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ABSTRACT

This paper surveys the rapidly growing field of performance-based wind engineering (PBWE) of
engineered systems, with focus on not only how PBWE has evolved since its early incarnations
inspired by performance-based seismic engineering, but also the unique challenges of PBWE and
the research that continues to emerge to tackle them. The limitations of traditional prescriptive
wind design approaches are discussed with the aim of illustrating how such approaches are
inadequate for providing acceptable building performance during extreme wind events, thus
motivating why performance-based strategies for wind engineering are gaining traction and are
poised to complement, if not replace, current approaches to wind design. In this respect, the
current state of knowledge on the factors that affect building performance via extreme structural
response, damage to the envelope system, and nonstructural components, is reviewed and
challenges identified. Lastly, the potential benefit of integrating optimization methods is identified
while acknowledging the computational difficulty associated with such approaches.

Keywords: Performance-based Wind Engineering, Hurricanes, Building Envelopes, Probabilistic Damage and Loss Modeling, Extreme

Winds, Performance-based Deign Optimization

1 INTRODUCTION

With the burgeoning growth of high-rise building construction around the globe and an increased awareness
for the creation of sustainable urban habitats, solutions for performance-oriented efficient and economical
building systems are in great need. To address this, extensive research has been carried out over the past
four decades in the area of performance-based engineering (PBE). While initial focus was on developing
methods for achieving buildings systems with greater earthquake resistance (e.g. Moehle and Deierlein
(2004)), the concepts of PBE have extended to other hazards, including wind, fire and tsunamis (e.g.
Ciampoli et al. (2011); Wang et al. (2012); Attary et al. (2017). Furthermore, the successful development
of performance-based seismic engineering (PBSE) and its adoption in codes and practice over the past two
decades has provided strong evidence for, not only the application of similar approaches for other natural
and man made hazards, but also risk-consistent multi-hazard design approaches (Gardoni and LaFave
(2016); Suksuwan and Spence (2018); Kwag et al. (2021)). To successfully transfer this knowledge to
wind engineering, the fundamental differences between seismic and wind effects for both structural and
non-structural components, especially the envelope system, must be embraced while respecting the unique
characteristics of wind loading and concurrent hazards (e.g., rainfall and debris impact).
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Wind-excited structures have been historically designed to respond elastically under strength-level loads.
In transitioning to a PBE setting, there is growing interest allowing controlled inelastic deformation in
specifically designed members under extreme winds (ASCE/SEI, 2019). The advantages of such as design
approach are two fold, first it provides a means to engineer more economic systems through enabling
the exploration of the full resistance of materials and components, secondly, it provides a means to
design innovative systems for resisting both wind and seismic actions when they are comparable. These
advantages come at the price of requiring careful assessment of the response of both the deformation-
controlled components as well as the system as a whole. This implies the need for development of design
guidelines that are informed by research on the hysteretic response and damage accumulation until collapse
of structures designed with controlled inelasticity, as well as the consequences of such a design philosophy
on the performance metrics and reliabilities of such systems. In the same vein, performance assessment
frameworks for the building envelope (i.e. cladding system) and nonstructural components/systems need
to be capable of quantifying potential damage arising from dynamic wind pressures, structural response,
wind-driven rain, and wind-borne debris. Fundamental to such an assessment is the proper capture of the
dependence between structural response and the net pressure demands of the envelope system as this will
dictate the capacity of the cladding system to resist the hazards (Ouyang and Spence, 2019).

This paper is written and organized to serve as a review of the origins of PBWE. Through reflecting on
the beginnings of PBSE, the major considerations enabling the leap from the current state-of-practice to
a PBWE setting are discussed. The unique challenges and the latest developments in this transition are
outlined. The potential benefits and challenges to integrating PBWE with optimization are also discussed.

