

Performance-Based Wind Engineering: Background and State of the Art

Seymour M.J. Spence 1,*, Srinivasan Arunachalam 1

Department of Civil Engineering, University of Michigan, Ann Arbor, MI 48109, United States

Correspondence*: Corresponding Author smjs@umich.edu

2 ABSTRACT

This paper surveys the rapidly growing field of performance-based wind engineering (PBWE) of 3 engineered systems, with focus on not only how PBWE has evolved since its early incarnations 4 5 inspired by performance-based seismic engineering, but also the unique challenges of PBWE and the research that continues to emerge to tackle them. The limitations of traditional prescriptive 6 7 wind design approaches are discussed with the aim of illustrating how such approaches are inadequate for providing acceptable building performance during extreme wind events, thus 8 9 motivating why performance-based strategies for wind engineering are gaining traction and are poised to complement, if not replace, current approaches to wind design. In this respect, the 10 current state of knowledge on the factors that affect building performance via extreme structural 11 12 response, damage to the envelope system, and nonstructural components, is reviewed and 13 challenges identified. Lastly, the potential benefit of integrating optimization methods is identified while acknowledging the computational difficulty associated with such approaches.

- 15 Keywords: Performance-based Wind Engineering, Hurricanes, Building Envelopes, Probabilistic Damage and Loss Modeling, Extreme
- 16 Winds, Performance-based Deign Optimization

1 INTRODUCTION

With the burgeoning growth of high-rise building construction around the globe and an increased awareness 17 for the creation of sustainable urban habitats, solutions for performance-oriented efficient and economical 18 19 building systems are in great need. To address this, extensive research has been carried out over the past 20 four decades in the area of performance-based engineering (PBE). While initial focus was on developing methods for achieving buildings systems with greater earthquake resistance (e.g. Moehle and Deierlein 21 22 (2004)), the concepts of PBE have extended to other hazards, including wind, fire and tsunamis (e.g. Ciampoli et al. (2011); Wang et al. (2012); Attary et al. (2017). Furthermore, the successful development 23 of performance-based seismic engineering (PBSE) and its adoption in codes and practice over the past two 24 25 decades has provided strong evidence for, not only the application of similar approaches for other natural 26 and man made hazards, but also risk-consistent multi-hazard design approaches (Gardoni and LaFave 27 (2016); Suksuwan and Spence (2018); Kwag et al. (2021)). To successfully transfer this knowledge to 28 wind engineering, the fundamental differences between seismic and wind effects for both structural and 29 non-structural components, especially the envelope system, must be embraced while respecting the unique characteristics of wind loading and concurrent hazards (e.g., rainfall and debris impact). 30

Wind-excited structures have been historically designed to respond elastically under strength-level loads. In transitioning to a PBE setting, there is growing interest allowing controlled inelastic deformation in 32 specifically designed members under extreme winds (ASCE/SEI, 2019). The advantages of such as design approach are two fold, first it provides a means to engineer more economic systems through enabling the exploration of the full resistance of materials and components, secondly, it provides a means to 35 design innovative systems for resisting both wind and seismic actions when they are comparable. These advantages come at the price of requiring careful assessment of the response of both the deformationcontrolled components as well as the system as a whole. This implies the need for development of design guidelines that are informed by research on the hysteretic response and damage accumulation until collapse of structures designed with controlled inelasticity, as well as the consequences of such a design philosophy on the performance metrics and reliabilities of such systems. In the same vein, performance assessment frameworks for the building envelope (i.e. cladding system) and nonstructural components/systems need 42 to be capable of quantifying potential damage arising from dynamic wind pressures, structural response, wind-driven rain, and wind-borne debris. Fundamental to such an assessment is the proper capture of the dependence between structural response and the net pressure demands of the envelope system as this will dictate the capacity of the cladding system to resist the hazards (Ouyang and Spence, 2019).

This paper is written and organized to serve as a review of the origins of PBWE. Through reflecting on 47 48 the beginnings of PBSE, the major considerations enabling the leap from the current state-of-practice to a PBWE setting are discussed. The unique challenges and the latest developments in this transition are 49 outlined. The potential benefits and challenges to integrating PBWE with optimization are also discussed. 50

PERFORMANCE-BASED ENGINEERING

Performance-based engineering may be defined as the practice of thinking and working in terms of ends rather than means (Gibson, 1982; Ellingwood, 1998). Considering a building system as an example, 52 performance-based design (PBD) centers on what the building system is required to do rather than explicitly 53 54 prescribing how it is to be constructed. While there is a strong interest in moving towards such an approach when it comes to designing buildings to resist natural hazards, most building codes are still prescriptive 55 in nature (Meacham, 2010). In a typical building design process, design professionals select, proportion, 56 and detail components to satisfy prescriptive criteria contained within a building code. Many of these 57 criteria were developed with the intent to provide some level of performance; however, the intended 58 performance levels are often fuzzy, and the actual ability of the resulting designs to provide the intended 59 reliability is seldom evaluated or understood (Federal Emergency Management Agency (FEMA), 2012a; 60 Ellingwood, 2001). An area of structural engineering that has been particularly active in attempting to 61 62 apply the principles of PBD is that concerning the design of buildings to resist earthquakes.

3 PERFORMANCE-BASED SEISMIC ENGINEERING (PBSE)

3.1 First generation of PBSE 63

31

33

34

36

37

38

39

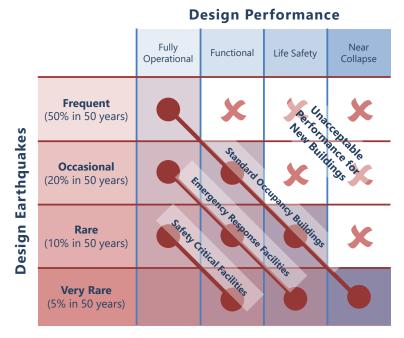
40

41

43

44

45


46

64 Traditional prescriptive provisions for seismic design were developed commencing from the late 1920s (Applied Technology Council (ATC), 1995a) and can be viewed as implicitly performance-oriented in 65 that they were developed with the intent of achieving specific performance, that is avoidance of collapse 66 and assurance of life safety. However, damage assessments made on buildings following minor, moderate 67 and intense ground shaking over the past 80+ years have shown that these implicit performance targets 68 cannot be reliably realized following such an approach (Whittaker et al., 2003). The significant economic 69

losses, as well as the loss of function of critical facilities, during the 1989 Loma Prieta and 1994 Northridge 71 earthquakes may be seen as the events that spurred the initial development of modern performance-based 72 seismic design with the aim of developing resilient, loss-resistant communities (Whittaker et al., 2003; 73 Ghobarah, 2001). Indeed, in the early to mid 1990s, FEMA funded the Applied Technology Council 74 (ATC) and the Building Seismic Safety Council (BSSC) with the aim of developing procedures for the 75 implementation of performance-based seismic design (PBSD). This led to the publication of the NEHRP 76 Guidelines and Commentary for Seismic Rehabilitation of Buildings (Federal Emergency Management 77 Agency (FEMA), 1997). The concepts and procedures proposed in this work are generally considered 78 to constitute the foundation of the first generation of PBSD methods. In particular, several important 79 earthquake-related concepts that may now be considered not only as a baseline for understanding the 80 underlying philosophy of PBSD, but also the starting point for applying the principles of PBD to resist other natural and mad-made hazards, were conceptualized (Whittaker et al., 2003; Moehle and Deierlein, 81 2004). Other important pioneering PBSD efforts that significantly contributed to this end include the 82 83 SEAOC's Vision 2000 (Structural Engineers Association of California (SEAOC), 1995), ATC-32 (Applied Technology Council (ATC), 1996a) and ATC-40 (Applied Technology Council (ATC), 1996b) reports as 84 well as the FEMA 356 (Federal Emergency Management Agency (FEMA), 2000a) report. The key concept 86 introduced by the aforementioned works was the idea of performance objective, consisting of a design event 87 of specified intensity (earthquake hazard), which the building is to be designed to resist, and a permissible level of damage (performance level) given that the design event occurs. In particular, standard performance 88 89 levels with performance-oriented descriptions (Fully Operational, Functional - referred to as Immediate Occupancy in Applied Technology Council (ATC) (1995b) - Life Safety, and Near Collapse - referred to as 90 Collapse Prevention in Applied Technology Council (ATC) (1995b)) were introduced for quantifying both 91 structural and non-structural damage in terms of typical response parameters (inter-story drifts, inelastic 92 member deformations, member forces etc.) therefore defining a number of standard performance objectives 93 as illustrated in Fig. 1 for three different occupancy categories. For this first generation of PBSD procedures, 94 95 a building was said to satisfy its global objectives if structural analyses indicated that the member forces or deformations imposed on each element did not exceed predefined limits (Porter, 2003). 96

