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As the biomedical community produces datasets that are increasingly complex and high dimensional, there is a need for
more sophisticated computational tools to extract biological insights. We present Multiscale PHATE, a method that sweeps
through all levels of data granularity to learn abstracted biological features directly predictive of disease outcome. Built on a
coarse-graining process called diffusion condensation, Multiscale PHATE learns a data topology that can be analyzed at coarse
resolutions for high-level summarizations of data and at fine resolutions for detailed representations of subsets. We apply
Multiscale PHATE to a coronavirus disease 2019 (COVID-19) dataset with 54 million cells from 168 hospitalized patients and
find that patients who die show CD16"CD66b" neutrophil and IFN-y* granzyme B+ Th17 cell responses. We also show that pop-
ulation groupings from Multiscale PHATE directly fed into a classifier predict disease outcome more accurately than naive fea-
turizations of the data. Multiscale PHATE is broadly generalizable to different data types, including flow cytometry, single-cell
RNA sequencing (scRNA-seq), single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq), and clinical

variables.

of technologies'~ that measure dozens to tens of thousands

of features in millions of cells derived from large patient
cohorts. We posit here that the key to understanding such complex
data is to create meaningful representations that uncover structure
at all resolutions or scales. This approach involves learning represen-
tations of the biological system at many levels, allowing for coarse,
high-level summarization as well as fine-grained, detailed represen-
tations of data subsets. Current tools for dimensionality reduction
and data exploration, including t-distributed stochastic neighbor-
hood embedding (¢-SNE)’, uniform manifold approximation and
projection (UMAP)° and principal-component analysis (PCA)S,
only show a single level of granularity of the data. Recent papers
on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(refs. 7*) have used one of these approaches to understand patient

| | igh-throughput biomedical data are generated by a range

cellular responses at a single resolution. Differences between an
effective immunological response and an ineffective one, however,
may not be found at the granularity of immune compartment abun-
dance alone.

Based on this insight, we developed Multiscale PHATE, a
method that can learn and visualize abstract cellular features and
groupings of the data at all levels of granularity. Our algorithm is
based on a dynamic topological process called diffusion condensa-
tion’, which slowly condenses data points toward local centers of
gravity to form natural, data-driven groupings across granulari-
ties. This coarse-graining process continuously learns the topol-
ogy of the underlying dataset by allowing cells to naturally come
together over the course of successive condensation steps, allow-
ing for the exploration of a more continuous range of granulari-
ties not revealed through other methods. Visualizing a series of
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iterations in this dynamic condensation process using potential of
heat-diffusion for affinity-based trajectory embedding (PHATE),
a manifold affinity-preserving dimensionality reduction method,
creates Multiscale PHATE embeddings, whereas evaluating con-
nected cells across granularities creates Multiscale PHATE clusters.
Furthermore through efficient scalable implementation, we show
that we are able to perform visualization and clustering of large-scale
data substantially faster than single-scale visualization techniques
like +-SNE, UMAP or PHATE". Implementing these multigranu-
lar and visualization approaches in such a scalable manner, we have
created a tool capable of visualizing, clustering and ultimately deriv-
ing meaning from rich single-cell datasets.

We showcase our method using 251 blood samples from 168
patients infected with SARS-CoV-2 (ref. ') and clinical data from
2,135 patients admitted to Yale New Haven Hospital (YNHH). With
our unique multigranular approach, we can produce high-level
summarizations and detailed cell type-specific analyses of 54 mil-
lion of cells, tasks that would take weeks to perform using previ-
ous methods. When combined with manifold density estimation
(MELD)", our approach can identify cellular populations associ-
ated with patient outcome across resolutions. At coarse resolutions,
we identify T cells to be broadly protective, whereas monocytes
and granulocytes are pathogenic. At finer resolution, we identify
CD16MCD66b~ neutrophil, CD14—CD16"HLA-DR® monocytes,
and interferon-y (IFN-y)* granzyme B* T helper type 17 (Th17)
cells to be associated with patient mortality. While coarse grain
analysis reveals that a cell type (e.g., T cells) may be broadly protec-
tive, fine-grain analysis reveals that cellular subsets can be patho-
genic, highlighting the need for a multiresolution approach. Next,
we show that these Multiscale PHATE-derived cellular groupings
can be used to predict outcome better than immunologist-curated
populations and groupings produced by other graph-based clus-
tering approaches. Finally, to display the generalizability of our
approach across data types, we created a multiscale distillation of
patients admitted to YNHH. Built from 18 laboratory, clinical and
demographic variables, Multiscale PHATE was used to perform
multiresolution analysis of patient clinical states and effectively
identified lab variables and cellular populations associated with
outcomes.

Results

Multiscale PHATE algorithm. Multiscale PHATE combines a

data coarse-graining method called diffusion condensation’ with

a manifold-preserving dimensionality reduction method called

PHATE" to produce multigranular visualizations and clusters of

high-dimensional biological data. The Multiscale PHATE algorithm

(Methods Alg. 1) can be broken down into four conceptual steps

(Fig. 1a):

1. compute a manifold-intrinsic, diffusion potential representa-
tion that learns the nonlinear biological manifold as done in
PHATE (Methods and Fig. 1a-i);

2. coarse grain this diffusion potential using a fast diffusion con-
densation process (Methods and Fig. la-ii);

3. select meaningful resolutions for downstream analysis with a
gradient-based approach (Fig. 1a-iii);

4. visualize condensed diffusion potential coordinates at selected
scales via metric multidimensional scaling (MMDS) and ana-
lyze coarser-grain resolutions to obtain multiscale clusters (Fig.
la-iv).

Multiscale PHATE starts by creating a diffusion potential rep-
resentation U of the original data as done by Moon et al'® and
summarized in Methods. Precisely, first, a distance matrix D is
calculated between all cells based on their ambient measurements.
Distance matrix D is converted into affinity matrix K using an
adaptive-bandwidth Gaussian kernel function so that similarity
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between two cells decreases exponentially with their distance. Next,
K is row normalized to obtain the diffusion operator P, representing
the probability distribution of transitioning from one cell to another
in a single step. This diffusion operator P is raised to ¢, the PHATE
optimal diffusion timescale as computed by von Neumann entropy,
to simulate a #,-step random walk over the data graph. Finally, by
taking logarithm of ptr, we calculate the diffusion potential U of
the data. Previous work has shown that this internal representation
computed in PHATE effectively learns the nonlinear geometry of
complex biological datasets and can be rapidly visualized in two or
three dimensions using MMDS. Multiscale PHATE uses this diffu-
sion potential representation as the substrate for our diffusion con-
densation process. As done for our diffusion potential calculation,
diffusion condensation computes a diffusion operator P, at each
iteration using a fixed-bandwidth Gaussian kernel function from
the location of cells in diffusion potential space. The use of a fixed
bandwidth gives a measure of locality in computing cell-cell affini-
ties. This diffusion operator P, is applied to the diffusion potential
U, acting as a diffusion filter, effectively replacing the coordinates of
a point with the weighted average of its diffusion neighbors. When
the distance between two cells falls below a distance threshold, cells
are merged together, denoting them as belonging to the same cluster
going forward. This process is then repeated iteratively until all cells
have collapsed to a single cluster.

By conducting this denoising over the diffusion potential,
Multiscale PHATE tackles two shortcomings of the original diffu-
sion condensation. Diffusion condensation in its original form is
not effective at learning or visualizing the nonlinear geometry of
biological datasets and is prone to condensing points off the data
manifold (Extended Data Fig. 1a). By first learning the nonlinear
data manifold through a diffusion potential calculation and feed-
ing this into diffusion condensation, we not only effectively learn
the nonlinear geometry of complex datasets (Extended Data Fig. 1a)
but also rapidly visualize and learn clusters at resolutions of interest
(Fig. 1a-iv).

To identify meaningful scales, we applied a gradient-based
approach (Methods), which identifies stable resolutions of the
condensation process for downstream analysis. Visualization of
any of these resolutions is achieved by computing a potential dis-
tance matrixDy, using distance between pairs of rows in U,. Finally,
Multiscale PHATE visualization is obtained by performing MMDS
to preserve the distances within Dy, in two or three dimensions and
ready for visualization. Thus, in Multiscale PHATE, we are able to
not only compute a coherent data topology along the data manifold
but also quickly visualize an intermediate layer of the condensation
process (Extended Data Fig. 1a). Using a stochastic block model,
where clusters are known, we show that diffusion condensation ini-
tialized with diffusion potential outperforms diffusion condensa-
tion on the ambient measurement space as increasing amounts of
noise are added to the model (Extended Data Fig. 1b).

Further detail on Multiscale PHATE'’s generalizability (Extended
Data Fig. 2), scalability (Extended Data Fig. 1d) and reproducibility
(Extended Data Fig. le) can be found in Methods. Finally, additional
details on the Multiscale PHATE, how it integrates with other analy-
sis techniques (Fig. 1d and Extended Data Fig. 1c), how the method
can be leveraged to create a patient manifold and the algorithm’s
improved ability to identify pathogenic populations (Extended Data
Fig. 3) can be found in Methods.

Comparison of Multiscale PHATE with other methods. Because
Multiscale PHATE is a multigranular clustering and visualization
tool, we evaluated it against a combination of other visualization
and coarse-graining tools using a variety of metrics. To determine
the necessity of diffusion condensation to learn data organization,
we compared Multiscale PHATE with other clustering methods,
including Louvain, Leiden and 0-dimension persistent homology
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Fig. 1| Overview of the Multiscale PHATE algorithm. a, Multiscale PHATE process involves four successive steps. The first step (i) learns the manifold
geometry via diffusion potential calculation. The second step (ii) iteratively coarse grains the manifold construction through a fast diffusion condensation
process to learn data topology. The third step (iii) involves the selection of salient granularities via gradient analysis before finally visualizing and clustering the

manifold in the fourth step (iv). coef, coefficient. b, Gradient analysis identifies
iteration of the diffusion condensation process to the next. ¢, Multiscale PHAT
additional detail. d. Multiscale PHATE abstractions of data are amenable to do

(single-linkage clustering), using an adjusted Rand index (ARI)
and F1 scores as measures of clustering accuracy. Then, with the
same data abstraction by each clustering method, we compared our
choice of visualization method, PHATE, with UMAP and ¢-SNE. To
quantify the visualization by Multiscale PHATE and other compari-
son combinations, we computed denoised manifold affinity preser-
vation (DeMAP) scores' on the embeddings.

Multiscale PHATE embeddings preserved local and global dis-
tances. In our comparisons, we performed two different ablation
studies to determine the necessity of both the diffusion condensa-
tion approach to learn data topology (Fig. 2b) as well as PHATE
to learn and visualize manifold geometry (Fig. 2c). In each study,
we repeated comparisons on a variety of datasets that have differ-
ent geometries, such as paths (or trajectories) or cluster structure,
with increasing amounts of two types of biological noise: variation
and dropout.

After visualizing synthetic single-cell datasets produced by
splatter (Fig. 2a) and running all comparisons, Multiscale PHATE
performed better than other methods across nearly all ranges of
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a range of scales for visualization by computing shifts in data density from one
E allows for high-level summarizations of data and zoom ins of data subsets for
wnstream analyses with algorithms like MELD (ref. ?) and DREMI (ref. *¢).

biological noise (Fig. 2b,c). In particular, Multiscale PHATE had
distinct advantages in visualizing data with a high degree of noise
(Fig. 2a—c and Extended Data Fig. 4). Although some other meth-
ods, such as Homology-UMAP, appear to produce good visualiza-
tions, they receive lower DeMAP scores than Multiscale PHATE,
suggesting poorer quality. Finally, in our second ablation study
(Fig. 2¢), it appears that PHATE is the most effective visualization
methodology when embedding multiscale clusters generated by the
same coarse-graining method. We repeated our comparisons on 1.7
million cells from FlowCap I normal donor (ND) dataset”, add-
ing increasing amounts of Gaussian noise to simulate variation and
increasing degree of undersampling to simulate dropout. Across our
comparisons, Multiscale PHATE similarly performed as well or bet-
ter than other visualization modalities, especially as noise increased
within the dataset (Extended Data Fig. 4c,d).

