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Abstract—In this paper, we study the robustness of minimally-
actuated 3D flapping wing hovering systems under aerodynamic
modeling uncertainties. Our goal is to evaluate and compare the
vehicles’ robustness under commonly used control scheme and
provide guidelines for control design stage. For this purpose,
we first develop a 3D flapping wing dynamical model and find
a desired hovering flight mode based on the nominal estimate
of the aerodynamic characteristics. Then, we parameterize the
wing kinematics in a novel way to allow the system to generate
recovering aerodynamic forces. Using this parameterization, the
control inputs are defined as the variable-time segments of the
wingbeat cycle. We use the discrete LQR framework to design
three controllers, each focused on a different objective: i) least
control input change, ii) fast convergence rate and iii) least state
residue. To study the robustness, we apply the controllers to
the nonlinear system with aerodynamic uncertainty and through
exhaustive simulations, we find the range of uncertainties that
lead to stable response. The results show that controller (i) has
the largest tolerance for drag and lift coefficient uncertainties.
Moreover, this controller is robust on the uncertainties from
lift offset phase over a wide range (up to 90 degrees) but has
narrower tolerance to drag offset phase changes, especially to-
wards the positive offset angles. Considering inherent uncertainty
associated with the quasi-steady models, the results suggest to use
a slightly larger than nominal value (upper bound) aerodynamic
coefficients for control design to enjoy a greater tolerance (more
robustness). This is true for both the magnitudes as well as the
offset angles used in lift and drag functions.

I. INTRODUCTION

Flapping wing micro aerial vehicles (MAVs) have received a
significant interest due to the outstanding performance of their
biological counterparts - insects, bats and birds [1], [2], [3],
[4]. However, the aerodynamics of flapping wings at moderate
Reynolds numbers (10k < Re < 100k), in which bird and
bat-scale robots operate, has not been accurately formulated
for practical control purposes [5], [6], [7]. Therefore, despite
its limitations, the quasi-steady assumption using a blade-
element technique has been accepted as a practical tool for
aerodynamic modeling on flapping wings [3], [8], [9], [10]. In
this paper, we use this aerodynamic modeling approach and
present a method to stabilize a 3D flapping wing model of a
hovering robot with constant flapping angle range (figure 1).
We then explore the effect of the aerodynamic uncertainties
on the stability of the system.
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Fig. 1. The CAD model of a designed robot with two motors and constant
flapping angle range. The two four-bar mechanisms only allow the wings to
move within a constant flapping range.

To study the stability of flapping wing systems, linearizing
the dynamics of the full model and evaluating the stability of
the resultant linear system is a common approache [11], [12],
[13], [14]. Likewise, one can design a stabilizing controller
for the linearized model in order to stabilize the original
nonlinear system [3], [8], [15], [16], [17]. Deng et al. [8]
used the averaging theory and discrete LQR to stabilize an
insect-scale hovering system. They used the wings’ flapping
and rotation angles as control inputs and demonstrated stable
hovering in simulation. Although they did include the sensor
and actuator models, they did not study how uncertainties
in aerodynamic modeling might affect the stability of the
system. Ramezani et al. [3] used a linearized model of their
bat-scale flapping wing robot and designed an exponentially
stable forward flight. They used blade element theory [18] with
the lift and drag located at the quarter chord point of each
element to model the aerodynamic effects. Their successful
flight experiments showed the usefulness of the quasi-steady
modeling of aerodynamic forces for control design. However,
they did not discuss the robustness of the controller.

Doman et al. [19] proposed using variable velocity profiles
for the wing strokes in order to control a 3D hovering
system. Since they kept the flapping angle range constant,
they used a bob-weight to control the pitching moment. Later,
Oppenheimer ef al. [20] introduced wing stroke bias into
the variable velocity profiles and demonstrated full control
over a 3D flapping wing in hover. They used blade-element
theory and cycle averaging to model the aerodynamic effects,
and compared their results to a model using instantaneous
aerodynamic forces and moments. They did not discuss the
validity of their results for lower flapping frequencies in which
cycle averaging technique is less viable [21]. Zhang et al. [22]
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used quasi-steady modeling for aerodynamics and designed
a nonlinear geometric controller to stabilize a hummingbird-
scale hovering robot. However, they did not show the robust-
ness of the system due to aerodynamic uncertainty.