2 PERFORMANCE-BASED ENGINEERING

Performance-based engineering may be defined as the practice of thinking and working in terms of
ends rather than means (Gibson, 1982; Ellingwood, 1998). Considering a building system as an example,
performance-based design (PBD) centers on what the building system is required to do rather than explicitly
prescribing how it is to be constructed. While there is a strong interest in moving towards such an approach
when it comes to designing buildings to resist natural hazards, most building codes are still prescriptive
in nature (Meacham, 2010). In a typical building design process, design professionals select, proportion,
and detail components to satisfy prescriptive criteria contained within a building code. Many of these
criteria were developed with the intent to provide some level of performance; however, the intended
performance levels are often fuzzy, and the actual ability of the resulting designs to provide the intended
reliability is seldom evaluated or understood (Federal Emergency Management Agency (FEMA), 2012a;
Ellingwood, 2001). An area of structural engineering that has been particularly active in attempting to
apply the principles of PBD is that concerning the design of buildings to resist earthquakes.

3 PERFORMANCE-BASED SEISMIC ENGINEERING (PBSE)
3.1 First generation of PBSE

Traditional prescriptive provisions for seismic design were developed commencing from the late 1920s
(Applied Technology Council (ATC), 1995a) and can be viewed as implicitly performance-oriented in
that they were developed with the intent of achieving specific performance, that is avoidance of collapse
and assurance of life safety. However, damage assessments made on buildings following minor, moderate
and intense ground shaking over the past 80+ years have shown that these implicit performance targets
cannot be reliably realized following such an approach (Whittaker et al., 2003). The significant economic
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losses, as well as the loss of function of critical facilities, during the 1989 Loma Prieta and 1994 Northridge
earthquakes may be seen as the events that spurred the initial development of modern performance-based
seismic design with the aim of developing resilient, loss-resistant communities (Whittaker et al., 2003;
Ghobarah, 2001). Indeed, in the early to mid 1990s, FEMA funded the Applied Technology Council
(ATC) and the Building Seismic Safety Council (BSSC) with the aim of developing procedures for the
implementation of performance-based seismic design (PBSD). This led to the publication of the NEHRP
Guidelines and Commentary for Seismic Rehabilitation of Buildings (Federal Emergency Management
Agency (FEMA), 1997). The concepts and procedures proposed in this work are generally considered
to constitute the foundation of the first generation of PBSD methods. In particular, several important
earthquake-related concepts that may now be considered not only as a baseline for understanding the
underlying philosophy of PBSD, but also the starting point for applying the principles of PBD to resist
other natural and mad-made hazards, were conceptualized (Whittaker et al., 2003; Moehle and Deierlein,
2004). Other important pioneering PBSD efforts that significantly contributed to this end include the
SEAOC’s Vision 2000 (Structural Engineers Association of California (SEAOC), 1995), ATC-32 (Applied
Technology Council (ATC), 1996a) and ATC-40 (Applied Technology Council (ATC), 1996b) reports as
well as the FEMA 356 (Federal Emergency Management Agency (FEMA), 2000a) report. The key concept
introduced by the aforementioned works was the idea of performance objective, consisting of a design event
of specified intensity (earthquake hazard), which the building is to be designed to resist, and a permissible
level of damage (performance level) given that the design event occurs. In particular, standard performance
levels with performance-oriented descriptions (Fully Operational, Functional - referred to as Immediate
Occupancy in Applied Technology Council (ATC) (1995b) - Life Safety, and Near Collapse - referred to as
Collapse Prevention in Applied Technology Council (ATC) (1995b)) were introduced for quantifying both
structural and non-structural damage in terms of typical response parameters (inter-story drifts, inelastic
member deformations, member forces etc.) therefore defining a number of standard performance objectives
as illustrated in Fig. 1 for three different occupancy categories. For this first generation of PBSD procedures,
a building was said to satisfy its global objectives if structural analyses indicated that the member forces or
deformations imposed on each element did not exceed predefined limits (Porter, 2003).