97 3.2 Current state of research for PBSE

98 While the first generation of PBSD methodologies represented an important milestone in the practical 99 application of the PBD principles to earthquake resilient design, several shortcomings were identified (Whit-100 taker et al., 2003; Moehle and Deierlein, 2004; Porter, 2003). Among these were: (1) the performance of the 101 system is identified on the basis of damage sustained at a component-level; (2) the inherent uncertainty that 102 affects all aspects of the structural response prediction was not explicitly modeled (Ellingwood, 2008); and 103 (3) the standard discrete performance levels did not directly address some primary stakeholders' concerns, 104 such as probable repair costs and time of occupancy loss in the building, due to earthquake induced damage. 105 To address these and other limitations, FEMA published an action plan (Federal Emergency Management Agency (FEMA), 2000b, 2006) for the development of the next generation of PBSD procedures. This resul-106 107 ted in the publication by FEMA of the P-58 volumes (Federal Emergency Management Agency (FEMA), 108 2012a,b,c). These volumes outline a general methodology for the seismic performance assessment of 109 individual buildings that explicitly accounts for the inevitable uncertainty in the ability to accurately predict response while communicating performance through system-level measures that are easily understood by 110 decision-makers and/or stakeholders, i.e. probable consequences, in terms of human losses (deaths and 111 serious injuries), direct economic losses (building repair or replacement costs), and indirect losses. The 112 recent completion of phase 2 of the FEMA P-58 project, in which, among other products, the performance 113

Figure 1. Standard performance objectives, SEAOC's Vision 2000 (Structural Engineers Association of California (SEAOC), 1995)

of a suite of archetype code conforming buildings were evaluated in terms of the P-58 performance metrics (Federal Emergency Management Agency (FEMA), 2018), promise to continue the evaluation of seismic 115 116 standards and codes towards the principles of PBE. The technical backbone of the procedure is based on 117 the well-known analytical framework developed by the researchers at the Pacific Earthquake Engineering Research Center (PEER) during the period between 1997 and 2010 (Moehle and Deierlein, 2004; Cornell 118 and Krawinkler, 2000; Günay and Mosalam, 2013; Yang et al., 2009). Unlike the first generation of PBD 119 methodologies, in order to provide results that can be used by a multitude of decision models, performance 120 can be assessed for a particular earthquake scenario or intensity, or considering all earthquakes that could 121 122 occur, and the likelihood of each, over a specified period of time. While the framework was developed for PBSD, it is relatively general and can be considered as a convenient analytical language with which 123 to implement the principles of PBD for obtaining resilient and risk-consistent structures to mitigate the 124 effects of other natural hazards. 125

4 WIND ENGINEERING

4.1 Current practice

126

127

128

129 130

131

132

133

134

The current state-of-the-practice in wind engineering involves the selection of hazard intensities, derived from an appropriate code or standard, with which to carry out performance assessments and therefore design the structural elements of a building or facility. Taking for example the ASCE 7-16 (ASCE 7-16 (2016)), the hazard intensity is given by the maximum 3-second gust wind speed with prescribed mean recurrence interval (MRI). Which MRI to consider is generally governed by the level of resilience that the designer/stakeholder wishes to give the structure, e.g. in the ASCE 7-16 a risk category I, II, III, or IV is selected. Based on the wind speed with prescribed MRI, wind loads are derived that account for aspects such as wind exposure, topography, wind directionality as well as the external geometry of the

building under consideration. The loads so obtained are in general to be used for strength level design, i.e. 135 136 the ultimate limit state that has the purpose of ensuring life safety. Once the loads are defined for a given building/facility, an appropriate material code (e.g. ACI 318-11 (2012) for reinforced concrete buildings 137 138 and AISC 360-16 (2016) for structural steel buildings) is generally adopted for designing the structural 139 elements. These provide detailed prescriptive requirements that the design engineer should comply with 140 in order to ensure life safety. While the procedure outlined above is relatively effective in ensuring the 141 adequacy of the main wind force resisting system (MWFRS), some observations can be made: (1) the 142 process is prescriptive, therefore the actual performance of the system is not known, it is only implicitly 143 assumed to be achieved through following the prescriptions (Griffis et al., 2013; Ghosn et al., 2016b,a); 144 (2) the process is largely deterministic, even though it is known that modeling assumptions greatly affect 145 the results of the procedure (Griffis et al., 2013; Ghosn et al., 2016b,a); (3) the damage sustained by non-structural elements due to excessive drift of the MWFRS is not explicitly contemplated even though 146 147 it often plays an important economic role in defining the overall building performance (Griffis, 1993; 148 Aswegan et al., 2015; Ghosn et al., 2016b,a); (4) only prescriptive measures, instructions to use impact resistant glazing or storm shutters in wind prone regions etc., are considered for mitigating the risk of 149 150 debris impact to the building envelope, i.e. no explicit assessment of the risk associated with this important 151 loss mechanism (ASTM, 2007a,b; Vickery, 1970; Wyatt and May, 1971; Tsujita et al., 1998; Ohkuma et al., 1998; Chen and Davenport, 2000; Tamura et al., 2001; Hong, 2004; Gani and Légeron, 2011; Vamvatsikos 152 153 and Cornell, 2002; Maier, 1979; König and Maier, 1981; König, 1987; Maier and Munro, 1982; Maier and 154 Lloyd-Smith, 1986) is contemplated; (5) losses associated with water ingress due to wind-driven rain, and therefore damage to interior non-structural elements such as partitions, fixed furniture, ceilings, doors etc., 155 156 is not considered even though it can account for a significant portion of the total losses associated with 157 extreme wind events (Maier et al., 2000).

4.2 Limitations of current practice

158

The limitations outlined above of current wind engineering practice can only be rectified through the 159 definition of a full PBD philosophy similar to that outlined in Section 3 concerning the earthquake resistant 160 design of structures. However, the direct transfer of these concepts to the field of wind engineering 161 is not possible due to: 1) the unique excitation mechanism associated with complex phenomena such 162 as turbulence, detached flow and vortex shedding, that are the driving forces behind pressure induced 163 damage to the building envelope; 2) the difference in the ultimate performance of wind excited structures 164 compared to earthquake excited structures (e.g. wind excited structural components generally experience 165 less damage than non-structural components); 3) the considerably longer duration of wind excitation 166 that make progressive and interdependent damage mechanisms the norm; 4) the important role played 167 by performance objectives, such as envelope penetration due to debris or water ingress, that are not 168 contemplated in earthquake resistant design. Notwithstanding these differences, the framework proposed 169 by FEMA in Federal Emergency Management Agency (FEMA) (2012a,b,c) represents a useful and 170 established language with which the principles of PBD can be applied to other natural hazards, including 171 severe windstorms. Additionally, it is important to recognize that while performance objectives, such as 172 173 fully operational and immediate occupancy, originate in PBSE (as discussed in Section 3.1), they represent 174 statements of desired building functionality at specified load intensities. Therefore, in defining target 175 performance objectives for wind excited structures, the qualitative goals of the aforementioned performance 176 objectives can be retained. Having said this, it should be recognized that additional performance objectives, such as those associated with evacuation prior to severe hurricanes, may be required in developing 177 178 frameworks the effective implementation of PBWE.