Multiscale clusters accurately captured established groupings
of data. To quantify the clustering accuracy of Multiscale PHATE,
we benchmarked our approach’s ability to predict ground truth
clusters on two different types of synthetic data and two different
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Fig. 2 | Comparison of Multiscale PHATE with other dimensionality reduction tools. a, Visual comparison of Multiscale PHATE (MS-PHATE) with other
multiscale dimensionality reduction tools on synthetic single-cell data'* with either path or cluster structure. In Multiscale PHATE embeddings, each point
represents a group of cells that are considered close enough to merge and the size of a dot is proportional to number of cells in that group. Remaining
visualizations from multiscale dimensionality reduction tools shown in Extended Data Fig. 4. b, Quantitative study comparing embeddings produced by
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were evaluated using DeMAP with increasing levels of two different types of biological noise, dropout and variation, as well as on data with different
structures, paths and clusters. Shading represents one standard deviation around the mean DeMAP score for each comparison. ¢, Quantitative study
comparing embeddings produced by Multiscale PHATE and alternative dimensionality reduction strategies that visualize condensation-based abstractions

of data. Comparisons were run and represented as described in b.

types of biological data. First, we simulated noisy synthetic data
where ground truth clusters are known, as done previously for
visualization comparisons'. Then, we computed cluster labels with
Multiscale PHATE, Louvain'®, Leiden'® and single-linkage hierar-
chical clustering'” on datasets with varying degrees and types of
noise. Across noise levels, Multiscale PHATE outperformed hier-
archical, Louvain and Leiden clusterings at the most relevant lev-
els of noise across 10 randomly initialized datasets (Extended Data
Fig. 5a). Next, we simulated two- and three-layer hierarchical sto-
chastic block models (Extended Data Fig. 5b). In these models, a
graph is constructed in which there are coarse-grain clusters, each
of which could be further broken down into increasingly granu-
lar clusters. To compare all clustering techniques across a range of
noise levels, increasing amounts of random Gaussian noise is added
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to the edge weights of the graph, representing a complex form of
noise that creates nonlinear changes that would be difficult for
many algorithms to deconvolve. Across 10 replicates in three-layer
and two-layer models, Multiscale PHATE performed better than
Louvain, Leiden and single-linkage hierarchical clustering in 35 of
the 42 comparison conditions (Extended Data Fig. 5¢,d).

Finally, we benchmarked Multiscale PHATE’s performance
across granularities on flow cytometry data where cell-type labels
have already been established through conventional gating analy-
sis. Across both fine- and coarse-grain cellular clusters, Multiscale
PHATE computed clusters that more faithfully represented the
underlying known biological cell types (Extended Data Fig. 6a).
We next tried to determine whether Multiscale PHATE better cap-
tured known populations across a range of computed resolutions.
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We computed ARI between known cluster labels and all computed
resolutions (less than 100 clusters) of Multiscale PHATE, FlowSOM,
Leiden and Louvain. Across all resolutions and both sets of cluster
labels, Multiscale PHATE outperformed other models (Extended
Data Fig. 6¢). Finally, we tried to determine how increasing amounts
of noise in real biological data could affect clustering ability. To per-
form this analysis, we analyzed FlowCAP I ND dataset and added
increasing amounts of variation or dropout, computing clusters
with all our methods at each noise level. As an increasing amount of
noise was added to the data, Multiscale PHATE outperformed other
clustering modalities (Extended Data Fig. 6d).

Multiscale PHATE analysis of 251 blood samples from patients
with SARS-CoV-2. A total of 168 patients with moderate to severe
COVID-19 (ref. '*) were admitted to YNHH and recruited to the
Yale IMPACT (Implementing Medical and Public Health Action
Against Coronavirus CT) study. From each patient, blood samples
were collected across multiple time points to characterize patient
cellular responses across the spectrum of disease. In total, the com-
position of peripheral blood mononuclear cells (PBMCs) was mea-
sured by flow cytometry on 251 samples. Finally, clinical data were
extracted from the electronic health record corresponding to each
biosample time point to allow for clinical correlation of findings
(Methods). In this analysis, we define a poor or adverse outcome
as a patient who died of infection and a good outcomes as a patient
who survived. Rigorous and robust analysis of over 54 million cells
characterized across four different sets of flow marker panels is
not possible through current single-cell computational techniques.
Thus, we applied Multiscale PHATE to identify subsets of PBMCs
associated with mortality and survival.

Key cellular subsets were enriched in patients who died of infec-
tion. To explore the role of individual PBMC types in disease patho-
genesis, we examined 22 million cells measured on a myeloid-centric
flow cytometry panel containing samples from 210 patients with
COVID-19 across scales with Multiscale PHATE. Using cell
type-specific marker staining, we characterized Multiscale PHATE
clusters (Fig. 3a). We computed the mortality likelihood score for
each patient using MELD with the mortality outcome and identified
cellular states enriched in patients who died from infection (darker
red) or patients who survived (darker blue) (Fig. 3b). When map-
ping these scores onto cluster labels, we found that the three popula-
tions most enriched in mortality were granulocytes (CD16*SSCM),
B cells (CD19%) and monocytes (CD14"), whereas the population
most enriched in survival was T cells (CD3*) (Fig. 3c). Although
these broad cell types may be associated with disease outcome, cel-
lular subsets likely may be driving some or all of these cell-type
effects. We zoomed in on these broad cell types across a number
of flow cytometry panels to identify cellular subtypes potentially
responsible for pathogenic or protective effects.

CD14-CD16"HLA-DR" monocytes associated with mortality.
To identify monocyte subsets implicated in disease, we zoomed into
the monocyte population and identified major subtypes based on
the expression of markers CD16 and CD14 (Extended Data Fig.
7a). The combination of these markers allowed us to distinguish
between CD14*CD16~ monocytes, CD14*CD16™ monocytes and
CD14-CD16" monocytes. We identified that CD14-CD16" mono-
cytes were the most strongly enriched in severe infection, followed
by CD14*CD16™ monocytes (Extended Data Fig. 7b). These find-
ings agreed with published observations, as others have also noted
an influx of CD14*CD16™ and CD14-CD16™ monocytes in the
lungs of patients with severe disease®'*”. Furthermore, across all
monocytes, CD16 was positively correlated with mortality, whereas
CD14 and HLA-DR were correlated with survival, identifying a dis-
tinct CD14-CD16"HLA-DR" population of monocytes enriched in
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mortality. The loss of HLA-DR on monocytes has been previously
observed in patients with COVID-19 and sepsis, potentially via an
increase in circulating interleukin-10 (IL-10) (ref. *').

Circulating, resting neutrophils associated with mortality. Using
Multiscale PHATE, we zoomed in on the granulocyte population
and identified CD16" neutrophils, CD16" neutrophils and eosino-
phils based on the expression of CD16, CD66b, granularity by side
scatter (SSC) and size by forward scatter (FSC) (Fig. 3d). After
mapping our mortality scores onto this granulocyte population,
we found that CD16™ neutrophils were enriched in patients who
died of infection. To identify which cellular markers beyond CD16
were most correlated with mortality in neutrophils, we computed
DREMI between protein expression and mortality likelihood scores
in both neutrophil subsets. We identified that although CD14 and
CD66b were negatively correlated with mortality, increased FSC
and SSC were both strongly positively correlated with mortality
in neutrophils, indicating that CD16"CD66b" neutrophils were
enriched in patients who died of COVID-19 (Fig. 3¢). Based on the
PBMC isolation protocol used (Methods), the neutrophils obtained
were by definition low-density neutrophils, containing both the
mature and immature subsets. Considering the sensitivity of CD16
expression, the CD16" neutrophils in our cohort were most likely
indicative of a mature population that has not responded to an acti-
vating stimulus®. Neutrophils from patients with worse disease also
expressed less CD66b; in contrast, an increase in surface expres-
sion of CD66b occurs following degranulation®. Although granu-
locytes are broadly associated with negative outcomes, Multiscale
PHATE reveals that there is actually a subpopulation of circulating
resting neutrophils, defined by a combination of high complexity,
high CD16 expression and low CD66b expression, that may drive a
majority of this pathogenic effect in patients.

Plasmablast populations associated with mortality. In our broad
PBMC analysis, B cells were among the most enriched populations
in severe outcomes (Fig. 3c). To explore B cells in greater detail, we
processed 154 patient samples on a B cell-specific flow cytometry
marker panel. Analyzing these cells by Multiscale PHATE granted
us an unbiased, granular look at B cell subsets that would other-
wise be difficult to detect using traditional two-dimensional gat-
ing, a popular method used for flow cytometry analysis (Extended
Data Fig. 7c). After identifying these major cell types, we computed
mortality likelihood scores to identify B cell subtypes implicated in
mortality. The most enriched cell type in patients with adverse out-
comes was a subset of the antibody-secreting population defined by
CD86"HLADR~/CXCR3*, also known as plasmablasts. Meanwhile,
the cell types most enriched in patients with good outcomes was a
subset of late-activated mature B cells defined by CD86* (Extended
Data Fig. 7d). Despite the protective roles of circulating antibod-
ies, these results are consistent with earlier findings, which discuss
potentially pathogenic B cells during COVID-19 infection™.

Fine-grained analysis identified pathogenic Th17 cells. Although
T cells collectively were enriched in patients who recovered from
infection (Fig. 3c), there are diverse subsets of T cells that have
been implicated in severe disease pathogenesis. To identify func-
tional T cell subsets enriched in patients who died of COVID-19,
we applied Multiscale PHATE to 22 million T cells measured on
a cytokine-specific flow cytometry panel. After identifying salient
levels of granularity for downstream analysis, we identified both
CD4" and CD8" T cell subsets at coarse granularity (Fig. 4a).

Using Multiscale PHATE’s zoom and cluster capabilities, we
were able to visualize CD4* T cells and subdivide these cells into
functional subsets using the functional markers IFN-y, IL-17 and
IL-4 (Fig. 4b). In our dataset, we identified two different subsets
of CD4* IL-17-producing T cells classically known as Th17 cells,
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Visualization of mortality likelihood score computed by MELD on coarse-grain Multiscale PHATE visualization of PBMCs as visualized in a. ¢, Visualization
of mortality likelihood score computed by MELD organized by cell type revealed enrichment of granulocytes, monocytes and B cells in patients who

died of COVID-19. Each dot represents a grouping of cells at the resolution visualized in a. d, Zoom in of granulocyte population identified subsets of
neutrophils and eosinophils based on expression of known markers. e, Visualization of mortality likelihood score in granulocyte population identified
CD16" neutrophils enriched in patients with worse outcomes. Key associations between markers and mortality likelihood scores in neutrophils computed

by DREMI and visualized with DREVI.

one coproducing granzyme B and IFN-y and one staining nega-
tive for both markers. To identify cell types enriched in mortal-
ity, we computed a mortality likelihood score. By organizing our
scores by Th cell subset, it became clear that the Th17 cell subset
coproducing IFN-y* granzyme B* cells was enriched in patients
who died of infection. Furthermore, granzyme B and IFN-y were
positively associated with mortality likelihood on DREMI analysis
across all CD4" T cell subsets (Fig. 4c). Although Th17 cells can
play protective roles®, IFN-y* granzyme B* Th17 cells are associ-
ated with tissue damage, as observed in models of murine auto-
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immune encephalomyelitis* and neutrophil expansion via IL-17.
With COVID-19, this latter mechanism may be relevant given the
harmful contribution of and neutrophil extracellular traps dur-
ing disease”. Patients with adverse outcomes in this cohort dem-
onstrated an enrichment in IFN-y* granzyme B* Th17 cells, as
well as CD16" neutrophils. We posit that IFN-y* granzyme B*
Th17 cells in our cohort may precipitate these pathogenic effects
via IL-17 secretion and subsequent induction of IL-8 from air-
way epithelial cells or granulocyte colony-stimulating factor from
microvascular pericytes®?.
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Hyperactivated CD8* TEMRA cells associated with mortality.
Although Multiscale PHATE determined that T cells were broadly
protective, we identified a subset of CD4* T cells that were shown to
be pathogenic at finer resolution. Though CD8* T lymphocytes play
a critical role in the clearance of virus during acute illness through
the secretion of granzyme B (refs. ***'), we tried to determine the
differing states present in CD8* T cells and their role in disease
pathogenesis.