3.2 Current state of research for PBSE

While the first generation of PBSD methodologies represented an important milestone in the practical
application of the PBD principles to earthquake resilient design, several shortcomings were identified (Whit-
taker et al., 2003; Moehle and Deierlein, 2004; Porter, 2003). Among these were: (1) the performance of the
system is identified on the basis of damage sustained at a component-level; (2) the inherent uncertainty that
affects all aspects of the structural response prediction was not explicitly modeled (Ellingwood, 2008); and
(3) the standard discrete performance levels did not directly address some primary stakeholders’ concerns,
such as probable repair costs and time of occupancy loss in the building, due to earthquake induced damage.
To address these and other limitations, FEMA published an action plan (Federal Emergency Management
Agency (FEMA), 2000b, 2006) for the development of the next generation of PBSD procedures. This resul-
ted in the publication by FEMA of the P-58 volumes (Federal Emergency Management Agency (FEMA),
2012a,b,c). These volumes outline a general methodology for the seismic performance assessment of
individual buildings that explicitly accounts for the inevitable uncertainty in the ability to accurately predict
response while communicating performance through system-level measures that are easily understood by
decision-makers and/or stakeholders, i.e. probable consequences, in terms of human losses (deaths and
serious injuries), direct economic losses (building repair or replacement costs), and indirect losses. The
recent completion of phase 2 of the FEMA P-58 project, in which, among other products, the performance
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Design Performance

Near
Collapse

Fully

Operational Functional | Life Safety

Frequent
(50% in 50 years)

Occasional
(20% in 50 years)

Rare
(10% in 50 years)

Design Earthquakes

Very Rare
(5% in 50 years)

Figure 1. Standard performance objectives, SEAOC’s Vision 2000 (Structural Engineers Association of
California (SEAOC), 1995)

of a suite of archetype code conforming buildings were evaluated in terms of the P-58 performance metrics
(Federal Emergency Management Agency (FEMA), 2018), promise to continue the evaluation of seismic
standards and codes towards the principles of PBE. The technical backbone of the procedure is based on
the well-known analytical framework developed by the researchers at the Pacific Earthquake Engineering
Research Center (PEER) during the period between 1997 and 2010 (Moehle and Deierlein, 2004; Cornell
and Krawinkler, 2000; Giinay and Mosalam, 2013; Yang et al., 2009). Unlike the first generation of PBD
methodologies, in order to provide results that can be used by a multitude of decision models, performance
can be assessed for a particular earthquake scenario or intensity, or considering all earthquakes that could
occur, and the likelihood of each, over a specified period of time. While the framework was developed
for PBSD, it is relatively general and can be considered as a convenient analytical language with which
to implement the principles of PBD for obtaining resilient and risk-consistent structures to mitigate the
effects of other natural hazards.

4 WIND ENGINEERING
4.1 Current practice

The current state-of-the-practice in wind engineering involves the selection of hazard intensities, derived
from an appropriate code or standard, with which to carry out performance assessments and therefore
design the structural elements of a building or facility. Taking for example the ASCE 7-16 (ASCE 7-16
(2016)), the hazard intensity is given by the maximum 3-second gust wind speed with prescribed mean
recurrence interval (MRI). Which MRI to consider is generally governed by the level of resilience that
the designer/stakeholder wishes to give the structure, e.g. in the ASCE 7-16 a risk category I, II, III, or
IV is selected. Based on the wind speed with prescribed MRI, wind loads are derived that account for
aspects such as wind exposure, topography, wind directionality as well as the external geometry of the
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building under consideration. The loads so obtained are in general to be used for strength level design, i.e.
the ultimate limit state that has the purpose of ensuring life safety. Once the loads are defined for a given
building/facility, an appropriate material code (e.g. ACI 318-11 (2012) for reinforced concrete buildings
and AISC 360-16 (2016) for structural steel buildings) is generally adopted for designing the structural
elements. These provide detailed prescriptive requirements that the design engineer should comply with
in order to ensure life safety. While the procedure outlined above is relatively effective in ensuring the
adequacy of the main wind force resisting system (MWFRS), some observations can be made: (1) the
process is prescriptive, therefore the actual performance of the system is not known, it is only implicitly
assumed to be achieved through following the prescriptions (Griffis et al., 2013; Ghosn et al., 2016b,a);
(2) the process is largely deterministic, even though it is known that modeling assumptions greatly affect
the results of the procedure (Griffis et al., 2013; Ghosn et al., 2016b,a); (3) the damage sustained by
non-structural elements due to excessive drift of the MWFRS is not explicitly contemplated even though
it often plays an important economic role in defining the overall building performance (Griffis, 1993;
Aswegan et al., 2015; Ghosn et al., 2016b,a); (4) only prescriptive measures, instructions to use impact
resistant glazing or storm shutters in wind prone regions etc., are considered for mitigating the risk of
debris impact to the building envelope, i.e. no explicit assessment of the risk associated with this important
loss mechanism (ASTM, 2007a,b; Vickery, 1970; Wyatt and May, 1971; Tsujita et al., 1998; Ohkuma et al.,
1998; Chen and Davenport, 2000; Tamura et al., 2001; Hong, 2004; Gani and Légeron, 2011; Vamvatsikos
and Cornell, 2002; Maier, 1979; Konig and Maier, 1981; Konig, 1987; Maier and Munro, 1982; Maier and
Lloyd-Smith, 1986) is contemplated; (5) losses associated with water ingress due to wind-driven rain, and
therefore damage to interior non-structural elements such as partitions, fixed furniture, ceilings, doors etc.,
is not considered even though it can account for a significant portion of the total losses associated with
extreme wind events (Maier et al., 2000).