5 PERFORMANCE-BASED WIND ENGINEERING (PBWE): THE FRONTIER

179 5.1 Beginnings

The devastation and significant economic losses caused by hurricanes Andrew (\$27.3 billion (1992) 180 181 USD)), Iniki (\$3.1 billion (1992 USD)) and Opal (\$4.7 billion (1995 USD)) during the 1990s, together 182 with the growing acceptance of PBSE, can be seen as events that spurred initial interest applying the principles of PBE in the assessment and design of wind excited structures (Ellingwood et al., 2004). One 183 184 of the first frameworks to be proposed for PBWE focused on the performance assessment of residential 185 wood structures (Rosowsky and Ellingwood, 2002). Important contributions of this work included the conceptualization of a suite of performance objectives (from serviceability to ultimate load levels) for 186 187 wind excited residential buildings, the identification of the need for system-level analysis (as opposed to 188 traditional component-level analysis) if greater confidence in performance predictions were to be achieved, as well as the need to consider uncertainty. Subsequent to this work, the possibility of modeling the 189 190 performance of wind excited engineered structures within a PBWE setting began to take root (Paulotto 191 et al., 2004; Bashor and Kareem, 2007; Augusti and Ciampoli, 2008; Ciampoli et al., 2011). The initial 192 focus of these works was primarily on establishing the applicability of the PEER framework (Cornell and Krawinkler, 2000; Günay and Mosalam, 2013; Yang et al., 2009), or similar (i.e. reliability integral), 193 194 to the performance assessment of wind excited tall buildings and long span bridges. Since these initial research efforts, PBWE has seen an explosion of interest with numerous frameworks being proposed for 195 196 both residential buildings (Rosowsky and Ellingwood, 2002; Barbato et al., 2013; Baheru et al., 2015; 197 Peng et al., 2016; Unnikrishnan and Barbato, 2017) as well as engineered systems (Ciampoli et al., 2011; Griffis et al., 2013; Spence and Kareem, 2014; Bernardini et al., 2015; Judd and Charney, 2015; Chuang 198 and Spence, 2017; Cui and Caracoglia, 2018; Judd, 2018; Ierimonti et al., 2019; Mohammadi et al., 2019; 199 200 Chuang and Spence, 2019; Micheli et al., 2019; Cui and Caracoglia, 2020; Ouyang and Spence, 2020).

5.2 Current status

201

Over the past decade, significant progress has been made towards the development of general PBWE 202 frameworks for the probabilistic assessment and optimal design of engineered systems subject to severe 203 winds. Major breakthroughs have been achieved in modeling structural and non-structural damage and 204 loss due to both synoptic and hurricane winds through probabilistic system-level metrics associated with 205 repair costs, down time, life cycle costs, as well as occupant comfort (Ciampoli et al., 2011; Petrini 206 and Ciampoli, 2012; Griffis et al., 2013; Spence and Kareem, 2014; Bernardini et al., 2015; Judd and 207 Charney, 2015; Chuang and Spence, 2017; Cui and Caracoglia, 2018; Judd, 2018; Ierimonti et al., 2019; 208 Mohammadi et al., 2019; Chuang and Spence, 2019; Micheli et al., 2019; Cui and Caracoglia, 2020; 209 Ouyang and Spence, 2020). Progress has also been made to extend PBWE for non-synoptic wind events 210 characterized by intricate vortical flows, such as those found in tornadoes and thunderstorm downbursts (Le 211 and Caracoglia, 2018, 2020; Masoomi and van de Lindt, 2016). Notwithstanding these efforts, there is still 212 a lack of consensus on the most appropriate wind field models for capturing the complexities of tornado 213 and thunderstorm downburst flows within a PBWE setting, as well as a need for more general models for 214 simulating the non-stationary and non-straight fluctuating load component while retaining computational 215 efficiency. Interestingly, the closer relationship of non-synoptic winds (as compared to synoptic) to seismic 216 loading may indicate the possibility of translating some of the approaches used in seismic engineering for 217 dissipating energy through material nonlinearity to PBWE. The adoption of such an approach, however, 218 would require careful validation, since non-synoptic winds are not necessarily zero-mean. As will be 219 discussed in more detail in Section 6, approaches have also been proposed for the single-/multi-objective 220

design optimization within the space of the aforementioned probabilistic system-level metrics (Spence 221 222 and Kareem, 2014; Spence, 2018; Suksuwan and Spence, 2019b,a; Venanzi et al., 2020; Petrini et al., 223 2020). While many of these frameworks were initially inspired by the fragility/consequence function 224 damage/loss modeling approaches introduced by the PEER framework (and subsequently refined in the 225 P-58 methodologies), they have since evolved to include additional metrics, e.g. life cycle costs, as well as 226 wind specific performance criteria associated with, for example, occupant comfort (Bernardini et al., 2015). 227 Importantly, during this evolution, they have generally preserved the fundamental idea underpinning the 228 PEER framework of explicitly evaluated probabilistic system-level metrics that can be understood by a 229 wide range of technical and non-technical decision makers.

Two important limitations of many of the aforementioned frameworks include: 1) the neglect of damage to the envelope system due to direct action of local net wind pressures; and 2) the assumption that the MWFRS can be modeled as elastic (structural damage is only implicitly modeled through fragility functions evaluated from demands estimated from elastic models of the MWFRS).

234235

236

237238

239

240241

242

243244

245

246

247

248249

250

251

252

253

254

255

256

257

258 259

260

261 262

263

264

With respect to the first point, recent extensions of the Florida Public Hurricane Loss Model (FPHLM) to mid-rise residential buildings (e.g. Pita et al. (2016)) have considered these aspects. Nevertheless, the intent of the FPHLM is the performance assessment of portfolios containing hundreds of buildings. The detail with which each building is modeled is not therefore at the level of PBWE where the focus is on the performance assessment of individual buildings. With an explicit focus on individual buildings and PBWE, a fragility-based progressive damage model was recently introduced in Ouyang and Spence (2019). Within the framework, each component of the envelope system is modeled as susceptible to multiple coupled damage states characterized through suites of fragility functions. Demands are modeled through dynamic drift and net pressure characterized through non-Gaussian stochastic models calibrated to specific wind tunnel tests. To model the wind driven rain on the envelope due to the rain event that inevitably accompanies severe windstorms, Eulerian multiphase models based on computational fluid dynamics were adopted. The approach was subsequently embedded with a conditional stochastic simulation scheme, therefore defining a PBWE framework capable of estimating system-level loss and consequences related to decision variables such as repair costs and ingressed water due to envelope damage (Ouyang and Spence, 2020). This approach has recently been extended to consider nonlinearity in the MWFRS (Ouyang and Spence, 2021b) as well as more complex representations of the wind hazard, i.e., the non-stationary/-straight/Gaussian wind pressures that are characteristic of hurricanes before idealization (Ouyang and Spence, 2021a).