Serrani [23] used a different approach and designed a
nonlinear robust controller for a 2D flapping wing MAV
model - an extension of a single-DOF flapping wing MAV
[24]. For the 2D model, the author assumed two control
inputs: wingbeat frequency, and stroke plane angle, and used
the quasi-steady assumption for aerodynamic modeling. The
proposed controller stabilized the model with 15% parameter
uncertainty including aerodynamic coefficients. Although the
model was under-actuated for a 2D system, controlling it in 3D
seems to require additional motors. Moreover, due to the use
of the cycle averaging technique in designing the controller,
and its robustness for systems with lower flapping frequency
is not known. Alkitbi et al. [25] used the same model and
presented a robust controller using only the flapping motion
of the wings for actuation. They, too, used cycle averaging
in designing the controller and deomonstrated robustness in
stabilizing the system.

In this paper, we present results on the effect of aerodynamic
uncertainty on the stability of a 3D hovering model. Like pre-
vious researchers, we employ the quasi-steady assumption for
the aerodynamic modeling, and we explore the performance
of three stabilizing controllers - all obtained by linearizing the
nonlinear system - and quantify the stability of the system as
the different parameters in aerodynamic modeling change. The
results will demonstrate that the controller designed for control
effort efficiency (least control input change) has the largest
tolerance for aerodynamic uncertainty. Based on these results,
we present recommendations for choosing aerodynamic pa-
rameters during the analysis and control design in order to
increase the robustness of the system.

II. METHODOLOGY

In this section we first present our dynamic and aerodynamic
modeling and describe our analysis method. After that, we
explain the control strategy framework and robustness analysis
on the system.

A. Dynamic Modeling

We use a Lagrangian framework to model a 3D flying
system with two rectangular wings and a rigid body. The left
and right wings have independent flapping (¢, and ¢,)
and rotational (6;,, and 6,,,) motions relative to the body
(top view in figure 2). We assume the wing flapping angles
(¢1» and ¢,.,) are controllable but the wing rotational angles
(01 and 6,,,) are passive with £45° angle during upstroke
and downstroke [26], [22], [4]. The body has 6 DoFs - three
translational (x, y and z as forward, lateral toward left wing
and vertical upward respectively) and three rotational as yaw
(1), roll (¢) and pitch (#) angles. In total the model has 8

degrees of freedom q = [qy, 0w, 0|7 . The equations of
motion can be written as:
D(q)d + C(q, 4)q + g(q) = 7 + faero, (1)
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Fig. 2. Schematics of the global and body-fixed coordinate and illustration
of degrees of freedom. The body has 6 degrees of freedom (DoFs) in global
coordinate G: three translational DoF (x,y and z) and three rotational DoF (
Euler rotation sequence: yaw 1) - roll ¢ - pitch 8 ). Each of the wing has 1
DoF as the flapping angle (¢;,, and ¢, for left and right wing, respectively)
in B. The wing rotation angles (wing pronation) for both left and right wing
(01, and 6r,,) are assumed to be a constant value in each stroke and only
reverse sign in stroke reversal (||0;, || = ||0rw || = 45°).

where D, C(q,q) and g(q) are the mass matrix, centrifugal
matrix and gravitational vector respectively. The generalized
torque, T = [01x6, Tiw,int, Trw.int) . denotes the internal forces
between the left and right wings and the body, while f,..,
represents the external aerodynamic forces and the ensuing
torques felt by both left and right wings [27].