4.2 Limitations of current practice

The limitations outlined above of current wind engineering practice can only be rectified through the
definition of a full PBD philosophy similar to that outlined in Section 3 concerning the earthquake resistant
design of structures. However, the direct transfer of these concepts to the field of wind engineering
is not possible due to: 1) the unique excitation mechanism associated with complex phenomena such
as turbulence, detached flow and vortex shedding, that are the driving forces behind pressure induced
damage to the building envelope; 2) the difference in the ultimate performance of wind excited structures
compared to earthquake excited structures (e.g. wind excited structural components generally experience
less damage than non-structural components); 3) the considerably longer duration of wind excitation
that make progressive and interdependent damage mechanisms the norm; 4) the important role played
by performance objectives, such as envelope penetration due to debris or water ingress, that are not
contemplated in earthquake resistant design. Notwithstanding these differences, the framework proposed
by FEMA in Federal Emergency Management Agency (FEMA) (2012a,b,c) represents a useful and
established language with which the principles of PBD can be applied to other natural hazards, including
severe windstorms. Additionally, it is important to recognize that while performance objectives, such as
fully operational and immediate occupancy, originate in PBSE (as discussed in Section 3.1), they represent
statements of desired building functionality at specified load intensities. Therefore, in defining target
performance objectives for wind excited structures, the qualitative goals of the aforementioned performance
objectives can be retained. Having said this, it should be recognized that additional performance objectives,
such as those associated with evacuation prior to severe hurricanes, may be required in developing
frameworks the the effective implementation of PBWE.
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5 PERFORMANCE-BASED WIND ENGINEERING (PBWE): THE FRONTIER
5.1 Beginnings

The devastation and significant economic losses caused by hurricanes Andrew ($27.3 billion (1992
USD)), Iniki ($3.1 billion (1992 USD)) and Opal ($4.7 billion (1995 USD)) during the 1990s, together
with the growing acceptance of PBSE, can be seen as events that spurred initial interest applying the
principles of PBE in the assessment and design of wind excited structures (Ellingwood et al., 2004). One
of the first frameworks to be proposed for PBWE focused on the performance assessment of residential
wood structures (Rosowsky and Ellingwood, 2002). Important contributions of this work included the
conceptualization of a suite of performance objectives (from serviceability to ultimate load levels) for
wind excited residential buildings, the identification of the need for system-level analysis (as opposed to
traditional component-level analysis) if greater confidence in performance predictions were to be achieved,
as well as the need to consider uncertainty. Subsequent to this work, the possibility of modeling the
performance of wind excited engineered structures within a PBWE setting began to take root (Paulotto
et al., 2004; Bashor and Kareem, 2007; Augusti and Ciampoli, 2008; Ciampoli et al., 2011). The initial
focus of these works was primarily on establishing the applicability of the PEER framework (Cornell
and Krawinkler, 2000; Gilinay and Mosalam, 2013; Yang et al., 2009), or similar (i.e. reliability integral),
to the performance assessment of wind excited tall buildings and long span bridges. Since these initial
research efforts, PBWE has seen an explosion of interest with numerous frameworks being proposed for
both residential buildings (Rosowsky and Ellingwood, 2002; Barbato et al., 2013; Baheru et al., 2015;
Peng et al., 2016; Unnikrishnan and Barbato, 2017) as well as engineered systems (Ciampoli et al., 2011;
Griffis et al., 2013; Spence and Kareem, 2014; Bernardini et al., 2015; Judd and Charney, 2015; Chuang
and Spence, 2017; Cui and Caracoglia, 2018; Judd, 2018; Ierimonti et al., 2019; Mohammadi et al., 2019;
Chuang and Spence, 2019; Micheli et al., 2019; Cui and Caracoglia, 2020; Ouyang and Spence, 2020).