To characterize the role of CD8* T cell subsets in disease, we
zoomed in on CD8* T cells in our cytokine-focused T cell panel.
Using the expression of cell surface markers and cytokines, we iden-
tified three major subsets, one producing granzyme B, one produc-
ing IFN-y and one producing tumor necrosis factor a (Extended
Data Fig. 8a). After mapping mortality likelihood scores onto the
CD8" subpopulation, it became clear that the granzyme B* popu-
lation was most enriched in mortality, as granzyme B expression
in CD8* T cells was highly associated with mortality (Extended
Data Fig. 8b). These findings are consistent with a previous study
of patients with SARS-CoV-2 that observed an association between
CD8* T cell-derived granzyme B and increased disease severity”.
To gain additional insight into which discrete subset of CD8* T cells
is the source of granzyme B, we performed detailed surface staining
of all T cells.

We analyzed 208 patient samples using a flow cytometry panel
containing markers indicative of T cell subset identity and acti-
vation status. After identifying the ideal granularity to analyze
the data, we identified CD4*, CD8" and double-positive T cell
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subsets (Extended Data Fig, 8c); we zoomed into the CD8" sub-
set and identified a range of activation states based on the expres-
sion of key markers (Extended Data Fig. 8d). After computing the
MELD mortality likelihood score, we identified that the T Effector
Memory re-expressing CD45RA (TEMRA) population displayed
the most enrichment in severe infection. Furthermore, across all
CD8" T cells, the activation state markers PD1, TIM3, HLA-DR and
CD45RA were also positively correlated with mortality on DREMI
analysis (Extended Data Fig. 8e). In agreement with another study of
patients with SARS-CoV-2 (ref. ), we found a hyperactivated CD8*
T cell response in the form of CD8*CD45RA*TIM3*HLA-DR*PD1*
TEMRA cells likely expressing granzyme B that were correlated
with disease lethality.

Patient manifold revealed potential mechanisms of disease. Here,
we showed that Multiscale PHATE-derived clusters across multiple
scales form a rich set of feature descriptors for patients measured
in single-cell modalities. Although, the purpose of measuring
single-cell data is indeed to derive features in the form of cells,
patients can be hard to compare and analyze at this level. Because
Multiscale PHATE creates cellular groupings at multiple granulari-
ties, we can derive a rich summarization of patients across scales.
Furthermore, it can be useful to use patient data to predict outcome.

We created patient embedding using cluster proportions from
several levels of the condensation topology of the myeloid-focused
flow cytometry using our patient manifold approach (Fig. 5a and
Methods). The resultant embedding demonstrated that patients (or
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patient time points) lie on a continuum or manifold themselves.
When the patient embedding is colored by the MELD mortal-
ity likelihood, we saw that the dominant progression in the data
was indeed clinical outcome. We compared our patient manifold
construction against a patient manifold constructed from a single
resolution of Louvain clustering and conventional flow cytometry
gates (Extended Data Fig. 9c). As done in our multiscale approach,
we computed feature descriptors of cluster proportions, this time
using Louvain partitions and flow cytometry gates as the cellu-
lar groupings. Unlike the Multiscale PHATE patient manifold,
single-resolution Louvain and flow cytometry patient manifolds
representing patients who died of COVID-19 appeared in all

688

regions of the embedding, indicating that this manifold was sub-
stantially less meaningful at capturing patient states and outcomes.

To associate previously identified cellular populations with out-
come, we computed DREMI between these population proportions
and mortality likelihood score. We identified that although T cells
were negatively correlated with mortality overall, CD4* IFN-y*
granzyme B* Th17 cells, CD16" neutrophils and CD14-CD16"
monocytes were strongly positively associated with mortality (Fig.
5b). These findings indicate that a precipitous decline in T cells cor-
relates with mortality, whereas subsets of neutrophils, monocytes
and Th17 cells are increased in patients with adverse outcomes.
Finally, we traced clinical states of three patients (19, 63 and 54)
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across the patient manifold to determine whether our construct
accurately recapitulated patient trajectories. Surviving patients
19 and 63 had their clinical trajectories consistently go from the
high-mortality region to the low-mortality region. In contrast,
patient 54, who died of disease, had a tortuous set of clinical states,
all of which mapped within the high-mortality region (Fig. 5¢). To
identify clinical variables associated with mortality, we mapped
these patient features onto the manifold, identifying that patients
who were older, male, received ventilatory support and had higher
markers of inflammation were more likely to experience poor out-
comes (Extended Data Fig. 9a). We subsequently ran DREMI analy-
sis to find associations between these clinical variables and key cell
types implicated in infection pathogenesis. We found that females
and young individuals were more likely to mount a robust T cell
response, which agrees with previous literature demonstrating sex-
and age-dependent immune responses™~>°.

To determine whether Multiscale PHATE-derived subpopula-
tions could predict disease outcome, we combined the features of
patients that we identified in our myeloid-focused flow cytom-
etry panel with clinical outcome to train a random forest classifier
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(Methods). Using these abstracted features, we achieved prediction
accuracy of 83.7 +0.6% via fivefold cross-validation, with an accu-
racy of 74.2+0.8% for mortality cases and 85.5+0.7% for survival
cases. Furthermore, we identified that monocytes, CD16" neutro-
phils and T cells were three of the top four cell types most predictive
of eventual disease outcome in our Multiscale PHATE-based clas-
sifier model (Fig. 5d). When performing a similar prediction task
using flow cytometry-gated populations and Louvain-computed
populations, however, we predicted outcome with a lower accura-
cies of 73.8 +0.8% and 64.7 + 1.1%, respectively.

Clinical manifold revealed mechanisms of disease convalescence.
Thus far, we have primarily used Multiscale PHATE to identify mul-
tiresolution structure in single-cell flow cytometry data. We now
showcase the utility of Multiscale PHATE on a laboratory, clini-
cal and demographic data generated from routine clinical care of
patients with COVID-19 admitted to YNHH. Using 18 clinical and
demographic measurements collected on 2,135 patients admitted
to YNHH and diagnosed with COVID-19, we created a multiscale
embedding capturing patient states across the spectrum of disease
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severity. Patient outcomes at discharge were categorized as dis-
charge to home, discharge to rehabilitation for extended recovery,
discharge to hospice or death while in hospital. Using each of these
outcomes, we computed likelihood scores with MELD correspond-
ing to each outcome: survival likelihood score, extended recovery
likelihood score and mortality likelihood score (Fig. 6a). To under-
stand how clinical features could inform outcomes, we performed
DREMI and DREVT analysis between clinical features and each of
our likelihood scores (Extended Data Fig. 10a,b). As anticipated,
markers of physiologic instability and organ dysfunction (e.g.,
decreased systolic blood pressure and increased respiratory rate,
blood urea nitrogen, creatinine, aspartate aminotransferase and ala-
nine aminotransferase) and systemic inflammatory markers (e.g.,
increased ferritin, procalcitonin and C-reactive protein) were asso-
ciated with higher mortality. Although COVID-19 most commonly
involves the respiratory system, these findings are consistent with
clinical reports of severe disease from a generalized inflammatory
state resulting in multiorgan damage and failure.

A subset of patients infected with SARS-CoV-2 experience pro-
longed recovery periods. In fact, our multiscale embedding of patient
clinical states suggests a transition between a region of high survival
likelihood score and a region of high extended recovery likelihood
score (Fig. 6a). To understand which cellular populations and clini-
cal features drive the difference between these outcomes, we zoomed
into this transition point (Fig. 6b). We computed DREMI associa-
tion scores between clinical features and flow sorted cellular popula-
tions to identify features differentially associated with survival and
extended recovery. Our analysis found that age and kidney dysfunc-
tion were strongly associated with extended recovery indicating that
older patients with worse kidney function were more likely to expe-
rience lengthy recovery periods from infection (Fig. 6¢).

Discussion

Here, we present a multiscale data exploration technique to visu-
alize, cluster and compare large-scale datasets, filling a key gap in
biological data exploration. Multiscale PHATE found groupings
of data at varying scales that were predictive of clinical outcome.
Biological data naturally contain multigranular structure. Most
analysis methods, however, whether clustering or dimensionality
reduction algorithms, generally only look at a single level of resolu-
tion and do not offer a systematic way to explore different scales.
Hierarchical clustering is one method that could offer certain scales
of resolution. However, because of the constant merges that occur
in hierarchical clustering approaches (e.g., Louvain), many levels of
resolution are missed, and biologically relevant levels of granularity
are not recapitulated. In contrast, Multiscale PHATE offers a fast
manifold learning-based technique for uncovering a continuum of
resolutions of structure and features by understanding data topol-
ogy. We show that Multiscale PHATE can be combined with other
techniques, such as MELD and mutual information (DREMI), to
provide deep and detailed insights into biological processes. With
Multiscale PHATE, these tools allow users to find resolutions that
naturally capture the salient differences between patients, isolate
pathogenic and protective cellular subsets across scales and iden-
tify key markers associated with disease. T cells, for instance, have
been shown to be protective against poor outcomes, corroborat-
ing previous work done with COVID-19. Although this cell type is
broadly protective, a multiscale zoom in of CD4* T cells, in combi-
nation with MELD and DREMI analysis, reveals a pathogenic CD4*
IFN-y* granzyme B* Th17 cell subpopulation. The multiresolution
analysis we performed stresses the need to analyze data at multi-
ple granularities. Although broad cell types, such as T cells, may
appear to be protective, smaller cellular subsets, such as pathogenic
Th17 cells, may actually be driving patient mortality. Although we
have demonstrated Multiscale PHATE in the context of data from
patients with COVID-19, both the technique and the ways in which
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we have used it to analyze a variety of biomedical data, including
scRNA-seq, scATAC-seq, cytometry by time of flight, T cell recep-
tor repertoire sequencing and clinical datasets. Generally, as datas-
ets continue to increase in size and the number of samples continue
to expand, our scalable algorithm will become even more critical
for analysis.
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Methods

Computational methods. In the following sections, we provide a thorough
description of each aspect of the Multiscale PHATE algorithm and the use of
downstream analysis tools. This includes, but is not limited to, explanations of
algorithm design choices, information on how comparisons between algorithms
were run and details on how the patient manifold was constructed.

Multiscale PHATE algorithm. The Multiscale PHATE algorithm is summarized in
Alg. 1 as a full integration of PHATE and diffusion condensation.

Algorithm 1. Multiscale PHATE

Input: Data matrix X, kernel parameter € and merge threshold ¢, gradient
parameter ¢

Output: Multiscale PHATE coordinates at T resolutions J={J,,J,, ...J;},
selection of scales for visualization S

1 [Jo Uyl < PHATE(X)

2: forte[O, T]1do

3: D, < compute pairwise distance matrix from U,

4: K, < kernel affinity(D, &,)

5 P, < row normalize K, to get a Markov transition matrix (diffusion
operator)

6: U,,<PU,

7: Merge data points ij if [|U,() —U,.(D||, <&, where U,,(i) is the i-th
row of U, ,

8: Dyt+1 < compute pairwise distance matrix from U, ;

O: JH~1 — MMDS (DUt+1)
10: 9,41 < compute gradient from (U,,;, U)
11 €., < update(e, U,,;)

12: end for

13 forie[1,T—1]do

14: if g; is a local minimum then

15: add i to visualization scale set S
16: end if

17: end for

Diffusion information geometry for visualization and condensation. The
multiresolution visualization provided by Multiscale PHATE relies on the
construction of a diffusion geometry that captures the intrinsic structure of the
data. Such a construction was first presented in the context of manifold learning
with diffusion maps (DMs), which rely on diffusion coordinates derived from
spectral decomposition of the heat kernel over (Riemannian) manifolds”. The

DM construction approximates the heat kernel on data by defining a Markovian
diffusion process whose transition probabilities are given by p(x, y) = Hkk((;‘iy))”l,
where the L, norm is taken over the input data and k( -, - ) is a kernel function for
capturing the similarity between local neighborhoods in the data. Then, a diffusion
operator is constructed as a matrix with entries [P],=p(x;, x;), where {x,,x,,...}

are the input data points (e.g., cells or strains in our case). By taking powers of

this diffusion operator, we can consider t-step diffusion probabilities between data
points given by pf(x;,x;) := Pr[x,-t ol xj] = [P'];;. Finally, the diffusion geometry
considers each data point x via its t-step diffusion distribution p’, = p’(x,-), and
DM aims to extract low-dimensional coordinates where Euclidean distances
capture a diffusion distance metric defined as L, distances between these
distributions, called diffusion distances.