B. Aerodynamic Modeling and Uncertainty

We use the quasi-steady assumption to model the aerody-
namic effects [3], [28], [29], [22]. Specifically, the left and
right wings are divided into N = 10 equal width segments,
with each segment approximating that of a 2D airfoil in quasi-
steady state to generate a local lift and drag force vector on
each element (AL and AD in figure 3). These lift and drag
are located at the quarter-chord position of each individual
segment and calculated as:

AL = 1/2pCiU&cAr ()
AD = 1/2pCqUécAr, (3)

where p, ¢, Ar and Ug are the air density, chord length, width,
and airspeed of each segment in the global coordinate system
G and Cj and Cj are the lift and drag coefficients assumed in
the following format [5], [8], [9], [10], [28]:

C, = Cpsin(a+mn,) )
Ca = Cap(l —cos(2a+1,)). S)

Here «a is the effective angle of attack seen by each wing seg-
ment and varies along the wingspan due to the different wing
segment velocities. It is worth noting that the geometric angle
of attack depends on the body pitch angle and wing spanwise
rotation at each instant of time. The lift and drag coefficient
amplitudes (Cjp and Cyp) and the corresponding offset phases
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Fig. 3. The schematic of the blade element method on a general wing shape
in 3D. The lift and drag are computed at each instant of time and placed on
the quarter chord of each segment.
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Fig. 4. The lift (dashed red line) and drag (solid blue line) coefficients change
with offset phases (a) and amplitudes (b). The bold lines show the base case
for the coefficients (nominal values).

(n, and n,, physically related to the camber of the airfoil)
determine the uncertainties of the aerodynamic modeling. For
finding the hovering limit cycle and designing the stabilizing
controller, we assume the amplitudes to be Cjyp = Cy9 = 1.75,
and the offset phases to be n, = n, = 0 [2], [8], [10],
[30]. However, for robustness analysis we allow the amplitudes
and offsets to change from 1 to 3 and from —90° to +90°
respectively without altering the designed controller. Figure
4 shows the effect of the amplitudes (figure 4-a) and offset
phases (figure 4-b) on the lift and drag coefficients.

C. Analysis

We start by parameterizing the wing kinematics and de-
scribing how to find hovering limit cycles. After presenting the
stability analysis, we explain the controller design. Finally, we
present the robustness analysis on the controlled system under
aerodynamic uncertainties.

1) Wing Kinematics: We split the wingbeat cycle of each
wing into four piecewise-constant acceleration intervals (two
for each half stroke) to capture the required symmetric and
asymmetric motions of the two wings (figure 5). Assuming
the flapping cycle starts with the beginning of downstroke,
each wing flapping period is split into four time segments,
t;j, where j = 1,2,3,4, and 7 = L, R denotes the left or
right wing. Thus, tg; refers to the first time interval of the
right wing downstroke, and i3 is the first part of the left
wing upstroke. The wing flapping angle is denoted by ¢;;

(G =12,3,4,and : = L, R); qﬁij and q?iij are the velocity and
acceleration respectively. For each wing, there are 2 constraint
equations to enforce - zero velocity at the beginning and end
of the downstroke:
Girtin + distis = 0 (6)
Gistiz + Piatia = 0 @)
To apply the range of the flapping angle amplitude during
each stroke, the following two constraints apply:
200 = 0.5(ti1 + ti2)dio (®)
200 = 0.5(tiz + tia)Pan ©)
Moreover, we require that the start of the downstroke and
upstroke of both wings be synchronized:

(10)
(1)

tr1 +tre = trittre
trg +tra = tr3+tra

-, Finally, the wing should come back to its original state after

exactly one cycle:
(tin + tio)dio + (tis + tia) b = 0.

Since the flapping amplitude, ¢g, is a constant, and de-
termined by the wing four-bar linkage design (figure 1), it
is easy to show that all qﬁlj as well as t7o and tr4 can
be uniquely defined by u = {tRl,tRQ,th,tR47tL1,tL3}T
which we use as the control input vector for our simulation.
Intuitively, by manipulating the duration of each time segment,
the airspeed experienced by wing segment changes, and hence
the instantaneous forces will be different. For example, if a
slightly larger thrust or lift is desired, the controller would
choose to elongate the time duration for both wings towards
downstroke, when the orientation of the segments is in favor
of positive lift and thrust. In another situation, when a nose-
down perturbation is applied, a recovering moment is achieved
by properly arranging bias inside each downstroke or upstroke
for both wings.