With respect to the second point, the neglect of potential nonlinearity in the MWFRS can be traced back to the following difficulties: 1) the long duration (in the order of hours) of typical dynamic wind loads, therefore creating a significant computational barrier to propagating uncertainty through nonlinear models of the MWFRS in determining the probabilistic performance metrics; and 2) the complexity of modeling the nonlinear response of the MWFRS where the presence of a substantial mean wind load component (for certain wind directions) creates theoretical difficulties in applying state-of-the-art nonlinear modeling approaches that have been calibrated to zero mean seismic loads. The long duration and substantial mean wind load for certain directions also make the exploitation of nonlinear material behavior for energy dissipation less straightforward than in seismic engineering, since potential issues can arise due to low-cycle fatigue failure and lack of complete internal force reversal in the structural elements. Notwithstanding these challenges, the neglect of potential damage to the MWFRS is fundamentally contrary to the concept of PBE that is based on the explicit modeling of performance of the system over a full range of hazard intensities. This has inspired interest in developing methods that can explicitly treat damage through nonlinear modeling of the MWFRS. In addition to studies that have looked at understanding specific

PBWE Spence et al.

aspects of inelasticity from a fundamental standpoint, e.g. (Hong, 2004; Gani and Légeron, 2011; Feng and 265 Chen, 2017, 2018; Bezabeh et al., 2021a,b), two approaches have essentially been investigated within the 266 267 setting of PBWE. The first is based on application of the theory of plasticity through defining the state of dynamic shakedown as a collapse prevention performance objective (Chuang and Spence, 2017, 2019; 268 Tabbuso et al., 2016; Chuang and Spence, 2020, 2022), while the second is based on directly applying 269 270 nonlinear modeling approaches developed in seismic engineering for the nonlinear analysis of the MWFRS (Judd and Charney, 2015; Mohammadi et al., 2019; Nikellis et al., 2019; Ouyang and Spence, 2021b; 271 Ghaffary and Moustafa, 2021; Huang and Chen, 2022). The intent of the first approach is to rapidly 272 provide a means for identifying a region in which inelasticity can occur safely, i.e. without potential 273 274 failure due to low-cycle fatigue (acrosswind failure), ratcheting (alongwind failure), instantaneous plastic collapse, or excessive plastic deformation. The computational efficacy of the approach enables evaluation 275 of reliability through direct stochastic simulation (Chuang and Spence, 2022). While the second approach 276 277 provides greater modeling flexibility, a major challenge lies in the huge computational effort necessary to propagate uncertainty through the nonlinear finite element models (due to the long duration of wind 278 events as compared to earthquakes) and therefore estimate general system-level damage/loss metrics that 279 are consistent with current PBWE frameworks. 280

The need to bring low-rise buildings under the umbrella of PBWE is strongly recognized as they represent the majority of the building stock in the United States. Better damage assessment through frameworks 282 that are based on the principles of PBWE would support improved residential building practices, and limit economic losses and social disruption (Ellingwood et al., 2008). Interestingly, as mentioned in Section 5.1, one of the earliest works in conceptualizing PBWE concerned the performance assessment of residential wood structures (Rosowsky and Ellingwood, 2002). Although research in the area of PBWE of low-rise buildings has lagged that of engineered buildings, some notable recent research efforts include the development of initial PBWE frameworks for non-engineered buildings with multi-hazard considerations (Unnikrishnan and Barbato, 2017, 2016), introduction of scales for classifying post-disaster structural functionality within the setting of PBWE (Nevill and Lombardo, 2020), wind-induced damage assessment of low-rise building envelopes with potential openings (Ji et al., 2020), and the experimental investigation of the propagation of wind-driven rain into the building interior of low-rise buildings (Raji et al., 2020).

Translation to codes and standards 5.3

281

283

284

285

286

287

288

289

290

291 292

293

300

301

302

303

304

305

306

The important research developments outlined in Section 5.2, coupled with the significant interest from 294 industry to implement PBWE in practice, has culminated in the recent publication by the American Society 295 of Civil Engineers (ASCE) of the Prestandard on PBWD (ASCE/SEI, 2019). Major innovations of this 296 document are the introduction of limit states that explicitly allow (for the first time) nonlinearity in the 297 298 MWFRS, the explicit integration of acceptance criteria related to the performance of the envelope system, and the definition of performance objectives over a full range of hazard intensities. 299

The performance objectives span occupant comfort through serviceability to ultimate strength where additional capacity arising from controlled inelasticity is permitted. To demonstrate building functionality across the range of objectives, linear elastic analysis is permitted for evaluating occupant comfort and operational performance targets since the system itself is required to remain elastic, whereas advanced analysis procedures can be employed to evaluate the continuous occupancy performance objective. To this end, three methods have been proposed, with two of them requiring nonlinear response history analysis or reliability-based dynamic shakedown to evaluate the intended performance of the deformation-controlled

elements. The Prestandard has also explicitly included performance objectives and acceptance criteria for the evaluation of the building envelope and non-structural components.

As a relevant example of adoption in building design/construction practices of performance-based 309 310 engineering, PBSE took around 25 to 30 years to advance from conception to widespread acceptance in practice. As highlighted in Section 2, first-generation of PBSE began in the early 1990s with second-311 generation PBSE starting in the early 2000s and achieving a certain maturity by the mid-2010s with 312 313 widespread acceptance and adoption by industry thereafter. Similarly, since the beginning of focused research on PBWE in the late 2000s, significant progress has been made over the past decade. The release 314 of the Prestandard on PBWD is a major milestone and, if current research and standard development efforts 315 316 continue, a similar trend as seen for PBSE can be expected, leading to the widespread implementation in 317 practice of PBWE in the next 10 to 15 years.

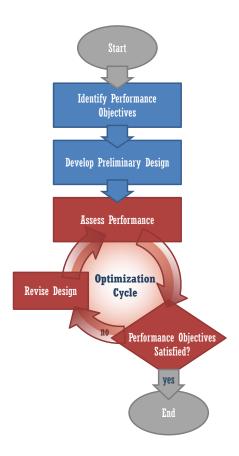
6 THE ROLE OF OPTIMIZATION IN PBWE

318 6.1 General comments

341

342

343 344


345

346

As has been outlined in the previous sections, the practical implementation of modern PBD requires the 319 rigorous use of reliability/probabilistic models for the performance evaluation of the system. Compared to 320 traditional deterministic design, this approach therefore entails the use of more complex and computationally 321 322 cumbersome models. This makes the traditional trial-and-error approach to finding designs that satisfy the 323 multiple performance objectives both time-consuming and non-intuitive. This is further compounded if systems that are economically optimum in meeting the performance goals are also desired. To overcome 324 these difficulties, PBD procedures must be coupled with optimization algorithms, as shown in Fig. 2, that 325 are capable of rigorously handling the reliability/probabilistic performance assessment models of current 326 327 PBWE frameworks. A class of optimization methodologies that respond to this need is constituted by the 328 reliability-based design optimization (RBDO) algorithms (Schuëller and Jensen, 2008; Valdebenito and 329 Schuëller, 2010). Indeed, in RBDO the aim is the resolution of problems that are characterized by generally 330 deterministic cost/objective functions subject to a number of probabilistic constraints (e.g. Valdebenito 331 and Schuëller (2010)). The recent boom in computational power has spawn intense research in this area 332 as it has opened the door to the possibility of solving problems that were previously deemed intractable. 333 Notwithstanding these research efforts, there is still need for the development of specific RBDO algorithms that efficiently yield optimum solutions to practical probabilistic PBD problems that are often posed in 334 terms of multiple performance constraints, high-dimensional random variable vectors as well as discrete 335 336 high-dimensional design variable vectors. As outlined in Federal Emergency Management Agency (FEMA) (2006), each of these characteristics makes the RBDO problem non-trivial due to the implicit nature, in 337 338 terms of the design variable vector, of the probabilistic constraints and the inherently nested nature of the reliability analysis within the optimization loop (Valdebenito and Schuëller, 2010; Aoues and Chateauneuf, 339 2010). 340

6.2 Challenges, Existing Solutions and Opportunities

The main difficulty in solving the optimization loop outlined in Fig. 2 is presented by the probabilistic nature of the performance assessment that essentially requires the resolution of a reliability integral similar to that of the classic PEER framework (Ouyang and Spence, 2020, 2021b). Indeed, the treatment of this type of integral within an optimization problem is characterized by the following difficulties: 1) it is implicit in the design variable vector therefore hindering sensitivity analyses; 2) its evaluation requires

Figure 2. The role of optimization in PBD.