Although a DM provides appealing analytic relation between spectral
embedding with diffusion coordinates”~*, it often separates trajectories, pathways
or clusters into independent eigenspaces. This, in turn, yields multidimensional
representations that cannot be conveniently visualized (e.g., having substantially
more than two or three dimensions) and cannot be directly projected into
two- or three-dimensional displays that faithfully capture diffusion distances.

To overcome this and extract a low-dimensional data visualization, the recently
proposed PHATE method treats the constructed diffusion geometry as a statistical
manifold and uses tools from information geometry to define a family of diffusion

information distances defined as Dl(x,y) = H AEZL) () Hz) where
[ pi(2) = p)(2) r=-1
sy = | P g = logpile) —logl() r=-+1
7 i [(pf‘(z))lz;/ - (p;(z))%y] otherwise

1)

and the parameter — 1<y<+ 1 attenuates the influence of lower-probability
differences in the overall distance. On one extreme (y =— 1), the resulting metric
yields the traditional diffusion distance. When y =0, it yields an f-divergence
corresponding to Hellinger distances between diffusion distributions. On the other
extreme (y =+ 1), the resulting information distance yields an L, distance between
localized diffusion energy potentials given by U’ (-) = log p!(z), as discussed

by Moon et al'’. There, as well as in other work**", it has been shown that this
potential distance is amenable to a low-dimensional embedding that captures and
visually accentuates emergent global and local structures in the data. Therefore, the
PHATE method is based on embedding potential distances directly into two- or
three-dimensional coordinates via a stress-minimizing optimization procedure
provided by MDS. In addition to the core utilization of diffusion information
geometry, the PHATE algorithm also includes robust construction of the initial
neighborhood kernel, automatic tuning of diffusion resolution and efficient
sampling for scalability purposes. For more details about these aspects of PHATE,
we refer the reader to the study by Moon et al™’.

Multiscale PHATE uses PHATE not only for visualization of several chosen
iterations of the condensation process (explained below), representing multiple
scales of data coarse graining, but also as the potential coordinate system that
learns geometry of the data.

Multiresolution analysis of diffusion information geometry. The diffusion
geometry underlying PHATE is naturally multiscale, via the diffusion time
parameter ¢ that controls the resolution of information captured by the diffusion
process. Indeed, as the diffusion time increases, the distributions p(-) (or
potentials U’ (-)) consider increasingly diffused energy that attenuates local
differences until eventually, as t — o, all of these distributions converge to a unique
equilibrium stationary distribution, as the process is ergodic. PHATE employs an
optimal timescale t,, for visualization, which can be identified automatically by
distinguishing between a rapid denoising phase and a slow decay from metastable
to equilibrium diffusion states. This alleviates the problem of an overly rapid
diffusion of information that prohibits multiresolution representation as discussed
elsewhere’>*. In this paper, we aim to provide a full multiscale or multiresolution
data geometry, and therefore, we need to provide better control of the propagation
of information by intrinsic diffusion over the data.

One of the first attempts at alleviating the rapid convergence to stationary
distribution in multiscale DM was presented by David and Averbuchin* as part of
a hierarchical construction of localized diffusion folders using a localized diffusion
process, which was further analyzed by Wolf et al*’. The localized diffusion
process limited each instantiation of the diffusion random walks to only traverse
between two ‘diffusion folders’ (i.e., clusters), thus blocking global pathways that
quickly diffuse to wide regions in the data. Although this process was shown to
be effective in some applications involving hierarchical clustering, it requires
separate clustering steps and a priori determination of scales at which to pause the
diffusion and cluster into localized diffusion folders. Furthermore, the pruning of
the diffusion process there is computationally intensive, as each diffusion affinity
(or transition probability) requires simulating or approximating a local diffusion
process between two considered clusters. However, the principles posed by this
approach clearly established the need for careful manipulation of the underlying
Markov process of DM to truly enable multiscale representation learning via
diffusion geometry and by extension the diffusion information geometry used
in PHATE.

Topological data analysis naturally creates multiscale structure by combining
geometric and topological perspectives into a single framework. Although studying
data geometry is useful in understanding the precise measurements between
objects, topological analysis is useful in describing the relationships between
objects. A hybrid perspective can be appealing in situations such as ours, where
geometry and relationships between data points are both important.

Learning data topology with diffusion filters in diffusion condensation. A
more recent approach toward multiresolution diffusion-based coarse graining
was presented in Brugnone et al’. Diffusion condensation relies on replacing

the traditional time-homogeneous Markov process typically used in diffusion
frameworks’”'” with an inhomogeneous process, following the theoretical analysis
in Marshall et al** that established the mathematical viability of diffusion geometry
construction of such processes. In diffusion condensation, a diffusion operator P
is calculated at each condensation iteration and applied back to an input dataset to
slowly condense points toward local centers of gravity as determined by the points
diffusion probability between them. This process reduces all eigenvalues besides

1 and diminishes the importance of eigenvectors associated with high-frequency
eigenvalues by repeatedly multiplying by a diffusion operator, akin to applying a
convolutional filter to the input data, implemented spectrally via a graph Fourier
transform, as explained in the following paragraph.

Because the eigenvectors of P, denoted ® = (¢, ¢,, ... , ¢, ), represent
frequency harmonics over the graph based on a normalized graph Laplacian and
graph Laplacian eigenvectors have been shown to be equivalent to graph frequency
harmonics®, signal loadings onto diffusion eigenvectors create a graph Fourier
transform defined as f = ®Tf for a graph signal f. A graph filter can be defined as
a rescaling of the coefficients of the graph Fourier transform of a signal. To apply
the graph filter to the data, we can apply the graph Fourier transform, rescale the

NATURE BIOTECHNOLOGY | www.nature.com/naturebiotechnology


http://www.nature.com/naturebiotechnology

NATURE BIOTECH

LOGY

Fourier coefficients and invert the Fourier transform back to the original space.
Thus, a graph filter can be defined by a diagonal matrix H containing rescaled
values applied as @H®'f. However, note that the diagonal matrix of eigenvalues
of the diffusion operator A can itself serve as a low-pass filter. Because P is a
transition matrix of a Markov chain, it has eigenvalues 44, 4,, ..., 4, such that
1=2y>4,>4,>0 and thus high-frequency eigenvalues are of lower magnitudes. To
apply this diffusion filter to the data, we simply multiply the diffusion operator
by the data matrix PX, with PX=®A®'QX, where X is the data matrix and Q is
a diagonal matrix whose diagonal elements are the row sum of the affinity matrix
K. This diffusion condensation process naturally downscales high-frequency and
noisy eigenvectors, taking in the whole dataset as the graph signal.

Unlike previous approaches, the coarse graining used in Brugnone et al’ does
not rely on a clustering and pruning approach. Instead, it proposes to base the
intuition for the diffusion construction from heat propagation that rapidly spreads
over the data based on connectivity to a condensation process that alternates
between slow gravitation (e.g., as drops of water slowly gravitate toward each
other) and fast merging, with concentrated regions collapsing (e.g., as water
drops merge together) to single points, creating a topological understanding of a
dataset by calculating the persistence of individual points. If we view the merges
of diffusion condensation as a change in terms of the topology of the dataset,
then the alternation between these metastable and transient regimes also provides
a diffusion-analogous notion of persistence used in topological data analysis,
which in turn naturally gives rise to emergent stable resolutions for multiscale
visualization and clustering.

Condensation on potential coordinates. The computation of the diffusion
condensation process described by Brugone et al’ only uses the diffusion operator
P, which is interpreted as a low-pass (smoothing) filter that can be applied to any
dataset encoded in a points-by-features data matrix X. However, condensing in
this feature space can lead to ‘averaged’ points that deviate from the intrinsic data
manifold, especially in cases where the intrinsic manifold is very curved (Extended
Data Fig. 1a). As cellular state spaces can be heavily nonlinear'****, we required
an alternative method of diffusion condensation that ensured that the condensed
points remain on the manifold. A straightforward method for achieving this
might be DM coordinates. However, the computation of DM coordinates requires
eigendecomposition of a diffusion operator, which is known to be slow (O(n*)
complexity). In the current paper, rather than using the original features, we used
the potential representation of data points used in PHATE (equation (1)) as the as
initial features.

The diffusion potential representation, U, of the data is recovered from the
transition probabilities of the powered diffusion operator pt»'® with the optimal
timescale t,,. For the i-th data point, its f,-step distribution is the i-th row of
P'» and its potential representation is the i-th row of U. Intuitively, a smaller
potential distance corresponds to higher similarity in that it takes less time to
diffuse between the point pair. By taking logarithm of P, we allow faraway data
points to inform the local distances and balance local and global geometry of
the representation. This is the prominent advantage of using diffusion potential
instead of directly using the data distribution P>, which is found particularly
useful for visualizing biological data'’. This effectively re-represents points by
features that consist of the oo of diffusion probabilities to all other features.

We use these diffusion potential coordinates here as a high-dimensional
representation of the data on which the condensation operates, offering a
‘straightened’ and globally coherent intrinsic manifold space upon which to
operate the diffusion condensation process. This way, when data points are
condensed, they are condensed in terms of their diffusion probabilities. Using
default settings, diffusion condensation is calculated on potential distance using

a fixed-bandwidth Gaussian kernel, where the initial bandwidth is set to 1/10 of
Silverman’s rule of thumb for kernel bandwidth"’. The bandwidth is then increased
by a ratio of 1.025 every iteration.

Scalable coarse graining with fast diffusion condensation. In order to
allow Multiscale PHATE to enable scalable exploration of large datasets, such
as high-dimensional biological data, we propose speeding up of the initial
condensation iteration in the following ways: (1) speeding up the initial iteration
using graph partitioning, (2) fast computation of the diffusion potential via
landmarking and (3) merging of data points to increase computational efficiency
over iterations.

The complexity of computing a diffusion operator on # points is n2 To reduce
n for initial condensation iterations, we run hierarchical k means on the PCA
space of the data with a high k (by default 100) to obtain a coarse graining of the
data in feature space. In each iteration of the k-means approach, we partition the
data into k more clusters. In subsequent iterations, we compute another k clusters
from each of these clusters. This process continues until we have a large number
of clusters from which to compute the diffusion operator (by default 25,000).
We then compute a landmarked diffusion potential (as done by Moon et al'” and
explained below) on the centroid of each of these clusters before starting the
coarse-graining process.

Instead of using spectral clustering on the full dataset, we came up with cluster
centroids that were treated as landmarks. Transition probabilities were computed
between points and landmarks and then used with the diffusion potential of
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landmarks to recover the diffusion potential of all data points. Moon et al'’ showed
that this leads to high-quality approximations of the diffusion operator, which leads
to near-identical visualizations with PHATE. In addition, we previously found

that this leads to low-error approximations of diffusion operators in general*. We
used this fast approach to compute a low-error diffusion potential system for our
coarse-graining process. By default, diffusion potential is calculated using an alpha
decay adaptive-bandwidth kernel, which sets its bandwidth to the fifth farthest
neighbor in the graph, as originally done by Moon et al'’.