The simulation parameters for the 3D model are given in
Table I:

12)

TABLE I
NOMINAL PROPERTIES OF A 3D HOVERING MODEL

Parameter | Description Value Unit

my body mass 4.68 x 103 kg
Lo, 1y, I Eg‘ilml;‘;]“hmg;z] [2.5,0.5,2.5] x 10~ | kg-m?
s wing length 52.5 mm

c wing chord 13 mm
bo flapping angle ampl. 80 degree
P air density 1.2 kg/m3
Ci0,Caqo lift, drag ampl. 1.75 N/A
Nr,Mp lift, drag offset phase | 0 degree

2) Hovering Limit Cycles: We consider hovering periodic
orbits as a solution of the equations of motion in which the
states repeat themselves after one wingbeat. Mathematically,
it is formulated as:

9,4]: = [a, di+T (13)
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Fig. 5. Wing flapping angels (A), velocities (B) and accelerations (C) for a
3D hovering system during a wingbeat. The accelerations are constant during
each time interval. Each wing has 4 time intervals and 4 accelerations. The
flapping angle range is assumed to be constant for upstroke and downstroke
(0 = 80°).

where ¢ is an arbitrary time instant and 7" is the wingbeat
period. Due to the instability and sensitivity of these limit
cycles, we use the multiple shooting method [31]. In this
method, the wingbeat period is divided into multiple time
intervals and the equations of motion are solved for each time
interval separately. To ensure the continuity of the response
at the time intervals, we construct an optimization problem
with the hovering and continuity conditions as the constraints.
The objective function in this optimization determines which
characteristic is desired for the limit cycle (e.g. minimum
power, minimum wingbeat frequency, etc). This limit cycle
is used as the reference trajectory about which to linearize the
dynamics of the nonlinear system for controller design.

3) Stability Analysis: After finding the desired limit cycle,
we determine its stability by discretizing the continuous sys-
tem at the beginning of the downstroke, which we define as
our Poincare section. Therefore, the hovering limit cycle is
converted to an equilibrium point on this Poincare section.
The stability of the discretized system is determined based on
the magnitude of the eigenvalues of the Monodromy matrix

[32]. The intersection of the Poincare section and the hovering
limit cycle, a.k.a the equilibrium point of the Poincare map,
represents the states of the hovering system at the beginning
of the downstroke. The intersection of the Poincare section
and the neighboring trajectories around the limit cycle is
determined by the Poincare map which gives the next state,
X1, from the current state, xj, and the control values, uy:

Xk+1 = P(xk,uk), (14)

where P(-) is the Poincare map. uy carries the control
values at the k-th intersection, and will be introduced in next
section. The equilibrium point, x*, returns itself such that:
x* = P(x*,u*), where u* carries the control values that,
along with x*, yields the desired/reference limit cycle.

The stability of this map can be determined by linearizing
around its equilibrium point, (x*,u*), as follows:

Xpr1 = Axyp+ Bug, (15)
where
oP oP

x=x* u=u*

The eigenvalues of the Jacobian matrix, A, indicate the
stability of the system. If all the eigenvalues are located inside
of the unit circle, the system is stable. Otherwise we need a
feedback controller (next section) to stabilize the system by
updating the control input values (uy) at the Poincare section
(beginning of the downstroke).

D. Control

The feedback controller is designed to stabilize the linear
system (Eq. 15) but will apply to the original nonlinear system
(Eq. 1). We assume a feedback law in the form of up =
—Kx;, to update the control inputs only at the beginning of
the downstroke (once per wingbeat cycle). For this purpose,
we use the LQR technique for discrete systems to determine
the gain matrix, K. This requires minimizing the objective
function:

J = X(xiQxp +ufRuy), (17)

where the positive semi-definite matrix QQ and positive definite
matrix R carry weights that trade off between the control effort
and regulation performance. To minimize the cost function,
J, and find the stabilizing control input, uy, the discrete
Riccati equation is solved. After that, u, = —Kx; can be
calculated at the beginning of each downstroke. We consider
three scenarios for the Q and R matrices: i) a controller with
focus on the least control input change, ii) a controller with
highest convergence rate, and iii) a controller with focus on all
the state change equally (large values for all entries in Q with
respect to R). To find the gain matrix, K, for controller (i)
we assign high values to the diagonal entries in R matrix
to penalize control effort with respect to state values. For
controller (ii) we use the following optimization to minimize
the largest eigenvalue of the closed-loop system by tuning the
diagonal entries of Q and R matrices:

673

Authorized licensed use limited to: Lawrence Tech University. Downloaded on August 30,2022 at 22:44:58 UTC from IEEE Xplore. Restrictions apply.