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

probabilistic analyses which will in general be computationally cumbersome. These difficulties are further compounded if the design variable vector is of high dimensions (hundreds of components), as is the case for many practical applications, and if the number of constraints to be considered is also elevated. Further complication is added if the uncertain vector has more than a handful of components as this will practically eliminate the possibility of using approximate reliability analysis (first or second order reliability methods) due to the increasing difficulty this produces in finding the design point (Schuëller et al., 2003). In addition, the various methods that have been developed over the years for optimizing stochastic systems modeled through large and complex finite element models (e.g. metamodeling approaches (Zhu et al., 2011; Chen et al., 2015; Moustapha et al., 2016), subset simulation optimization (SSO) (Taflanidis and Beck, 2009; Jia and Taflanidis, 2013; Jia et al., 2015), and sequential optimization methods (Du and Chen, 2004a; Zou and Mahadevan, 2006a; Jensen et al., 2008a; Valdebenito and Schuëller, 2011; Jensen et al., 2012)), are not generally applicable to systems with more than a dozen or so free design parameters. The main reason for this can be traced back to how the focus of the aforementioned approaches is mainly on treating problems with complex and generally nonlinear response behaviors. In the case of the large-scale structures often found in practice, this can represent a significant limitation as these systems are generally designed in terms of hundreds of free parameters. A philosophical approach that can in theory efficiently treat problems with high-dimensional design spaces is that based on decoupling the probabilistic analysis from the optimization loop through approximations that are constructed from information pertaining to a limited number of probabilistic analyses (Spence and Gioffrè, 2012; Royset et al., 2001; Du and Chen, 2004b; Zou and Mahadevan, 2006b; Ching and Hsieh, 2007; Jensen et al., 2008b; Valdebenito and Schuëller, 2011).

PBWE Spence et al.

This approach has been explored within the context of PBWE with the introduction of schemes for both 367 368 single and multi-objective optimization while considering performance metrics ranging from accelerations 369 at the performance objective of occupant comfort (Spence, 2018), through drifts and component responses 370 at the performance objectives of serviceability and continuous occupancy (Spence and Kareem, 2014), to explicit evaluation of system-level loss metrics (Suksuwan and Spence, 2019b,a; Subgranon and Spence, 371 372 2021). This approach has also be extended to topology optimization formulated explicitly in the space of PBWE metrics (Bobby et al., 2016; Kareem et al., 2013; Bobby et al., 2014). The difficulty associated with 373 optimizing in high-dimensional spaces of design variables can be avoided by choosing small subsets of 374 375 parameters that are most influential to the performance metrics. For example, recent works have looked at 376 optimally choosing the parameters of auxiliary damping devices for minimizing a variety of performance 377 metrics (Venanzi et al., 2020; Petrini et al., 2020).

7 **SUMMARY AND CONCLUSION**

378

379

381

387

388

389 390

391

395

396

397

This paper reviewed the origins and current state-of-the-art of PBWE that is poised to inform the next generation of load and design codes for wind. A historical account is presented and pioneering works are briefly summarized with key emphasis on the differences between PBSE and PBWE. The current state of 380 practice is reviewed, and its limitations are highlighted. The broad areas of active research within PBWE 382 are identified as the inelastic modeling/design of wind excited structures and the modeling of the envelope performance that includes consideration of the risk from wind driven rain and debris impact. The role of 383 optimization was discussed within the context of optimally satisfying the performance objectives associated 384 385 with occupant comfort, serviceability and ultimate capacity. Additional areas of future research include the 386 experimental validation of the state-of-the-art numerical frameworks associated with, but not limited to, wind load modeling and nonlinear structural analysis, with particular attention on assessing the validity of models/tools borrowed from seismic engineering. In a similar vein, the applicability of the R-factor (force reduction factor), ductile detailing concepts and innovative damping devices in PBWE, and more in general, in mixed hazard environments, require investigation. Additional research developments that would be of relevance concern the assimilation of field data on cladding performance during hurricane events. This would enable the establishment of better semi-empirical fragility functions as well as damage states 392 393 and consequence functions for describing building envelope performance. More research on PBWE of 394 low-rise structures as well as PBWE for non-synoptic winds is also needed. In conclusion, the significant advances in PBWE of the past decade are changing the way buildings are assessed and designed against wind. Although there is still much to be done, the continued development of PBWE promises to enhance the resilience of future communities to extreme wind events while increasing sustainability through enabling 398 greater design innovation.

CONFLICT OF INTEREST STATEMENT

399 The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. 400

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it 401 402 for publication.

FUNDING

- 403 The research effort was supported in part by the United States (US) National Science Foundation (NSF)
- 404 under Grants No. CMMI-1462084, CMMI-1562388, CMMI-1750339, and CMMI-2118488. This support
- 405 is gratefully acknowledged.

DATA AVAILABILITY STATEMENT

- 406 The original contributions presented in the study are included in the article/supplementary material, further
- 407 inquiries can be directed to the corresponding author/s.

REFERENCES

- 408 ACI 318-11 (2012). Building code requirements for structural concrete and commentary. American
- 409 Concrete Institute (ACI)
- 410 AISC 360-16 (2016). Specification for Structural Steel Buildings. American Institute of Steel Construction
- 411 (AISC), Chicago, IL
- 412 Aoues, Y. and Chateauneuf, A. (2010). Benchmark study of numerical methods for reliability-based design
- optimization. Structural and Multidisciplinary Optimization 41, 277–294
- 414 Applied Technology Council (ATC) (1995a). A critical review of current approaches to earthquake-resistant
- 415 design. Tech. rep., Report no. ATC-34, Redwood City, CA
- 416 Applied Technology Council (ATC) (1995b). Guidelines and commentary for seismic rehabilitation of
- buildings. Tech. rep., Report no. ATC-33, Redwood City, CA
- 418 Applied Technology Council (ATC) (1996a). Seismic design criteria for California bridges: provisional
- 419 recommendations. Tech. rep., Report no. ATC-32, Redwood City, CA
- 420 Applied Technology Council (ATC) (1996b). Seismic evaluation and retrofit of concrete buildings. Tech.
- rep., Report no. ATC-40, Redwood City, CA
- 422 ASCE 7-16 (2016). Minimum design loads and associated criteria for buildings and other structures.
- 423 American Society of Civil Engineers (ASCE), Reston, VA
- 424 ASCE/SEI (2019). Prestandard for performance-based wind design (Prepared by Structural Engieering
- 425 Institute (SEI), American Society of Civil Engineers(ASCE))
- 426 ASTM (2007a). Standard guide for seismic risk assessment of buildings. In ASTM E2026-07 (West
- 427 Conshohocken, PA: ASTM International)
- 428 ASTM (2007b). Standard practice for probable maximum loss (pml) evaluations for earthquake due-
- diligence assessments. In *ASTM E2557-07* (West Conshohocken, PA: ASTM International)
- 430 Aswegan, K., Charney, F. A., and Jarrett, J. (2015). Recommended procedures for damage based
- serviceability design of steel buildings under wind loads. AISC Engineering Journal 52, 1–25
- 432 Attary, N., Unnikrishnan, V. U., van de Lindt, J. W., Cox, D. T., and Barbosa, A. R. (2017). Performance-
- based tsunami engineering methodology for risk assessment of structures. *Engineering Structures* 141,
- 434 676–686
- 435 Augusti, G. and Ciampoli, M. (2008). Performance-based design in risk assessment and reduction.
- 436 Probabilistic Engineering Mechanics 23, 496–508
- 437 Baheru, T., Chowdhury, A. G., and Pinelli, J. P. (2015). Estimation of wind-driven rain intrusion through
- building envelope defects and breaches during tropical cyclones. *Natural Hazards Review* 16, 04014023
- 439 Barbato, M., Petrini, F., Unnikrishnan, V. U., and Ciampoli, M. (2013). Performance-based hurricane
- engineering (PBHE) framework. Structural Safety 45, 24–35