To increase computational efficiency over successive iterations of condensation,
we merge points that fall within a threshold distance into a single point. When
two or more points collapse into the same barycenter (closer than a threshold ¢),
we merge them into a cluster, as they would then have approximately the same
coordinates. Using default settings, the merge threshold is set to the 1% smallest
distance between any two points in potential space. After this merging operation,
we effectively treat the cluster as a single point. Intuitively, this merging process
creates a single connected component from two different components in our
calculation of data topology. This has the effect of density subsampling the data
iteratively and allowing for subsequent iterations to proceed faster. Therefore,
the number of points steadily decreases, allowing the algorithm to speed up in
successive iterations.

As we iterate this process over and over again, the condensation process slowly
coarse grains the data to reveal structure at all levels of granularity while avoiding
the typical tendency of traditional hierarchical clustering approaches to force (e.g.,
greedy) cluster merges at every scale.

We show that the resultant method is orders of magnitude faster than
competing methods, including DM, ¢-SNE, UMAP, Monocle 2 and PHATE
(Extended Data Fig. 1d).

Selection of visualization scales via gradient analysis. The iterative coarse
graining via diffusion condensation generates hundreds of layers for downstream
analysis. We propose to select salient levels of granularities for visualization based
on gradient analysis. These salient layers of representation must be stable levels that
persists for several iterations. To find such levels, we examine the gradient of points
of diffusion potential U across successive condensation iterations and determine
where the overall shift in data density from one iteration to the next is locally
minimal (Fig. 1b). More specifically, the gradient matrix after a condensation step
tis defined as

G =U; — lAjr—ly

where U,_, is computed from U,_, by taking the average of any subset of rows that
are merged during condensation step ¢ to match the dimensions of U,. If no merges
or shifts in data occurred during step £, §J,_, = U,_,- The gradient value is then
computed by taking the sum

&= 1G(ij)l-

ij

Generally, the gradient changes smoothly from one iteration to the next as
semistable resolutions are reached. We pick scales for visualization by identifying
local minima in {g;, g,...g;}, as observed in the gradient curve (Fig. 1b). Because
Multiscale PHATE can compute PHATE embeddings at all condensation

steps, visualization at any granularities identified by gradient analysis is readily
available (Fig. 1c).

Distinction between the diffusion condensation process and hierarchical
clustering. One use of diffusion condensation can be to provide a hierarchy

of clusters determined by merged points. However, it should be noted that the
condensation process here is different from typical hierarchical clustering and
instead provides a richer coarse graining of data geometry. Indeed, hierarchical
clustering algorithms generally belong to two families: divisive algorithms and
agglomerative ones.

Divisive approaches (e.g., bisecting k-means* or minimum spanning
tree-based clustering™) work in a top-down fashion, each time optimizing a
partition of the data into clusters (e.g., using partitional methods like k means)
and then recursively partitioning this subspace into further clusters. The difference
between these and the gradual aggregation approach of the condensation process
is clear.

Agglomerative methods, on the other hand, work in a bottom-up fashion by
first merging points into clusters and then recursively merging increasingly larger
clusters. Although intuitively more related to the gradual merges in diffusion
condensation, there is a fundamental difference between the coarse-graining
operation applied here and the (typically greedy) agglomeration in such methods.
Indeed, most agglomerate clustering methods only operate on determining an
iterative or recursive sequence of merges, without considering any intermediate
information or structure in the data. Furthermore, this approach corresponds to
a very specific epsilon schedule and kernel format (e.g., determined by the used
linkage type).

The condensation process used here, on the other hand, is derived from a
continuous process that gradually eliminates local variability in the data using a
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more gradually changing epsilon schedule and kernel format, which allows for
exploration of a more continuous range of granularities. At its core, it relies on a
time-inhomogeneous Markov chain that gradually constructs a diffusion geometry
that reveals global and local structures in the data at increasingly coarse scales.

The elimination of local variability in this process allows points to naturally come
together, thus producing natural data clusters from data regions that collapse to the
same point, without the need for partitioning or greedy agglomeration. However,
this is a pattern that emerges from the coarse-graining process rather than directly
or explicitly guiding it. The constructed multiresolution data geometry also reveals
other information, beyond clustering, which makes it amenable for visualization
and other downstream tasks. For instance, condensation homology produces
persistent features that are meaningful, and levels of metastability can be analyzed,
as we do for the selection of metastable resolutions (e.g., for visualization)
explained below.

To demonstrate the difference between diffusion condensation and
agglomerative clustering, we use the Louvain method'” as a representative example
because of its popularity in single-cell data analysis. This method greedily selects
clusters to merge together by their impact on modularity (i.e., whether and how
much they improve it). Although the forced merges ensure a hierarchy of data
agglomerations, they do not provide reliable coarse-grained representations for
revealing varied data resolutions. As we show in Extended Data Fig. 5, they miss
vital levels of resolution. Meanwhile, diffusion condensation allows for a systematic
exploration of granularity and is better at capturing levels where biological
differences may exist (Extended Data Fig. 5e).

Comparison of multigranular clusters. To quantitatively compare the accuracy of
Multiscale PHATE clusters with hierarchical clustering approaches, we compared
cluster labels generated from a range of clustering strategies to ground truth labels
using ARI. We first generated synthetic single-cell data with ground truth cluster
labels using Splatter'’. We then produce a range of noisy splatter datasets, each
with increasing amounts of either dropout or variational noise, and run Multiscale
PHATE, Louvain'?, Leiden'® and single-linkage hierarchical clustering'’ to identify
groupings across multiple levels of granularity. For each technique at each noise
level, we compute ARI between clusters computed across all granularties and
ground truth clusters, saving the highest ARI (Extended Data Fig. 5a).

Next, we generated a hierarchical stochastic block model with different
clusters at multiple granularities (Extended Data Fig. 5b). We then used Multiscale
PHATE, Louvain'®, Leiden'® and single-linkage hierarchical clustering'” to
identify groupings across multiple levels of granularity. For each level of ground
truth clusters, we computed ARI against cluster labels from each algorithm
across all granularities, storing the highest ARI for each method. Finally, for
the flow cytometry data, we used gated populations from three samples in our
myeloid-centric flow cytometry panel as ground truth labels across coarse and fine
grain cluster labels. For instance, at coarse grain, monocytes would be identified as
one population; however, at fine grain, monocytes would be part of three distinct
populations. ARI was computed similarly for this dataset, and ground truth labels
were compared with all granularties of clusters from each algorithm, with the
top score stored for each approach (Extended Data Fig. 6¢). Networkx®' was used
to produce Louvain clusters, Leidenalg was used to produce Leiden clusters and
agglomerative clusters were produced using sklearn®.

Comparison of multigranular visualizations. To show that Multiscale PHATE
created improved multigranular visualizations when compared to other
approaches, we presented examples of visualization for qualitative comparison
and performed two ablation studies for quantitative comparison. First, Splatter
software was used to simulate ground truth and noisy single-cell data of either
group (cluster) or path (trajectory) geometries'’. We showed Multiscale PHATE
visualizations of both fine and coarse resolutions on both splatter paths and
clusters data to demonstrate our method’s ability to visualize at varied granularity.
Both resolutions were gradient salient based on the gradient analysis described

in the previous section. A fine resolution was chosen to display 200 points,
whereas a coarse resolution was chosen to display about 50 points. We compared
this method with UMAP visualization of other multiscale abstraction methods,
including diffusion condensation, Louvain and computational homology. The
resolution of comparison methods in Fig. 2a were chosen to most closely match
Multiscale PHATE fine resolution. It should be noted that Louvain only returns a
few resolutions (usually only two or three), whereas Multiscale PHATE generates
a much wider range of resolutions. The fine granularity of Louvain was the closest
match for Multiscale PHATE fine resolution. As for the homology method, we can
explicitly set the resolution to match the Multiscale PHATE fine resolution. The
same resolution selection strategy for comparison methods applies to the following
quantitative comparisons.

We performed two ablation studies, the first to show the necessity of diffusion
condensation to learn data topology and the second to show the necessity of
PHATE for visualization. In the first ablation study, different approaches used to
build a multiscale abstraction of the noisy synthetic data were computed, including
diffusion condensation, Louvain and computational homology, as well as Louvain
and homology constructed from diffusion potential. Across all methods that use
diffusion potential, diffusion potential coordinates were computed using default
settings in PHATE (five nearest neighbors, 40 , 1 y). Louvain or homology

clusters were then computed using these diffusion potential coordinates as the
substrate instead of the raw data values. Finally, these abstractions were visualized
with a range of dimension reduction and visualization strategies, including
PHATE, t-SNE and UMAP. For techniques that use diffusion potential for the
calculation of clusters (as done by potential-agglomerative and potential-Louvain),
all data points corresponding to each cluster at the specified resolution were
merged together to form aggregated points (essentially by averaging their feature
values). These aggregated points were then visualized with each dimensionality
reduction technique.

The resultant embeddings were compared with Multiscale PHATE using
DeMAP (ref. '°). DeMAP is a metric for assessing visualization quality in terms
of its ability to capture the manifold geometry of noisy data'’. DeMAP computes
correlation between geodesic distances on ground truth noiseless data manifolds to
Euclidean distances on embedding created from noisy data. High DeMAP scores
indicate visualization that accurately represents geodesic manifold distances in an
embedding. We applied each combination of methods to the splatter cluster and
path data with increasing levels of two types of noise, variation and dropout, and
we calculated the DeMAP score at selected resolutions. The resolution was selected
for Multiscale PHATE via gradient analysis and is the same as the fine resolution
shown in Fig. 2a. To get a fair comparison, we identified resolutions for Louvain
and homology that matched Multiscale PHATE fine resolution most closely at each
noise level, respectively.

In the second ablation study, condensation topology on the noisy synthetic
data was computed via diffusion condensation initialized with diffusion potential,
and an embedding was created after identifying the gradient salient fine resolution
via gradient analysis. In order to create multiscale visualizations with other
dimensionality reduction strategies, we first aggregated all data points in the
ambient space that belong to a Multiscale PHATE cluster at the gradient salient
fine resolution as done previously and applied a range of other visualization
approaches, including t-SNE, Monocle 2, isomap, UMAP, force directed and DM
to this condensed granularity of noisy data. Finally, all embeddings were compared
using DeMAP. These studies were repeated across a range of noise types, biological
variation and dropout and a range of noise levels.

For robustness, all processes run across 10 different splatter datasets with
group geometry and 10 different splatter datasets with path geometry for each
comparison. Besides Multiscale PHATE, the DeMAP package was used to build all
other visualizations'’.

Additional datasets and noise simulation. FlowCAP I ND dataset contains
10-dimensional data from 30 samples with approximately 60,000 cells per sample
and a total of over 1.7 million cells. The clustering task is to detect seven manually
gated populations. Further details on the dataset are available from the FlowCAP
website (http://flowcap.flowsite.org/).

We created two types of noise on this dataset for our clustering and
visualization comparisons: biological variation and dropout. We simulated
dropout noise on datasets by subtracting random values sampled from a Gaussian
distribution to achieve a global undersampling of the data ranging from 10% to
95%. Variation was simulated by adding Gaussian noise to each dimension, ranging
from 10% to 50% of the maximum value in each dimension.

Construction of patient manifold through multiresolution cluster evaluation.

After creating a cellular manifold by integrating hundreds of patients samples, it is

critical to understand how similar or different each of these patients are from one

another. Uncovering sample-level density variations along the cellular manifold

can be used to identify patient clinical states that are similar or dissimilar from

one another. With the goal of creating a manifold of patients, where each point

represents a unique patient sample and distances between points represent how

similar or different the underlying samples are in their cellular states as measured by

flow cytometry, we evaluated clusters at multiple levels of the condensation topology.
Practically, we created a manifold of samples by simultaneously evaluating

multiple levels of the diffusion condensation topology. At each level # €{1,2,...,L},

a number of N, clusters were identified. We counted the number of cells, n,, ko

of the k-th patient that belong to each cluster C;, for every j€{1,2,..., N}

and calculated the normalized percentage as 2k = Zm": - We calculated the
i

proportions for all patients at a series of selected levels of the topology and
concatenated these to create a rich multiscale vector of features for each patient.
These multiscale feature vectors were then used to create an embedding with
PHATE (ref. ') and denoise patient-specific signals using MAGIC (ref. ) using
Euclidean distance between samples.