5.2 Current status

Over the past decade, significant progress has been made towards the development of general PBWE
frameworks for the probabilistic assessment and optimal design of engineered systems subject to severe
winds. Major breakthroughs have been achieved in modeling structural and non-structural damage and
loss due to both synoptic and hurricane winds through probabilistic system-level metrics associated with
repair costs, down time, life cycle costs, as well as occupant comfort (Ciampoli et al., 2011; Petrini
and Ciampoli, 2012; Griffis et al., 2013; Spence and Kareem, 2014; Bernardini et al., 2015; Judd and
Charney, 2015; Chuang and Spence, 2017; Cui and Caracoglia, 2018; Judd, 2018; Ierimonti et al., 2019;
Mohammadi et al., 2019; Chuang and Spence, 2019; Micheli et al., 2019; Cui and Caracoglia, 2020;
Ouyang and Spence, 2020). Progress has also been made to extend PBWE for non-synoptic wind events
characterized by intricate vortical flows, such as those found in tornadoes and thunderstorm downbursts (Le
and Caracoglia, 2018, 2020; Masoomi and van de Lindt, 2016). Notwithstanding these efforts, there is still
a lack of consensus on the most appropriate wind field models for capturing the complexities of tornado
and thunderstorm downburst flows within a PBWE setting, as well as a need for more general models for
simulating the non-stationary and non-straight fluctuating load component while retaining computational
efficiency. Interestingly, the closer relationship of non-synoptic winds (as compared to synoptic) to seismic
loading may indicate the possibility of translating some of the approaches used in seismic engineering for
dissipating energy through material nonlinearity to PBWE. The adoption of such an approach, however,
would require careful validation, since non-synoptic winds are not necessarily zero-mean. As will be
discussed in more detail in Section 6, approaches have also been proposed for the single-/multi-objective
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design optimization within the space of the aforementioned probabilistic system-level metrics (Spence
and Kareem, 2014; Spence, 2018; Suksuwan and Spence, 2019b,a; Venanzi et al., 2020; Petrini et al.,
2020). While many of these frameworks were initially inspired by the fragility/consequence function
damage/loss modeling approaches introduced by the PEER framework (and subsequently refined in the
P-58 methodologies), they have since evolved to include additional metrics, e.g. life cycle costs, as well as
wind specific performance criteria associated with, for example, occupant comfort (Bernardini et al., 2015).
Importantly, during this evolution, they have generally preserved the fundamental idea underpinning the
PEER framework of explicitly evaluated probabilistic system-level metrics that can be understood by a
wide range of technical and non-technical decision makers.

Two important limitations of many of the aforementioned frameworks include: 1) the neglect of damage
to the envelope system due to direct action of local net wind pressures; and 2) the assumption that the
MWERS can be modeled as elastic (structural damage is only implicitly modeled through fragility functions
evaluated from demands estimated from elastic models of the MWERYS).

With respect to the first point, recent extensions of the Florida Public Hurricane Loss Model (FPHLM)
to mid-rise residential buildings (e.g. Pita et al. (2016)) have considered these aspects. Nevertheless, the
intent of the FPHLM is the performance assessment of portfolios containing hundreds of buildings. The
detail with which each building is modeled is not therefore at the level of PBWE where the focus is on the
performance assessment of individual buildings. With an explicit focus on individual buildings and PBWE,
a fragility-based progressive damage model was recently introduced in Ouyang and Spence (2019). Within
the framework, each component of the envelope system is modeled as susceptible to multiple coupled
damage states characterized through suites of fragility functions. Demands are modeled through dynamic
drift and net pressure characterized through non-Gaussian stochastic models calibrated to specific wind
tunnel tests. To model the wind driven rain on the envelope due to the rain event that inevitably accompanies
severe windstorms, Eulerian multiphase models based on computational fluid dynamics were adopted.
The approach was subsequently embedded with a conditional stochastic simulation scheme, therefore
defining a PBWE framework capable of estimating system-level loss and consequences related to decision
variables such as repair costs and ingressed water due to envelope damage (Ouyang and Spence, 2020). This
approach has recently been extended to consider nonlinearity in the MWFRS (Ouyang and Spence, 2021b)
as well as more complex representations of the wind hazard, i.e., the non-stationary/-straight/Gaussian
wind pressures that are characteristic of hurricanes before idealization (Ouyang and Spence, 2021a).