441 Bashor, R. and Kareem, A. (2007). Probabilistic performance evaluation of buildings: an occupant comfort

- perspective. In Proceedings of the 12th International Conference on Wind Engineering (12-ICWE.
- 443 1335–1342
- 444 Bernardini, E., Spence, S. M. J., Kwon, D. K., and Kareem, A. (2015). Performance-based design of
- high-rise buildings for occupant comfort. *Journal of Structural Engineering* 141, 04014244
- 446 Bezabeh, M. A., Bitsuamlak, G. T., and Tesfamariam, S. (2021a). Nonlinear dynamic response of single-
- degree-of-freedom systems subjected to along-wind loads. I: Parametric study. *Journal of Structural*
- 448 Engineering 147, 04021177
- 449 Bezabeh, M. A., Bitsuamlak, G. T., and Tesfamariam, S. (2021b). Nonlinear dynamic response of single-
- degree-of-freedom systems subjected to along-wind loads. II: Implications for structural reliability.
- 451 Journal of Structural Engineering 147, 04021178
- 452 Bobby, S., Spence, S. M. J., Bernardini, E., and Kareem, A. (2014). Performance-based topology
- optimization for wind-excited tall buildings: A framework. *Engineering Structures* 74, 242–255
- Bobby, S., Spence, S. M. J., and Kareem, A. (2016). Data-driven performance-based topology optimization
- of uncertain wind-excited tall buildings. *Structural and Multidisciplinary Optimization* 54, 1379–1402
- Chen, D. and Davenport, A. G. (2000). Vulnerability of tall buildings in typhoons. *Advances in structural dynamics* 2, 1455–1462
- 458 Chen, Z., Peng, S., Li, X., Qiu, H., Xiong, H., Gao, L., et al. (2015). An important boundary sampling
- 459 method for reliability-based design optimization using kriging model. Structural and Multidisciplinary
- 460 *Optimization* 52, 55–70
- 461 Ching, J. and Hsieh, Y. (2007). Approximate reliability-based optimization using a three-step approach
- based on subset simulation. *Journal of Engineering Mechanics* 133, 481–493
- 463 Chuang, W. C. and Spence, S. M. J. (2017). A performance-based design framework for the integrated
- 464 collapse and non-collapse assessment of wind excited buildings. *Engineering Structures* 150, 746–758
- 465 Chuang, W. C. and Spence, S. M. J. (2019). An efficient framework for the inelastic performance
- assessment of structural systems subject to stochastic wind loads. *Engineering Structures* 179, 92–105
- 467 Chuang, W. C. and Spence, S. M. J. (2020). Probabilistic performance assessment of inelastic wind excited
- structures within the setting of distributed plasticity. *Structural Safety* 84, 101923
- 469 Chuang, W. C. and Spence, S. M. J. (2022). A framework for the efficient reliability assessment of
- inelastic wind excited structures at dynamic shakedown. Journal of Wind Engineering and Industrial
- 471 Aerodynamics, In Press
- 472 Ciampoli, M., Petrini, F., and Augusti, G. (2011). Performance-based wind engineering: towards a general
- 473 procedure. Structural Safety 33, 367–378
- 474 Cornell, C. A. and Krawinkler, H. (2000). Progress and challenges in seismic performance assessment.
- 475 PEER Center News 3, 1–4
- 476 Cui, W. and Caracoglia, L. (2018). A unified framework for performance-based wind engineering of tall
- buildings in hurricane-prone regions based on lifetime intervention-cost estimation. *Structural safety* 73,
- 478 75–86
- 479 Cui, W. and Caracoglia, L. (2020). Performance-based wind engineering of tall buildings examining
- life-cycle downtime and multisource wind damage. *Journal of Structural Engineering* 146, 04019179
- 481 Du, X. and Chen, W. (2004a). Sequential optimization and reliability assessment method for efficient
- probabilistic design. *Journal of Mechanical Design* 126, 225–233
- 483 Du, X. and Chen, W. (2004b). Sequential optimization and reliability assessment method for efficient
- 484 probabilistic design. ASME Journal of Mechanical Design 126, 225–233

485 Ellingwood, B. R. (1998). Reliability-based performance concept for building construction. In *Proceedings*

486 of Structural Engineering World Wide. T178–4, CD–ROM

487 Ellingwood, B. R. (2001). Acceptable risk bases for design of structures. *Progress in Structural Engineering*

- 488 *and Materials* 3, 170–179
- 489 Ellingwood, B. R. (2008). Structural reliability and risk assessment and their relevance to performance-
- based engineering. In *Proceedings of Structures and Buildings* (London, UK: Institute of Civil Engineers),
- 491 vol. 161, 199–207
- 492 Ellingwood, B. R., Rosowsky, D. V., Li, Y., and Kim, J. (2004). Fragility assessment of light-frame
- 493 wood construction subjected to wind and earthquake hazards. Journal of Structural Engineering 130,
- 494 1921-1930
- 495 Ellingwood, B. R., Rosowsky, D. V., and Pang, W. (2008). Performance of light-frame wood residential
- 496 construction subjected to earthquakes in regions of moderate seismicity. *Journal of structural engineering*
- 497 134, 1353–1363
- 498 Federal Emergency Management Agency (FEMA) (1997). NEHRP guidelines for the seismic rehabilitation
- 499 of buildings. Tech. rep., Report no. FEMA-273, Washington, DC
- 500 Federal Emergency Management Agency (FEMA) (2000a). Prestandard and commentary for seismic
- rehabilitation of buildings. Tech. rep., Report no. FEMA-356, Washington, DC
- 502 Federal Emergency Management Agency (FEMA) (2000b). Action plan for performance based seismic
- 503 design. Tech. rep., Report no. FEMA-349, Washington, DC
- 504 Federal Emergency Management Agency (FEMA) (2006). Next-generation performance-based seismic
- 505 design guidelines Program plan for new and existing buildings. Tech. rep., Report no. FEMA-445,
- 506 Washington, DC
- 507 Federal Emergency Management Agency (FEMA) (2012a). Seismic Performance Assessment of Buildings,
- 508 *Volume 1 Methodology (FEMA Publication P-58-1)*. Tech. rep., Washington, D.C.
- 509 Federal Emergency Management Agency (FEMA) (2012b). Seismic Performance Assessment of Buildings,
- 510 *Volume 2 Implementation (FEMA Publication P-58-2).* Tech. rep., Washington, D.C.
- 511 Federal Emergency Management Agency (FEMA) (2012c). Seismic Performance Assessment of Buildings,
- 512 *Volume 3 Supporting electronic materials and background documentation (FEMA Publication P-58-3).*
- 513 Tech. rep., Washington, D.C.
- 514 Federal Emergency Management Agency (FEMA) (2018). Seismic Performance Assessment of Buildings,
- 515 Volume 5 Expected Seismic Performance of Code-Conforming Buildings (FEMA Publication P-58-5).
- 516 Tech. rep., Washington, D.C.
- 517 Feng, C. and Chen, X. (2017). Crosswind response of tall buildings with nonlinear aerodynamic damping
- and hysteretic restoring force character. Journal of Wind Engineering and Industrial Aerodynamics 167,
- 519 62–74
- 520 Feng, C. and Chen, X. (2018). Inelastic responses of wind-excited tall buildings: Improved estimation and
- 521 understanding by statistical linearization approaches. *Engineering structures* 159, 141–154
- 522 Gani, F. and Légeron, F. (2011). Relationship between specified ductility and strength demand reduction
- for single degree-of-freedom systems under extreme wind events. Journal of Wind Engineering and
- 524 Industrial Aerodynamics 109, 31–45
- 525 Gardoni, P. and LaFave, J. M. (2016). Multi-hazard approaches to civil infrastructure engineering:
- 526 Mitigating risks and promoting resilence. In *Multi-hazard approaches to civil infrastructure engineering*
- 527 (Springer). 3–12