By evaluating cluster proportions across multiple resolutions, we created
high-dimensional multiscale feature descriptors for each patient that can then
be embedded with PHATE for visualization, MELD for outcome likelihood
inference and finally DREMI for association analysis (Fig. 5a,b). The constructed
patient manifold accurately recapitulated the clinical states (Fig. 5¢,d) and better
represented patient states than patient manifolds constructed from Louvain
clusters and flow cytometry gates (Extended Data Fig. 9c¢).

Generalizability, scalability and reproducibility of Multiscale PHATE.
Multiscale PHATE is broadly generalizable to a large number of biological data
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types, including flow cytometry, scRNA-seq, scATAC-seq and clinical variables,
among others (Extended Data Fig. 2). When comparing run times between
different techniques, it became clear that Multiscale PHATE was able to rapidly
scale to millions of cells, successfully embedding 5 million cells in less than 10 min,
whereas the next most scalable technique, Monocle 2, could only embed 500,000
cells in a comparable time frame (Extended Data Fig. 1d). Across all comparisons,
the number of features did not alter run time drastically, as the initial step of

each of these dimensionality reduction algorithms is feature compression with
PCA. Thus, the only major difference in run time was the length to compute PCA
compression, which is done via a rapid randomized single value decomposition
process. Finally, Multiscale PHATE is highly reproducible. A common issue with
UMAP and ¢-SNE, which shift clusters from run to run based on initialization, is
addressed by Multiscale PHATE, which can faithfully create the same embedding
across multiple runs with different initializations (Extended Data Fig. le).

Use of MELD with Multiscale PHATE. MELD is a method proposed by
Burkhardt et al'"” that takes a discrete signal defined on a data graph and computes
a continuous likelihood score of the signal value by using a sophisticated form of
neighborhood averaging and a heat kernel at each point (Fig. 1¢). In order to apply
MELD to this dataset, we combined the flow cytometry data from all patients and
used a binary outcome score that we call mortality, which uses a discrete 0 value
for a positive outcome (the patient was discharged), or a 1 value for a negative
outcome (patient died or was sent to hospice). The outcome of the patient is used
as the discrete condition for all cells from that patient. Thus, in our combined
flow cytometry dataset, every cell from positive-outcome patients gets a raw
experimental signal value of 0. Using MELD, we estimate the likelihood of each
outcome over the cellular manifold using a heat-diffusion kernel applied to the data
graph to obtain mortality likelihood score. Values of the mortality likelihood score
range from 0 to 1 and constitute a probability likelihood estimate of the condition
over the manifold. This allows us to identify areas of the cellular manifold that are
likely to be enriched in those with positive or negative outcomes.

Because Multiscale PHATE identifies clusters of cells across all levels of
granularity, we could sweep across resolutions to identify levels that isolate
high- and low-mortality likelihood score regions. In fact, when comparing
our multigranular clusters with other clustering techniques across a range
of granularities, we found that Multiscale PHATE was better able to isolate
high- and low-mortality likelihood score regions in one of our flow cytometry
panels (Extended Data Fig. 5¢). By looking at these informative resolutions,
we identified populations of cells that were pertinent to patient outcomes.
When identifying these subpopulations in conjunction with cell type-defining
markers, we found that we could identify cell types and functional subtypes
that were differentially enriched across patient outcomes and may drive disease
pathogenesis. The full Multiscale PHATE and MELD integrated pipeline is shown
in Extended Data Fig. 1c.

DREMI associations with mortality likelihood score. DREMI (ref. *°) is

an information-theoretic metric that quantifies associations or strength of a
relationship between two variables. Like most discrete estimates of mutual
information, DREMI starts by binning continuous data into equal-sized partitions,
X={X,X,,....,X,},and Y={Y,,Y,,..., Y,}, in both variable dimensions, but instead
of measuring the mutual information as I(X, y) = H(Y) — Y H(Y|X)), the difference
between the entropy of Y and the conditional entropy of X|Y, DREMI ‘resamples’
or equalizes the number of samples in each bin using an extra level of conditioning.
Thus, DREMI computes DREMI(X, Y) =I(X, Y|X) = H(Y|X) — X, H(Y|X,). The
rationale for this is that normal mutual information is dominated by the density
peaks of the X variable and does not reveal the full strength of the relationship
given imbalanced sampling, which is common in biomedical data.

When combining our DREMI analysis with previously computed mortality
likelihood score, we identified functional marker trends that are correlated with
mortality. As cells of the same type can occupy a range of functional states that can
be enriched in disease, a given subtype may not be associated with mortality, but a
functional substate could be. By computing DREMI associations between mortality
likelihood score and cellular functional state markers, we identified markers and,
by extension, activation states that are associated with outcome.

Multiscale PHATE improves on current methods to identify and extract
pathogenic populations from large biological manifolds. Multiscale PHATE

is able to not only visualize and cluster large biological manifolds but also

better identify and extract populations of interest in crowded submanifolds. All
dimensionality reduction methods suffer from crowding as a result of squeezing
high-dimensional data into low-dimensional axes. In crowded regions, it can be
difficult to resolve fine-grained structure and separations. The multiscale approach
of Multiscale PHATE alleviates crowding by zooming into crowded regions and
revealing finer-grained structure (Extended Data Fig. 3a-d). We showcased the
utility of our approach by zooming into a crowded region of our PBMC dataset
using both Multiscale PHATE and PHATE (Extended Data Fig. 3a-d). Although
zooming in clearly separates differing cell types from one another in our Multiscale
PHATE approach, it does not in PHATE. Furthermore, when MELD is used

in these crowded submanifolds, extracting pathogenic populations with vertex
frequency clustering is problematic due to lack of natural separations of the data'?.
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When trying to identify populations of cell enriched in patients who died of
infection, we clearly identify a subpopulation of B cells enriched in lethal disease
on both PHATE and Multiscale PHATE (Extended Data Fig. 3e,f). However,
Multiscale PHATE clustering better isolates this population (Extended Data Fig.
3g,i) and furthermore, because of the hierarchical nature of Multiscale PHATE
clusters, produces a gating strategy capable of isolating this population (Extended
Data Fig. 3h). Altogether, this analysis reveals that Multiscale PHATE is able to
better alleviate crowding problems in high-dimensional data, allowing for the
identification of sortable pathogenic populations that cannot be done with current
baseline methods.

Patient manifold analysis from Multiscale PHATE features. To identify the
differences between individual patient samples, we used Multiscale PHATE to
construct a manifold of patients as described above. Similar to the mortality
likelihood score computed by MELD in our flow cytometry analysis, we computed
a similar mortality likelihood score for our patient manifold by identifying
whether each patient sample originated from a patient who had a positive
outcome or a negative outcome. To identify patient sample features correlated
with mortality likelihood score, we compiled a set of clinical, demographic

and Multiscale PHATE-identified cell type proportion features for each patient
sample. Using the geometry of the patient manifold, we denoised our patient
sample features using MAGIC (ref. ) before running association analysis between
features using DREMI (ref. ).

Mortality prediction using random forest classifier. In addition to being useful
for visualizing, clustering and identifying condition-specific enrichment of cell
types, we wanted to see whether the populations we identified across granularities
were predictive of patient outcome. To predict patient outcomes from a single
patient sample, we trained a random forest classifier on populations we identified
in our myeloid-focused flow cytometry panel. Similar to our patient manifold
analysis, we derived multiscale patient features by identifying the proportion of
each patient’s cells that were labeled with a particular cell type. After partitioning
our dataset of 210 patient samples into five sets, we performed fivefold
cross-validation in which we iteratively shuffled training sets (four of five) and test
sets (one of five).

Preprocessing of patient flow cytometry data. Flow cytometry was performed
on PBMC:s from each patient over the course of several weeks (the methods are
explained in detail below). Because of the extended period of patient sample
processing, the settings of the flow cytometry could change subtly day to day,
producing differences in the amount of fluorescence measured from sample to
sample. Because we wanted the distances between cells to reflect real biology
instead of experimental artifacts, the normalization steps that we took aimed to
ensure that each cell had equal total fluorescent counts.

The resulting FCS files were preprocessed by applying compensation based on
the respective single-color compensation controls, selecting only leukocytes and
singlets based on FSC and SSC and selecting only live cells based on a viability dye.
Mean fluorescence intensity values for each fluorophore on a per-cell basis were
then extracted for downstream analysis. To extract T cells for the cytokine-focused
T cell panel, cells with CD3 staining greater than 425 were extracted. For the T cell
surface marker panel, cells with a CD3 staining greater than 500 were extracted.
For the B cell-focused panel, cells with a CD19 staining greater than 400 were
extracted, and cells expressing less than a total of 2,700 cumulative staining across
all markers were removed. No extraction of cells was done for the myeloid-focused
panel; however, cells with cumulative staining across all markers less than 2,700
across were removed. The total fluorescent counts are affected by experimental
settings and vary substantially between cells. Therefore, we normalized total
fluorescent count to 1,000 per cell so that each cell had equal total counts. We
then applied square-root normalization to each entry of the data matrix. The
normalization for a data matrix D with n samples and d features is

D(i,j)

1/2
Doorm (ir]) = <1000>< 7> .
iy D(i,k)

Biological and medical methods. In the following sections, we provide details on
how patient biological data and clinical information were acquired and processed.

Ethics statement. This study was approved by Yale Human Research Protection
Program institutional review boards (FWA00002571, protocol ID 2000027690).
Informed consent was obtained from all enrolled patients and healthcare workers.

Patients. Patient enrollment, sample acquisition, processing and downstream
analysis by flow cytometry were performed as in Lucas et al''. One-hundred and
sixty-eight patients admitted to YNHH with SARS-CoV-2 between 18 March
2020 and 27 May 2020 were recruited to the Yale IMPACT study (Implementing
Medical and Public Health Action Against Coronavirus CT) after testing positive
for SARS-CoV-2 by gRT-PCR and included in this study. No statistical methods
were used to predetermine sample size. Paired whole blood for flow cytometry
analysis was collected simultaneously in sodium heparin-coated vacutainers and
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kept on gentle agitation until processing. All blood was processed on the day of
collection. Patients were scored for COVID-19 disease severity through review
of electronic medical records at each longitudinal time point. For all patients,
days from symptom onset were estimated as follows: (1) the highest priority was
given to explicit onset dates provided by patients; (2) the next highest priority
was given to the earliest reported symptom by a patient; and (3) in the absence
of direct information regarding symptom onset, we estimated a date through
manual assessment of the electronic medical records by an independent clinician.
The clinical data were collected using EPIC EHR and REDCap 9.3.6 software.

At the time of sample acquisition and processing, investigators were unaware

of the patients’ conditions. Blood acquisition was performed and recorded by

a separate team. Information about patients’ conditions was not available until
after processing and analysis of raw data by flow cytometry and enzyme-linked
immunosorbent assay. A clinical team, separate from the experimental team,
performed chart reviews to determine relevant statistics. Flow cytometry analyses
were performed blinded. Patients’ clinical information and clinical score coding
were revealed only after data collection.

Isolation of PBMCs. PBMCs were isolated from heparinized whole blood using
Histopaque (Sigma-Aldrich, 10771-500ML) density gradient centrifugation in a
biosafety level 2+ facility. After isolation of undiluted serum, blood was diluted 1:1
in room-temperature PBS, layered over Histopaque in a SepMate tube (StemCell
Technologies, 85460) and centrifuged for 10 min at 1,200g. The PBMC layer was
isolated according to the manufacturer’s instructions. Cells were washed twice
with PBS before counting. Pelleted cells were briefly treated with ACK lysis buffer
for 2 min and then counted. Percentage viability was estimated using standard
Trypan blue staining and an automated cell counter (Thermo Fisher Scientific,
AMQAX1000).

