6 1.63 £0.32 NA NA  1.02+0.088
try 0.34
538+ 2.01 + 0.34 +
CS 5 6.90 £2.03%Y 1.28 £ 0.15Y
0.47 0.44Y 0.07Y
708
709
710
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724

TABLE 2: Temperature coefficients (Q10s) of metabolic rate and aerobic scope estimates
for threespine stickleback (Gasterosteus aculeatus). T1 = temperature 1, T2 = temperature 2,
SMR = standard metabolic rate, MMR = maximum metabolic rate, AAS = absolute aerobic

scope, FAS = factorial aerobic scope. N =6, 6, and 5 for 5, 12, and 20°C, respectively.

T1 T2 SMR MMR AAS FAS
5°C 12°C 2.1 2.5 2.7 1.1
12°C 20°C 1.6 1.5 1.3 0.9
5°C 12°C 20°C
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SUPPLEMENTAL FIGURE 1. Comparison of maximum metabolic rate (MMR) estimates
for threespine stickleback (Gasterosteus aculeatus) acclimated to three temperatures. The
“truncated” method measured the highest rate of MO, within each measurement period
(minimum length = 100 s). The “traditional” method included all DO measurements within each

measurement period. Boxes designate quartiles, line designates median, and whiskers designate
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725  minimum and maximum values. MMR estimates did not differ by method for any temperature

726  group (paired t-test: P > 0.05). N=6 for each temperature group.
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729  SUPPLEMENTAL FIGURE 2: Maximum metabolic rate (MMR) and aerobic scope of
730  threespine stickleback (Gasterosteus aculeatus) acclimated to three temperatures calculated
731  using the truncated MMR method. MMR (a), absolute aerobic scope (AAS) (b), and factorial
732 aerobic scope (FAS) (c). Boxes designate quartiles, line designates median, and whiskers

733 designate minimum and maximum values (MMR: n = 6 for all temperatures, AAS and FAS: n=
734 6,6 and 5 for 5, 12, and 20°C, respectively). Letters denote significant differences among

735  temperature groups as determined by an ANOVA followed by a Tukey’s Honest Significant

736  Difference test (P <0.001, P <0.01 and P <0.05 for MMR, AAS and FAS respectively).

737
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738
739  SUPPLEMENTAL FIGURE 3. Metabolic rate of threespine stickleback (Gasterosteus

740  aculeatus) based on when the trial was conducted relative to the date of the first trial for
741  each temperature. Standard metabolic rate (SMR) (a) and maximum metabolic rate (MMR) (b).
742 Each point represents the metabolic rate estimate for one animal. Day 0 =20 and 21 weeks of
743 acclimation for 5 and 20°C animals, respectively. Animals were held at 12°C prior to

744  acclimation, so Day 0 = 44 weeks after collection.
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