75
75 75
] = v S | "%’\\\\ \
g0 g0 co | e
7o 75 75
0 4 0 10 -1 0
x/c y/c z/c
550 300
_ ” 550
o S <
30 W%jﬁ Lo 2o
-550)
-550 -300
-6 0 6 80 85 90 - 0
¢ (deg.) 0 (deg.) 1 (deg.)

Fig. 6. The phase portrait of the controlled 3D system. The equilibrium limit
cycle is shown in red, while the green lines are the trajectories during the
fast recovery (controller (ii)). Due to the coupled nature of the dynamics, the
lateral translation and the roll and yaw angles exit the equilibrium state during
recovery but return after about 10 wingbeats.

Minimize max(||\;]|), subject to:
|A-BK-)\I| = 0
K = R 'BTS;
S = Ric(A,B,Q.R);
Qi =0, Rjj = 0.
i=1...12; j=1...6,
where | - | is the determinant operator and the operator Ric(-)

returns a symmetric matrix that satisfies the Riccati equation.
In this controller, the diagonal entries of R and Q matrices
can be any value satisfying the constraints in the optimization
program.

E. Robustness analysis

After designing the controller and finding the gain matrix,
K, we apply the aerodynamic uncertainties (as defined in
section II-B) to the nonlinear model (Eq. 1). We run the
simulation for at least 200 flapping cycles and evaluate the
convergence of the states on the Poincare section. If this
sequence converges, we consider that level of uncertainty in
the tolerance domain of the controller.

III. RESULTS AND DISCUSSION

We start by showing the phase-portrait of the hovering orbit
(red line) and the response of the fast-converging controller
(controller (ii) - green line) in figure 6. Figure 7 compares
controller (i) and (ii). Again, the equilibrium cycle is shown
by a red line. In this figure, a 2.5° initial perturbation is
applied to the equilibrium pitch angle, which in addition to
being a state perturbation, also affects the angle of attack.
Controller (ii), designed for quick recovery, can return the
states to the reference orbit within 10 wingbeats (green line)
while controller (i), designed for the least change in control

- - = -Reference limit cycle

Quick recovery

—— Least control input change

P
il WIHuvvlvvvvwrvvvvvvvw:vvvvnvuvvvv‘vvnnvwnnvu

0 05 1 15

| | | Ll
15 2

1
Time [second]

Fig. 7. The recovery of the controllers under initial pitch perturbation. The
z— and z—movements are normalized by the wing chord. The unperturbed
trajectory is shown with a dashed red line. The response using the quick-
recovery controller(controller (ii)) is shown with a green line, and converges
within 10 wingbeats; The minimal-change controller (i), shown with a blue
line) recovers more slowly.

6 T T T
Controller (i)

| Controller (jii)

Fig. 8. The regions show the tolerance domains for the three controllers.
The red star corresponds to the nominal values of lift and drag coefficient
amplitudes for which the controllers designed (Cyo = Cj9 = 1.75).
Controller (i) with the slowest recovery rate has the largest tolerance domain
(light gray), while the fast recovery controller (ii), shows the most sensitivity
to the aerodynamic uncertainties (darkest gray).

inputs, recovers the system over a much longer time ((blue
line). The convergence using controller (iii) lies in-between
these two results.

Figure 8 shows the robustness of the controllers due to the
Cyqo and Cjy uncertainties while keeping the phase uncertain-
ties equal to zero (, = n, = 0). The controller designed
for the least change in control inputs, controller (i), provides
the largest robustness while the controller designed for quick
recovery, controller (ii), can only handle small changes in
Cyao and (g around the values for which the controllers are
designed (Cyo = Cjp = 1.75 - red star in Fig 8).
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Fig. 9. The enclosed regions show the tolerance of the system on the lift and
drag offset phase uncertainties as the true values of coefficient amplitudes vary
as shown. The system gained larger tolerance for the offset phases when the
true values of the coefficient amplitudes are smaller than the nominal values.
The tolerance of the controller is asymmetric with respect to drag offset phase
and sensitive to the positive values.