Flow cytometry. In brief, freshly isolated PBMCs were plated at 1-2X 106 cells
per well in a 96-well U-bottom plate. Cells were resuspended in Live/Dead
Fixable Aqua (Thermo Fisher Scientific) for 20 min at 4°C. Following a wash,
cells were blocked with Human TruStain FcX (BioLegend) for 10 min at room
temperature. Cocktails of desired staining antibodies were added directly to

this mixture for 30 min at room temperature. For secondary stains, cells were
first washed and supernatant aspirated; then, to each cell pellet, a cocktail of
secondary markers was added for 30 min at 4 °C. Before analysis, cells were
washed and resuspended in 100 pl of 4% paraformaldehyde for 30 min at 4 °C.
For intracellular cytokine staining following stimulation, cells were resuspended
in 200 pl cRPMI (RPMI-1640 supplemented with 10% FBS, 2 mM L-glutamine,
100 U ml™" penicillin, and 100 pg ml~! streptomycin, 1 mM sodium pyruvate and
50 pM 2-mercaptoethanol) and stored at 4 °C overnight. Subsequently, these cells
were washed and stimulated with 1 X Cell Stimulation Cocktail (eBioscience)

in 200 pl cRPMI for 1 h at 37 °C. Then, 50 pl of 5x Stimulation Cocktail (plus
protein transport inhibitor) (eBioscience) was added for an additional 4 h of
incubation at 37 °C. Following stimulation, cells were washed and resuspended
in 100 pl of 4% paraformaldehyde for 30 min at 4 °C. To quantify intracellular
cytokines, these samples were permeabilized with 1 X permeabilization buffer
from the FOXP3/Transcription Factor Staining Buffer Set (eBioscience) for

10 min at 4 °C. All subsequent staining cocktails were made in this buffer.
Permeabilized cells were then washed and resuspended in a cocktail containing
Human TruStain FcX (BioLegend) for 10 min at 4 °C. Finally, intracellular
staining cocktails were added directly to each sample for 1 h at 4 °C. Following
this incubation, cells were washed and prepared for analysis on an Attune NXT
(Thermo Fisher Scientific). Data were analyzed using Flow]Jo software v10.6
software (Tree Star).

Acquisition of clinical data for flow cytometry analysis and patient manifold.
Longitudinal patient data were extracted from the electronic medical record
(Epic) only for the patients who were hospitalized and included in the repository.
Time-varying data, specifically vital signs and laboratory studies, were extracted
specifically 24 h before and after the collection of blood specimens for flow
cytometry as described above. This ensured that the measurements correlated
with the patient state at the time of flow cytometry measurements. Laboratory
values reflecting clinical evaluation of general inflammatory states (white blood
cell count and high-sensitivity C-reactive protein) were extracted. The values
for the laboratory measurements were then consolidated by taking the most
abnormal value (e.g., highest ferritin value) in the 72-h period and overlaid onto
the patient manifolds.

Acquisition of clinical data for clinical manifold. For patients who did not
undergo flow cytometry analysis, the time-varying clinical, laboratory and
treatment data were extracted for the first 24 h from admission with consolidation
by the most abnormal value as described before. Otherwise, the consolidated

data temporally correlating to flow cytometry measurements were extracted as
described above.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
Raw flow cytometry data and count matrices have been deposited to ImmPort and
are available through study number SDY1886.

Code availability

The Multiscale PHATE package, as implemented in Python, is available for
download with a guided tutorial on the Krishnaswamy Lab GitHub page (https://
github.com/KrishnaswamyLab/Multiscale_ PHATE).
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Extended Data Fig. 1| Condensing on manifold, reproducibility and run time comparisons. a, Visualization of toy swiss roll after performing condensation
in euclidean space or on diffusion potential. Top: schematic of the movement vectors of each point when run in euclidean space or on diffusion potential
for one iteration. Bottom: Visualization of toy swiss roll dataset after several iterations of diffusion condensation, running in both euclidean space and
diffusion potential. b, Comparison of diffusion condensation on diffusion potential to diffusion condensation on ambient measurement dimensions on an
increasingly noisy stochastic block model to simulate nonlinear noise in a high-dimensional space. In this model, increasing amounts of Gaussian noise
were added to the edge weights of the adjacency matrix. ¢, Pipeline for identifying cellular populations enriched based on clinical variables with Multiscale
PHATE and MELD. d, Comparing run time across visualization techniques on increasingly high-dimensional flow cytometry data. e, Visualization of
reproduciblity of Multiscale PHATE across two different runs of PBMCs measured by scRNA-seq. Each run was initialized with a different random seed.

NATURE BIOTECHNOLOGY | www.nature.com/naturebiotechnology


http://www.nature.com/naturebiotechnology

NATURE BIOTECHNOLOGY ARTICLES

MS-PHATE MS-PHATE
Fine Resolution Coarse Resolution

PCA UMAP e

® nNcells

® s

$ > =
FACS

® scens
@ Dendritic cells
@ NKcells

® coa Teells

® cosTeells

@ Granulocytes

scRNAseq

Clinical

!
te Vg - -
1S 4 @ Innate Immune Cells
scATACseq ;A{’ PR P E""‘mw

o

. @ Nephron Components

Bcells

CD8* T cells
€D4* T cells
Monocytes
NK cells

m
=
o
i
@
a

& pooyyex1 3
i uonoayu|

TCR

* Memory error on 22 million cells, down sampled to 25,000

Extended Data Fig. 2 | Visualization of differing high-dimensional biological data types. Visualization comparison across a range of data types: 22 million
PBMCs measured by flow cytometry (Lucas et al.), 49,942 PBMCs by scRNA-seq (Lee et al.), 2,135 patients admitted to YNHH by demographic and lab
clinical variables, 25,528 cells from a diverse set of mouse tissues measured by scATAC-seq (Cusanovich et al.), 1,010,964 PBMCs measured by CyTOF
(Hartmann et al.) and 50,000 TCRs from COVID-19 infected patients and healthy controls (Nolan et al., Corrie et al.).
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Extended Data Fig. 3 | Multiscale PHATE is capable of identify extractable cellular subsets from massive single-cell data. a, Multiscale PHATE
visualization of PBMCs identifies all major cell types based on cell type-specific markers. b, PHATE visualization of subsample of 25,000 PBMCs helps
identify all major cell types based on cell type-specific markers using Multiscale PHATE clustering. ¢, Zoom in of subsection of Multiscale PHATE manifold
resolves crowding in coarse grain visualization. d, Zoom in of subsection of PHATE manifold does not resolve crowding. e, Multiscale PHATE is able to
identify subpopulations enriched in patients who die from COVID. The plot on the right is colored by Multiscale PHATE-identified clusters. f, PHATE and
vertex frequency clustering (VFC) are unable to identify subpopulations enriched in patients who die from COVID. The plot on the right is colored by VFC
identified clusters. g, Multiscale PHATE-identified populations show differing enrichments in patients who die from COVID19. One of the B cell subsets
(lighter blue color) are enriched in patients who die from COVID. h, Multiscale PHATE's hierarchical approach to clustering provides a gating strategy to
isolate subsets of B cells enriched in patients who die from COVID19. i, VFC identified populations do not isolate mortality enriched cellular subsets as well
as Multiscale PHATE.
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Extended Data Fig. 4 | Visualization of differing multiscale dimensionality reduction techniques. a, Visualization of noisy splatter data with either

path of cluster geometry embedded with algorithms created for condensation ablation study performed in Fig. 2b. b, Visualization of noisy splatter data

with either path of cluster geometry embedded with algorithms created for PHATE ablation study performed in Fig. 2c. ¢, Quantitative study comparing
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omparing embeddings produced by Multiscale PHATE and visualization strategies which visualize condensation based abstractions of data. Comparisons

were run and represented as described in b.
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across a range of noise types, dropout and biological variation, and noise levels. Shading represents one standard deviation around mean ARl score
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increasing amounts of random Gaussian noise were added to the adjacency matrix of stochastic block model to simulate increasing amounts of noise.
While adding noise directly to data introduces simple linear noise, adding Gaussian noise to the edge weights of an adjacency matrix simulates more
complex non-linear type of noise which is often present in high-dimensional biological data. ¢, Computed Adjusted Rand Index (ARI) between each
algorithm's predicted clusters and the known clusters across coarse and fine granularities of 2 layer stochastic block model perturbed with increasing
amounts of noise. Shading represents one standard deviation around mean ARl score for each comparison. d, Computed Adjusted Rand Index (ARI)
between each algorithm’s predicted clusters and the known clusters across coarse, intermediate and fine granularities of 3 layer stochastic block model
perturbed with increasing amounts of noise. Shading represents one standard deviation around mean ARI score for each comparison.
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Extended Data Fig. 6 | Comparison of Multiscale PHATE with other clustering tools on real data. a, Comparison of multiple clustering approaches

on flow cytometry data where cell types and subtypes have been identified through gating analysis. Clusters identified by different approaches were
compared to gated populations using ARl and F1 score. b, Comparison of multiple clustering techniques at identifying regions with uniform MELD
likelihood scores across a range of comparable granularities. ¢, Comparison of multiple clustering techniques across a range of granularities on flow
cytometry data with cell types and subtypes identified as done in a. d, Comparison of multiple clustering techniques across increasing amounts of noise of
different types, biological variation and dropout, as done in Extended Data Fig. 3. As done in Extended Data Fig. 3, noise was added to FlowCAP | Normal
Donor (ND) dataset with known clusters. Shading represents one standard deviation around mean ARI score for each comparison.
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Extended Data Fig. 7 | Multiscale PHATE identifies subsets of monocytes and B cells enriched in patients who died of COVID-19. a, Zoom in of
monocyte population identifies subsets based on expression of markers. Colors denote cell type and size of a dot is proportional to number of cells
represented. b, Visualization of mortality likelihood score as computed by MELD in monocytes identifies subsets enriched in patients who die from
COVID-19. Key associations between markers and mortality likelihood score computed by DREMI and visualized with DREVI. ¢, Visualization of B cells
panel identifies a range of subsets based on expression of known markers. Colors denote cell type and size of a dot is proportional to number of cells
represented. d, Visualization of mortality likelihood score identifies B cell subsets enriched in patients who die from COVID-19. e, Comparison of mortality
likelihood score across panels reveals that granulocytes and monocytes are broadly the most enriched cell types in patients who die from COVID-19.
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name,; describe more complex techniques in the Methods section.

A description of all covariates tested

X ] [

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  EPIC EHR software (retrospective EMR review and clinical data aggregation) and REDCap 9.3.6 (clinical data aggregation)

Data analysis FlowJo (version 10.6, Tree Star), GraphPad PRISM version 8.0.2 (pre-processing), Multiscale PHATE (downstream analysis)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data generated during the current study will be available in the ImmPort Platform under study number SDY1886.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined based on the number of patients admitted to Yale New Haven Hospital (YNHH) between March 18th and May
28th that were enrolled and consented with th current study. This study enrolled 168 patients admitted to the Yale New Haven Health care
network under IRB and HIC approved protocol #2000027690. Patients were identified though screening of EMR records for potential
enrollment. Informed consent was obtained by trained staff and sample collection commenced immediately upon study enrollment.

Data exclusions 168 COVID-19 patients were enrolled on this study however 37 were excluded. Those included: Pregnant women and patients on active
chemotherapy.

Replication The findings were not replicated.
Randomization  Patients were stratified by disease severity (moderate and severe) based on disease outcome (death or discharge respectively).