With respect to the second point, the neglect of potential nonlinearity in the MWFRS can be traced back
to the following difficulties: 1) the long duration (in the order of hours) of typical dynamic wind loads,
therefore creating a significant computational barrier to propagating uncertainty through nonlinear models
of the MWEFRS in determining the probabilistic performance metrics; and 2) the complexity of modeling
the nonlinear response of the MWFRS where the presence of a substantial mean wind load component
(for certain wind directions) creates theoretical difficulties in applying state-of-the-art nonlinear modeling
approaches that have been calibrated to zero mean seismic loads. The long duration and substantial mean
wind load for certain directions also make the exploitation of nonlinear material behavior for energy
dissipation less straightforward than in seismic engineering, since potential issues can arise due to low-
cycle fatigue failure and lack of complete internal force reversal in the structural elements. Notwithstanding
these challenges, the neglect of potential damage to the MWEFRS is fundamentally contrary to the concept
of PBE that is based on the explicit modeling of performance of the system over a full range of hazard
intensities. This has inspired interest in developing methods that can explicitly treat damage through
nonlinear modeling of the MWEFRS. In addition to studies that have looked at understanding specific
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aspects of inelasticity from a fundamental standpoint, e.g. (Hong, 2004; Gani and Légeron, 2011; Feng and
Chen, 2017, 2018; Bezabeh et al., 2021a,b), two approaches have essentially been investigated within the
setting of PBWE. The first is based on application of the theory of plasticity through defining the state
of dynamic shakedown as a collapse prevention performance objective (Chuang and Spence, 2017, 2019;
Tabbuso et al., 2016; Chuang and Spence, 2020, 2022), while the second is based on directly applying
nonlinear modeling approaches developed in seismic engineering for the nonlinear analysis of the MWFRS
(Judd and Charney, 2015; Mohammadi et al., 2019; Nikellis et al., 2019; Ouyang and Spence, 2021b;
Ghaffary and Moustafa, 2021; Huang and Chen, 2022). The intent of the first approach is to rapidly
provide a means for identifying a region in which inelasticity can occur safely, i.e. without potential
failure due to low-cycle fatigue (acrosswind failure), ratcheting (alongwind failure), instantaneous plastic
collapse, or excessive plastic deformation. The computational efficacy of the approach enables evaluation
of reliability through direct stochastic simulation (Chuang and Spence, 2022). While the second approach
provides greater modeling flexibility, a major challenge lies in the huge computational effort necessary
to propagate uncertainty through the nonlinear finite element models (due to the long duration of wind
events as compared to earthquakes) and therefore estimate general system-level damage/loss metrics that
are consistent with current PBWE frameworks.

The need to bring low-rise buildings under the umbrella of PBWE is strongly recognized as they represent
the majority of the building stock in the United States. Better damage assessment through frameworks
that are based on the principles of PBWE would support improved residential building practices, and
limit economic losses and social disruption (Ellingwood et al., 2008). Interestingly, as mentioned in
Section 5.1, one of the earliest works in conceptualizing PBWE concerned the performance assessment of
residential wood structures (Rosowsky and Ellingwood, 2002). Although research in the area of PBWE of
low-rise buildings has lagged that of engineered buildings, some notable recent research efforts include the
development of initial PBWE frameworks for non-engineered buildings with multi-hazard considerations
(Unnikrishnan and Barbato, 2017, 2016), introduction of scales for classifying post-disaster structural
functionality within the setting of PBWE (Nevill and Lombardo, 2020), wind-induced damage assessment
of low-rise building envelopes with potential openings (Ji et al., 2020), and the experimental investigation
of the propagation of wind-driven rain into the building interior of low-rise buildings (Raji et al., 2020).