C,=175 (const) b n,
Cgo=Varies

Ch;Vanes
C =175 (const)

Fig. 10. The robustness of the system with respect to the offset angles (1,
and 7, ) when: (a) the lift coefficient amplitude (Cjg = 1.75) is constant (low
uncertainty on lift) and drag coefficient amplitude has high uncertainty, (b) the
drag coefficient amplitude is constant (Cyp = 1.75) and higher uncertainty
exists on lift coefficient amplitude.

Figure 9 shows the effect of uncertainties on the phase
offsets (7, and 7, ) in the aerodynamics modeling while the
actual Cyo and Cjy are varied together (Cyo = Cjg). The
results show that the controller has a larger tolerance to phase
offset uncertainties if the actual values of Cy9 and C)y are
smaller than the values for which the controller is designed
(blue line vs. green line). Thus, to increase the tolerance
domain (the area enclosed), this result suggests using a slightly
larger than nominal value (upper bound) for lift and drag
coefficients during the controller design stage. Moreover, the
domains in this figure show that the tolerance of the controller
to the drag offset phase (1,) is significantly smaller than
the lift offset phase (7,). This is even more pronounced for
positive drag phase offsets. As the Cyy and Cjg increase
together, the tolerance domain shrinks, especially for the drag
offset uncertainty (green boundary). The asymmetry of the
controller tolerance for the drag offset phase (17,,) suggests to
use an initial positive drag offset phase during the controller
design, and since the lift offset phase is symmetric for positive
and negative uncertainties, there is no need to do the same for
lift offset phase.

Figure 10 shows the tolerance domains of the controller

when one of the coefficient amplitudes (Cyo or Cjg) is
subjected to higher uncertainty than the other one. When
there is more uncertainty in drag coefficient amplitude (Cyp),
figure 10-a shows that the tolerance domain shrinks toward
negative drag offset phase for larger drag coefficients, but
remains robust and symmetric for lift offset phase. If the
actual drag coefficient amplitude is bigger than the value for
which the controller is designed (like Cyg = 1.75 here), the
controller may not show any tolerance for positive drag offset
uncertainty. This behavior suggests using an upper bound for
the drag coefficient amplitude when designing the controller.
This is compatible with the previous case in which there are
uncertainty in lift and drag coefficient amplitudes (Fig. 4). It
suggests to consider a slightly greater phase offset for the drag
during the control design. Figure 10-b shows the tolerance
domain of the controller with more uncertainty in the lift
coefficient amplitude. Here, the results show that the tolerance
of the system remains symmetric and robust for lift offset
phase and nearly constant for the positive drag offset phase
as the lift uncertainty changes. For lift coefficient amplitude
(Co) higher than the value for which the controller is designed
(Co = 1.75 here), the tolerance expands in lift offset phase but
shrinks rapidly for negative drag offset phase. This behavior
confirms using an upper bound for lift coefficient amplitude
but also suggests to use a lower bound for drag offset phase
during the control design, if the uncertainty of increased lift
coefficient amplitude is high.

IV. CONCLUSIONS

In this paper, we studied the robustness of a flapping wing
hovering system under aerodynamic parameter uncertainties.
Three linearized controllers based on the full dynamics of the
system were considered, each representing different control
objectives. The results show that the controller focused on
minimizing the change of our proposed control inputs has
the slowest convergence rate, but the largest tolerance for
aerodynamic modelling uncertainties. Moreover, for control
design purposes, the results suggest that using the upper bound
values for lift and drag coefficient amplitudes for the control
design stage will have the largest tolerance domain. Also, the
tolerance of the controller is asymmetric for the drag offset
phase with low tolerance on positive values. Therefore, to
maximize robustness, one should use a positive drag offset
phase while simulating the aerodynamic forces during analysis
and control design stage.
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