528 Ghaffary, A. and Moustafa, M. M. (2021). Performance-based assessment and structural response of

- 529 20-story SAC building under wind hazards through collapse. *Journal of Structural Engineering* 147,
- 530 04020346
- 531 Ghobarah, A. (2001). Performance-based design in earthquake engineering: state of development.
- 532 Engineering structures 23, 878–884
- 533 Ghosn, M., Dueñas-Osorio, L., Frangopol, D. M., McAllister, T., Bocchini, P., Manuel, L., et al. (2016a).
- Performance indicators for structural systems and infrastructure networks. *Journal of Structural*
- 535 Engineering 142, F4016003–1–18
- 536 Ghosn, M., Frangopol, D. M., McAllister, T. P., Shah, M., Diniz, S. M. C., Ellingwood, B. R., et al. (2016b).
- Reliability-based performance indicators for structural members. *Journal of Structural Engineering* 142,
- 538 F4016002
- 539 Gibson, E. J. (1982). Working with the performance approach in building. Tech. rep., CIB (International
- Council for Research and Innovation in Building and Construction), Rotterdam, The Netherlands.
- 541 Günay, S. and Mosalam, K. M. (2013). Peer performance-based earthquake engineering methodology,
- revisited. *Journal of Earthquake Engineering* 17, 829–858
- 543 Griffis, L. G. (1993). Serviceability limit states under wind loads. Engineering Journal 30, 1–16
- 544 Griffis, L. G., Patel, V., Muthukumar, S., and Baldava, S. (2013). A framework for performance-based wind
- engineering. In Proceedings of the 2012 ATC & SEI Conference on Advances in Hurricane Engineering
- 546 (Miami, FL)
- 547 Hong, H. P. (2004). Accumulation of wind induced damage on bilinear sdof systems. Wind & Structures 7,
- 548 145–458
- 549 Huang, J. and Chen, X. (2022). Inelastic performance of high-rise buildings to simultaneous actions of
- alongwind and crosswind loads. *Journal of Structural Engineering* 148, 04021258
- 551 Ierimonti, L., Venanzi, I., Caracoglia, L., and Materazzi, A. L. (2019). Cost-based design of nonstructural
- elements for tall buildings under extreme wind environments. *Journal of Aerospace Engineering* 32,
- 553 04019020
- Jensen, H. A., Kusanovic, D. S., Valdebenito, M. A., and Schuëller, G. I. (2012). Reliability-based design
- optimization of uncertain stochastic systems: gradient-based scheme. Journal of Engineering Mechanics
- 556 138, 60–70
- 557 Jensen, H. A., Valdebenito, M. A., and Schuëller, G. I. (2008a). An efficient reliability-based optimization
- scheme for uncertain linear systems subject to general gaussian excitation. *Computer Methods in Applied*
- 559 *Mechanics and Engineering* 198, 72–87
- 560 Jensen, H. A., Valdebenito, M. A., and Schuëller, G. I. (2008b). An efficient reliability-based optimization
- scheme for uncertain linear systems subject to general gaussian excitation. *Computer Methods in Applied*
- 562 *Mechanics and Engineering* 198, 72–87
- 563 Ji, X., Huang, G., Wu, F., and Lu, Z.-H. (2020). Wind-induced hazard assessment for low-rise building
- envelope considering potential openings. *Journal of Structural Engineering* 146, 04020039
- 565 Jia, G. and Taflanidis, A. A. (2013). Non-parametric stochastic subset optimization for optimal-reliability
- design problems. Computers and Structures 126, 86–99
- 567 Jia, G., Taflanidis, A. A., and Beck, J. L. (2015). Non-parametric stochastic subset optimization for design
- problems with reliability constraints. Structural and Multidisciplinary Optimization 52, 1185–1204
- 569 Judd, J. P. (2018). Windstorm resilience of a 10-story steel frame office building. ASCE-ASME Journal of
- 570 Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering 4, 04018020
- 571 Judd, J. P. and Charney, F. A. (2015). Inelastic behavior and collapse risk for buildings subjected to wind
- 572 loads. In *Structures Congress* 2015. 2483–2496

Kareem, A., Spence, S. M. J., Bernardini, E., Bobby, S., and Wei, D. (2013). Wind engineering: Using computational fluid dynamics to optimize tall building design. CTBUH journal, 38–43 574

- König, A. (1987). Shakedown of elastic-plastic structures. Fundamental Studies in Engineering 7 575
- König, A. and Maier, G. (1981). Shakedown analysis of elastoplastic structures: a review of recent 576 developments. Nuclear Engineering and Design 66, 81-95 577
- Kwag, S., Gupta, A., Baugh, J., and Kim, H. S. (2021). Significance of multi-hazard risk in design of 578 buildings under earthquake and wind loads. Engineering Structures 243, 112623 579
- Le, V. and Caracoglia, L. (2018). Computationally efficient stochastic approach for the fragility analysis of 580 vertical structures subjected to thunderstorm downburst winds. Engineering structures 165, 152–169 581
- Le, V. and Caracoglia, L. (2020). A neural network surrogate model for the performance assessment of a 582 vertical structure subjected to non-stationary, tornadic wind loads. Computers & Structures 231, 106208 583
- Maier, G. (1979). Shakedown analysis. In Engineering plasticity by mathematical programming, eds. M. Z. 584 Cohn and G. Maier (Pergamon Press), chap. 6. 107–134 585
- Maier, G., Carvelli, V., and Cocchetti, G. (2000). On direct methods for shakedown and limit analysis. 586 European Journal of Mechanics - A/Solids 19, 79–100 587
- Maier, G. and Lloyd-Smith, D. (1986). Mathematical programming applications to engineering plastic 588 analysis: upyear to november 1985. In Applied Mechanics Upyear 1986, eds. C. R. Steele and G. S. 589
- Springer (New York: ASME). 377–383 590
- Maier, G. and Munro, J. (1982). Mathematical programming methods in engineering plastic analysis. 591
- Applied Mechanics Reviews ASME 35, 1631–1643 592
- Masoomi, H. and van de Lindt, J. W. (2016). Tornado fragility and risk assessment of an archetype masonry 593 school building. Engineering Structures 128, 26-43 594
- Meacham, B. J. (2010). A risk-informed performance-based approach to building regulation. *Journal of* 595 *Risk Research* 13, 877–893 596
- 597 Micheli, L., Alipour, A., Laflamme, S., and Sarkar, P. (2019). Performance-based design with life-cycle
- 598 cost assessment for damping systems integrated in wind excited tall buildings. Engineering Structures
- 195, 438–451 599
- Moehle, J. and Deierlein, G. G. (2004). A framework methodology for performance-based earthquake 600 engineering. In Proceedings of the 13th World Conference on Earthquake Engineering 601
- Mohammadi, A., Azizinamini, A., Griffis, L., and Irwin, P. (2019). Performance assessment of an existing 602 47-story high-rise building under extreme wind loads. Journal of Structural Engineering 145, 04018232 603
- Moustapha, M., Sudret, B., Bourinet, J., and Guillaume, B. (2016). Quantile-based optimization under 604
- uncertainties using adaptive Kriging surrogate models. Structural and Multidisciplinary Optimization 605 606 54, 1403–1421
- Nevill, J. B. and Lombardo, F. T. (2020). Structural functionality scale for light-framed wood buildings 607 with indicators for windstorm damage. Journal of Structural Engineering 146, 04020033 608
- Nikellis, A., Sett, K., and Whittaker, A. S. (2019). Multihazard design and cost-benefit analysis of buildings 609 with special moment-resisting steel frames. Journal of Structural Engineering 145, 04019031 610
- Ohkuma, T., Kurita, T., and Ninomiya, M. (1998). Response estimation based on energy balance for 611
- elasto-plastic vibration of tall building in across-wind direction. In Proceedings of the 7th International 612
- 613 Conference on Structural Safety and Reliability (ICOSSAR 97 (Kyoto, Japan), 1379–1386
- Ouyang, Z. and Spence, S. M. J. (2019). A performance-based damage estimation framework for the 614
- building envelope of wind-excited engineered structures. Journal of Wind Engineering and Industrial 615
- Aerodynamics 186, 139 154 616