5.3 Translation to codes and standards

The important research developments outlined in Section 5.2, coupled with the significant interest from
industry to implement PBWE in practice, has culminated in the recent publication by the American Society
of Civil Engineers (ASCE) of the Prestandard on PBWD (ASCE/SEI, 2019). Major innovations of this
document are the introduction of limit states that explicitly allow (for the first time) nonlinearity in the
MWERS, the explicit integration of acceptance criteria related to the performance of the envelope system,
and the definition of performance objectives over a full range of hazard intensities.

The performance objectives span occupant comfort through serviceability to ultimate strength where
additional capacity arising from controlled inelasticity is permitted. To demonstrate building functionality
across the range of objectives, linear elastic analysis is permitted for evaluating occupant comfort and
operational performance targets since the system itself is required to remain elastic, whereas advanced
analysis procedures can be employed to evaluate the continuous occupancy performance objective. To this
end, three methods have been proposed, with two of them requiring nonlinear response history analysis or
reliability-based dynamic shakedown to evaluate the intended performance of the deformation-controlled
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elements. The Prestandard has also explicitly included performance objectives and acceptance criteria for
the evaluation of the building envelope and non-structural components.

As a relevant example of adoption in building design/construction practices of performance-based
engineering, PBSE took around 25 to 30 years to advance from conception to widespread acceptance
in practice. As highlighted in Section 2, first-generation of PBSE began in the early 1990s with second-
generation PBSE starting in the early 2000s and achieving a certain maturity by the mid-2010s with
widespread acceptance and adoption by industry thereafter. Similarly, since the beginning of focused
research on PBWE in the late 2000s, significant progress has been made over the past decade. The release
of the Prestandard on PBWD is a major milestone and, if current research and standard development efforts
continue, a similar trend as seen for PBSE can be expected, leading to the widespread implementation in
practice of PBWE in the next 10 to 15 years.

6 THE ROLE OF OPTIMIZATION IN PBWE
6.1 General comments

As has been outlined in the previous sections, the practical implementation of modern PBD requires the
rigorous use of reliability/probabilistic models for the performance evaluation of the system. Compared to
traditional deterministic design, this approach therefore entails the use of more complex and computationally
cumbersome models. This makes the traditional trial-and-error approach to finding designs that satisfy the
multiple performance objectives both time-consuming and non-intuitive. This is further compounded if
systems that are economically optimum in meeting the performance goals are also desired. To overcome
these difficulties, PBD procedures must be coupled with optimization algorithms, as shown in Fig. 2, that
are capable of rigorously handling the reliability/probabilistic performance assessment models of current
PBWE frameworks. A class of optimization methodologies that respond to this need is constituted by the
reliability-based design optimization (RBDO) algorithms (Schuéller and Jensen, 2008; Valdebenito and
Schuéller, 2010). Indeed, in RBDO the aim is the resolution of problems that are characterized by generally
deterministic cost/objective functions subject to a number of probabilistic constraints (e.g. Valdebenito
and Schuéller (2010)). The recent boom in computational power has spawn intense research in this area
as it has opened the door to the possibility of solving problems that were previously deemed intractable.
Notwithstanding these research efforts, there is still need for the development of specific RBDO algorithms
that efficiently yield optimum solutions to practical probabilistic PBD problems that are often posed in
terms of multiple performance constraints, high-dimensional random variable vectors as well as discrete
high-dimensional design variable vectors. As outlined in Federal Emergency Management Agency (FEMA)
(2006), each of these characteristics makes the RBDO problem non-trivial due to the implicit nature, in
terms of the design variable vector, of the probabilistic constraints and the inherently nested nature of the
reliability analysis within the optimization loop (Valdebenito and Schuéller, 2010; Aoues and Chateauneuf,
2010).

6.2 Challenges, Existing Solutions and Opportunities

The main difficulty in solving the optimization loop outlined in Fig. 2 is presented by the probabilistic
nature of the performance assessment that essentially requires the resolution of a reliability integral similar
to that of the classic PEER framework (Ouyang and Spence, 2020, 2021b). Indeed, the treatment of this
type of integral within an optimization problem is characterized by the following difficulties: 1) it is
implicit in the design variable vector therefore hindering sensitivity analyses; 2) its evaluation requires
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Figure 2. The role of optimization in PBD.