Blinding At the time of sample acquisition and processing, scientists were unaware of the patients’ condition and severity. Blood acquisition is
performed and recorded by a separate team. Information of patients’ conditions are not available until after processing and preliminary
analysis with Multiscale PHATE. At this time, outcome was unblinded to allow for clinical correlation.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies (][] chip-seq
Eukaryotic cell lines |:| |Z Flow cytometry

Palaeontology and archaeology |:| |:| MRI-based neuroimaging
Animals and other organisms

Human research participants

Clinical data

Dual use research of concern
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Antibodies

Antibodies used All antibodies used in this study are against human proteins. BB515 anti-hHLA-DR (G46-6) (1:400) (BD Biosciences), BV785 antihCD16
(3G8) (1:100) (BioLegend), PE-Cy7 anti-hCD14 (HCD14) (1:300) (BioLegend), BV605 anti-hCD3 (UCHT1) (1:300) (BioLegend),
BV711 anti-hCD19 (SJ25C1) (1:300) (BD Biosciences), AlexaFluor647 anti-hCD1c (L161) (1:150) (BioLegend), Biotin anti-hCD141 (M80)
(1:150) (BioLegend), PE-Dazzle594 anti-hCD56 (HCD56) (1:300) (BioLegend), PE anti-hCD304 (12C2) (1:300) (BioLegend), APCFire750
anti-hCD11b (ICRF44) (1:100) (BioLegend), PerCP/Cy5.5 anti-hCD66b (G1OF5) (1:200) (BD Biosciences), BV785 anti-hCD4 (SK3) (1:200)
(BioLegend), APCFire750 or PE-Cy7 or BV711 anti-hCD8 (SK1) (1:200) (BioLegend), BV421 anti-hCCR7 (G043H7) (1:50) (BioLegend),
AlexaFluor 700 anti-hCD45RA (HI1100) (1:200) (BD Biosciences), PE anti-hPD1 (EH12.2H7) (1:200) (BioLegend), APC anti-hTIM3
(F38-2E2) (1:50) (BioLegend), BV711 anti-hCD38 (HIT2) (1:200) (BioLegend), BB700 anti-hCXCRS (RF8B2) (1:50) (BD Biosciences),
PECy7 anti-hCD127 (HIL-7R-M21) (1:50) (BioLegend), PE-CF594 anti-hCD25 (BC96) (1:200) (BD Biosciences), BV711 anti-hCD127
(HIL-7R-M21) (1:50) (BD Biosciences), BV421 anti-hIL17a (N49-653) (1:100) (BD Biosciences), AlexaFluor 700 anti-hTNFa (MAb11)
(1:100) (BioLegend), PE or APC/Fire750 anti-hIFNy (4S.B3) (1:60) (BioLegend), FITC anti-hGranzymeB (GB11) (1:200) (BioLegend),
AlexaFluor 647 anti-hIL-4 (8D4-8) (1:100) (BioLegend), BB700 anti-hCD183/CXCR3 (1C6/CXCR3) (1:100) (BD Biosciences), PE-Cy7
antihIL-6 (MQ2-13A5) (1:50) (BioLegend), PE anti-hiL-2 (5344.111) (1:50) (BD Biosciences), BV785 anti-hCD19 (SJ25C1) (1:300)
(BioLegend), BV421 anti-hCD138 (MI15) (1:300) (BioLegend), AlexaFluor700 anti-hCD20 (2H7) (1:200) (BioLegend), AlexaFluor 647
anti-hCD27 (M-T271) (1:350) (BioLegend), PE/Dazzle594 anti-higD (1A6-2) (1:400) (BioLegend), PE-Cy7 anti-hCD86 (1T2.2) (1:100)
(BioLegend), APC/Fire750 anti-higM (MHM-88) (1:250) (BioLegend), BV605 anti-hCD24 (ML5) (1:200) (BioLegend), BV421 anti-hCD10
(H110a) (1:200) (BioLegend), BV421 anti-CDh15 (SSEA-1) (1:200) (BioLegend), AlexaFluor 700 Streptavidin (1:300) (ThermoFisher),
BV605 Streptavidin (1:300) (BioLegend).
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Validation All antibodies used in this study are commercially available, and all have been validated by the manufacturers and used by other
publications. Likewise, we titrated these antibodies according to our own our staining conditions. The following were validated in the
following species: BB515 anti-hHLA-DR (G46-6) (BD Biosciences) (Human, Rhesus, Cynomolgus, Baboon), BV785 anti-hCD16 (3G8)
(BioLegend) (Human, African Green, Baboon, Capuchin Monkey, Chimpanzee, Cynomolgus, Marmoset, Pigtailed Macaque, Rhesus,
Sooty Mangabey, Squirrel Monkey), PE-Cy7 anti-hCD14 (HCD14) (BioLegend) (Human), BV605 anti-hCD3 (UCHT1) (BioLegend)
(Human, Chimpanzee), BV711 anti-hCD19 (SJ25C1) (BD Biosciences) (Human), AlexaFluor647 anti-hCD1c (L161) (BioLegend) (Human,
African Green, Baboon, Cynomolgus, Rhesus), Biotin anti-hCD141 (M80) (BioLegend) (Human, African Green, Baboon), PE-Dazzle594
anti-hCD56 (HCD56) (BioLegend) (Human, African Green, Baboon, Cynomolgus, Rhesus), PE anti-hCD304 (12C2) (BioLegend)
(Human), APCFire750 anti-hCD11b (ICRF44) (BioLegend) (Human, African Green, Baboon, Chimpanzee, Common Marmoset,
Cynomolgus, Rhesus, Swine), PerCP/Cy5.5 anti-hCD66b (G10F5) (BD Biosciences) (Human), BV785 anti-hCD4 (SK3) (BioLegend)
(Human), APCFire750 or PE-Cy7 or BV711 anti-hCD8 (SK1) (BioLegend) (Human, Cross-Reactivity: African Green, Chimpanzee,
Cynomolgus, Pigtailed Macaque, Rhesus, Sooty Mangabey), BV421 anti-hCCR7 (G043H7) (BioLegend) (Human, African Green,
Baboon, Cynomolgus, Rhesus), AlexaFluor 700 anti-hCD45RA (HI100) (BD Biosciences) (Human), PE anti-hPD1 (EH12.2H7)
(BioLegend) (Human, African Green, Baboon, Chimpanzee, Common Marmoset, Cynomolgus, Rhesus, Squirrel Monkey), APC
antihTIM3 (F38-2E2) (BioLegend) (Human), BV711 anti-hCD38 (HIT2) (BioLegend) (Human, Chimpanzee, Horse), BB700 anti-hCXCR5
(RF8B2) (BD Biosciences) (Human), PE-Cy7 anti-hCD127 (HIL-7R-M21) (BioLegend) (Human), PE-CF594 anti-hCD25 (BC96) (BD
Biosciences) (Human, Rhesus, Cynomolgus, Baboon), BV711 anti-hCD127 (HIL-7R-M21) (BD Biosciences) (Human), BV421 anti-hIL-17a
(N49-653) (BD Biosciences) (Human), AlexaFluor 700 anti-hTNFa (MAb11) (BioLegend) (Human, Cat, Cross-Reactivity: Chimpanzee,
Baboon, Cynomolgus, Rhesus, Pigtailed Macaque, Sooty Mangabey, Swine), PE or APC/Fire750 anti-hIFNy (4S.B3) (BioLegend)
(Human, Cross-Reactivity: Chimpanzee, Baboon, Cynomolgus, Rhesus), FITC anti-hGranzymeB (GB11) (BioLegend) (Human, Mouse,
Cross-Reactivity: Rat), AlexaFluor 647 anti-hlL-4 (8D4-8) (BioLegend) (Human, Cross-Reactivity: Chimpanzee, Baboon, Cynomolgus,
Rhesus), BB700 anti-hCD183/CXCR3 (1C6/CXCR3) (BD Biosciences) (Human, Rhesus, Cynomolgus, Baboon), PE-Cy7 anti-IL-6
(MQ2-13A5) (BioLegend) (Human), PE anti-hIL-2 (5344.111) (BD Biosciences) (Human), BV785 anti-hCD19 (SJ25C1) (BioLegend)
(Human), BV421 anti-hCD138 (MI15) (BioLegend) (Human), AlexaFluor700 anti-hCD20 (2H7) (BioLegend) (Human, Baboon, Capuchin
Monkey, Chimpanzee, Cynomolgus, Pigtailed Macaque, Rhesus, Squirrel Monkey), AlexaFluor 647 anti-hCD27 (M-T271) (BioLegend)
(Human, Cross-Reacitivity: Baboon, Cynomolgus, Rhesus), PE/Dazzle594 anti-hlgD (I1A6-2) (BioLegend) (Human), PE-Cy7 anti-hCD86
(IT2.2) (BioLegend) (Human, African Green, Baboon, Capuchin Monkey, Common Marmoset, Cotton-topped Tamarin, Chimpanzee,
Cynomolgus, Rhesus), APC/Fire750 anti-hlgM (MHM-88) (BioLegend) (Human, African Green, Baboon, Cynomolgus, Rhesus), BV605
anti-hCD24 (ML5) (BioLegend) (Human, Cross-Reactivity: Chimpanzee), BV421 anti-hCD10 (HI10a) (BioLegend) (Human, African
Green, Baboon, Capuchin monkey, Chimpanzee, Cynomolgus, Rhesus), BV421 anti-hCD15 (SSEA-1) (BioLegend) (Human), AlexaFluor
700 Streptavidin (1:300) (ThermoFisher), BV605 Streptavidin (1:300) (BioLegend).
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) State the source of each cell line used.
Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.
Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines | name any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the
issuing authority, the date of issue, and any identifying information).

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are
provided.

|:| Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released,
say where and when) OR state that the study did not involve wild animals.




Field-collected samples | For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature,
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Cohort characteristics: 63.52 mean age; 31.24 mean BMI; 48% female; 32% Black-African American, 52% white, 16% hispanic,
2% unknown.

Recruitment Patients admitted to the Yale New Haven Hospital (YNHH) between the 18th of March through the 28th of May 2020, were
recruited to the Yale IMPACT study (Implementing Medical and Public Health Action Against Coronavirus CT) after testing
positive for SARS-CoV2 by gqRT-PCR. (serology was further confirmed for all patients enrolled). Patients were identified
though screening of EMR records for potential enrollment with no self selection. Informed consent was obtained by trained
staff and sample collection commenced immediately upon study enrollment.
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Ethics oversight Yale Human Research Protection Program Institutional Review Boards. Informed consents were obtained from all enrolled
patients. Our research protocol was reviewed and approved by the Yale School of Medicine IRB and HIC (#2000027690).

Informed consent was obtained by trained staff and records maintained in our research database for the duration of our
study. There were no minors included on this study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern

Policy information about dual use research of concern

Hazards

Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented
in the manuscript, pose a threat to:

Yes

[] Public health

|:| National security

|:| Crops and/or livestock
|:| Ecosystems

XXNXNXNX &

|:| Any other significant area




Experiments of concern
Does the work involve any of these experiments of concern:
Yes
Demonstrate how to render a vaccine ineffective
Confer resistance to therapeutically useful antibiotics or antiviral agents
Enhance the virulence of a pathogen or render a nonpathogen virulent
Increase transmissibility of a pathogen
Alter the host range of a pathogen
Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin
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Any other potentially harmful combination of experiments and agents
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ChlP-seq

Data deposition

|:| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document,
May remain private before publication. | provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.g. UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChiP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot
number.

Peak calling parameters | Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files

used.
Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.
Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community

repository, provide accession details.

Flow Cytometry

Plots
Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|Z| All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Freshly isolated PBMCs were stained for live and dead markers, blocked with Human TruStain FcX, stained for surface
markers and then fixed with PFA 4%. For intracellular cytokine staining following stimulation, cells were surface stained,
washed and fixed in 4% PFA. After permeabilization with 1X Permeabilization Buffer cells were stained for intracellular
cytokines analysis.




Instrument Cells were acquired on an Attune NXT (ThermoFisher).

Software Data were analysed using FlowJo software version 10.6 software (Tree Star).

Cell population abundance Cell population abundance: Cells populations were reported in various formats including as a number or concentration of the
patient’s blood sample (x106cells/mL), as a proportion of live, single PBMC (% of Live), or as a proportion of a parent gate (%

of CD4 T cells, % of Monocytes, etc.). The full gating path for clarification is included in the extended figures.

Gating strategy SSC-A and FSC-A parameters were used to select leukocytes from isolated PBMCs. Live and dead cells were defined based on
aqua staining. Singlets were separated based on SSC/ FSC parameters.

|:| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design
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Design type Indicate task or resting state,; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial
or block (if trials are blocked) and interval between trials.

Behavioral performance measures  State number and/or type of variables recorded (e.q. correct button press, response time) and what statistics were used
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across

subjects).
Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MINI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | Whole brain [ | ROI-based [ | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.
(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).




Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.qg. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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