617 Ouyang, Z. and Spence, S. M. J. (2020). A performance-based wind engineering framework for envelope

- systems of engineered buildings subject to directional wind and rain hazards. *Journal of Structural*
- 619 Engineering 146, 04020049
- Ouyang, Z. and Spence, S. M. J. (2021a). A performance-based wind engineering framework for engineered building systems subject to hurricanes. *Frontiers in Built Environment* 7, 133
- 622 Ouyang, Z. and Spence, S. M. J. (2021b). Performance-based wind-induced structural and envelope damage
- assessment of engineered buildings through nonlinear dynamic analysis. *Journal of Wind Engineering*
- and Industrial Aerodynamics 208, 104452
- Paulotto, C., Ciampoli, M., and Augusti, G. (2004). Some proposals for a first step towards a performance based wind engineering. In *Forum in Engineering Decision Making (IFED)* (Stoos, Switzerland)
- 627 Peng, X., Roueche, D. B., Prevatt, D. O., and Gurley, K. R. (2016). An engineering-based approach
- to predict tornado-induced damage. In Multi-hazard approaches to civil infrastructure engineering
- 629 (Springer). 311–335
- 630 Petrini, F. and Ciampoli, M. (2012). Performance-based wind design of tall buildings. Structure and
- 631 Infrastructure Engineering 8, 954–966
- 632 Petrini, F., Giaralis, A., and Wang, Z. (2020). Optimal tuned mass-damper-inerter (tmdi) design in
- wind-excited tall buildings for occupants' comfort serviceability performance and energy harvesting.
- 634 Engineering Structures 204, 109904
- 635 Pita, G., Pinelli, J. P., Gurley, K., Subramanian, C., and Hamid, S. (2016). Hurricane vulnerability model
- for mid/high-rise residential buildings. *Wind and Structures* 23, 449–464
- 637 Porter, K. A. (2003). An overview of peer's performance-based earthquake engineering methodology. In
- 638 Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil
- 639 Engineering (ICASP9) (San Francisco, CA), vol. 2, 973–980
- 640 Raji, F., Zisis, I., and Pinelli, J. P. (2020). Experimental investigation of wind-driven rain propagation in a
- building interior. *Journal of Structural Engineering* 146, 04020114
- Rosowsky, D. V. and Ellingwood, B. R. (2002). Performance-based engineering of wood frame housing:
- 643 Fragility analysis methodology. *Journal of Structural Engineering* 128, 32–38
- Royset, J., Der Kiureghian, A., and Polak, E. (2001). Reliability-based optimal structural design by the
- decoupling approach. Reliability Engineering & System Safety 73, 213–221
- 646 Schuëller, G. I. and Jensen, H. A. (2008). Computational methods in optimization considering uncertainties
- 647 an overview. Computer Methods in Applied Mechanics and Engineering 198, 2–13
- 648 Schuëller, G. I., Pradlwarter, H. J., and Koutsourelakis, P. S. (2003). A comparative study of reliability
- estimation procedures for high dimensions. In *Proceedings of the 16th ASCE Engineering Mechanics*
- 650 *Conference* (Seattle, WA)
- 651 Spence, S. M. J. (2018). Optimization of uncertain and dynamic high-rise structures for occupant comfort:
- An adaptive kriging approach. *Structural Safety* 75, 57–66
- 653 Spence, S. M. J. and Gioffrè, M. (2012). Large scale reliability-based design optimization of wind excited
- tall buildings. *Probabilistic Engineering Mechanics* 28, 206–215
- 655 Spence, S. M. J. and Kareem, A. (2014). Performance-based design and optimization of uncertain
- wind-excited dynamic building systems. Engineering Structures 78, 133–144
- 657 Structural Engineers Association of California (SEAOC) (1995). Vision 2000 A framework for
- 658 Performance Based Design. Tech. rep., vol. I, II, III, Sacramento, CA
- 659 Subgranon, A. and Spence, S. M. J. (2021). Performance-based bi-objective optimization of structural
- systems subject to stochastic wind excitation. *Mechanical Systems and Signal Processing* 160, 107893

Suksuwan, A. and Spence, S. M. J. (2018). Performance-based multi-hazard topology optimization of 661 wind and seismically excited structural systems. Engineering Structures 172, 573–588 662

- Suksuwan, A. and Spence, S. M. J. (2019a). Performance-based bi-objective design optimization of 663 wind-excited building systems. Journal of Wind Engineering and Industrial Aerodynamics 190, 40–52 664
- Suksuwan, A. and Spence, S. M. J. (2019b). Performance-based design optimization of uncertain wind 665 666 excited systems under system-level loss constraints. Structural Safety 80, 13-31
- Tabbuso, P., Spence, S. M. J., Palizzolo, L., Pirrotta, A., and Kareem, A. (2016). An efficient framework for 667 the elasto-plastic reliability assessment of uncertain wind excited systems. Structural Safety 58, 69–78 668
- Taflanidis, A. A. and Beck, J. L. (2009). Stochastic subset optimization for reliability optimization and 669 sensitivity analysis in system design. Computers and Structures 87, 318–331 670
- Tamura, Y., Yasui, H., and Marukawa, H. (2001). Non-elastic responses of tall steel buildings subjected to 671 across-wind forces. Wind & Structures 4, 147–162 672
- Tsujita, O., Hayabe, Y., and Ohkuma, T. (1998). A study on wind-induced response for inelastic structure. 673
- In Proceedings of the 7th International Conference on Structural Safety and Reliability (ICOSSAR 97 674 (Kyoto, Japan), 1359–1366 675
- Unnikrishnan, V. U. and Barbato, M. (2016). Performance-based comparison of different storm mitigation 676 techniques for residential buildings. Journal of Structural Engineering 142, 04016011 677
- Unnikrishnan, V. U. and Barbato, M. (2017). Multihazard interaction effects on the performance of low-rise 678 wood-frame housing in hurricane-prone regions. Journal of structural engineering 143, 04017076 679
- Valdebenito, M. A. and Schuëller, G. I. (2011). Efficient strategies for reliability-based optimization 680 involving non-linear, dynamical structures. Computers and Structures 89, 1797–1811 681
- Valdebenito, M. A. and Schuëller, G. I. (2010). A survey on approaches for reliability-based optimization. 682 Structural and Multidisciplinary Optimization 42, 645–663 683
- Valdebenito, M. A. and Schuëller, G. I. (2011). Efficient strategies for reliability based optimization 684 involving non-linear, dynamical structures. Computers & Structures 90, 1797–1811 685
- Vamvatsikos, D. and Cornell, C. (2002). Incremental dynamic analysis. Earthquake engineering & 686 structural dynamics 31, 491-514 687
- Venanzi, I., Ierimonti, L., and Caracoglia, L. (2020). Life-cycle-cost optimization for the wind load design 688 of tall buildings equipped with tmds. Wind & Structures 30, 379-392 689
- Vickery, B. J. (1970). Wind action on simple yielding structures. Journal of Engineering Mechanics 690 Division ASCE 96, 107–120 691
- Wang, Y., Burgess, I., Wald, F., and Gillie, M. (2012). Performance-based fire engineering of structures 692 (CRC press) 693
- Whittaker, A., Hamburger, R., and Mahoney, M. (2003). Performance-based engineering of buildings 694 for extreme events. In Proceedings of the AISC-SINY Symposium on Resisting Blast and Progressive 695
- Collapse (New York, NY: American Institute of Steel Construction), 55–66 696
- Wyatt, T. A. and May, H. I. (1971). The ultimate load behavior of structures under wind loading. In 697
- 698 Proceedings of the 3rd International Conference on Wind Effects on Buildings and Structures (Tokyo, Japan), 501–510 699
- 700 Yang, T. Y., Moehle, J., Stojadinovic, B., and Der Kiureghian, A. (2009). Seismic performance evaluation of facilities: methodology and implementation. Journal of Structural Engineering 135, 1146–1154 701
- 702 Zhu, P., Zhang, Y., and Chen, G. (2011). Metamodeling development for reliability-based design optimization of automotive body structure. Computers in Industry 62, 729-741 703
- Zou, T. and Mahadevan, S. (2006a). A direct decoupling approach for efficient reliability-based design 704
- optimization. Structural and Multidisciplinary Optimization 31, 190–200 705

Zou, T. and Mahadevan, S. (2006b). A direct decoupling approach for efficient reliability-based design
optimization. *Structural and Multidisciplinary Optimization* 31, 190–200