probabilistic analyses which will in general be computationally cumbersome. These difficulties are further
compounded if the design variable vector is of high dimensions (hundreds of components), as is the case
for many practical applications, and if the number of constraints to be considered is also elevated. Further
complication is added if the uncertain vector has more than a handful of components as this will practically
eliminate the possibility of using approximate reliability analysis (first or second order reliability methods)
due to the increasing difficulty this produces in finding the design point (Schuéller et al., 2003). In addition,
the various methods that have been developed over the years for optimizing stochastic systems modeled
through large and complex finite element models (e.g. metamodeling approaches (Zhu et al., 2011; Chen
et al., 2015; Moustapha et al., 2016), subset simulation optimization (SSO) (Taflanidis and Beck, 2009;
Jia and Taflanidis, 2013; Jia et al., 2015), and sequential optimization methods (Du and Chen, 2004a;
Zou and Mahadevan, 2006a; Jensen et al., 2008a; Valdebenito and Schuéller, 2011; Jensen et al., 2012)),
are not generally applicable to systems with more than a dozen or so free design parameters. The main
reason for this can be traced back to how the focus of the aforementioned approaches is mainly on treating
problems with complex and generally nonlinear response behaviors. In the case of the large-scale structures
often found in practice, this can represent a significant limitation as these systems are generally designed
in terms of hundreds of free parameters. A philosophical approach that can in theory efficiently treat
problems with high-dimensional design spaces is that based on decoupling the probabilistic analysis from
the optimization loop through approximations that are constructed from information pertaining to a limited
number of probabilistic analyses (Spence and Gioffre, 2012; Royset et al., 2001; Du and Chen, 2004b; Zou
and Mahadevan, 2006b; Ching and Hsieh, 2007; Jensen et al., 2008b; Valdebenito and Schuéller, 2011).
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This approach has been explored within the context of PBWE with the introduction of schemes for both
single and multi-objective optimization while considering performance metrics ranging from accelerations
at the performance objective of occupant comfort (Spence, 2018), through drifts and component responses
at the performance objectives of serviceability and continuous occupancy (Spence and Kareem, 2014), to
explicit evaluation of system-level loss metrics (Suksuwan and Spence, 2019b,a; Subgranon and Spence,
2021). This approach has also be extended to topology optimization formulated explicitly in the space of
PBWE metrics (Bobby et al., 2016; Kareem et al., 2013; Bobby et al., 2014). The difficulty associated with
optimizing in high-dimensional spaces of design variables can be avoided by choosing small subsets of
parameters that are most influential to the performance metrics. For example, recent works have looked at
optimally choosing the parameters of auxiliary damping devices for minimizing a variety of performance
metrics (Venanzi et al., 2020; Petrini et al., 2020).

7 SUMMARY AND CONCLUSION

This paper reviewed the origins and current state-of-the-art of PBWE that is poised to inform the next
generation of load and design codes for wind. A historical account is presented and pioneering works are
briefly summarized with key emphasis on the differences between PBSE and PBWE. The current state of
practice is reviewed, and its limitations are highlighted. The broad areas of active research within PBWE
are identified as the inelastic modeling/design of wind excited structures and the modeling of the envelope
performance that includes consideration of the risk from wind driven rain and debris impact. The role of
optimization was discussed within the context of optimally satisfying the performance objectives associated
with occupant comfort, serviceability and ultimate capacity. Additional areas of future research include the
experimental validation of the state-of-the-art numerical frameworks associated with, but not limited to,
wind load modeling and nonlinear structural analysis, with particular attention on assessing the validity
of models/tools borrowed from seismic engineering. In a similar vein, the applicability of the R-factor
(force reduction factor), ductile detailing concepts and innovative damping devices in PBWE, and more in
general, in mixed hazard environments, require investigation. Additional research developments that would
be of relevance concern the assimilation of field data on cladding performance during hurricane events.
This would enable the establishment of better semi-empirical fragility functions as well as damage states
and consequence functions for describing building envelope performance. More research on PBWE of
low-rise structures as well as PBWE for non-synoptic winds is also needed. In conclusion, the significant
advances in PBWE of the past decade are changing the way buildings are assessed and designed against
wind. Although there is still much to be done, the continued development of PBWE promises to enhance the
resilience of future communities to extreme wind events while increasing sustainability through enabling
greater design innovation.
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